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Abstract 
Color is the most important feature in 

color images and is applied in many 
different areas, such as medical image 
analysis, video object extraction, image 
compression, tracking systems, etc. 
Transferring a source image’s color to a 
target image involves changes the target 
image’s color to enhance the target image’s 
color features. The color transfer from an 
image to another image can always enhance 
the color-transferred image’s color features 
for wide applications in different fields. In 
this paper, a radial basis function network 
(RBFN) based on discrete wavelet transform 
algorithm for global color transferring 
between images is proposed. RBFN is 
trained on the R, G, and B planes to obtain 
the corresponding trained RBFN for each 
plane, respectively. The transferred intensity 
of each pixel on each plane of the target 
image is then evaluated using the trained 
RBFN. These transferred R, G, and B planes 
of the target image are then combined into 
the result color image result. The 
experimental results show that the proposed 
approach has three major advantages: (A) 
the proposed algorithm is manual free, 
simple, effective and accurate in transferring 
color between images without any change in 
the image details, (B) the proposed 
algorithm is time saving, due to operation 
directly and completely on RGB domain; it 
does not need the transformations among 
color spaces, (C) there are no restrictions in 
the image dynamic color ranges in the 
proposed algorithm, (D) the discrete wavelet 
transform can efficiently obtain feature 

pixels for training the RBFN.   
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1. Introduction 
Digital color images are the most 

important media for efficient information 
presentation and communication. They are 
widely applied in the multimedia, 
biomedical, Internet, and video and push 
people to pay more attention to color image 
processing to meet human requirements [1]. 
Color is a significant source of information 
for image analysis [2], classification [3], 
segmentation, recognition, and retrieval [4]. 
It provides artists with the ability to show 
creativity and style [5] and also offers 
doctors a means to describe tissue pathology 
and aesthetics in dermatology and dentistry 
[6]. Because some of the original colors in 
an image might not be suitable for analysis, 
the colors must be adjusted. The appearance 
of an image can be adjusted manually to 
obtain specific effects but that requires 
advanced image manipulation techniques 
which consume a great deal of time. Color 
transferring is one of the most popular 
techniques in image color processing for 
changing an image’s color and preserving 
the image’s original details and natural look 
at the same time. This means replacing the 
target image’s colors using the source 
image’s color without any change in the text 
and certain visual qualities [7].  

Color transfer between images is a 
challenging task because both the source and 
target images may consist of various colors, 
causing multiple shades in the transfer 
results [8]. Several schemes have been 



proposed for global color transfer between 
images. Reinhard et al. [9] proposed a 
statistical based scheme. Their idea is based 
on transferring the original RGB color 
images into the l color space proposed 
by Ruderman et al. [10], in which the 
correlation between channels is minimized 
and the color perception can be evaluated 
better. They assumed that the pixel values of 
each channel in the l color space is a 
Gaussian distribution and the color transfer 
process shifts and scales each channel’s 
pixel values from the target image to match 
the corresponding source image mean and 
variance because of the uncorrelated 
l color space axes. The color transferred 
l image is finally converted back into the 

RGB color space. Reinhard et al.’s scheme 
allows operating the transfer independently 
in each channel to convert a potentially 
complex three dimensional problem into 
three much simpler one dimensional 
problems. Although this technique is simple 
and efficient for a large range of images, it 
has two disadvantages; (A) it is time 
consuming because it must perform color 
space conversion three times to transfer 
color from a source image into a target 
image; (B) the color transfer quality is 
depends on the composition of the target and 
source images [5]; (C) overflow will appear 
when the image hue is oversaturated and 
may not be good for images with a big gap 
between different chromaticity’s. S. Xu et al. 
[7] transformed target and source images 
into the l  color space first. They used 
the Gaussian Mixture Models- Exception 
Maximum (GMM-EM) method to cluster 
the source color image into specified areas 
and use the K-means algorithm to segment 
the target image. They then imposed mean 
chromaticity values from the source image 
onto corresponding areas in the target image. 
C. C. Liu and G. N. Hu [11] considered the 
histogram in each plane of a color space as a 
probability density function. They first 
transformed the target and source images 
into LAB color space and then computed the 
probability density characteristics of each 

