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Abstract

Energy is one of the most critical constraints for sensor

network applications. In this paper, we exploit the localized

prediction paradigm for power-efficient object tracking sensor

network. Localized prediction consists of a localized network

architecture and a prediction mechanism called dual predic-

tion, which achieve power savings by allowing most of the

sensor nodes stay in sleep mode and by reducing the amount

of long-range transmissions. Performance evaluation, based

on mathematical analysis, shows that localized prediction can

significantly reduce the power consumption in object tracking

sensor networks.

1 Introduction

Object tracking, widely deployed for military area in-
trusion detection and wildlife animal monitoring, is a
representative application of wireless sensor networks
[9, 16]. To develop sensor networks for object track-
ing, battery power conservation is one of the most criti-
cal issues since the sensor nodes are often supported by
batteries which could be difficult to replace.

Most of today’s sensor boards provide four different
modes for radio transmissions: Transmit, Receive, Idle
and Sleep [5]. Studies of sensor power consumption on
WINS nodes developed by Rockwell and UCLA show
that 1) long distance transmission dominates the energy
dissipation of sensor networks; 2) idle mode consumes
nearly as much power as receiving mode; and 3) sleep-
ing mode consumes only around one-sixth of the power
in active mode [13]. This analysis of radio power con-
sumption provides important hints for power optimiza-
tion in various areas of sensor network design. Energy
efficiency of the sensor networks can be improved by re-
ducing long distance transmissions at the cost of more
localized communications among nearby sensor nodes
and inactivating radio components as much as possible
[2, 3, 4]. In this paper, we present a prediction based

approach, called localized prediction, for power efficient
object tracking sensor networks, by exploiting the above
hints.

The localized prediction consists of two parts: a lo-
calized sensor network architecture, where most of the
sensor nodes keep sleeping until waken up by an active
sensor node, via a low power paging channel, to antici-
pate the task of object tracking, and a prediction mech-
anism called dual prediction. Predictions about future
movement of a tracked object are calculated at both of
a sensor node and its cluster head (which will be defined
later). Information collected at a sensor node is not sent
if the object’s movement is consistent with the predic-
tion. This reduction of long distance transmissions is
at the cost of handing off moving history of an object
(needed for calculating predictions) among neighbor sen-
sors.

The ideas of utilizing predictions to reduce overheads
is not new in mobile computing systems. Prediction
based techniques has been proposed to reduce the paging
overhead in cellular network by limiting search space to
a set of cells that mobile users may enter [1, 17]. In wire-
less data broadcast systems, mobile computers turn on
the radio only during the arrival time of requested data
frames, which is predicted based on the indexing infor-
mation provided in broadcast channels [6, 8, 15]. Simi-
larly in sensor networks, Goel and Imielinski argued that
readings at a sensor node can be predicted based on the
past reading history and spatio and temporal relation-
ships of readings from surrounding sensors. They pro-
posed a prediction based monitoring mechanism, called
PREMON, to reduce the number of transmissions at the
cost of more receptions [3]. The dual prediction mech-
anism in our proposal is different from PREMON in an
important aspect. Instead of calculating predictions at
a cluster head and sending predicted readings to a sen-
sor via long distance transmission (as PREMON does),
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dual prediction trades off local computation at the sen-
sor node for reduction of long distance transmission.

We have conducted a performance evaluation, via
mathematically analysis, to explore the potential power
savings by localized prediction and make comparison
with PREMON and a system without using predictions.
Our result concludes that the localized prediction can
significantly reduces the power consumption in object
tracking sensor networks and outperforms the compared
approaches.

The rest of paper is organized as follows. Section 2
describes the system architecture of localized sensor net-
works for object tracking. Section 3 discusses prediction
based object tracking. In Section 4, performance of lo-
calized prediction is evaluated by comparing with other
mechanisms. Finally, Section 5 concludes this paper and
depicts future research directions.

2 Object Tracking Sensor Networks

In this section, we describe a general system architec-
ture, set up assumptions on location model and topology
for illustration and later analysis, and finally present the
localized algorithm for power efficient object tracking.

