
Building a Smartphone App by Using Service-Oriented

Computing and Social Network APIs for Supporting Check-in

Activities

Pin-Fan Lee

Institute of Technology Management, National Chung Hsing University

g100026108@mail.nchu.edu.tw

Shuchih Ernest Chang

Institute of Technology Management, National Chung Hsing University

eschang@dragon.nchu.edu.tw

Fei-Fei Cheng

Institute of Technology Management, National Chung Hsing University

ffcheng.ec@dragon.nchu.edu.tw

Abstract

 Along with the progress in communication technology and the rapid growth of mobile

device, many software companies and individual developers have started to develop a variety

of mobile applications. However, the resource that individual developers can get is far less

than a software company. Therefore, it is important for individual developers to utilize the

free API resources available on the Internet for harvesting the benefit of the cloud computing.

This research explores how developers build a check-in application based on Facebook APIs

in service-oriented computing (SOC) environment. The design and implementation of a

smartphone application using the proposed approach will be described in this article.

Moreover, by comparing with some other smartphone applications which also provide

check-in functions, the advantages and potential value of our approach to integrating social

network APIs and SOC concept will be discussed.

Keywords: Smartphone Application, Mobile Device, Social-Oriented Computing, Check-in,

Social Network

I. INTRODUCTION

 Innovation in mobile device has pushed ahead the growth of mobile applications with

exceedingly rapid speed. Many companies are heading to the mobile application industry

either for providing more services to attract more customers via mobile applications or

creating more revenue. However, not only software companies are interested in this market

with huge potential value, but more and more independent and freelance developers are

getting interested in developing mobile applications (Holzer, and Ondrus 2009).

Naver, one of the biggest search portal sites in Korea, is a good example of how an

Internet service company shifted to mobile app industry successfully; it’s communication

application, LINE, has already been downloaded 20 million times by Feb, 2012, according to

the download counts of Android Market. LINE provides real-time exchange messages and

voice calls service for free, which becomes a great substitute for SMS message. It seems to be

easy for such a big company to develop the service and support such a big amount of users.

However, for individual developers, it is hard to develop such an interactive and real time

mobile application with limit resource, implying that it is difficult for individual developers to

compete with big company.

Hence, in this competitive environment, it is important for individual developers to

leverage as much resources as possible from the Internet to support their applications. The

service-oriented computing (SOC) appear to be a good solution for individual developers.

SOC is the computing model that utilizes services as fundamentals for developing

applications/solutions (Papazoglou 2003). Based on the aforementioned reasons, this work

expects to present a simple and flexible way to build a smartphone application which benefits

from SOC. In this work, Facebook API was used to build connections between mobile

applications and social networks. By querying the Facebook API, developers are able to

retrieve user's basic information (Name, E-mail, Education, history usage data, friend list, etc.)

from Facebook, thus saving them a lot of efforts without building their own services.

The proposed approach of this article was implemented on a smartphone application,

Che-Check. Che-Check is an informative check-in application that provides check-in service

and location-based service (LBS). By querying the Facebook API, Che-Check users do not

need to enter any information for registration. Furthermore, users can leave message, check-in,

view check-in history, and send message to friends easily. On the other hand, user can retrieve

the place information (location, address, phone number, etc.) and see "Where're the cool

places nearby," "Where's the hottest place for check in."

Consequently, in order to explore the advantages and potential value of the proposed

approach which integrates Facebook API and SOC concept, a discussion among Che-Check

and two other famous Check-in smartphone applications will be conducted.

II. FACEBOOK API

 Facebook has been an extremely successful social network service (SNS) since it first

launched in 2004. It has already got 80 million users over the world by Feb, 2012, according

to the analysis by checkfacebook.com. Facebook becomes an easiest way for people to find

someone they may already know or get to know from the Internet by searching on Facebook.

It has been exclusively acknowledged as a resource for locating people (Scale 2008).

Facebook has successfully built strong connections between users and third party web sites.

