# 腦部腫瘤及周邊水腫區域擴散張量影像之量化及分類

傳家啟<sup>1</sup>、陳啟昌<sup>2</sup>、蔡志文<sup>2</sup>、李育倫<sup>1\*</sup>、曾喜勇<sup>1</sup>、邱華俊<sup>1</sup>

雲林科技大學 工業工程與管理所<sup>1</sup> 台中榮民總醫院 放射線部<sup>2</sup> g9821718@yuntech.edu.tw<sup>\*</sup>

## 摘要

擴散張量影像 (Diffusion Tensor Imaging, DTI)與磁振造影影像(Magnetic Resonance Imaging, MRI) 廣泛運用於臨床 醫學以評估病變組織-如腫瘤與周圍組織 的關係等,對於術前評估與術後恢復甚為 重要。本論文將腦部擴散權重影像 (Diffusion Weight Imaging, DWI)利用成像 運算出擴散張量影像(DTI),並與磁振造影 影像(MRI)腫瘤及周遭水腫部份經影像校 準後,萃取DTI影像中之特徵值,再利用 量化分析指標-量測轉移性腫瘤、腫瘤鄰近 水腫區域、水腫對側區域與正常受測者之 不等向性分率 (Fractional Anisotropy, FA)、平均擴散度(Mean Diffusivity, MD), 評估腫瘤周遭組織受腫瘤細胞破壞與浸潤 之影響。

本實驗分別收集由轉移性腫瘤病患與 正常受測者各四名之腦部磁振造影像,資 料分為腫瘤、腫瘤鄰近水腫區、腫瘤對側 區域、常受測者等四類。採用K-means分 類方法將FA與MD量化指標平均值散佈點 進行分類,結果顯示前述資料分為兩個叢 集:腫瘤鄰近水腫區域受到腫瘤細胞影 響,產生神經纖維去髓鞘化,因此腫瘤區 域與腫瘤鄰近水腫區域分類為一叢集;水 腫對測區域則與正常人相近,分類為另一 叢集;前述結果可為醫療影像量化與分類 之基準。

## **關鍵字:**磁振影像、擴散張量影像、不等 向性分率、平均擴散度

#### 1.前言

臨床上,磁振造影為檢查腫瘤之重要 工具,磁振影像(Magnetic Resonance Imaging, MRI)可自腦組織中顯示出腫瘤 顯影(圖 1.a 所示), 腫瘤的生長有可能造 成神經纖維的位移或者遭受到破壞,由於 腦血管障壁破壞影響,導致在 MRI T1 權 重影像中腫瘤部份才會顯影,但不一定是 有顯影區域才有腫瘤存在,未顯影之區域 亦可能存有腫瘤之可能性。因腫瘤擠壓週 邊組織,因此整瘤周圍往往伴隨水腫 (Edema),因水分子於 MR T2 權重影像中 屬於高訊號區,因此 MR T2 權重影像常 用於定義水腫區域。然而傳統 MR 影像無 法進一步顯示腫瘤對白質影像的程度,透 過擴散權重影像(Diffusion Tensor Imaging, DTI)技術,可擷取腦部神經纖維髓鞘水分 子方向性之資訊(如圖 1.b 所示)。



圖1磁振影像(MRI)及擴散權重影像(DTI)

為彌補單一形式影像資訊之不足,本 論 文 整 合 T1/T2 權 重 MR 影像 (T1/T2-weighted MRI)所擷取之腫瘤與週 邊水腫區域影像特徵,及 DTI 所萃取之神 經纖維髓鞘水分子方向性量化指標,提供 臨床應用之工具及提升醫療研究之水準。 本研究目的是將顱內之腫瘤與腫瘤鄰 近水腫區域進行三維視覺化重建,進而更 清楚的顯示出腦部三者間之空間資訊,透 過DTI影像資訊以不等向性分率(Fraction Anisotropy, FA)與平均擴散度(Mean Diffusivity, MD)量化指標資訊量化腫瘤與 腫瘤鄰近水腫區域,透過FA與MD繪製資 訊散佈圖,評估轉移性腫瘤與正常受測者 白質區域之關係。其效益除顯示傳統上腦 腫瘤及腦部解剖資訊外,並量化腫瘤與鄰 近水腫區域之關係,以評估腫瘤病人病灶 周邊水腫區域神經纖維被破壞之程度。

