
 1

採用最長處理時間優先原則於多機器環境下對多處理機式工作排

程的最差效能值分析

林建福*

德明財經科技大學 資訊管理系

Email: alfu@takming.edu.tw

廖鴻圖

世新大學 資訊管理系

Email: htliaw@cc.shu.edu.tw

*通訊作者: 林建福

摘要

本文主要在探究一個靜態排程問題，文中針對如何將一群獨立的、不可搶用的多處

理機式工作分派於具有多部機器的環境中處理。此環境中的每部機器都擁有數量不盡相

同的處理機，每個多處理機式工作必需在某一部機器上同時擁有預先設定數量的處理器

才能執行。對此問題去找尋一個具有最小長度的排程是個 NP-完全的問題。此類問題一

般可採用啟發式排程演算法；並藉由啟發式排程演算法的最差效能值來評估其優劣。基

於最長處理時間優先的處理原則，本論文提出”植基於最長處理時間優先” 的排程演算

法，經分析推導出其最差效能值為 5/2。

關鍵詞：靜態排程問題、多處理機式工作、多機器環境、最長處理時間優先原則、最差

效能值

 2

Worst Performance Analysis of Scheduling Multiprocessor Tasks in a

Multi-Machine Environment Using LPT Policy

Jiann-Fu Lin*

Department of Management Information System,

Takming University of Science and Technology,

Email: alfu@takming.edu.tw

Horng-Twu Liaw

Department of Information Management,

Shih Hsin University

Email: htliaw@cc.shu.edu.tw

*
Corresponding author: Jiann-Fu Lin

Abstract

The paper investigates a static scheduling problem, in which a set of independent,

non-preemptable multiprocessor tasks are to be assigned to an environment with multiple

machines. Each machine in the environment contains a number of identical processors and

each multiprocessor task requires to be processed on a single machine by a given number of

processors. The problem of finding a schedule with minimum scheduling length (makespan)

for such a scheduling problem is NP-complete. A heuristic scheduling algorithm is usually

used to obtain a feasible schedule and the efficiency of a heuristic scheduling algorithm may

resort to evaluating its worst performance. Bases on the largest processing time first (LPT)

policy, the paper proposes the LPT-based scheduling algorithm for such a scheduling problem.

The worst performance of the LPT-based scheduling algorithm is derived as 5/2.

Keywords: static scheduling problem; multiprocessor task; multi-machine environment;

largest processing time first policy; worst performance.

 3

Worst Performance Analysis of Scheduling Multiprocessor Tasks in a

Multi-Machine Environment Using LPT Policy

I. INTRODUCTION

Recently, with the continuous improvements in network performance and computers,

the construction of a distributed computing over the Internet has become feasible. Along with

the rapid development in distributed computing environment, a wide variety of interesting

problems are brought on. Task scheduling problem is one of important issues in such an

environment. The problem of scheduling independent, non-preemptable multiprocessor tasks

in an environment with a single machine for finding a schedule with minimum scheduling

length has been known as an NP-complete problem (Blazewicz, Drabowski, and Weglarz

1986), the problem of scheduling independent, non-preemptable multiprocessor tasks in a

multi-machine environment is therefore an NP-complete problem. Now that the problem of

non-preemptively scheduling non-preemptable multiprocessor tasks in a multi-machine

environment is NP-complete, many heuristic scheduling algorithms are proposed for such a

problem to obtain near optimal schedules. Performance is a way to evaluate the efficiency of a

heuristic scheduling algorithm, which can be evaluated either by experimental results or by

mathematical analysis.

A genetic algorithm is a technique that has been widely used in many fields for solving

NP-complete problems. Martino and Mililotti (Martino, and Mililotti 2004) developed a

simulation grid computing environment to evaluate the usefulness of genetic algorithms for

scheduling independent multiprocessor tasks in an environment with several machines. In

contrast with their previous work on up to 24 tasks (Martino, and Mililotti 2002), they found

that their genetic algorithm for scheduling 32 tasks does not converge to an optimal schedule

within a given number of trials performed; only a sub-optimal schedule can be obtained.