Social graph is the core concept that Facebook uses to connect different identities,

communities, and conversation in the Facebook at first. However, in order to include third

party web sites and pages that people liked throughout the web, the open graph concept was

then introduced in 2010. Combining the idea of social graph and open graph, not only the

strong connections between people and communities are built, but almost every web site on

the Internet can be linked to this huge social network in one simple click of "Share" or "Like."

 Facebook released Facebook application programming interface (API) in 2007. Since

Facebook has huge user base, it has become a good resource for third party developers

(Kourtellis, Finnis, Anderson, Blackburn, Borcea, and Iamnitchi 2010). Many third party

developers have approached to connect their applications and Facebook API in order to get

user's information quickly in a single call. They are allowed to use API methods/functions to

retrieve a variety of information about users, such as full user profiles, list of friends,

networks, groups, and events that users are attending (Pietiläinen, Oliver, LeBrun, Varghese,

and Diot 2009; Ko, Cheek, Shehab, and Sandhu 2010).

2.1 FQL (Facebook Query Language)

 There are two methods that developers can use to query Facebook API, and these two

methods are Graph API and FQL (Facebook Query Language). The Graph API provides a

consistent and simple view of the Facebook social graph, evenly representing objects in the

graph, while FQL enables developers to query data via SQL-style interface.

In this research, FQL is applied because FQL provides advanced features which are not

provided by Graph API. For instance, developers are able to do multiple queries in just one

FQL call, thus allowing developers to fetch data from the first query and use it in the second

query and so on. User profile information that developers can access by using FQL is shown

in Table 1. Other tables (such as user's comment, check-in, friends, family, photo, stream, etc.)

that can be queried by FQL are listed on Facebook developer page.

Table 1. Elements of the user profile table that can be accessed by Facebook API.

Name Type Description

uid int The user ID of the user being queried.

username string The username of the user being queried.

first_name string The first name of the user being queried.

middle_name string The middle name of the user being queried.

last_name string The last name of the user being queried.

sex string The gender of the user being queried.

email string A string containing the user's email address

education array A list of user's education history

languages array The user's languages.

2.2 Permission

Social network users always have their personal information (including information

related to contact information, user identification number, E-mail address, and wall posting)

on social network websites (Lewis, Kaufman, Gonzalez, Wimmer, and Christakis 2008).

Although there are privacy policies to protect personal information, attackers might still be

able to break this barrier by controlling other compromised account (Rabkin 2008). In order

to enhance the security protection, whenever a user logs on to an application at the first time,

the user will go through an authentication process that asks whether the user wants to grant

specific permission requested by the application (shown in Figure 1). The amount of user

information available to the application depends on the permissions granted by users.

Figure1. Dialog for granting permissions by a user to an application.

III. ARCHITECTURE AND DESIGN

Facebook API provides an always up-to-date data pool for application developers. This

huge data pool is available for web application developers and mobile application developers,

and the way to fetch data is getting easier. Obviously, it becomes a good choice for developers

who have only limited resource. In most cases, application developers use Facebook API in

order to fetch user's basic information, such as profile, contact information, and photos.

However, there is still a lot of valuable information that developers can get from this big data

pool, and there are more potential applications that are worthy to discover.

In this work, taking the advantages of SOC, our architecture design aims to utilize

Facebook API more efficiently and more comprehensively, consequently providing individual

developers a simple and flexible way to build an informative smartphone application without

building needed local supporting utilities. As shown in Figure 2, the client application is able

to get a variety of information by sending FQL request to Facebook API. After receiving

queries from client side, the API will then fetch the specific table that is described in the

received query message and send response back to client. Therefore, application developers

do not need to build up a database for storing all the information about users. Developers can

choose to query FQL and fetch the "user" table in Facebook database whenever they need to

get specific user's information such as E-mail or Name. Moreover, to query the user's data

whenever the client needs it keeps the received information always up-to-date. There is no

need to check whether the user's data stored in his/her own database is out of date or not.