#### 2. 文獻探討

## 2.1 擴散權重影像與擴散張量影像

生物體內含有大量的水分子,而水分 子中的氫原子為目前磁振造影技術主要的 訊號來源,利用特殊的脈衝序列(Pulse Sequence) 搭配擴散梯度磁場 (Diffusion Gradient)即可量测水分子在組織內的擴散 情形。水分子在腦部神經的擴散運動主要 沿著神經纖維走向行進,可藉擴散性磁振 造影 (Diffusion Magnetic Resonance Imaging, dMRI)之相關技術量測出水分子 在腦部中的擴散資訊,更近一步得知腦部 組織結構或神經分布情行。Le Bihan(1986) 首度提出將擴散性磁振造影運用在臨床上 的概念,利用水分子在毛細管中具有擴散 及灌流的特性, 會造成自旋回訊磁振訊號 衰減,可結合PGSE序最造影來測量水分子 的擴散行為,即為擴散權重影像(Diffusion Weighted Imaging) [5]。Basser (1993) 等 人推導出擴散張量理論,並且完整證明出 擴散非等向性,描述一個體素(Voxel)中水 分子擴散能力,不能只用單一的擴散係數 表示,而應該運用三維的數學式矩陣,也 就是擴散張量矩陣(Diffusion Tensor, D),

解釋水分子的擴散運動與各方向之間的相 關性,此造影技術則稱為擴散張量造影 (Diffusion Tensor Imaging, DTI)。擴散張量 矩陣表示如下[10,11]:

$$\bar{D} = \begin{bmatrix} D_{XX} & D_{XY} & D_{XZ} \\ D_{YX} & D_{YY} & D_{YZ} \\ D_{ZX} & D_{ZY} & D_{ZZ} \end{bmatrix}$$

擴散張量磁振造影是利用在外加強的 擴散梯度磁場下搜集水分子擴散運動所造 成的磁共振訊號之變化[1,2,3,4],並經由數 學計算後求得水分子的自我擴散係數(Self -diffusion Coefficients)及代表水分子擴散 運動的向量圖[4]。將擴散的情形假想成一 個橢圓球狀,經由張量計算,進一步找出 描述此橢圓球的三個主要軸,將特徵方程 式應用於擴散張量上,可以分別得到三組 特徵向量(Eigenvector)以及其所對應的三 個特徵值(Eigenvalue) 如圖 2。對最大特徵 值所對應之特徵向量,辨識水分子擴散的 主要方向[8]。對於整張影像的每個像素作 此運算,將可以得到每個體素(Voxel)之水 分子擴散的方向及其擴散的程度。每個體 素的擴散張量矩陣都可推出三個特徵值 (Eiganvalue,  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$ ) 及 特 徵 向 量 (Eigenvector,  $v_1, v_2, v_3$ )(圖 3),分別代表水 分子擴散模型之橢球的三個正交軸之大小 及方向,定義最大的特徵值為第一特徵值 (1<sup>st</sup> Eiganvalue,  $\lambda_1$ ),即水分子擴散模型之 橢球長軸半徑,令其對應的第一特徵向量 (1<sup>st</sup> Eigenvector, v<sub>1</sub>)為水分子在此體素的主 要擴散方向[4,11]。



圖 2 擴散張量矩陣與橢球模型之關係圖[9]



圖 3 擴散張量影像反映組織於三度空間之結構[9]

由於擴散張量是一個對稱矩陣,所以 實際僅需取得至少六個不同方向的擴散梯 度磁場的擴散權重影像,以及一個空的擴 散權重影像,便可以組出該擴散張量,而 目前也有許多的研究成果指出,收集較多 方向的擴散權重影像,將可以有效的減少 方向的偏差以及改善訊雜比,以得到更為 精確的神經追蹤影像[2,13]。