plane in each image to find the correlation 
function for every two corresponding planes 
between the target and source images. The 
transferred pixel values for each plane are 
determined by conducting the corresponding 
correlativity function on each target image 
plane. The color transferred target image is 
finally constructed by replacing each plane 
with its corresponding transferred plane. G. 
R. Greenfield and D. H. House [12] 
proposed an approach to recolor a target 
image according to the color scheme from 
the source image. The target and source 
images are first decomposed into clusters of 
pixels with similar color. The color palette 
for each image is constructed by selecting 
the most typical colors from the above 
decompositions. The color transfer from 
source image to the target image is evaluated 
by matching the decomposed areas between 
the target and source decompositions using a 
Euclidean metric. The resulting quality of 
the color transferred image is highly 
dependent on the previous segmentations. 
Zhou et al. [13] synthesized a natural scene 
using multiple labeled level eigen-spaces to 
generate a depth map, using multiple color 
level eigen-spaces to generate natural 
textures to fill in the label maps. Their 
approach can model natural textures and 
common depth layouts without learning 
large numbers of parameters to synthesize 
perceptually natural scene images. However, 
they often needed more than fifty sample 
images (depending on the complexity of the 
sample image) to train their system to 
extract sample textures and eigen-spaces. 
The goal of this paper is to find a simple and 
efficient global color transferring approach 
and a measurement metrics to evaluate color 
transferring scheme performance. 

RBFN is a statistical method used to 
model the relationships between several 
independent variables and a dependent 
variable by fitting an equation to the 
observed data. Numerous experiments have 
shown that RBFN can be used to make 
accurate predictions. RBFN procedures are 
very widely used in the social and natural 
sciences today [14]. It is also a suitable 



technique for us in global color transferring 
from a source image to a target image. The 
RGB color space is the most popular space 
used in sensor and display devices. It is 
reasonable to take use multiple regression 
analysis on each component in a color image 
in the RGB domain. RBFN is conducted in 
this work on the RGB domains of two 
images for global color transferring. The 
main stages in the proposed algorithm are; 
(A) each plane’s RBFN is trained by the data 
sampled from each plane of target and 
source images, (B) The color transfer is 
turned into a pixel value evaluation by 
conducting RBFN on the target image. The 
experimental results show that the proposed 
algorithm is effective and validated. The 
remainder of this paper is organized as 
follows: Section 2 presents the proposed 
algorithm. Section 3 describes the Empirical 
results. Section 4 concludes this paper. 

 

2. The proposed algorithm 
This paper presents a way to transfer the 

colors from a source RGB color image to a 
target RGB color image. Fig. 1 is flow chart 
of the recolor for a target RGB color image 
with multiple regression analysis. In order to 
obtain a more accurate color transfer result, 
the pixel intensities in each plane of both the 
target image and source image are 
normalized and sorted. The normalized and 
sorted data on each plane are then conducted 

to train the corresponding RBFN for each 
plane, respectively. These trained RBFN are 
used to determine the new values for each 
pixel in the target image on each plane. 
These new values are then combined into 
the RGB result color image. Detailed 
descriptions of the proposed scheme are 
illustrated as follows. 

 

2.1 The RGB color space.  
The color of an object can be explained 

scientifically as the color of light reflected 
by the particular object. Although the range 
of colors is infinite, a full range of 
perceivable colors by human eyes is able to 
be reproduced by combining different 
proportions of the three primarily colors; red, 
green, and blue [15]. 

In televisions, computer monitors, and 
colored image projection systems, by using 
only the three colors are enough to 
adequately represent any of the unlimited 
visible colors [16]. The image in RGB color 
space is the most suitable for the color 
representation of a color image. The RGB 
color model is the most popular and natural 
color model, because it can compose any 
color adequately. R, G and B component of 
a color in RGB color space are given by: 
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TRBFNR: Trained Radius Basis Function Network for R-component          NORM: Normalization operation
TRBFNG: Trained Radius Basis Function Network for G-component         INORM: Inverse normalization operation
TRBFNB: Trained Radius Basis Function Network for B-component          DWT: Discrete Wavelet Transform
RBFN: Radial basis function network
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Fig. 1. The flow chart of the proposed color transfer algorithm. 

 
 

 
 



where k is a constant that defines the total 
overall brightness response of the human 
eyes, ][I is the illumination spectral 
intensity of a color, ][ is the object 
spectral reflectivity, ][,, BGRS is the spectral 

sensitivity of the R or G or B channel of the 
detector and  is the wavelength. The 
normalized red, green, and blue coordinates 
are defined as follow: 

)/( BGRRr   (2)

)/( BGRGg   (3)

)/( BGRBb   (4)

where R, G and B are the intensities of red, 
green, and blue light at a given pixel [17]. 