Pascual, Rzadca and Trystram (Pascual, Rzadca, and Trystram 2007) proposed the

Multi-Organization Load Balancing Algorithm (MOLBA) for the problem of scheduling

independent, non-preemptable multiprocessor tasks in a grid computing environment, and

showed that the worst performance the MOLBA to be 4. Later, Rzadca (Rzadca 2008) took

on the same problem and showed the worst performance of the List scheduling algorithm as 3.

Almost at the time, Schwiegelshohn, Tchernykh and Yahyapour (Schwiegelshohn, Tchernykh

and Yahyapour 2008) also proposed the Grid Concurrent-Submission (GCS) algorithm for the

same problem and showed the worst performance of the GCS algorithm as 3. Lin (2010a)

discussed the problem of non-preemptively scheduling independent multiprocessor tasks in a

distributed computed environment and formulated the performance of the List scheduling

algorithm as)
11

2(
P

−+
λ

, where λ≤1 and P is the total number of processors in the

 4

scheduling environment. Yet, the worst performance of List scheduling algorithm is still 3. In

the same year, Lin (2010b) also proposed the Higher Parallelism first scheduling algorithm for

the same problem and the performance is still bounded by 3.

Since the problem of finding an optimal schedule for scheduling independent,

non-preemptable multiprocessor tasks in a multi-machine environment is an NP-complete

problem, a scheduling algorithm based on the Largest Processing Time First (LPT) policy is

proposed for such a problem. The rest of this paper is organized as follows. Section 2

describes the multiprocessor task scheduling problem. In Section 3, an LPT-based scheduling

algorithm is proposed for such a problem and its worst performance is derived. Conclusions

are given in Section 4.

II. DESCRIPTION OF THE SCHEDULING PROBLEM

Considering n independent, non-preemptable multiprocessor tasks, T1, T2, …, Tn, are to

be scheduled in a c-machine environment. In the environment, each machine mi consists of pi

identical processors, each multiprocessor task Tk must be processed on a single machine by

kδ processors simultaneously for tk units of processing time without preemption, where i=1,

2, …, c, nk ≤≤1 and kδ is the parallelism of task Tk. For such a problem, a schedule is

feasible if a multiprocessor task Tk can be precisely processed on a single machine by kδ

processors at a time. It is therefore assumed that ρδ ≤ , where },...,2,1|max{ nkk == δδ

and },...,2,1|min{ cipi ==ρ . The paper would like to consider the worst performance of the

LPT-based scheduling algorithm for scheduling multiprocessor tasks under the constraint that

≤
2

ρδ in a multi-machine environment.

III. WORST PERFORMANCE ANALYSIS

Based on the Largest Processing Time First (LPT) policy (Graham 1969), an LPT-based

scheduling algorithm is proposed for such a problem. Since the LPT policy is adopted, the

LPT-based scheduling algorithm first sorts the multiprocessor tasks in non-increasing order

by their processing times. That is, the n multiprocessor task T1, T2, …, Tn are organized as a

sorted list },...,,{ 21

S

n

SS
TTT , where S

k

S

k tt 1+≥ , S

kt is the processing time of S

kT and k=1, 2, …,

n-1. According to the order of multiprocessor tasks in the sorted list, the LPT-based

scheduling algorithm sequentially assigns tasks to available machines. The LPT-based

scheduling algorithm is described below.