#### 2.2 影像切割

影像切割之主要目的為將所需之區域 由原影像中切割出來,切割出的區域可應 用於長度與面積計算、三維重建、特徵萃 取等相關性應用。影像切割技術應用於醫 療影像,通常是利用身體器官組織在影像 中所顯示出的共通特性,以影像處理技術 將組織與組織間之界線檢測出來,區分成 許多不同之區域,進而取得所需影像資 訊。因此影像切割即為找出不同組織間之 界線的技術。本論文與台中榮民總醫院放 射線部醫師討論MRI T1與T2權重影像圈 選範圍,所擷取腫瘤與腫瘤鄰近水腫區 均制面於腫瘤外型呈現不規則狀與水腫關 注區域(Region of Interest, ROI)中周遭組 織的影響呈現邊界稜角與尖端等特性,故 以手動切割圈選出關注區域分割腦部磁振 影像中之腫瘤與腫瘤鄰近水腫區域影像, 並利用分割後結果重建腦部腫瘤與腫瘤鄰 近水腫區域三維影像,腫瘤與水腫影像分 割後結果如圖4所示:







近水腫區域影像

圖 4T1 與 T2 權重關注區域(ROI)選取

#### 2.3 影像校準

影像校準之目的為融合 T1/T2 權重 MRI及 DTI,相關最佳化演算法中,本論 文欲利用 Quasi Newton 演算法針對 MRI 影像與 DTI 影像進行校準,演算法描述如 下。

Davidon(1959)提出 Quasi Newton 演 算法[6],是根據牛頓法(Newton Method) 衍伸而出的最佳化演算法,其假設為欲搜 尋最佳值的函數可被區域近似至二次方程 式,並利用一次微分(Gradient)、二次微分 (Hessian Matrix)以找出方程式中梯度為 0 的數值,是為函數的極值。Broyden(1969) 提出了改善式的 Quasi Newton 演算法,改 善計算 Hessian 矩陣相當耗時之缺點,提 升運算效率,為現今最普遍的方法[5];

## 2.4 擴散張量影像資訊量化

除了利用擴散張量影像中得知水分子 的擴散情形外,亦可以根據所計算出的特 徵值作為擴散的量化資訊表示擴散的特性, 稱 為 擴 散 非 等 向 性 指 標 (DiffusionAnisotropyIndex),常用的指標為 不等向性分率 (Fraction Anisotropy, FA) 及 擴 散 度 (Mean Diffusivity, MD)[10,11,14]。

在排列有序的白質神經纖維中,水分 子的移動是有方向性的,其張力橢圓體會 是尖細的,FA所代表的就是些橢圓體相較 於正圓球體的差異。FA範圍從0到1,FA 越大則水分子的方向性越強,代表水分子 所在的介質是個排列有序的組織,其中,  $\lambda_1$ 、 $\lambda_2$ 、 $\lambda_3$ 分別代表的是往不同方向的特徵 值;量化公式如下所示:

 $FA = \sqrt{\frac{3}{2}} \times \sqrt{\frac{(\lambda_1 - \overline{\lambda})^2 + (\lambda_2 - \overline{\lambda})^2 + (\lambda_3 - \overline{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$ 

MD又稱為平均擴散參數(Apparent Diffusion Coefficient,ADC),它代表水分子 往不同方運動的能力,在腦組織中間接代 表細胞外間隙(extracellular space)的大 小,因為細胞外間隙越大則水分子能移動 得較遠;量化公式如下所示:

$$MD(ADC) = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3} = \overline{\lambda}$$

#### 3. 研究方法

本論文目的是將顱內之腫瘤及腫瘤鄰 近水腫區域進行三維視覺化重建,進而更 清楚腦部腫瘤與腫瘤鄰近水腫區域三維空 間資訊。本論文之影像是經由台中榮民總 醫院放射線部之 Siemens 1.5T MR Scanner 所取樣,採用轉移腫瘤病患與正常受測者 各四名為例,研究架構可以分三部份:一、 將橫軸切面 MR T1/T2 權重影像之腫瘤與 腫瘤鄰近水腫區域,進行影像切割;二、 腫瘤、腫瘤鄰近水腫區域及 DTI 影像之融 合,經由 MRT1/T2 權重影像切割後所得的 腫瘤與腫瘤鄰近水腫區域,透過影像校準 與融合 DTI 影像,整合腫瘤與腫瘤鄰近水 腫區域,完整呈現顱內之資訊;三、以 FA 與 MD 量化指標,量化評估轉移性腫瘤、 腫瘤鄰近水腫區域、水腫對側區域及正常 受測者腦部白質區域彼此間 FA 與 MD 值。

