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Abstract

As one of the wireless sensor network killer appli-
cations, object tracking sensor networks (OTSNs) dis-
close many opportunities for energy-aware system de-
sign and implementations. In this paper, we investi-
gate prediction-based approaches for performing en-
ergy efficient reporting in OTSNs.

sions of sensor readings are avoided as long as the pre-
dictions are consistent with the real object movements.
DPR achieves energy efficiency by intelligently trading
off multi-hop/long-range transmissions of sensor read-
ings between sensor nodes and the base station with
one-hop/short-range communications of object move-
ment history among neighbor sensor nodes. We explore
the impact of several system parameters and moving be-
havior of tracked objects on DPR performance, and also
study two major components of DPR: prediction models
and location models through simulations. Our experi-
mental results show that DPR is able to achieve consid-
erable energy savings under various conditions and out-
performs existing reporting mechanisms.

1. Introduction

Recently, the rapid developments of various tech-
nologies for sensing, computing and communication
have brought a lot of momentum to the research in wire-
less sensor networks. Even though many energy op-
timization techniques, e.g., dynamic voltage schedul-
ing [27], energy-aware real time scheduling [10], topol-
ogy management [3] and intelligent query processing
techniques [25], etc. have been studied for sensor net-
works, they do not fit the object tracking sensor net-
works (OTSNs) very well. OTSNs imply intricate col-
laborative operations amongst sensor nodes and produce
immense raw streaming data flowing inside the network.

Therefore, many technical and research challenges are
faced for incorporating energy awareness into OTSNs.
Object tracking sensor networks have two critical op-
erations:

These two op-
erations are interleaved during the entire object tracking
process. Our focus, in a prior study [23, 24], has been on
developing strategies for reducing the energy consump-
tion in monitoring operations. In this paper, we expand
our study to the energy management in reporting oper-
ations. We propose a

CEEEEORSEORBISSNSE (» DrR. both

the base station and sensor nodes make identical pre-
dictions about the future movements of mobile objects
based on their moving history. By monitoring the mobile
objects, the

which has also
correctly predicted the current object movements. Oth-
erwise, the

This paper makes three significant contributions.

e We propose and architect a prediction-based report-
ing mechanism for OTSNs, namely DPR.

e We employ and compare several different location
models in DPR. The granularity and transmission
overhead of location models represent a primary
tradeoff between the precision (and thus predic-
tion accuracy) and the total energy consumption of
DPR.

e We conduct an extensive performance evalua-
tion by simulating DPR with various location
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models and compare them against two existing re-
porting mechanisms (i.e., naive and PREMON)).
The results reveal profound insights for design-
ing an energy-aware reporting mechanism in
power-constrained OTSNG .

The idea of utilizing predictions to improve system
performance in mobile computing environments have
appeared in the literature. In cellular environments, pag-
ing overhead is reduced by limiting the search space to
a set of cells that a mobile user is predicted to possi-
bly enter [1, 20]. Similarly in sensor networks, PRE-
MON reduces the transmissions from sensor nodes by
predicting their readings at the base station [4]. For wire-
less data broadcast, mobile computers are able to predict
the arrival time of the requested data frames and thus,
selectively retrieve data to reduce power consumption
[6, 9, 16]. For Moving Object Database (MOD), Wolf-
son et. al. propose a framework between MOD and lo-
cation update stream, which inserts the location changes
into MOD only when it does not predict objects’ move-
ments correctly [22].

The rest of the paper is organized as follows. Sec-
tion 2 provides a background for this paper. In Section 3,
we propose the dual prediction reporting mechanism and
discuss the possible prediction and location models. Sec-
tion 4 presents the simulation results; and finally, Sec-
tion 5 lists our conclusion and future work.

2. Object Tracking Sensor Networks

Object tracking sensor networks (OTSNs) have
widespread use in applications such as security surveil-
lance and wildlife habitat monitoring [18]. OTSNs
face severe energy limitations since they usually are
driven by scarce energy resources. Therefore, a new net-
working paradigm for OTSNs, with a focus on the
energy efficiency of reporting operations is stud-
ied in this paper. In the following, we first provide
some background of OTSNs for this paper, and de-
scribe a monitoring mechanism underlying the DPR
mechanism.

