B REARIEEFEFREL R S BIRE TN S RSN 1 (T
ARk £ da BA T
ot Ag

WP HEPEAE FRPREY
Email: alfu@takming.edu.tw

T5 78 R
BEAE FRAR

Email: htliaw @cc.shu.edu.tw

GEUIEE R R

1 &

AT AR AHFY - BEFARERNE 2 ¢ AP - FHE 53 TR DY e
TSN AR E G SIS Rk ¢ AT o PR Y 0 E IS e BB 7 A
BTl & B 5 edZiB8 1 70 k- SR PR AR TlcE Tl R
ARPT - HENEIHE- BE G] £ RDEARLR NP-= 2R AL - a7 i 42 -
BB R SRR R 2 TR o SRR R 2 b Ak BRI E BT o A
Wh K RIIFR B AIE R 0 A AR R RIL R A PR R
2o gr g E B L@ s 52
BAET C AR R S AR 1 (T S ERYE REACIERELRR L

L one
EES TR

Worst Performance Analysis of Scheduling Multiprocessor Tasks in a

Multi-Machine Environment Using LPT Policy

Jiann-Fu Lin*
Department of Management Information System,
Takming University of Science and Technology,

Email: alfu@takming.edu.tw

Horng-Twu Liaw
Department of Information Management,
Shih Hsin University

Email: htliaw @cc.shu.edu.tw

“Corresponding author: Jiann-Fu Lin

Abstract

The paper investigates a static scheduling problem, in which a set of independent,
non-preemptable multiprocessor tasks are to be assigned to an environment with multiple
machines. Each machine in the environment contains a number of identical processors and
each multiprocessor task requires to be processed on a single machine by a given number of
processors. The problem of finding a schedule with minimum scheduling length (makespan)
for such a scheduling problem is NP-complete. A heuristic scheduling algorithm is usually
used to obtain a feasible schedule and the efficiency of a heuristic scheduling algorithm may
resort to evaluating its worst performance. Bases on the largest processing time first (LPT)
policy, the paper proposes the LPT-based scheduling algorithm for such a scheduling problem.
The worst performance of the LPT-based scheduling algorithm is derived as 5/2.
Keywords: static scheduling problem; multiprocessor task; multi-machine environment;

largest processing time first policy; worst performance.

Worst Performance Analysis of Scheduling Multiprocessor Tasks in a

Multi-Machine Environment Using LPT Policy

I. INTRODUCTION

Recently, with the continuous improvements in network performance and computers,
the construction of a distributed computing over the Internet has become feasible. Along with
the rapid development in distributed computing environment, a wide variety of interesting
problems are brought on. Task scheduling problem is one of important issues in such an
environment. The problem of scheduling independent, non-preemptable multiprocessor tasks
in an environment with a single machine for finding a schedule with minimum scheduling
length has been known as an NP-complete problem (Blazewicz, Drabowski, and Weglarz
1986), the problem of scheduling independent, non-preemptable multiprocessor tasks in a
multi-machine environment is therefore an NP-complete problem. Now that the problem of
non-preemptively scheduling non-preemptable multiprocessor tasks in a multi-machine
environment is NP-complete, many heuristic scheduling algorithms are proposed for such a
problem to obtain near optimal schedules. Performance is a way to evaluate the efficiency of a
heuristic scheduling algorithm, which can be evaluated either by experimental results or by
mathematical analysis.

A genetic algorithm is a technique that has been widely used in many fields for solving
NP-complete problems. Martino and Mililotti (Martino, and Mililotti 2004) developed a
simulation grid computing environment to evaluate the usefulness of genetic algorithms for
scheduling independent multiprocessor tasks in an environment with several machines. In
contrast with their previous work on up to 24 tasks (Martino, and Mililotti 2002), they found
that their genetic algorithm for scheduling 32 tasks does not converge to an optimal schedule
within a given number of trials performed; only a sub-optimal schedule can be obtained.
Pascual, Rzadca and Trystram (Pascual, Rzadca, and Trystram 2007) proposed the
Multi-Organization Load Balancing Algorithm (MOLBA) for the problem of scheduling
independent, non-preemptable multiprocessor tasks in a grid computing environment, and
showed that the worst performance the MOLBA to be 4. Later, Rzadca (Rzadca 2008) took
on the same problem and showed the worst performance of the List scheduling algorithm as 3.
Almost at the time, Schwiegelshohn, Tchernykh and Yahyapour (Schwiegelshohn, Tchernykh
and Yahyapour 2008) also proposed the Grid Concurrent-Submission (GCS) algorithm for the
same problem and showed the worst performance of the GCS algorithm as 3. Lin (2010a)
discussed the problem of non-preemptively scheduling independent multiprocessor tasks in a

distributed computed environment and formulated the performance of the List scheduling

algorithm as (2+%—%) , where 1< A and P is the total number of processors in the

scheduling environment. Yet, the worst performance of List scheduling algorithm is still 3. In
the same year, Lin (2010b) also proposed the Higher Parallelism first scheduling algorithm for
the same problem and the performance is still bounded by 3.