#### 3.1 影像前處理

影像前處理部分,於 MRIT1與T2影 像中,利用手動切割的方式,切割出腫瘤 與腫瘤鄰近水腫區域影像,影像切割之結 果如圖5、6所示。



圖 6MRI 影像腫瘤鄰近水腫區域切割過程與輸出

經前處理取出之橫軸切面腫瘤影像共 20張,將腫瘤資訊堆疊成三維腫瘤影像; 結果如圖7與8。

#### a. 腫瘤 b. 側視圖 c. 俯視圖



圖7腫瘤區域影像

a. 水腫影像 b. 側視圖 c. 俯視圖



圖 8 腫瘤鄰近水腫區域影像

#### 3.2 影像校準及 DTI 資訊萃取

自腦部橫軸切面經影像切割,切割出 腦腫瘤與腫瘤鄰近水腫區域,及透過DTI 影像對欲校準腫瘤與腫瘤鄰近水腫區域影 像進行座標更新,可得到經坐標更新後在 共同座標系之兩組影像,如此便能將DTI 影像、腫瘤與腫瘤鄰近水腫區域影像進行 資訊融合。

本論文使用之MRI T1、T2與DWI影 像,由台中榮民總醫院放射線科以Siemens 1.5T MR Sonata取樣而得。橫軸切面磁振 T1權重影像解析度為448×512、取20切面 (Slice),磁振T2權重影像解析度為 384×384、取20切面,橫軸切面DWI影像 大小為128×128、取65切面、而每一切面 (Slice)取12個方向。

本論文之MRIT1與T2影像為欲校準 模型,DTI影像為被校準模型,將兩種模 型在相同空間狀態下進行校准。影像之 DTI、腫瘤及腫瘤鄰近水腫區域三維空間 影像融合模型以不同病患分別呈現。影像 之腦部神經纖維、腫瘤及腫瘤鄰近水腫區 域三維空間影像融合模型結果如圖 9 所 示。

| a. DTI 影像 | b. 腫瘤區域 | c. 腫瘤鄰近水 |
|-----------|---------|----------|
|           |         | 腫區域      |
|           |         |          |

圖9影像融合模型

以影像實驗結果找出以被融合模型為 基準之欲融合之空間坐標點,進行影像融 合實驗,其實驗流程如圖 10 所示:



圖 10 像融合校準實驗流程圖

#### 3.3 資訊量化分析

為了執行量化分析,DWI影像經成像 運算取得DTI影像輸出結果及腫瘤與腫瘤 鄰近水腫區域三維重建結果,計算FA與 MD之量化分析,而腫瘤浸潤又可分為腫 瘤直接浸潤與腫瘤引起的水腫浸潤,所以 透過T1與T2權重影像使腫瘤及腫瘤鄰近 水腫區域能夠清楚分辦如圖11與圖12所 示:





圖 11 T1 權重影像 圖 12 T2 權重影像

本論文利用手動切割方式,將 T1 與 T2 權重影像中所選取的關注區域(Region of Interest)自影像中分割出來,之後將分 割影像結果對應到相對應的 DTI 影像位 置,並進行影像融合與校準且依據 DTI 影 像中每個像素之水的分子三主軸分量 λ 1、λ2 與λ3計算不等向分率(FA)與擴散度 (MD),

本論文利用量化指標:不等向性分率 (FA)與平均擴散度(MD)做為量化評估依 據,利用此量化指標了解腫瘤對周遭組織 的浸潤與破壞程度並區分腫瘤引起的水腫 和腫瘤的直接浸潤,FA 越低表示腫瘤周 圍越可能是受到浸潤;如此便可以根據該 病人的腫瘤是否有影像學上的浸潤,其散 佈圖如圖 13 所示。