 However, some developers may like to store extra information about users or the client

application, such as user register date, preference, and credit earned. Developers just need to

create one or a few tables in their own database for storing such extra information, and the

number of table stored in the database varies based on different purposes of developers.

Compared with the large amount of tables stored in Facebook database, only one or a few

tables is needed in developer's database. As shown in Table 2, Facebook API provides more

than 60 tables which are available to developers. In addition, developers do not need to

maintain huge database, saving plenty of time, money, network traffic, and effort for them.

Figure 2. Architecture design with service-oriented computing (SOC) concept.

Table 2. Comparison of tables stored in developer database and Facebook database.

Name Developer's database Facebook API database

Number of Tables in database one or a few (Alterable) 63 (Unalterable)

Updatedness low high (always up-to-date)

Maintenance need maintenance no maintenance needed

Query Language SQL FQL

Permission no need need

IV. IMPLEMENTATION OF CHE-CHECK

 In this section, the process of implementing the proposed approach on the mobile

application, Che-Check, will be illustrated in detail. The first step is to build the connection

between Che-Check and Facebook by using Facebook API. After the connection is made, then

start to develop Che-Check application based on the Facebook mobile application SDK. There

are two versions (iOS and Android) of Facebook SDK released on the Facebook Developer

page. The official Android version of Facebook SDK is used in this research.

4.1 Connect mobile application with Facebook

Before being able to connect to Facebook API, a Facebook application, named NCHU

Che-Check in this case, must be created on the Facebook developer page. NCHU Che-Check

will be used to integrate with the Che-Check smartphone application. NCHU Che-Check is

the bridge application between Facebook and Che-Check, it will be used to record the basic

information and identification of the Che-Check. Figure 3 shows the information need to be

entered in Facebook application page.

In the Facebook application page, the APP ID represent the Facebook application created

on Facebook, this APP ID is needed when integrating Facebook Android SDK into the code.

In this case, it specifies the bridge application, NCHU Che-Check. On the other hand, in order

to enhance the security of mobile application, Facebook requires developers to fill in the

Android Key Hash, which is the signature used to sign the mobile application. Android Key

Hash can be generated by running the keytool which comes with the Java JDK.

4.2 Authentication process

 After the connection setting is done, Che-Check users will be able to log in with

Facebook account in an official Facebook login page. After Che-Check users login with

Facebook account, users will be protected under the security policies of Facebook. The

authentication process for first time users is needed. In the Che-Check application, whenever

a new user logs in, a list of permissions needs to be specified by the user in an authentication

Figure 3. The information required in Facebook application page.

dialog (shown in Figure 4). After the first time authentication process, the Che-Check

application will be able to access the user’s data using query through Facebook API. The

permissions needed and used by Che-Check are listed in Table 3.

Table 3. Permissions required and used in the Che-Check application.

Name Description

user_checkins Permission to get user's check-in history

friends_checkins Permission to get friend's check-in history

user_location Permission to get user's current location

publish_checkins Permission to publish check-in on Facebook

photo_upload Permission to upload photo on Facebook

4.3 Sending FQL query from mobile application

To send a query from Che-Check to Facebook API, the query messages need to be placed

in the code in advance. When the related application function is triggered, the query message

will be placed in the URL format and sent to the Facebook API as an URL call. The format of

FQL query is similar to SQL language, so that the SQL style interface can be used to query

Facebook API. For instance, one of the functions in Che-Check is to query the user's check-in

history, including the check-in place and check-in date. The specific queries look like:

Query1= SELECT name FROM page WHERE page_id IN

(SELECT page_id FROM checkin WHERE author_uid= me())

 Query2=SELECT timestamp FROM checkin WHERE author_uid= me()

Figure 4. Authentication requested at the first time login.