2.1. Background

In an OTSN, a number of sensor nodes are deployed
over a monitored region with predefined geographical
boundaries. The base station acts as the interface be-
tween the OTSN and applications by issuing commands
and collecting the data of interests. A sensor node has
the responsibility for tracking the object intruding its
detection area, and reporting the states of the mobile
objects with certain reporting frequency, which is ad-
justable to the network and application requirements.

@D but out of scope of this study. Thus, in this
paper, we assume that each sensor node is a logical rep-
resentation (i.e., sensing leaders or cluster heads) of a set
of sensor nodes which collaboratively decide the state of
a mobile object. Moreover, the sensor nodes are assumed
to be static and the base station has a good knowledge
about the location of each sensor node during the oper-
ating period.

We also assume that the mobile objects are identifi-

ahle vo thit sensor nodes are able to store the mobile ob-
(EENORORENSNRONSNEN S ome existing tech-

niques are available for identifying the tracked objects,
e.g., the objects are electronically tagged or can be iden-
tified based on a pre-embedded object code table [7]

in the sensor nodes. Also, a (HESHSININISNEISHND

@R This channel is deployed for minimizing the
energy consumed by the idle state of sensor radio com-
ponent. Without this channel, the sensor nodes have to
be awake all the time. However, this wakeup channel
scheme is not directly related to DPR scheme, since the

2.2. Impacting Factors

In this section, we discuss various factors that have
impacts on the energy consumption in OTSN:

o Network workload is related to the number of mo-
bile objects inside the network, which has an im-
pact on the overall energy dissipation of OTSNs
due to the amount of monitoring and reporting ac-
tivities.

e Reporting frequency of sensor nodes is deter-
mined by application requirements. Since higher
reporting frequency implies more update packets,
keeping reporting frequency as low as application
allows can conserve energy of OTSNGs.

e Data precision is closely relevant to the location
models (see below) and the frequency of sam-
pling performed by the sensor nodes. The applica-
tion can depict the mobile objects’ movement in
more details by asking for the location informa-
tion more frequently and/or a location model with
higher granularity, which in turn consumes extra
energy and requires more computations.

e Location models are used to present the location
information of mobile objects. Additional move-
ment states, e.g., speed and direction, can be de-
rived from the location changes.
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2.3. Monitoring Mechanism

However, the energy-saving schemes for monitoring are
orthogonal to the reporting mechanism we are address-
ing in this paper. To focus on the energy optimization
for reporting operations, we adopt one of the basic mon-
itoring schemes, called continuous monitoring scheme
(CM) which was also discussed in [24]. This scheme ac-
tivates a sensor node only when an object enters its de-
tection area and keeps the node awake for monitoring
until the object leaves its cell.

(SO 10 cver, to ensure no

missing reports, the active sensor has to stay awake all
the time as long as the object stay in its detection area,
even if the application requires only a very low report-
ing frequency.

3. Dual Prediction based Reporting

The characteristics of energy dissipation on a wire-
less sensor node for monitoring and for reporting are

very different 5. 14]. (S SESIINSSEESNTENGN

@BBED To transmit sensor discoveries back to the base

station, the network involves a large number of radio op-
erations, including listening to the channels, receiving
data and transmitting data.

Based on an observation that the overall direction of
an object’s movement usually does not change dramati-
cally during its trip and thus can be predicted from past
moving patterns, we propose a dual prediction based re-
porting (DPR) mechanism to conserve energy at the re-
porting stage of an OTSN.

3.1. Reporting Mechanism

The DPR mechanism has two main components: lo-
cation models which regulate the granularity of the loca-
tion information that the system desires; and prediction
models that analyze the moving history of tracked ob-
jects and estimate their future movement states. In the
DPR mechanism, a prediction model is deployed at both
sensor nodes and the base station. By using the same his-

torical data, the sensor nodes and the base station con-
sistently make the same prediction of any mobile ob-
ject’s future movements. This way, the sensor nodes are
able to avoid transmitting its sense data to the base sta-
tion, as long as their predictions about the object’s move-
ments match their readings. Meanwhile, the

To make predictions, the moving history of all ob-
jects is needed. The

SNy o1 the sensor nodes, however,

they do not have a global view of the entire network
as the base station does. Therefore, historical packets1
have to be passed among the sensor nodes who are
involved in tracking objects. Compared with the long
distance/multi-hop transmissions from sensor nodes to
the base station, exchanging historical packets locally
consumes much less energy. Therefore, the overhead of
exchanging historical packets represents a good trade-
off for the gain of DPR mechanism, which is verified by
our experimental results (Section 4).