### 4. 實驗結果與分析

本論文所使用之 MRI 及 DWI 影像, 是 由 台 中 榮 民 總 醫 院 放 射 線 部 利 用 Siemens 1.5T MR Scanner 取樣而得,為四 個病患之轉移性腫瘤與腫瘤鄰近水腫區域 等橫軸面影像,DWI 影像大小皆為 128 x 128 x 845 張, MRI T1 權重影像大小皆為 448 x 512 x 20 張, MRI T2 權重影像大小 皆為 384 x 384 x 20 張。橫軸切面 DWI 影 像其影像體素為 2.1875 mm x 2.1875 mm x 2.2 mm;橫軸切面 MRI T1 權重影像體素 為 0.449219 mm x 0.449219 mm x 6.59965 mm;橫軸切面 MRI T2 權重影像體素為 0.598958 mm x 0.598958 mm x 6.59965 mm。需於資訊對位前依據前述資訊,將 兩組影像之體素,調整至相同比例(Scale)。

首先針對 DWI 影像計算其擴散張量 與特徵值得到一組 DTI 影像,將 DTI 影像 對 MRI 資訊分割後影像之腫瘤鄰近水腫 區域與腫瘤區域進行資訊融合。針對轉移 性腫瘤病例與正常受測者各別之不等向性 分率(FA)與擴散度(MD)分別計算並繪出 每個病例與正常受測者之不等向性分率 (FA)與擴散度(MD)資訊散佈圖及線性迴 歸線。

經過影像校準後,依據不等向性分率 (FA)與擴散度(MD)將病患一三維資訊融 合後的結果做資訊量化,將不等向性分率 (FA)與擴散度(MD)經由資訊整合後所產 生之客觀量化評估指標。





圖 15 腫瘤鄰近水腫區域資訊散佈圖

圖 14 與圖 15 為病患一中 T2 與 T1 權 重影像中所選取水腫及腫瘤之關注區域 (ROI)資訊散佈圖,利用 FA 與 MD 兩個量 化指標所繪出之資訊散佈圖, 散佈圖中的 資料點為病患之轉移性腫瘤區域中每個像 素(Voxel)所擷取出來的點,如圖 15,其中 FA 與 MD 兩者關係在腫瘤區域中呈現線 性負相關,其迴歸式為 y= -0.0085x+0.2494,判定係數(R<sup>2</sup>)=0.001,其 表示整個迴歸模式解釋能力,即表示擴散 度(MD)的變異可解釋 0.001%的不等向分 率(FA)變異。圖 16 中 FA 與 MD 兩者關係 在腫瘤鄰近水腫區域中呈現線性負相關, 其迴歸式為 y= -0.1337x+0.407, 在些可觀 測到腫瘤鄰近水腫區域區域幾乎都受到腫 瘤細胞影響,導致 FA 較低 MD 較高,但 仍有部分區域較不受到腫瘤影響。

本論文將腫瘤、腫瘤鄰近水腫區域與 DTI影像進行資訊融合,如此一來可以觀 測腫瘤與腫瘤鄰近水腫區域之空間關係與 執行量化分析,融合後影像可提供醫師做 更細部之診斷。將腫瘤、水腫與神經纖維 影像資訊融合後,依據不等向性分率(FA) 與擴散度(MD)將四個病患經三維資訊融 合後的結果與正常受測者進行資訊量化分 析,圖 16 與圖 17 為轉移性腫瘤病患與正 常受測者之資訊分割區域圖 18 至圖 21 為 腫瘤、水腫與水腫對側及正常受測者白質 區域之 FA 與 MD 之資訊散佈圖。此外, 為了確認轉移性質腫瘤非病灶區域與正常 人白質的 FA 與 MD 值是否有差異,本論 文也會利用 K-means 演算法進行分類。