Algorithm LPT-based {

Input the processing time tk and parallelism kδ of multiprocessor task Tk, where k=1,

2, …, n;

Arrange Tasks in non-increasing order by their processing times to form a sorted list

 5

},...,,{ 21

S

n

SS
TTT , where S

k

S

k tt 1+≥ , and k=1, 2, …, n-1;

While (the sorted list is not empty) do {

Choose task S

kT at the head of the sorted list;

If (there is a machine mi with at least S

kδ free processors) then {

Machine mi allocates S

kδ processors to S

kT for execution, where S

kδ is the

parallelism of task S

kT , k=1, 2, …, n-1 and ci ≤≤1 ;

Remove task S

kT from the sorted list; }

}

}

Assuming that SLPT and SOPT are the finish time of an LPT-based schedule and that of an

optimal schedule respectively, and tasks are scheduled from time 0. Thus, it is clear that SLPT

is the length of the LPT schedule. Let S

xT be the task with the largest integer x finished at

time SLPT. Then, (SLPT
S

xt−) is the starting time of task S

xT , where S

xt is the processing time

of task S

xT . Some processors might be idle during the LPT-based schedule. Therefore, the

total time that processors are idle in each machine during the LPT-based schedule needs to be

calculated to derive the performance of the LPT-based algorithm.

Lemma 3.1. If S

xT is task ST1 , then SLPT= SOPT.

Proof: Since S

x

S
TT =1 and ST1 starts at time 0, the length of the LPT schedule is St1 . That is

SLPT= St1 . Now that the tasks are non-preemptable, S

OPT tS 1= , SLPT= SOPT.. █

Lemma 3.2. If S

OPT tS 1> , then an optimal schedule must include at least two tasks.

Proof: Due to the processing time of any task is not greater than St1 , it is impossible that the

optimal schedule length containing only one task is greater than St1 . █

Lemma 3.3. If S

OPT tS 1> , then
2

OPTS

x

S
t ≤ .

Proof: Since tasks in sorted list },...,,{ 21

S

n

SS
TTT are arranged in non-increasing order of

 6

their processing times, S

n

S

x

SS
tttt ≥≥≥≥≥21 . Based on Lemma 3.2 and that S

xT is the

xth task in the sorted list finished at time SLPT, there exists an integer y ≤ x that the y tasks can

obtain an optimal schedule according to the LPT-based scheduling algorithm. Due to

S

OPT tS 1≥ , and tasks S

yT 1− and S

yT are the two tasks with smallest processing times of the y

tasks, it follows that

S

y

S

yOPT ttS +≥ −1 . (1)

For the reason that tasks are sorted in non-increasing order and y ≤ x, S

x

S

y

S

y ttt ≥≥−1 .

According to Inequality (1), S

x

S

xOPT ttS +≥ . Hence, S

x
OPT t

S ≥
2

. █

Lemma 3.4. The number of idle processors in machine mi at any time between 0 and

)(S

xLPT tS − is at most)1(−δ , where },...,2,1|max{ nkk == δδ .

Proof: If the number of idle processors in machine mi at time τ ,)(0 S

xLPT tS −≤≤ τ , were

greater than)1(−δ , a task Tk would be assigned at that time. That leads to a contradiction.█

Lemma 3.5. The total idle time of all machine between the times 0 and)(S

xLPT tS − is at

most ∑
=

− c

i

i

S

xLPT p
tS

12

)(
.

Proof: According to Lemma 3.4, at any moment between the times 0 and)(S

xLPT tS − the

maximum number of idle processors in each machine is)1(−δ . Now that

},...,2,1|max{ nkk == δδ , },...,2,1|min{ cipi ==ρ and

≤
2

ρδ ,

)1
2

()1(
)(

0 11

)(

0

−

≤− ∑ ∑∑ ∑
−

= ==

−

=

S
xLPT

S
xLPT tS c

i

c

i

tS

ττ

ρδ . (2)

According to Inequality (2) and the result that
2

1

2

+≤

 ρρ
, it follows that

∑ ∑∑ ∑
−

= ==

−

=

≤−
)(

0 11

)(

0 2
)1(

S
xLPT

S
xLPT tS c

i

i
c

i

tS
p

ττ
δ . Then,

∑∑ ∑
==

−

=

−≤−
c

i

i

S

xLPT
c

i

tS

p
tS

S
xLPT

11

)(

0 2

)(
)1(

τ
δ . █

Theorem 3.1. The performance of the LPT-based algorithm for scheduling multiprocessor

 7

tasks with parallelisms not greater than δ in a multi-machine environment is
2

5
.