 

2.2 Discrete Wavelet Transform    
The discrete wavelet transform (DWT) 

is a fast, linear, invertible and orthogonal 
operation, just like the Discrete Fourier 
transform (DFT). The basic idea lying under 
the discrete wavelet transform is to define a 
time-scale representation of a signal (unlike 
short time fourier transform (STFT) which 
defines a time-frequency signal 
representation) by decomposing it onto a set 
of basis functions, called wavelet. Wavelets 
are obtained from a single prototype wavelet, 
called mother wavelet, by dilations and 
contractions, that is, scaling, and shifts 
[18,19]. DWT is suitable for the analysis of 
non-stationary signals since it allows 
simultaneous localization in time and in 
scale, unlike STFT which uses fixed 
time-frequency resolution and thus allows 
localization only in time or in frequency. 

Application of DWT results in a 
multilevel decomposition of the input signal 
into high and low frequency components in 
different resolutions according to the 
number of levels employed, as shown in 
Figure 2.a Let )(H and )(G : 

 
k

jk
kehH )(  (5) 

 
k

jk
kegG )( (6)

be a lowpass and highpass filter, 
respectively satisfying the orthogonality 
condition: 

1)()(
22   GH  (7) 

necessary for reconstruction capabilities of 
the transform. The filters 

)(H and )(G are also known as 

quadrature mirror filters. A signal  nx  can 
be decomposed recursively according to [20, 
21]: 

nj
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nj
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knkj cgd ,2,1     (9)

which correspond to convolutions followed 
by downsampling by 2, as can be seen in fig 
2 (a). kh  and kg  are the impulse 

responses of the lowpass and highpass filters, 
respectively. Index j spans the number if 
decomposition levels and lies in the range 

]1,0[ L , where 1L  represents the index 
of the high resolution level of the transform 
and 0 represents the index of the low 
resolution level. KLc ,1  is equal to the input 

signal  kx . The coefficients 

kLkLkkk ddddc ,,1,1,0,0 ,,,,,  are called the 

DWT wavelet coefficients of  nx . kc ,0 is the 

lowest resolution component of  nx  
containing lowpass, ’smooth’ information 
and kjd , are the detail coefficients of  nx  at 

various bands of frequencies. The 
signal  nx can now be reconstructed from its 
DWT coefficients by considering the 
recursive formula: 

kj
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knkjknnj dgchc ,12,12,    (10)

 

][nX
Ld

Lc

1Lc

1Ld

 1c

0c

1d

0d

][nX
Ld

Lc2c

2d


1c

0c
1d

0d

'G

'H

'H

'G

0c

0d

(a) (b) 
Fig. 2. (a)multi-level 1D wavelet decomposition; (b) Multi-level 1D wavelet reconstruction. 



The reconstruction process is 
illustrated in Figure 2.b and defines the 
inverse discrete wavelet transform (IDWT). 
This time, upsampling precedes filtering at 
each level of the transform. It is obvious that, 
in the discrete case, DWT and IDWT can be 
implemented by two-channel tree-structured 
filter banks (Figure 2). 
 The discrete wavelet transform does 
not have a single set of basis functions. 
There are many families of wavelets, the 
most known of them being the Haar and the 
Daubechies wavelets [22].For example, the 
frequency responses )(H and )(G of the 
Haar wavelet filters are given by: 
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The two-dimensional discrete wavelet 

transform and its inverse are extensions of 
the one-dimensional transform. They are 
simply implemented by using 
one-dimensional DWTs and IDWTs along 
each dimension n and m separately: 

      mnxDWTDWTmnxDWT mnmn ,,   (13)

In this way, separable 
two-dimensional filters are only considered. 
Each level is characterized by tree detail 
coefficient components representing the 
horizontal, vertical and diagonal edges of 
the input image. The lowest level consists of 
the low-resolution lowpass version of the 
image. 
 

2.3 Normalization  
In the RGB color space, colors are 

represented by varying values of 
R-component, G-component and 
B-component. The values of each of the 
R-component, G-component and 
B-component are represented with 8-bit 
unsigned integers (uint8) on a scale from 0 
to 255. The RBFN should not work since it 
becomes impossible to avoid the overflow 
when the data are represented with uint8. In 
RBFN stage, the values of R-component, 

G-component and B-component are 
normalized to compress and limit the 
dynamic range to avoid the overflow. The 
mean and standard deviation of R-plane, 
G-plane and B-plane are evaluated, 
respectively. And then the values of 
R-component, G-component and 
B-component of a NM   RGB color 
image are normalized by the following 
equations. 
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where },,{),,( BGRXjiX   is the pixel value of 
pixel ),( jip  in the X plane of original RGB 
color image, and },,{),,( BGRXjiX N   is the 

corresponding pixel value of pixel ),( jip  in 
the X plane of normalized RGB color image. 
 