a. 病患一腫瘤、腫瘤鄰近水腫區域與 水腫對側區域



b. 病患二腫瘤、腫瘤鄰近水腫區域與 水腫對側區域

b.1 腫瘤 b.2 水腫 b.3 水腫對側



c. 病患三腫瘤、腫瘤鄰近水腫區域與 水腫對側區域



d. 病患四腫瘤與腫瘤鄰近水腫區域與 水腫對側區域



圖 16 腫瘤與腫瘤鄰近水腫區域之關注區域(ROI) 選取

其中,不同顏色框線中之 ROI 區域所 繪成資訊散佈點之顏色依據不同顏色框線 呈現。



圖 17 正常受测者白質切割區域

圖 17 中由左至右為正常受測者一、正 常受測者二、正常受測者三與正常受測者 四。



圖 18 腫瘤區域 FA 與 MD 散佈圖



圖 19 腫瘤鄰近水腫區域 FA 與 MD 散佈圖



圖 20 水腫對側區域 FA 與 MD 散佈圖



圖 21 正常受测者白質區域 FA 與 MD 散佈圖

圖 18 與圖 19 為四個病患中 T1 與 T2 權重影像中所選取水腫及腫瘤之關注區域 (ROI), 資訊散佈圖, 資訊分割出之腫瘤與 腫瘤鄰近水腫區域,利用 FA 與 MD 兩個 量化指標所繪出之資訊散佈圖, 散佈圖中 的資料點為病患之轉移性腫瘤區域中每個 體素(Voxel)所擷取出來的點,如圖 18,其 中 FA 與 MD 兩者關係在腫瘤區域中呈現 線性負相關,其迴歸式為 y= -0.0467x+0.2933。 圖 19 中 FA 與 MD 雨者 關係在腫瘤鄰近水腫區域中呈現線性負相 關,其迴歸式為 y= -0.1504x+0.4298。資訊 散佈圖中可發現病人腫瘤區域之 FA 值較 腫瘤鄰近水腫區域低,這表示該區域中神 經纖維被浸潤與破壞的程度較高,腫瘤鄰 近水腫區域中仍然還是有 FA 值高的區 域,則表示該區域受腫瘤細胞影響的程度 較低。水腫對側區域之資訊散佈圖如圖 20 所示,其迴歸式為 y= -0.3619x+0.7114。圖 21 中紅色為為正常受測者一,綠色為正常 受测者二,紫色為正常受測者三,藍色為 正常受測者四,正常受測者之資訊散佈圖 如圖 21 所示,其迴歸式為 y= -0.3762x+0.7287。正常受测者之白質區域 資訊散佈圖中,可觀測到 FA 值會較高但 MD 值會較低的現象,而水腫區對側也是 FA 值會較高但 MD 值會較低的現象,故 水腫對側區較無受到去髓鞘化影響;但由

上述各圖可以發現其判定係數並不高,迴 歸線的解釋能力並不佳。

為了確認轉移性質腫瘤非病灶區域與 正常人白質的 FA 與 MD 值是否有差異, 針對腫瘤與腫瘤鄰近水腫區域及正常受測 者白質區域分別計算平均數,以 K-means 分群演算法將腫瘤、腫瘤鄰近水腫區域、 水腫對側區域與正常白質區域分類進行分 類,結果如圖 22 所示:



圖 22 K-means 群集分類

圖 23 為 K-means 分類後之結果,紅 色部分為腫瘤、腫瘤鄰近水腫區域,藍色 部分為水腫對側區域及正常受測者白質區 域,實驗結果可區分為兩個叢集,腫瘤、 腫瘤鄰近水腫區域歸為一類,而水腫對側 區域與正常白質區域歸為另一類。腫瘤與 鄰近水腫區域 FA 值較低 MD 值較高的情 形,表示遭腫瘤細胞浸潤或破壞。水腫對 側區域與正常受測者白質區域 FA 值較高 MD 值較低,表示在水腫對側區域受去髓 鞘化的影響較低,所產生的 FA 值與 MD 值與正常受測者白質區域較相似。