2.1 System Architecture

In wireless sensor networks, clustering techniques are
frequently used to construct self-organized network hi-
erarchy in order to address communication, power con-
servation, and information aggregation problems in the
network layers [2, 4]. In this paper, we deploy hierarchi-
cal cluster as network architecture. All the sensor nodes
within a cluster send data to their cluster head. Further-
more, we assume TDMA is used as MAC protocol for the
communication between a sensor node and its cluster
head [10, 14], and low power paging channel is used for
communications among sensor nodes [11, 12, 18]. The
time slots of a TDMA channel for a cluster are evenly
allocated to members of the cluster. Thus, a sensor node
may save power by staying in sleep and only waking up
when its time slot arrives. Comparing to TDMA, the
paging channel is more flexible and power efficient since
the sensor nodes are activated on demand.

2.2 Location Models and Topology

Objects location can be represented in a geometric
model (e.g., coordinates) or a symbolic model (e.g., id
of a sensor node) [7]. With knowledge of sensor network
topology, those two models can be transformed based
on the application requirements. In this paper, without
losing generality, we assume a symbolic representation
of object locations for its simplicity.

To facilitate our discussion and later analysis, as
shown in Figure 1, we assume an ideal, hexagon shaped

(a) Hexagon

1
26

5
4

3

(b) Six triangles

1 2

13

25

36

12

24

3

4

5

6
78

9

10
11

(c) Smaller subarea

Figure 1. Ideal sensor network topology

sensor topology. All sensor nodes have the same de-
tection radius r, the maximum distance within which
a sensor node can detect the existence of objects. We
also assume that sensor radio range d satisfies d =

√
3r.

Hence, each sensor node is surrounded by six neighbor-
ing nodes. In our model, we reduce the overlap of two
neighboring sensor detection areas to the common edges
of detection areas. Based on these assumptions, each of
the sensor detection area can be modelled as a hexagon1

and is further divided into six identical equilateral trian-
gles numbered 1 to 6, representing the symbolic location
of objects (see Figure 1(b)). The neighbors are identified
by the numbers of triangles that they are next to. The
precision of this model can be enhanced by dividing de-
tection area into smaller pieces. For example, as shown
in Figure 1(c), a detection area consists of 36 subareas.

2.3 Localized Object Tracking

Based on our assumption in Section 2.2, the location
of a moving object is represented by the triangle number
and the moving trail is represented as a sequence of tri-
angles numbers. Thus, a moving trail for Figure 2 could
be 〈5, 5, 6, 1, 1, 1, 2, 2〉.

Current node

Destination Node

1
2

3
4

5

6

1
2

3
4

5

6

Figure 2. Moving trail in a sensing area
The sensor node, where an object is currently mon-

itored, is called the current node. It assumes that an
object will leave for the neighboring sensor node next
to the triangle where the object is located (called target
node), and thus wakes up this target node. The target
node where the object eventually enters is called desti-
nation node. For example, in Figure 2, the target nodes
next to triangle 6 and 1 of the current node are waken
up, even though the object enters the destination node
next to triangle 2. To prevent target nodes being idle
for a long period of time, the wake-up messages from
the current node come with a TTL value, which repre-

1A sensor detection area can also be modelled as geometry
shapes with more edges, such as heptagon and octagon with seven
and eight neighbors, respectively.
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sents the period of time a target node should stay awake
before going back to sleep.

3 Prediction Based Object Tracking

In this section, we first discuss some prediction heuris-
tics of object moving behavior and then describe the dual
prediction mechanism. Finally, three prediction mod-
els that can be deployed for dual prediction, namely,
constant model, average model, and exponential average
model are presented.

3.1 Heuristics for Prediction

For object tracking applications, the state of a moving
object, such as direction, velocity and route, is particu-
larly important. Heuristics can be derived by collecting
moving patterns of the tracked objects. For example,
if an object’s movement is a reflection of the patterns
of its whole trip, a sensor node may be able to predict
the object’s future moving directions by using a direc-
tional prediction model. Speed range can be used to
replace actual speed since it is difficult to predict accu-
rately. Furthermore, an object’s moving route within a
detection area could be derived from predictions of ve-
locity and direction, with the geographical knowledge of
detection areas.