2.4 Radial basis function network 
   (RBFN)  

When performing experiments, we 
frequently obtain observations tabulated in 
the form of ordered pairs, },...,2,1|),{( niyxS ii 

 ,where 
T

ipiii xxxx ,...,, 21
 is a column vector of 

dimension p and iy is an scale. Given the 

observations, it is then usually desirable to 
be able to predict y  from x


 by finding a 

mathematical model, that is, a 
function )(xfy


  that fits the observations 

as closely as possible. Finding a model of a 
function )(xfy


  from a set of known 

points (training set) is a function 
approximation. 

Radial Basis Function Network (RBFN) 
is one of the most promising and utilized 
scheme for function approximations [14]. 
The RBFN is a special class of single hidden 
layer feed-forward neural network with 
three layers, namely the input layer, the 
hidden layer, and the output layer as shown 
in Fig. 3. The input layer distributes the 
components of the input vector to each of 
the neurons in the hidden layer. Each neuron 



in the hidden layer then generates the 
activation in form of the associated radial 
basis function. Each neuron in the output 
layer finally evaluates the weighted sum of 
the activations of the hidden neurons, and 
the general mathematical form of the output 
nodes is as follows: 

,)()()(
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where )( ij x
  are basis functions, and the 

most popular basis function is the Gaussian 
function with the expression:: 

  ,,...,2,1,||||exp),;( 22 qjxx jjjjj   
(18)

where 
j  is the n -dimensional vector 

stands for the center of the thj  radial basis 
function for the thj   neuron in the hidden 
layer, 

j is the width parameter of the 

thj  radial basis function , and ||||   is the 
Euclidean norm. 

An RBFN outputs for a given input 
vector is completely determined by the 
number of activation functions, the 
activation functions of the hidden 
neurons ),;( jjj x   , and the weights jw that 

link the hidden layer neurons and the output. 
On the other hand, to train a RBFN is to 
obtain the values of three sets of parameters: 
the centers }{ j , the bandwidths }{ j , and the 

weights, so that to minimize the sum of 
absolute error between the true output and 
the output of the network for the 
corresponding input. Once the values of 
three sets of parameters are determined, and 
the number of neurons in the hidden layer is 
determined by the follows: the RBFN starts 
with one radial function, and increases the 
number of radial functions in the hidden 
layer one by one until no performance of the 
RBFN is improved by adding a new radial 
function. 
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Fig. 3. Structure of RBFN. 
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Fig. 4. The curves of intensity transfer function in 
each plane obtained by RBFN. 

 
The training of RBFN is used to train 

the RBFNs of the three elements R, G, and B 
of these color-block images. These trained 
RBFNs are used to find out the transferred R, 
G, and B values of each pixel of the target 
image. These transferred values are 
constructed into the transferred target RGB 
color image. Fig. 4 shows the curves of 
intensity transferring functions of 
component R, G, and B between source 
image and target image. 
 
3. Experiment results  

These experiments were conducted on a 
computer with a 2.8GHz Intel Pentium 
processor and 2 GB RAM running Matlab 
version 7.6. For 800×504 target image and 
380×391 source image, the color 
transferring procedure lasted about 0.325 
seconds and the training procedure lasted 
from  0.54 to 1.36 seconds; the time 
consumptions in color transferring and 
RBFN training are significantly dependent 
on the number of radial basis functions. If 
the number is too low, the network may not 
calculate a proper estimation of the data. On 
the other hand, if too many hidden layer 
units are used, the network tends to overfit 
the training data. In addition, the number of 
radial basis functions is determined by the 
centers and the widths (or spreads) of the 
Gaussian density function in constructing 
RBFN, and the assigned error between the 



output of the network and the correct output. 
This section presents experimental 

results under various conditions to illustrate 
the utility and efficiency of the proposed 
scheme. The input target RGB color image 
is an outdoor scene shot in a sunny winter 
day with size 800×504 pixels and the input 
source RGB color image is a dusk scene 
with size 380×391 pixels as shown in Fig.5. 