Since the problem of finding an optimal schedule for scheduling independent,
non-preemptable multiprocessor tasks in a multi-machine environment is an NP-complete
problem, a scheduling algorithm based on the Largest Processing Time First (LPT) policy is
proposed for such a problem. The rest of this paper is organized as follows. Section 2
describes the multiprocessor task scheduling problem. In Section 3, an LPT-based scheduling
algorithm is proposed for such a problem and its worst performance is derived. Conclusions

are given in Section 4.

II. DESCRIPTION OF THE SCHEDULING PROBLEM

Considering n independent, non-preemptable multiprocessor tasks, 7y, T3, ..., T,, are to
be scheduled in a c-machine environment. In the environment, each machine m; consists of p;
identical processors, each multiprocessor task 7, must be processed on a single machine by
O, processors simultaneously for # units of processing time without preemption, where i=1,
2,...,¢c, 1<sk<n and 9, is the parallelism of task 7. For such a problem, a schedule is
feasible if a multiprocessor task 7y can be precisely processed on a single machine by 0,
processors at a time. It is therefore assumed that J < p, where 0 =max{J, | k =1,2,...,n}
and po=min{p, |i=12,...,c}. The paper would like to consider the worst performance of the

LPT-based scheduling algorithm for scheduling multiprocessor tasks under the constraint that

Y,

o< [5—‘ in a multi-machine environment.

III. WORST PERFORMANCE ANALYSIS
Based on the Largest Processing Time First (LPT) policy (Graham 1969), an LPT-based
scheduling algorithm is proposed for such a problem. Since the LPT policy is adopted, the
LPT-based scheduling algorithm first sorts the multiprocessor tasks in non-increasing order

by their processing times. That is, the n multiprocessor task T, Ty, ..., T, are organized as a
sorted list {7,°,7,°,...,T."}, where J 2t},,, t° isthe processing time of T° and k=1,2, ...,

n-1. According to the order of multiprocessor tasks in the sorted list, the LPT-based
scheduling algorithm sequentially assigns tasks to available machines. The LPT-based
scheduling algorithm is described below.
Algorithm LPT-based {

Input the processing time #; and parallelism O, of multiprocessor task 7%, where k=1,

2, ..., N

Arrange Tasks in non-increasing order by their processing times to form a sorted list

(1°,1,°,...T,"}, where 1} 21, ,and k=1, 2, ..., n-1;
While (the sorted list is not empty) do {

Choose task TkS at the head of the sorted list;
If (there is a machine m; with at least J,f free processors) then {
Machine m; allocates J; processors to 7,° for execution, where &, is the
parallelism of task T, k=1,2,....,n-1and 1<i<c;

Remove task TkS from the sorted list; }

Assuming that S; pr and Sppr are the finish time of an LPT-based schedule and that of an

optimal schedule respectively, and tasks are scheduled from time 0. Thus, it is clear that Szpr

is the length of the LPT schedule. Let T’ be the task with the largest integer x finished at
time S;pr. Then, (SLPT—tf) 1s the starting time of task sz , wWhere tf is the processing time

of task T°. Some processors might be idle during the LPT-based schedule. Therefore, the

total time that processors are idle in each machine during the LPT-based schedule needs to be

calculated to derive the performance of the LPT-based algorithm.

Lemma 3.1. If TXS is task 7—;5, then S pr= Sopr
Proof: Since T =T and T, starts at time 0, the length of the LPT schedule is #® . That is
Sipr= tls . Now that the tasks are non-preemptable, S ., = tls , Stpr= Sort. [|

Lemma 3.2. If S,,, >t , then an optimal schedule must include at least two tasks.

Proof: Due to the processing time of any task is not greater than ¢, it is impossible that the

optimal schedule length containing only one task is greater than .. [|

Lemma3.3.If S, >t , then t. SS"%.