In this way, the history stored
at the base station and sensor nodes are consistent, and
their predictions for the objects’ movement are identical
all the time. The transmissions from the sensor nodes to
the base station are avoided as long as the predictions
are correct. On the other hand, to allow the sensor nodes
which never saw the object to make predictions, the ob-
jects’ movement history has to be passed between sen-
sor nodes as the object moves. Even though exchang-
ing movement history consumes extra communication
overhead, these one-hop transmissions among neighbor

1 The moving history of mobile objects can be (S IIEESEE by the
prediction models (discussed in Section 3.2). Therefore, obtaining
these historical data does not incur excessive storage and commu-
nication overheads, even when have to be tracked
at the same time.
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sensor nodes are minor compared with the multi-hop
transmissions between the base station and sensor nodes
which DPR saves.

The DPR mechanism raises several research issues.
For example, due to the fixed cost of historical data ex-
changes, the overall performance of DPR relies on the
accuracy of the prediction mechanism. How can we im-
prove the prediction accuracy? Also, what kinds of his-
torical data could be the input for a prediction model?
Intuitively, finer granular historical information allows
more accurate estimations that a prediction model may
make, although more presentation and communication
overheads are incurred. This observation points out a
tradeoff between the granularity of the historical data
and the accuracy of the prediction model. The remain-
ing of this section will address these questions in de-
tails.

3.2. Prediction Models

Prediction models refer to the prediction functions
that incorporate heuristics and strategies for predicting
object movements. If the sensor nodes and the base sta-
tion can accurately predict all future moves of the ob-
jects, there actually is no need for any communication.
Thus, the strategies that explore the moving history of
mobile objects are vital to a prediction-based scheme.

In our prior work [24], we proposed and studied three
prediction models: namely instant, average and expo-
nential average. Basically, the instant model assumes
that the object continues to move in the same direc-
tion and velocity as the last observed state. The average
model predicts an object’s future moving states by aver-
aging the historical data. The exponential average model
lends more weight to recent history which is more likely
to reflect the future behavior. Those prediction models
can also be employed for dual prediction based reporting
mechanism. Moreover, the prediction models can com-
press the entire moving history of mobile objects and ef-
ficiently reduce the overhead for storing and exchang-
ing historical packets amongst the sensor nodes. Due to
the space constraint, we do not provide details here. In-
terested readers are referred to [24].

3.3. Location Models

Prediction models are concerned with how to pro-
cess the historical data, and use them to predict the next
movements of mobile objects. In this section, we dis-
cuss the location models which decide the precision of
these historical data, thus indirectly affect the accuracy
of the prediction models. Meanwhile, the application
can choose the appropriate location model for mobile
objects’ location reported by the sensor nodes.

In a two-dimensional space, given the locations of a
moving object at time ¢; and ¢;, (2;,v;) and (z;,y;),

(zi—z;)2+(yi —y;)? and

[ti—t;]

direction d;; = tan’lzj%zj can be computed. From
the above equations, we observe that two factors con-
trol the precision of the historical data. One is the unit
of time (i.e., |t; — t;|). A longer time unit hides the mi-
nor changes in object movements, since all the variations
in the speed and directions between ¢; and ¢; are aver-
aged. The second factor is the location model (i.e., x;
and y;). The location information with higher granular-
ity provides more information about the object’s mov-
ing history to the prediction models, thus is more likely
to achieve higher prediction accuracy. In general, loca-
tion models can be categorized into two different mod-
els: geometric and symbolic [8]. A geometric model pro-
vides n-dimensional coordinates, which is fine-grained,
but incurs considerable cost and complexity. A symbolic
model denotes an area as the location of the object. In
this paper, we discuss several possible location models
(illustrated in Figure 1), and study their effect on the
overall performance of DPR.

respectively, the speed v;; =

Gi1 G7
\ e -
Gs ( ] / [
St = Ve
VTt 7
e/ X
° / N 5-]—m @S¢ L J @ Sensors
° A / ° N Mobile

object

/ ..\\ °

Figure 1. Location Models for DPR

e Sensor cell is the most coarse symbolic location
model among the models we discuss. As Figure 1
shows, the Sensor_ID (e.g., S5) represents the loca-
tion of the mobile object.