Proof: Since SLPT is the finish time of an LPT schedule, and task S

xT finishes at time SLPT,

there follows

∑∑ ∑∑∑
==

−

==

−

=

−+×+×≤
c

i

i

c

i

tS

s

x

c

i

i

x
S

k

S

kLPT ptptS

S
xLPT

11

)(

01

1

0

/})1()()({
ττ

δδ .

According to Lemmas 3.5,

∑∑∑∑
===

−

=

−+×+×≤
c

i

i

c

i

i

S

xLPTs

x

c

i

i

x

k

S

k

S

kLPT pp
tS

tptS
111

1

1

/}
2

)(
)()({ δ

∑∑∑∑
====

−+×+×≤⇒
c

i

i

c

i

i

S

xLPTs

x

c

i

i

n

k

S

k

S

kLPT pp
tS

tptS
1111

/}
2

)(
)()({ δ

Since
2

OPTS

x

S
t ≤ , according to Lemma 3.3, and OPT

c

i

i

n

k

S

k

S

k Spt ≤× ∑∑
==

}/)({
11

δ ,

2
2

1

2

1 OPTLPT

OPTOPTLPT

SS

SSS

−
++≤ . Hence,

OPTLPT SS
2

5≤ █

IV. CONCLUSIONS

The problem of non-preemptively scheduling independent multiprocessor tasks with a

parallelism constraint in a multi-machine environment is an NP-complete problem. Based on

the LPT policy, the paper proposed the LPT-based scheduling algorithm for such a problem

and derived its worst performance as
2

5
. The derived worst performance of the LPT-based

scheduling algorithm is much better than those of the others scheduling algorithm for the

problem.

ACKNOWLEDGMENT

The work is partially supported by the National Science Council under project number NSC

100-2410-H-147-004. The authors would like to express the appreciation for the support.

REFERENCES

1. Blazewicz, J., Drabowski, M. and Weglarz, J. “Scheduling multiprocessor tasks to

minimize schedule length,” IEEE Trans. Comput. (35:5) 1986, pp:389-393.

2. Graham, R.L. “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math.

(17:2) 1969, pp:416-429.

 8

3. Lin, J. F. “List scheduling multiprocessor tasks in grid computing environments,” ICIC

Express Letters (4:1) 2010a, pp:245-248.

4. Lin, J. F. “Performance analysis and discussion on a heuristic for scheduling

multiprocessor tasks in a grid computing environment,” International Journal of

Innovative Computing, Information and Control (6:12) 2010b, pp:5451-5462.

5. Martino, V. D. and Mililotti, M. “Scheduling in a grid computing environment using

genetic algorithms.” Proceedings of the International Parallel and Distributed

Processing Symposium: IPDPS 2002 Workshops, 2002, pp:235-239,.

6. Martino, V. D. and Mililotti, M. “Sub optimal scheduling in a grid using genetic

algorithms.” Parallel Computing (30) 2004, pp:553-565.

7. Pascual, F., Rzadca, K. and Trystram, D. “Cooperation in multi-organization

scheduling,” Euro-Par 2007, pp:224-233, 2007.

8. Rzadca, K., “Scheduling in multi-organization grids: measuring the inefficiency of

decentralization,” LNCS 4967, Springer, 2008, pp: 1048–1058.

9. Schwiegelshohn, U., Tchernykh, A. and Yahyapour, R. “Online scheduling in grids,”

Proceedings of the International Parallel and Distributed Processing Symposium:

IPDPS 2008 Workshops, 2008, pp:1-10.