3.2 Dual Prediction

The basic idea for dual prediction is to have sensor
nodes and their cluster heads both calculate the next
states of tracked objects. Algorithm 1 and Algorithm 2
show specific actions taken at sensor nodes and cluster
heads for predicting an object’s future movement. The
sensor nodes do not send an update of object movement
to its cluster head unless it is different from the predic-
tion. In addition, no prediction values need to be sent
from cluster heads to sensor nodes. However, the saving
of long distance transmissions between a sensor node and
its cluster head comes with a small price, i.e., transfer of
moving history from a current node to the destination
node. As we will show later in the performance evalua-
tion, this cost is well justified because it consumes less
power for transmission to a neighbor sensor node and it
occurs only when the tracked object moves into a new
detection area.

3.3 Prediction Models

Prediction models refer to prediction functions that
incorporate heuristics and strategies to predict object
movement. In the following, we describe three prediction
models based on object’s moving history:
• Constant Model: By assuming that the object
movement in terms of direction and velocity remains

Algorithm 1 Prediction algorithm at sensor nodes.
Incoming Message: Hist Msg(Hist)
Local Variables: Sen Read, Pred
System Functions: Predictor()
Procedure:

1: {Once the object enters the detection area, the sensor predicts
object’s movement from history}

2: Pred ← Predictor(Hist)
3: while object is inside the detection area do
4: monitor the object, record the sensor readings to Sen Read
5: end while
6: if (Sen Read �= Pred) then
7: Send Update Msg(Sen Read) to cluster head
8: end if
9: {Calculate object’s movement history from the previous
history and movement in its detection area}

10: Hist ← (Sen Read, Hist)
11: send Hist Msg(Hist) to destination node

Algorithm 2 Prediction algorithm at cluster heads.
Incoming Message: Update Msg(Sen Read)
Local Variables: Hist, Pred
System Functions: Predictor()
Procedure:

1: while object is inside the area cluster covers do
2: for object’s future movement in sensor i,

Pred ← Predictor(Hist)
3: wait for the object leaving detection area of sensor i
4: if (get Update Msg(Sen Read) from sensor i) then
5: Hist ← (Sen Read, Hist)
6: else
7: Hist ← (Pred, Hist)
8: end if
9: end while

the same2, this approach does not need to record
and pass any history data to the destination node.

• Average Model: By recording and passing an ob-
ject moving history, the average model derives its
future movement by averaging the history.

• Exponential Average Model: Instead of sim-
ply averaging the history states, this model assigns
more weights to the recent history states.

All the above models may compress the history informa-
tion into a value, so it can be passed to the destination
node without incurring excessive overhead.

4 Performance Evaluation

In this section, we use mathematical analysis to eval-
uate localized prediction. Firstly, we show the potential
performance improvement of a localized sensor network
system over a non-localized system. Then, we compare
the performance of dual prediction mechanisms with
naive (i.e., no prediction), PREMON in a non-localized
system in order to filter out the power saving due to
localization. Power consumption is the metric used in

2the route can be calculated accordingly.
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our evaluation. The parameters used in our analysis are
summarized in Table 1.

Parameter Description

T Running time (in seconds) for object tracking
S Number of sensors in the networks
N Number of sensors involved in object tracking
C Average number of sensor nodes in a cluster
K Number of transmissions and receptions

between sensors and their cluster heads
M Total number of radio turn-on’s by sensors
I Interval between allocated TDMA time slots

for a sensor node.
L Length of a TDMA time slot (L=I/C)
W The average number of target nodes activated

by a current node.
TTL The period of time a target node stays awake
P Size of the message in transmissions
D Distance of transmissio

Table 1. Analytical Parameters.
4.1 Evaluation of Localization Effect

Based on the parameters defined above, the radio
components in a non-localized system are turned on for a
total number of M (= S·T