e Triangle is formed by connecting endpoints of the
boundary between two adjacent sensor nodes to the
center of the sensor cell. For example, T5¢ in Fig-
ure 1, the triangle in S5 and adjacent to Sg repre-
sents the location of the mobile object. The advan-
tage of this model is that a sensor node can easily
identify the triangle where an object is located in
(i.e., involves less sensor fusion activity) and pin-
point the object’s location with a smaller symbolic
region.

e Grid is another symbolic location model the OTSN
can use. In Figure 1, (G1g indicates the ID of the
grid where the object is detected. The total num-
ber of grids decides the granularity of the location
model. When the number of the grids increases, the
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resulting grid location model approaches the geo-
metric location model (discussed below). However,
with a reasonable grid size, grid models can ef-
ficiently reduce the representation overhead com-
pared with the coordinates model, but more predic-
tion errors due to the less accurate location infor-
mation are expected.

e (Coordinate belongs to the geometric loca-
tion model, which holds the most accurate location
information. Therefore, the estimation about ob-
ject movements from this location model is the
most accurate one, while the overhead for pass-
ing coordinates, which are in the update packets
and historical packets increases.

Among the location models we discussed above,
Grids are the most flexible. By tuning the grid size,
its granularity varies between the coordinates and sen-
sor cells location model. The granularity of the sensor
and triangle location models can be improved by in-
creasing the density of sensor nodes. We expect
that a location model with higher granularity pro-
duces more accurate prediction results, but meanwhile,
incurs more transmission overhead in terms of up-
date packets and historical packets.

4. Performance Evaluation

In this section, we evaluate the performance of DPR
mechanism by simulations. We first describe the model
and settings for our simulation. Then, we evaluate how
system parameters and moving behavior of monitored
objects affect the performance of DPR. Finally, we ex-
amine the impact of location models.

4.1. Simulation Settings

The DPR mechanism is implemented with all the lo-
cation models we discussed in Section 3.32. To simplify
our discussion, we assume that the applications require
only the Sensor_ID for reporting of object movements.
Thus, we identify four possible implementations as SS,
ST, SG, and SC, where the first letter represents the lo-
cation model used in reporting (i,e., Sensor_ID) and the
second letter denotes the location model used in pre-
diction (i.e., Sensor, Triangle, Grid and Coordinates).
For SG, we assume the monitored area is divided into
100 x 100 grids by default, which will be shown to be
the best choice for SG in Section 4.5.

Two metrics are used to evaluate the performance of
DPR: 1) Total energy consumption measures the total

2 We did simulate the DPR with three prediction models. The re-
sults show that the location models have a much higher impact on
the performance than the prediction models. For the sake of pre-
sentation, we only show the results with INSTANT model and re-
sults for other prediction models are available upon request.

dissipated energy for reporting operations. Since the fo-
cus of this paper is on the reporting mechanism, we only
consider the energy cost of radio components; the en-
ergy consumed by the MCU and sensor components is
neglected. Also the cost of low-power paging channel is
negligible (as shown by [12, 26]) and thus not counted;
2) Prediction accuracy measures the ratio of the correct
predictions to the total number of predictions made. This
metric reflects the energy savings and the overhead of
DPR mechanism.

We implemented OTSNs with CSIM [15], a process-
oriented, discrete-event simulator. We assume the sen-
sor nodes are able to adjust their radio range based on the
distribution of sensor nodes. In the experiments, Voronoi
Diagram [17] is used to determine the sensing and ra-
dio ranges of the sensor nodes. We use the shortest path
multi-hop routing algorithm for the communications be-
tween the base station and sensor nodes and adopt the
energy consumption for WINS sensor nodes [14, 19] as
the basis for our simulation.

The moving behavior of the tracked objects is mod-
elled by Gauss-Markov mobility model [11]. In this mo-
bility model, the tuning parameter « controls the over-
all moving trend of mobile object, and also indicates the
weight of moving history counted for the future move-
ments. Other parameters, e.g., moving duration, the pe-
riod of time that objects keep constant moving states,
and moving speed also contribute to the randomness of
the moving behavior.