Due to the numerical differences 
between colors in the CIELAB system is 
very consistent with human visual 
perceptions; the color distance in terms of 
CIELAB components really indicates how 
much the color transferred image differs 
from the source image. To present the color 
distance between the transferred image and 
source image with CIELAB component 
units is the most suitable way to measure the 
performance of color transferring schemes. 
In this paper, the color distance measured 
with CIELAB component units was 
conducted to measure the color transferring 
performances. 
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Fig. 5. The target image and source image.

 
In order to give a detailed description of 

the color transfer results, several 
measurement metrics (MM) are conducted 
to measure the color transfer performance of 
the proposed algorithm. They are the 
difference in mean values of the color 
transferred image from the source image in 
lightness/ darkness ( *L ), in red-shade/ 
green-shade ( *a ), in yellow-shade/ 
blue-shade ( *b ), in chromaticity ( *C ), in 
hue ( *H ), and in total color ( *E ) [23]. 
These performance measures are based on 
two images: a source color image and the 
color transferred image. These performance 
measures are described as follows: 

22 *)(*)(* baC    (19)
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where *}*,*,*,*,*,{),,( EHCbaLXjiX   
is the pixel value of pixel ),( jip  in 
the X plane of original CIELAB color image, 

NM   is the size of the test image, X is 
the mean of X , tX is the mean of 

X component of color transferred image, 

sX is the mean of X component of source 

image, X is the difference of X component 
mean of the transferred image from the 
source image, (%)X is the difference ratio 
of X component mean of the transferred 
image from the source image, and arctan2 is 
a more novel version (four quadrant) of the 
arc-tangent function that returns the angle in 
the full range ( − π, π], and is defined as the 
following equation [24]: 
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For testing images, these measurement 
metrics are evaluated by applying the 

proposed algorithm in the RGB domain. 
These measurement metrics are listed in 
tables for the performance analysis. Fig. 6 
and Tables 1- 3 are used to demonstrate the 
color transfer results corresponding to the 
variation in the assigned error (AE) between 
the output of the network and the correct 
output with 100 centers and width 1.  

 

  
(a) error=1  (b) error =0.1  (c)error =0.01 (d)error =0.001 (e) error =0.0002

Fig.6. Visible results with variation in the assigned error. 
 
Table 1. Quantities vary with respective to the assigned error 
Assign 
error(AE) 

Number of RBF Mean-Square-Error Training 
time(sec.) 

Simulation
time(sec.)R G B R G B 

1 2 2 2 0.001429 0.000206 0.0002331 0.31 0.54 
0.1 2 2 2 0.001429 0.000206 0.0002331 0.31 0.55 
0.01 2 2 2 0.001429 0.000206 0.0002331 0.31 0.66 
0.001 5 2 2 0.0007037 0.000206 0.0002331 0.34 0.89 
0.0002 9 5 3 0.0001329 0.0001994 0.0001944 0.33 1.36 

 

Table 2. Statistical values of color components of target image, source image and color transferred images with  
various AE. 

Statistical 
Values 

R G B C H E 
MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

Target 94.07 71.94 110.38 77.07 111.56 93.25 177.37 15.31 63.36 4.15 220.98 38.85
Source 180.71 56.1 73.19 55.68 49.42 50.05 237.31 23.62 63.04 1.52 269.69 28.48
AE=1 169.74 52.79 56.12 33.96 38.99 34.21 239.46 12.88 62.05 1.00 263.4 23.22
AE=0.1 169.74 52.79 56.12 33.96 38.99 34.21 239.46 12.88 62.05 1.00 263.4 23.22
AE=0.01 169.74 52.79 56.12 33.96 38.99 34.21 239.46 12.88 62.05 1.00 263.4 23.22
AE=0.001 170.88 52.38 56.12 33.96 38.99 34.21 239.83 13.86 62.05 0.99 263.96 23.43
AE=0.0002 172.09 52.83 56.56 35.03 43.18 40.29 238.95 14.12 61.67 1.6 263.67 23.19
 
Table 3. Difference from transferred image to source image with respective to the assigned error 

ΔR(%) ΔG(%) ΔB(%) ΔC(%) ΔH(%) ΔE(%) 
AE=1 6.02 23.32 21.1 0.91 1.57 2.33 
AE=0.1 6.02 23.32 21.1 0.91 1.57 2.33 
AE=0.01 6.02 23.32 21.1 0.91 1.57 2.33 
AE=0.001 5.44 23.32 21.1 1.06 1.57 2.12 
AE=0.0002 4.77 22.72  12.63 0.69 2.17 2.32 

 

 
R G B 

Fig. 7. The box-plots of target image, source image and color transferred images. 