I ) times. However only K time
slots are effectively used for communications between
sensors and cluster heads, and the remaining M − K
time slots are spent in idle state. Localized system tries
to reduce the number of idle time slots by paying over-
head on target nodes, waken up by the current node
and staying idle for TTL. The other power overhead
is incurred in low-power paging channels, via which a
current node wakes up target nodes and the destination
node. However, [18] shows that a paging channel con-
sumes less than 1µW running at full duty cycle. Thus,
we only consider power consumed in idle mode of tar-
get nodes as the system overhead. Assuming the sensor
topology as described in Section 2.2, then 0 ≤ W ≤ 5
(since the object will eventually move into a destination
node). Thus, there are N ·W target nodes. During each
TTL, a target node turn on its radio TTL

I times (and
thus is idle for TTL

I · L seconds) before going back to
sleep. Hence, the total number of radio turn-on’s in tar-
get nodes during the running time of the sensor network
is N · W · TTL

I .
To simplify our evaluation, we adopt the power con-

sumption data of Rockwell’s WINS nodes obtained in
[13]. For each time slot of L seconds, power consumption
at a sensor node for idle state is Eidle = 727.5 · L nJ ,
and the one for transmission is ETx = 771.1 · L nJ .
Therefore, power consumption in non-localized system
is represented as Enonloc = K · L · 771.1 + (M − K) ·
L · 727.5 nJ , and one in localized system is Eloc =
K ·L · 771.1 +Min(W ·N · TTL

I ,M −K) ·L · 727.5 nJ ,
where Min(W ·N ·TTL

I ,M−K) implies the upper bound
for the total number of radio turn-on’s in target nodes
(i.e., radio in idle state).

In our evaluation, we fix some parameters, i.e., S =
100, T = 100, I = 1, C = 4, TTL = 5, and hence derive
L = 0.25,M = 10000. In each subfigure of Figure 3,
K is increased from 0 to its upper bound values (i.e.,
N · T

I ), and W is varied within its possible values. All
the subfigures represent the above comparison with the
number of nodes involved in object tracking, N, being
assigned to 20%, 80%, and 100% of the total number of
nodes in the network, respectively.

K contributes to the power consumption in trans-
mission. As K increases (in all the subfigures) from 0
to its upper bound values, the power consumption in-
creases slowly in the non-localized system but increases
dramatically in the localized system. This is because, for
the non-localized system, the extra power consumption
incurred as K increases is due to the small difference
between radio transmission and idling. As for the local-
ized system, the extra power consumption incurred as
K increases is due to the increases of transmissions.

N and W have impact on power wasted in the idle
state. As shown in Figure 3(a)-(c)), power consumption
for the idle state in non-localized system is much higher
than that in the localized system. Only when the values
of N and K reach their upper bound values, the power
consumption of the localized system reaches the level
of the non-localized system. Otherwise, the localized
system always outperforms the non-localized system.

4.2 Evaluation of Prediction Effect

In the following, we analyze the power performance
of naive, PREMON and dual predictions. We assume
the average distance between neighboring sensor nodes
is Dnbr, and the average distance between a sensor
node and its cluster head is Dcls. Our cost formu-
las are based some numeric parameters obtained in [4].
Power consumed in transmitting or receiving messages is
Eelec = 50nJ/bit. For transmission amplifier to achieve
an acceptable ratio-of-signal-noise, ε = 0.1nJ/bit/m2,
at a distance D, there is an extra power consump-
tion of ε · D2. Thus, energy consumption in transmit-
ting a P -bit message in a distance D is ETx(P,D) =
Eelec · P + ε · P · D2, and energy consumed for receiv-
ing this message is ERx(P ) = Eelec · P . As shown
in [5], the energy cost for executing 208 cycles (i.e.,
roughly 100 instructions) is 1.6 times of the energy con-
sumed for receiving a single bit. Thus, in our evaluation,
computation energy consumption per 100 instructions is
Ecomp = 1.6 · ERx(1) = 80 nJ per 100 instructions.