In addition to DPR, we also implemented the naive
scheme and the PREMON scheme for comparison. In
the naive scheme, sensor nodes detect the mobile objects
inside their detection regions and report the readings re-
garding to mobile objects to the base station based on
the reporting frequency specified by applications. The
nodes which do no have mobile object in their detec-
tion area do not report back to the base station. The
PREMON scheme [4], also a prediction-based report-
ing mechanism, assumes that sensors in close proximity
are likely to have correlated reading and the base station
is able to predict the sensor readings given certain his-
torical and background knowledge. Therefore, the base
station makes predictions about the sensor readings and
transmits every prediction to the corresponding sensor
node. If the predictions received from the base station
are correct, the sensor nodes do not need to report their
readings, otherwise, they have to update the correct read-
ings to the base station. PREMON prevents a sensor
node from unnecessarily transmitting all the readings
that can be successfully predicted by the base station,
thereby saving energy. In PREMON, sensor nodes do
not make predictions, but only monitor the state of mo-
bile object. Thus, no exchange of historical data is nec-
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[ Parameters | Default Settings || Parameters | Default Settings |
Terrain 120m x 120m Number of Nodes 95
Number of Grids 100 x 100 Simulation duration 120s
Number of trials 25 Reporting period Is
Transmission energy 720mW Receiving energy 369mW
Objects - moving speed Sm/s Objects - moving duration 0.6s
Objects - o 0.95 Prediction model Instant
Naive-update packets 88 bits Naive - wakeup packets 56 bits
PREMON - update packets 112 bits PREMON - wakeup packets | 56 bits
PREMON - prediction packets | 88 bits
DPR-SS - update packets 88 bits DPR-SS - historical packets | 88 bits
DPR-ST - update packets 104 bits DPR-ST - historical packets | 88 bits
DPR-SG - update packets 104 bits DPR-SG - historical packets | 88 bits
DPR-SC - update packets 112 bits DPR-SC - historical packets | 96 bits

Table 1. System Parameters

essary.

We assume there is no congestion or communication
collisions in the network. Exploring the behavior of DPR
under congestion and collisions is the subject of our fu-
ture research. Table 1 summarizes the system parameter
settings in our simulations.

4.2. Network Workload

Our first experiment compares DPR with different lo-
cation models to naive and PREMON by varying the
network workload, which is captured by the number of
mobile objects. Figure 2(a) shows PREMON costs al-
most as much energy as the naive scheme, if not more.
It is because even though PREMON reduces the number
of updates from sensor nodes to the base station, it in-
curs more transmissions from the base station to the cor-
responding sensor nodes. As a result, without high pre-
diction accuracy PREMON cannot outperform our naive
system. This remark is further demonstrated in the fol-
lowing experiments.

DPR with different location models are noticeably
more energy efficient than the naive and PREMON
schemes. DPR with ST and SS produce an approx-
imately 30% energy consumption reduction over the
naive scheme, and SG consumes even less than half of
the energy costed by the naive scheme. DPR achieves
significant energy savings by reducing the number of
long distance transmissions with relatively low over-
head of additional historical packets transmitted among
neighbors nodes. In addition, SG and SC benefit consid-
erably from finer location models. Their high prediction
accuracy efficiently reduce the number of update packets
and energy consumption, regardless of the higher over-
head in the update and historical packets.

In Figure 2(b), while ST is 15% more accurate in pre-
dicting the object movements than SS, ST merely out-
performs SS with less than 0.1% energy savings. This
shows a tradeoff between the granularity of the location
models and the prediction accuracy. The energy savings

Naive
PREMON +
DP-SC -

N
o
T
\
i

n

Total Energy Consumption (J)

3 a 5
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(a) Total Energy Consumption
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(b) Prediction Accuracy

Figure 2. Impact of the network workload

achieved from the higher predication accuracy in ST do
not dramatically overcome the transmission overheads
that comes with the finer location models.

Both Figure 2(a) and Figure 2(b) show that the per-
formance of DPR is not sensitive to the number of mo-
bile objects, which implies that DPR scales well with the
network load under the assumption that the network is
collision free, while studying the performance of DPR
under communication collisions will be our next step.
However, as one could expect, with the number of ob-
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jects inside the network increases, communication col-
lisions may possibly happen. These collisions may re-
duce sensor nodes’ prediction accuracy and increase the
number of updates, which sensor nodes have to transmit
to the base station, thus consuming more energy. There-
fore, it is indeed interesting to see how well PDR fares
under this situation.