Fig. 7 shows the corresponding box-plot of 
the previous experiment. Fig.8 and Tables 
4- 5 are used to demonstrate the color 
transfer results corresponding to the 
variation in the number of centers with 
width 1 and assigned error 0.001. Fig.9 and 
Tables 6- 7 are used to demonstrate the 
color transfer results corresponding to the 
variation in width with 100 centers and 
assigned error 0.001. We can make the 
following conclusions based on the above 
Figures and Tables: (A) The time 
consumption on training RBFN and on the 
simulation is significantly dependent on 
the number of RBFs, and the number of 
RBFs is determined by the assign error and 
the number of centers. (B) The statistical 
values (mean, standard deviation (STD)) of 
the measurement metrics for each image in 
L*, a*, b*, C*, H* and E* show that these 
statistical values are almost the same 
between the source images and the 
corresponding transferred images obtained 

using the proposed scheme. (C)The mean 
square error between the simulation and 
sources images is decreasing when the 
number of RBFNs is increasing. (D)The 
performance of larger width RBF is 
superior to the smaller width RBF 

4. Conclusions  
Transferring a source image’s color to 

a target image involves changes the target 
image’s color to enhance the target image’s 
color features. In this paper, a radial basis 
function network (RBFN) based on 
discrete wavelet transform algorithm for 
global color transferring between images is 
proposed. RBFN is trained on the R, G, 
and B planes to obtain the corresponding 
trained RBFN for each plane, respectively. 
The transferred intensity of each pixel on 
each plane of the target image is then 
evaluated using the trained RBFN. 

 

Table 4. Quantities vary with respective to the assigned error 

Number 
of centers 

Number of RBF Mean-Square-Error Training 
time(sec.) 

Simulation 
time(sec.) R G B R G B 

50 5 2 2 0.0009792 0.0003074 0.0001499 0.30 0.74 
100 5 2 2 0.0007037 0.000206 0.0002331 0.34 0.89 
200 6 2 2 0.0007474 0.0005095 0.0005309 0.31 0.77 

 

  
Centers=50 Centers=100 Centers=200

Fig.8. Visible results with variation in the 
number of centers. 

 

Table 5. Difference from transferred image to  
source image with respective to the assigned error 

Centers ΔR(%) ΔG(%) ΔB(%) ΔC(%) ΔH(%) ΔE(%)
50 7.35 32.07 32.15 1.64 1.71 2.37 
100 5.44 23.32 21.1 1.06 1.57 2.12 
200 3.1 19.46 12.08 0.98 1.89 1.61 

 

Table 6. Quantities vary with respective to the width of RBFN 

Width 
Number of RBF Mean-Square-Error Training 

time(sec.) 
Simulation 
time(sec.) R G B R G B 

1 5 2 2 0.0007037 0.000206 0.0002331 0.34 0.89 
0.5 7 2 2 0.000822 0.0002685 0.0002884 0.31 0.99 
0.25 5 3 3 0.0007244 0.0008659 0.0006102 0.30 0.93 

 

  
width=1 width=0.5 width=0.25

Fig.9. Visible results with variation in the width.
 

Table 7. Difference from transferred image to  
source image with respective to the width 

Width ΔR(%) ΔG(%) ΔB(%) ΔC(%) ΔH(%) ΔE(%)
1 5.44 23.32 21.1 1.06 1.57 2.12 
0.5 5.49 24.13 28.63 1.61 1.11 1.81 
0.25 6.83 24.61 43.06 2.22 0.22 1.63 



These transferred R, G, and B planes of the 
target image are then combined into the 
result color image result. The experimental 
results show that the proposed approach has 
three major advantages: (A) the proposed 
algorithm is manual free, simple, effective 
and accurate in transferring color between 
images without any change in the image 
details, (B) the proposed algorithm is time 
saving, due to operation directly and 
completely on RGB domain; it does not 
need the transformations among color 
spaces, (C) there are no restrictions in the 
image dynamic color ranges in the proposed 
algorithm, (D) the discrete wavelet 
transform can efficiently obtain feature 
pixels for training the RBFN. In the future, 
we will combine the proposed scheme with 
image segmentation schemes to improve the 
color transfer results. 
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