S

Proof: Since tasks in sorted list {7;°,T,”,..,T,°} are arranged in non-increasing order of

their processing times, #,° 2¢,” >...2¢* >...>¢°. Based on Lemma 3.2 and that T® is the

X

xth task in the sorted list finished at time S;p7, there exists an integer y <x that the y tasks can

obtain an optimal schedule according to the LPT-based scheduling algorithm. Due to
Sopr 217, and tasks T, and T, are the two tasks with smallest processing times of the y
tasks, it follows that

Sopr 215 +1). (1)

[}

For the reason that tasks are sorted in non-increasing order and y<x, t°_ Ztys 2t .

y

According to Inequality (1), S,,, =t +t> . Hence, SO—2PT >0, [|

Lemma 3.4. The number of idle processors in machine m; at any time between 0 and

(S,pr =) isatmost (0-1), where d =max{J, |k =1,2,...,n}.

Proof: If the number of idle processors in machine m; at time 7, 0<7<(S,,, —t’), were
greater than (J—1), a task T} would be assigned at that time. That leads to a contradiction.Jjj

Lemma 3.5. The total idle time of all machine between the times 0 and (S,,, —t)) is at

—+5) ¢
most Gupr =) T2 tx)zpl

Proof: According to Lemma 3.4, at any moment between the times 0 and (S,,, —=°) the

maximum number of idle processors in each machine is (d-1) . Now that

0 =max{0, |k =12,...,n}, p=min{p, li=12,.,c} and J< [g—l ,

¢ (Sppr=t) Sppr=13) ¢ o)
CRVEEDY (H—l). 2)
i=1 =0 =0 i=1
. . pl_p+1 .
According to Inequality (2) and the result that B} < S it follows that
¢ (Sppr=t) Sppr=1)) e p.
> Y0-hs] Z L. Then,
i=1 =0 =0 i=1
¢ (Sppr=t)) c
> S-S, H
i=1 =0 i=1

Theorem 3.1. The performance of the LPT-based algorithm for scheduling multiprocessor

tasks with parallelisms not greater than O in a multi-machine environment is ok

Proof: Since S;pr is the finish time of an LPT schedule, and task TXS finishes at time S;pr,

there follows

¢ (Sipr f)
LPT-{Z(ésw)+(Zp,>><t +> D.(0- 1)}/Zp,
i=1 7=0

According to Lemmas 3.5,

LPT—{Z(JSXt)+(ZP1)Xt + Surr =)ZP,}/ZR

LPT—{Z(a-SXt)"'(Zpl)xf +(LPT I)Z }/ZPI

Since thSOPT , according to Lemma 3.3, and {Z(O_ksxt,f)/Zpi}sSOPT ,
k=1 i=

1

SLPT _ESOPT
ESOPT +—*—— . Hence,

5
Sier SESOPT .

IV. CONCLUSIONS
The problem of non-preemptively scheduling independent multiprocessor tasks with a
parallelism constraint in a multi-machine environment is an NP-complete problem. Based on

the LPT policy, the paper proposed the LPT-based scheduling algorithm for such a problem
and derived its worst performance as % The derived worst performance of the LPT-based

scheduling algorithm is much better than those of the others scheduling algorithm for the

problem.

ACKNOWLEDGMENT
The work is partially supported by the National Science Council under project number NSC

100-2410-H-147-004. The authors would like to express the appreciation for the support.

REFERENCES
1. Blazewicz, J., Drabowski, M. and Weglarz, J. “Scheduling multiprocessor tasks to
minimize schedule length,” IEEE Trans. Comput. (35:5) 1986, pp:389-393.
2. Graham, R.L. “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math.
(17:2) 1969, pp:416-429.

Lin, J. F. “List scheduling multiprocessor tasks in grid computing environments,” ICIC
Express Letters (4:1) 2010a, pp:245-248.

Lin, J. F. “Performance analysis and discussion on a heuristic for scheduling
multiprocessor tasks in a grid computing environment,” [International Journal of
Innovative Computing, Information and Control (6:12) 2010b, pp:5451-5462.

Martino, V. D. and Mililotti, M. “Scheduling in a grid computing environment using
genetic algorithms.” Proceedings of the International Parallel and Distributed
Processing Symposium: IPDPS 2002 Workshops, 2002, pp:235-239,.

Martino, V. D. and Mililotti, M. “Sub optimal scheduling in a grid using genetic
algorithms.” Parallel Computing (30) 2004, pp:553-565.

Pascual, F., Rzadca, K. and Trystram, D. “Cooperation in multi-organization
scheduling,” Euro-Par 2007, pp:224-233, 2007.

Rzadca, K., “Scheduling in multi-organization grids: measuring the inefficiency of
decentralization,” LNCS 4967, Springer, 2008, pp: 1048-1058.

Schwiegelshohn, U., Tchernykh, A. and Yahyapour, R. “Online scheduling in grids,”
Proceedings of the International Parallel and Distributed Processing Symposium:
IPDPS 2008 Workshops, 2008, pp:1-10.