For the rest of experiments, we set the number of ob-
jects in the network to 1.

4.3. Impact of Moving Behavior

To study the impact of object moving behavior on
DPR, we focus on two controlling parameters: the mov-
ing duration and the moving speed. The moving duration
controls the frequency that objects change their mov-
ing states. A longer moving duration implies that an ob-
ject keeps constant speed and direction for a longer time,
thus facilitating the predictions. The moving speed indi-
cates the movement range within the unit of time. Intu-
itively, the movements of the objects with high speed is
hard to capture by the prediction models.

4.3.1. Impact of Moving Duration. To simulate var-
ious moving behaviors, we change the movement states
(i.e., moving speed and directions) of mobile objects
from up to 20 times per second (i.e., moving duration
= 50msec) to once every 50 seconds (i.e., moving dura-
tion = 50000msec). In the worst case, DPR is still able
to predict at least 25% of object movements (shown in
Figure 3(b)) and achieves reasonable energy savings. In
general, with increasing moving duration, DPR with all
location models moderately reduce the energy consump-
tion because an object’s stable movement helps to im-
prove the prediction accuracy. However, the following
insights are revealed from in-depth analysis of the ex-
perimental results:

e Moving duration affects the number of historical
packets. As moving duration decreases, the move-
ment of mobile objects tends to follow Brownian
motion [2], in which the object returns to the ori-
gin with high probability [13, 21]. Thus, the ob-
ject with smaller moving duration is more likely to
revisit the same sensor node multiple times, thus
causing more historical packet transmissions.

e Moving duration has an impact on prediction accu-
racy as well. Figure 3(b) shows that with the fre-
quent transition of movement states (e.g., moving
duration is 50msec), the prediction accuracy of SC
is merely 34%. This ratio radically increases, even
up to 100%, as the moving duration gets larger.
Correspondingly, the energy consumption for the
SC is reduced up to 90%.

~-—+ Nave
PREMON
pP-sC

DP-SG o
DP-ST
DP-ss

Total Energy Consumption (J)

‘:j“

S od

50 100 200 400 800 1600 3200 6400 12800 25600 50000

Pause Time (msec)

(a) Total Energy Consumption

Prediction Accuracy(%)

50 100 200 400 800 1_600 3200 6400
Pause Time(msec)

12800 25600 50000

(b) Prediction Accuracy

Figure 3. Impact of Moving Duration (note:
x-axis is in logarithmical scale.)

e The fine-grained location models are more sensi-
tive to the changes of moving duration than the
coarse ones. As we observed from Figure 3(b), SG
and SC have more visible improvements of predic-
tion accuracy and energy consumption than ST and
SS.

4.3.2. Impact of Moving Speed. Figure 4 plots DPR
performance as a function of moving speed of mo-
bile objects. Basically, the energy consumption of
all schemes increase as the mobile object move faster.
There are two reasons behind this. First, the faster an ob-
ject moves, the more sensor nodes the object may pass
through during the simulation period, which results in
more historical packets and energy consumption. Sec-
ond, a higher moving speed expands the objects possible
moving range, thus making predictions of objects’ fu-
ture movements less accurate and triggers more update
packets. However, DPR-SS in Figure 4(a) shows ap-
proximately constant energy consumption with increas-
ing prediction accuracy. The explanation for this exists
within the location models. Because of the low gran-
ularity of SS, the prediction is made based on the co-
ordinates of the sensor node where the object was
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detected, instead of the actual coordinates of the mo-
bile object. Thus, there is a deviation between the
actual location of the object and the sensor coordi-
nates used to estimate the location of mobile object
for the next report. The effect of this divergence de-
clines when the moving distance between two pre-
dictions increases. Moreover, if the object does not
move out of the detection area of a sensor node af-
ter one prediction period, SS does not treat it as a
location change, although the object did change its co-
ordinates in SC model. A mobile object with slower
moving speed is more likely to stay in the same sen-
sor cell. In this case, SS is not able to catch the tran-
sition of movement states for this object, thus losing
more historical information about the object. Increas-
ing the moving speed can help the location models
with low granularity to overcome these two side ef-
fects, which are termed as granularity effect since they
are caused by the granularity of the location mod-
els.