However, in some cases, sending a single query at a time is not enough, the application has to

send out a series of queries in the multi-query format in order to get more precise or

complicated result. For instance, one of the functions in Che-Check is to query the friend's

check-in history, including the check-in place, check-in date, and the person who published

the check-in information. The specific queries look like:

Query1= SELECT author_uid, page_id, timestamp FROM checkin

WHERE author_uid IN (SELECT uid2 FROM friend WHERE uid1 = me())

Query2= SELECT name, uid, pic_square FROM user

WHERE uid IN (SELECT author_uid FROM #query1)

Query3= SELECT name FROM page WHERE page_id IN (SELECT page_id FROM #query1)"

Three of these queries were casted to a JSON object and sent to the Facebook API. Query 1 is

processed at first, and then the result of query 1 is used in Query 2 and Query 3. This

multi-query feature enables clients to make a series of queries in a single call.

 After these queries were sent to Facebook API, a corresponding response will be sent

back as a JSON object. The JSON object looks like:

[{"uid":605698608,"current_location":{"id":110922325599480,"country":"Taiwan","city":"Taichung"},

"name":"Aaron Lee"}]

4.4 Storing extra information in developer's database

 As mentioned in previous section, with the SOC concept, most services of Che-Check

come from the Facebook API. The only reason to build database is to store the extra

information about Che-Check users. Therefore, a simple database is built using MySQL for

storing the user's information such as date register, credit earned, and user preference. In

addition, PHP is used to connect the smartphone applications with My SQL database.

V. APPLICATION OF CHE-CHECK

 The main applications of Che-Check are described in this section. Che-Check is an

informative Check-in application. By fetching a variety of up-to-date data from Facebook API,

such as users' check-in, friends' check-in, and location-based information, Che-Check is able

to collect a large amount of data valuable to users. Moreover, combining the idea of LBS,

Che-Check is designed to organize these data to meet users' need based on users' current

locations. On the other hand, a website is built to recruit vendors who are interested in

providing check-in discount. Vendors can join this website and place the latest promotions or

discount for free. Users can not only can get useful information, but also view the check-in

discount provided by vendors geologically nearby. Some valuable functions are listed below:

œ User's check-in history, which shows the user's check-in history in a list, including

check-in place and check-in date.

œ Friends check-in history, which shows friend's check-in history in a list, including

friend's picture, check-in place, and check-in date.

œ The hottest spot nearby, which shows the check-in places nearby, sorting by the check-in

counts of those places (Figure 5).

œ Friend's check-in spots (on map), that show friends' check-in locations on the map

according to the coordinate information of their check-ins (Figure 6).

œ Latest check-in discount, which shows the latest discount information provided by

vendors nearby.

œ Message left for friends, for leaving messages on friends' Facebook walls or

recommending something friends might be interested in (Figure 7).

œ Check in function, for publishing check-in information via Che-Check and displaying

information on the user's Facebook wall (Figure 8).

 In addition, users can enjoy these functions in a game-like environment. For example,

whenever a user publishes check-in via Che-Check, the user earns 10 credits in Chec-Check.

Users can use those credits to open some bonus functions or to get a special title on his/her

profile.

Figure 5. The hottest spot nearby. Figure 6. Friend's Check-ins on the map.

Figure 7. Leave messages to Friends. Figure 8. Publish Check-ins.

VI. DISCUSSION

 With the rapid growth of social network service (SNS), the need of enabling SNS

services on mobile devices is increasing (Kim and Kim 2011; Wu, Ho, and Chen 2011). The

implementation of combining SNS and mobile applications has been emerging in many

application domains. Many popular smartphone applications supporting the check-in function

also let users register by connecting to Facebook, such as Foursquare (Figure 9) and Jiepang

(Figure 10). However, different mobile applications apply social network API differently.

Typically, those applications’ API connections are built for fetching the basic information

which is used in the user registration process. In order to provide location-based service, those

applications still need to build their own services and databases due to the fact that LBS

applications usually need to handle huge volumes of data efficiently (Pelekis, Frentzos,

Giatrakos, and Theodoridis 2008). In contrast, in our proposed SOC based approach, most of

the services needed in Che-Check come from Facebook API. Without building local services

and huge database, only a table is needed in our local MySQL database.