## 5.結果與討論

本論文針對腦部磁振影像(MRI)執行 影像分割,透過擴散權重影像(DTI)成像運 算不等向性分率(FA)與平均擴散度(MD) 量化指標。分別收集由轉移性腫瘤病患與 正常受測者各四名,資料分為腫瘤、腫瘤 鄰近水腫區、腫瘤對側區域、常受測者等 四類。

採用 K-means 分類方法將 FA 與 MD 量化指標平均值散佈點進行分類,結果顯 示前述資料分為兩個叢集:腫瘤鄰近水腫 區域受到腫瘤細胞影響,產生神經纖維去 髓鞘化,因此腫瘤區域與腫瘤鄰近水腫區 域分類為一叢集;水腫對測區域則與正常 人相近,分類為另一叢集。由 FA 與 MD 資訊散佈圖,歸納結論如下:

- 正常受測者白質區域,有較高之 FA 值與較低之 MD 值。
- 腫瘤區域中,神經纖維髓鞘因遭腫瘤 細胞破壞,導致 FA 較低且 MD 值範 圍會較寬廣。
- 1.腫瘤鄰近白質水腫區域中,存在兩種情形,
  - a. FA 較低且 MD 值範圍較寬廣,該區 域神經纖維可能受到腫瘤細胞的破 壞而造成去髓鞘化的影響。
  - b. FA 較高且 MD 值較低的情況,該區 域白質可能較未受腫瘤細胞的影響。
- 4.水腫區域對側的部份,其資訊散佈與正 常受測者白質相當類似,可推論對側 區域較未受到去髓鞘化之影響。

## 致謝

本研究承國科會(編號: NSC99-2221-E-224-034) 補助,本文作者特此致謝。

# 參考文獻

- 江品儀,應用擴散張量造影於精神分 裂症病患之胼胝體神經連結性研究, 國立陽明大學碩士學論文,2008。
- 羅仕雅,擴散章量磁振影像於腦部腫 瘤周遭組織之研究,國立陽明大學碩 士論文 2005。
- 羅畯義,以擴散磁振影像為基礎之三 為神經纖維呈現,中原大學碩士論 文,2004。
- Berman JI, Mukherjee P., Partridge SC., Miller SP. et al., 2005, "Quantitative diffusion tensor MRI fiber tractography ofsensorimotorwhitematter development in premature infants", <u>NeuroImage</u>, vol. 27, pp. 862 – 871.
- Bihan LD., Breton E., 1985 "Imagerie de diffusion in vivo par resonance magnetique nucleaire", CR Acad Sci Paris, vol.301, pp.1109-1112.
- Davidon WC.,1991, "Variable metric method for minimization", <u>SIOPT</u>, vol.1,p1-p17.
- Deng Z., Yan Y., Zhong D. et al., 2010, "Quantitative analysis of glioma cell invasion by diffusion tensor imaging", <u>Journal of Clinical</u> <u>Neuroscience</u>, vol. 17, pp.1530-1536.
- Ding Z., Gore JC., Anderson AW., 2003, "Classification and quantification of neuronal fiber pathways using diffusion tensor MRI", <u>Magnetic Resonance in</u> <u>Medicine</u>, pp. 716–721.

- Jellison BJ., Field AS, Medow J., Lazar M., Salamat. MS. and Alexander AL., 2004, "Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns" <u>AJNR</u>, vol 25, pp356-369.
- Kinoshita M., Hashimoto N., Goto T. *et al*, 2010, "Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema", <u>J Neurooncol</u>, pp.409–410.
- Kinoshita M., Hashimoto N., Goto T. *et al.*, 2008, "Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors", <u>NeuroImage</u>, Vol.43, pp.29-35.
- Lu S., Ahn D., Johnson G., Law M., Zagzag D., Grossman. RI., 2004, "Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumorinfiltrationindex",<u>Neuro-</u> radiology, pp.221-228.
- Parker GJ, 2004, "Analysis of MR diffusion weighted images", <u>The</u> <u>British Journal of Radiology</u>, S176–S185.
- Wakana S., Caprihan A., Panzenboeck MM. *et al*, 2007, "Reproducibility of quantitative tractography methods applied to cerebral white matter", <u>NeuroImage</u>, pp.630-644.