Considering the granularity effect, higher object
speed assists the location models with low granular-
ity such as ST and SS to achieve higher prediction ac-
curacy. On the other hand, Figure 4 shows that for
DPR-SG and DPR-SC, the effect brought by the high

moving speed to the predictions overwhelms the granu-
larity effect.

4.4. Impact of Reporting Period

The reporting period is one of the most important ap-
plication requirements to OTSNs, because it not only
decides how often the sensor nodes report to the base
station in naive scheme, but also represents the predic-
tion period that a prediction-based scheme has to make
a prediction for. Lengthening the reporting period im-
pedes prediction-based schemes due to the longer pre-
diction period, but at the same time eases the naive
and prediction-based schemes by requesting less up-
date packets and less predictions, respectively. Therefore
a longer reporting period is adverse to the prediction-
based schemes. This claim is verified by Figure 5, where
the energy efficiency of all DPR mechanisms falls off by
up to 55%. When the reporting period is over 5000msec,
the energy conserved by DPR from the naive scheme is
less than 10%. Figure 5(b) shows SS achieves a higher
prediction accuracy as the reporting period prolongs,
which is opposite to the other three location models due
to the granularity effect. With the extended reporting pe-
riod, the objects are capable of moving farther during
one prediction period, which effectively reduces the im-
pact of low granularity in SS.

4.5. Impact of Location Models

In this section, we examine the location model with
all levels of granularity by varying the number of grids
in SG from 2 x 2 to 100 x 100. We expect that the energy
consumption could be optimized by dividing the moni-
tored area into more grids.

Figure 6(a) shows that the total energy consumption
evolves as we expected. DPR-SG outperforms naive,
PREMON, DPR-SS, DPR-ST and DPR-SC gradually as
the number of grids increases, since the prediction mod-
els get more accurate information about objects move-
ment history. However, observing both Figure 6(a) and
Figure 6(b), we found that they are not synchronized.
For example, when the number of grids equals to 100,
DPR-SG estimates the objects movement as accurate as
DPR-SS, but the latter one is more energy cost-effective.
It is because that with the same prediction accuracy, the
overhead of location models controls the energy con-
sumption. SG becomes most energy efficient when the
total number of grids reaches 3600, because it incurs less
communication overhead comparing with DPR-SC with
same predication accuracy. However SC represents the
finest location model and its prediction accuracy is the
upper bound for all location models. Therefore SG can
only accomplish limited energy conservation over DPR-
SC mechanism.
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5. Conclusion and Future Work

Object tracking sensor networks have two primary
operations: monitoring and reporting. This paper ad-
dresses the energy conservation issues in the reporting
operations. We proposed the Dual Prediction Reporting
(DPR) mechanism, in which the sensor nodes make in-
telligent decisions about whether or not to send updates
of objects movement states to the base station and thus
save energy. DPR consists of two major components,
i.e., location model and prediction model. The choice of
a location model determines the granularity of the move-
ment states of mobile objects. A prediction model, on
the other hand, decides how to estimate the objects’ fu-
ture movement from their movement history. The per-
formance of prediction based scheme depends on these
two components since they govern the precision of his-
torical movement data and the way to process these data.

Extensive simulations have been conducted to evalu-
ate the performance of the DPR and to reveal more in-
sights about choices of location models. The experimen-
tal results show several lessons. First, DPR is able to
minimize the energy usage of OTSNs efficiently under
various condition. Second, the energy savings achieved
by DPR are stable under the ranges of mobile object dy-
namics considered in this paper, even the total energy
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consumption varies. Third, the dynamics of the mobile
objects have less impact on the low granular location
models than the high granular one due to the granular-
ity effect. Lastly, the longer reporting period is adverse
to the prediction-based schemes with high granular lo-
cation models, but improves the prediction accuracy for
the location models with low gutturality by eliminating
the granularity effect. The simulations expose the im-
pact of the location models, which facilitates the selec-
tion of appropriate location models to meet the applica-
tion requirements and to address the energy conserva-
tion issues.

As for the next steps, we plan to conduct a more ex-
tensive evaluation that further studies the impact of
sensor detection errors and network communication col-
lisions on the performance of DPR protocol. We are
also integrating the DPR mechanism with the PES mon-
itoring mechanism into a complete design of an object
tracking sensor network. In addition, we are look-
ing into other network and data management issues in
OTSNs, such as topology management, query dissemi-
nation and data aggregation.
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