In naive system, sensor nodes report their readings
with Pnaive bits message in their scheduled TDMA
slot periodically. Therefore, transmission from sen-
sors and receptions at cluster heads are both K

2 . To-
tal energy consumed in the naive system is Enaive =
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Figure 3. Comparison of non-localized and localized
mechanisms

K
2 · (ETx(Pnaive,Dcls) + ERx(Pnaive)).
In PREMON, the prediction is performed at the clus-

ter heads, and is passed to the sensor nodes as a Ppremon

bits message K
2 times . The sensor node communicates

with its cluster head only when the readings differ from
the prediction value received from cluster heads. Let
the average accuracy for predictions to be α (in terms
of percentage of total number of predictions). The total
energy consumed in PREMON is:

EPremon =
K

2
· (ERx(Ppremon) + ETx(PPremon, Dcls))

+
K

2
· (1− α) · (ETx(Pnaive, Dcls) + ERx(Pnaive))

+
K

2
· Ecomp

In dual prediction model, to predict an object’s future
movement, sensor nodes need to obtain the object’s mov-
ing history from its neighbors. We use Phisory to denote
the size of history packet. Like PREMON, the dual pre-
diction approach makes K

2 predictions throughout the
system running time, T . Thus, each sensor node makes
an average of K

2·N predictions, assuming only one object

being tracked by the sensor network. We also use α to
denote accuracy of the dual prediction approach. Thus,
the total power consumption for dual prediction is as
follows.
EDual = N · (ETx(Phistory, Dnbr) + ERx(Phistory))

+
K

2
· (1− α) · (ETx(Pnaive, Dcls) + ERx(Pnaive))

+ K · Ecomp

We compare power consumption in naive, PREMON,
and dual predictions, by varying Dnbr, Dcls, and α.
Let K and N be 500 and 50, respectively, and assume
Pnaive, Phistory, Ppremon to be 8 bytes, 7 bytes, and 6
bytes, respectively. Figure 4 shows evaluation results.
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Figure 4. Power consumption of prediction mecha-
nisms

From Figure 4, we observe that the dual prediction
needs a much lower prediction accuracy than PREMON
to outperforms the naive system. This is because, for
PREMON, the reduction of transmitting readings from
sensor nodes is at the cost of transmitting predictions
from the cluster heads and receiving them at the sensor
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nodes. Thus, unless cluster head has extremely high
prediction accuracy, it’s hard to offset the overhead.

By fixing Dnbr but increasing Dcls (see Figure 4(a)
and (b)), the overhead of dual prediction over the naive
system is decreased since the accuracy of predictions
required to overcome the overhead is decreased, while
PREMON prediction remains same. This is because the
predictions in dual prediction is enabled by the short
distance transmission of history information, while the
predictions in PREMON rely on long distance transmis-
sions between cluster heads and sensor nodes.

By fixing Dcls but increasing Dnbr (see Figure 4(b)
and (c)), we found that the dual prediction is the only
one affected by this parameter change. This is because
the dual prediction transfers moving history between two
neighboring sensor nodes while the other two approach
purely relies on communications between cluster heads
and sensor nodes, which costs much higher than the
transmission between neighboring sensor nodes. Thus,
even when the distance of neighboring sensor nodes dou-
bled (as shown in Figure 4(b), (c)), the increased over-
head is limited.

5 Conclusion

In this paper, we described a localized prediction ap-
proach for minimizing global power consumption object
tracking sensor networks. The proposed approach makes
most of the sensor nodes stay in sleep mode as long as
possible and only wakes up needed sensor nodes to en-
sure seamless tracking of the object. In addition, pre-
dictions are performed at both of sensor nodes and their
cluster heads to reduce message transmissions. As a
result, as long as the prediction models maintain cer-
tain level of accuracy (e.g., 10%), a significant amount
of power can be saved. Based on mathematical anal-
ysis, our performance evaluation shows that the local-
ized prediction significantly outperforms non-localized
system and existing prediction approach in power con-
servation.

As for the next step, we plan to further investigate
prediction models based on application requirements
and heuristics. In addition, we are looking into the
tradeoff of power consumption with various system is-
sues, such as sampling frequency, location models, and
objects moving speed etc.
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