 A comparison among Foursquare, Jiepang, and Che-Check is conducted in our research

by observing the data fetched in applications and the permissions requested to users (shown in

Table 4). For example, compared with Che-Check, Foursquare and Jiepang do not request for

users’ permission which allows them to fetch friends' check-in data. As a matter of fact,

Che-Check utilizes Facebook API for supporting in more functions than Foursquare and

Jiepang (i.e., Che-Check applies Facebook API more efficiently and more widely than others).

Table 4. Comparison among Three Mobile Applications.

 ����: Fetch data not from Facebook API ����: Fetch data from Facebook API

 Figure 9. Login page of Foursquare. Figure 10. Login page of Jiepang.

VII. CONCLUSION

 In this work, a simple and flexible way of building a check-in application is presented.

Therefore, individual developers who have limited resources are able to build an informative

mobile application without building local services by applying our proposed approach which

Application

Function
Foursquare Jiepang Che-Check

Register with FB account

(Fetch user's data)
���� ���� ����

Publish check-in to FB ���� ���� ����

Load user's Friend list

(Fetch user's friend data)
���� ���� ����

Publish on FB friend's wall ���� ���� ����

View friend's Check-in data

(Fetch friend's check-in data)
���� ���� ����

View the hottest check-in place nearby,

LBS (Fetch place data)
���� ���� ����

benefits from the social network API and SOC. Furthermore, this paper has discovered the

potential values of the proposed approach by conducting a comparison with relevant

discussions. In addition to fetching only the basic information of users, more data stored in

Facebook is fetched and turned into useful information. It is expectable that an increasing

number of individual developers will benefit from our research findings and implications by

utilizing free social network APIs in building mobile applications as demonstrated in this

article.

VIII. LIMITATION AND ONGOING WORK

Although it is convenient to get a variety of information from the huge data pool of

Facebook API, not all of the tables and information are available. Whenever a query goes

through the Facebook API, the server first checks whether the client user has granted

permissions to make related information available to client applications. If not, the query will

not be able to get the expected result. Therefore, the actual amount of tables in Facebook API

that are available to client applications will depend on the permission agreements between the

applications and the user. On the other hand, there are still some limitations on the FQL

version of Facebook API. For example, the amount of data that a client is able to fetch at a

time is limited. Therefore, some of the functions are limited as well.

In this paper, only the Facbook API was used in the proposed architecture. Nevertheless,

in order to enhance the concept of SOC, there are still many other free APIs (such as APIs of

Twitter, YouTube, Google Maps, and Flickr) available on the Internet that can be utilized in

building service-based mobile applications. There are other potential and valuable

applications which can be created by adding more free APIs into our proposed approach and

architecture. In particular, people would like to use the applications which mash up several

services they are already familiar with, such as Google maps and YouTube. In the future, we

would attempt to add more free APIs into our proposed approach, consequently making the

proposed service-based mobile application architecture more complete.

ACKNOWLEDGEMENTS

This work was supported by the National Science Council, Taiwan, under contract

number NSC-99-2221-E-005-058-MY3.

REFERENCE

1. Android Developer. “Facebook Query Language (FQL),” March 8, 2012 (available

online at http://developers.facebook.com/ docs/reference/fql/).

2. Android Market. March 6, 2012 (available online at http://market.android.com).

3. CheckFacebook.com. “Global Audience of Facebook,” March 6, 2012 (available online

at http://checkfacebook.com).

4. Wu, C.-J., Ho, J.-M., and Chen, M.-S. “A Scalable Server Architecture for Mobile

Presence Services in Social Network Applications,” IEEE Transactions on Mobile

Computing, online version available on Dec. 8, 2011.

5. Adrian Holzer and Jan Ondrus, “Trends in Mobile Application Development,” Proc.

Mobile Wireless Middleware, Operating Systems, and Applications Workshops, Oct.,

2009, pp. 55-64.

6. Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., and Christakis, N. “Tastes, Ties, and

Time: A New Social Network Dataset Using Facebook.com,” Social Networks (30:4)

2008, pp: 330-342.

7. Paul Kim and Sangwook Kim, “A Model of Close-Relationship among Mobile Users on

Mobile Social Network,” 2011 Proc. Ninth IEEE International Conference on

Dependable, Autonomic and Secure Computing, Dec., 2011, pp. 1103-1109.

8. Ko, M.N., Cheek, G.P., Shehab, M., and Sandhu, R. “Social-Networks Connect

Services,” Computer (43:8) 2010, pp: 37-43.

9. Nicolas Kourtellis, Joshua Finnis, Paul Anderson, Jeremy Blackburn, Cristian Borcea,

and Adriana Iamnitchi, “Prometheus: User-Controlled P2P Social Data Management for

Socially-Aware Applications,” Proc. ACM/IFIP/USENIX 11th International Conference

on Middleware, Nov., 2010, pp. 212-231.

10. Mike P. Papazoglou, “Service-Oriented Computing: Concepts, Characteristics and

Directions,” Proc. Fourth International Conference on Web Information Systems

Engineering, Dec., 2003, pp. 3-12.

11. Nikos Pelekis, Elias Frentzos, Nikos Giatrakos, and Yannis Theodoridis, “HERMES:

Aggregative LBS via a Trajectory DB Engine,” Proc. 2008 ACM SIGMOD International

Conference on Management of Data, Jun., 2008, pp. 1255-1258.

12. Anna-Kaisa Pietilainen, Earl Oliver, Jason LeBrun, George Varghese, and Christophe

Diot, “MobiClique: Middleware for Mobile Social Networking,” Proc. 2nd Workshop on

Online Social Networks, Aug., 2009, pp. 49-54.

13. Rabkin, A. “Personal Knowledge Questions for Fallback Authentication: Security

Questions in the Era of Facebook,” Proc. 4th Symposium on Usable Privacy and Security,

Jul., 2008, pp. 13-23.

14. Scale, M.S. “Facebook as a Social Search Engine and the Implications for Libraries in

the Twenty-First Century,” Library Hi Tech (26:4) 2008, pp: 540-556.

利用社群網路利用社群網路利用社群網路利用社群網路 APIAPIAPIAPI 及服務導向運算概念建置及服務導向運算概念建置及服務導向運算概念建置及服務導向運算概念建置

打卡型智慧型手機應用軟體打卡型智慧型手機應用軟體打卡型智慧型手機應用軟體打卡型智慧型手機應用軟體

李品範

Pin-Fan Lee

國立中興大學科技管理研究所

g100026108@mail.nchu.edu.tw

張樹之

Shuchih Ernest Chang

國立中興大學科技管理研究所

eschang@dragon.nchu.edu.tw

鄭菲菲

Fei-Fei Cheng

國立中興大學科技管理研究所

ffcheng.ec@dragon.nchu.edu.tw

摘要

 隨著智慧型手機以及行動裝置的普遍程度提高，許多軟體公司以及電腦遊戲場商紛

紛投入開發行動裝置應用軟體的行列。然而現今開發具互動性及即時通訊性之行動應用

軟體對於一般開發者具有相當的進入門檻，因此，如何善用網路上免費的 API 資源是開

發者需要思考的議題；本研究將以打卡功能之手機應用軟體為例，探討如何利用

Facebook 所提供的 API 資源結合服務導向運算之概念，以降低開發的門檻。另外，本研

究將以上述的概念實作開發手機應用軟體 - Che-Check，並藉由討論其與其他知名的打

卡型手機應用軟體使用 Facebook API 程度上之不同，以探討本設計架構潛在的應用價

值。

關鍵字：智慧型手機、行動裝置、服務導向運算、打卡、社群網路

