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ABSTRACT

With rapid growth of information technology, most of corporations have collected
a large amount of digital data, such as data regarding employees, customers and
transactions, etc. Thus, mining useful patterns from the data becomes an important issue.
Learning Vector Quantization (LVQ) is a prototype-based classification technique and
can process a large volume of data within reasonable computation time. However,
traditional LVQ process only numeric data due to the use of Euclidean distance but
cannot directly handle categorical data which must be converted in advance, by
typically using 1-of-k method. Nevertheless, after the conversion, categorical data lose
their semantic information, leading to reduced classification performance. In this work,
we propose an Improved LVQ (ILVQ) to deal with mixed-type data by using distance
hierarchy for expressing relationship between categorical data. Experimental results
prove ILVQ is better than traditional LVQ in classifying mixed-type data.

Keyword: Learning vector quantization (LVQ), Distance hierarchy, Mixed-type data,
Categorical data and Classification.



Improved Learning Vector Quantization for Mixed-Type Data

I. INTRODUCTION

Nowadays, with rapid growth of information technology and e-commerce, business
companies and organizations have collected a large amount of data, such as data regarding
employees, customers and transactions, etc. How to transform these data into useful
information is an issue worthy of exploration. Classification, which is one of commonly used
technologies in data mining, can predict unknown data and support enterprise to make
decisions based on the result. Classification is particularly useful for enterprises in data
analysis and target marketing.

Learning Vector Quantization (LVQ) is a prototype-based artificial neural network
(ANN). LVQ is a classifier and can process a large amount of data quickly. However,
traditional LVQ cannot process categorical data directly. Some preprocess must convert
categorical values to numeric ones prior to training. A typical conversion method is 1-of-k
coding. After the coding, the semantics inherent in categorical values are lost and the data
cannot keep its original structure, leading to increased classification errors.

In this study, we propose an improved LVQ (ILVQ), integrating distance hierarchy which
can express the relationship between the categorical values. Moreover, distance hierarchy can
be automatically constructed so that the need of human experts can be avoided. We
investigate whether ILVQ can improve classification performance.

This paper is organized as follows. In Section 2, we review LVQ and distance hierarchy.
In Section 3, we propose an improved LVQ model which can consider distance hierarchy and
deal with mixed-type data. In Section 4, we present the experimental results on real datasets
to demonstrate that our method is able to improve classified accuracy. Finally, we describe
conclusions of this study.

Il. LITERATURE REVIEW

To establish background knowledge related to our ILVQ, traditional LVQ and distance
hierarchy are reviewed in this section.

2.1 Learning Vector Quantization

Learning Vector Quantization (LVQ) is a prototype-based supervised algorithm proposed
by Kohonen for classification. It builds up vector quantization with all data samples at the



training step. LVQ is a special case of ANNs and has the training and adjustment process
similar to SOM. The structure of LVQ network has three layers: an input layer, a Kohonen
classification layer and an output layer (Bezdek et al. 1995; Kohonen 1988; Kohonen et al.
1995). As shown in following Figure 1.
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Figure 1. Network architecture of LVQ

The data space of LVQ can be regarded as a Voronoi diagram as shown in Figure 2. In
\Voronoi diagram, there are several prototypes and each prototype has exclusive
non-overlapping decision region with the others. When input data x locates in prototype a’s
decision region, X’s class label should be the same as a’s class label. Therefore, through the
training phase LVQ will construct a favorable Voronoi diagram model so that LVQ classifies
unknown input data well in the testing phase.

Figure 2. Voronoi diagram

At first of the training, LVQ neural network is defined by a set of prototypes referred to
as codebook vectors, which are randomly drawn from the training data instances. Then for
each data sample x(t) in discrete time step t, the closest codebook vector m_(t) is selected
by identifying the shortest distance between m,(t) and x(t) according to some distance
function, such as Euclidean distance (Bezdek et al. 1995; Kohonen et al. 1995). Formally, the
process of the closest vector identification is defined by Eq. (1).



C = argmin, {|lx(t) —m, ()} 1)

Second, the winner codebook vector gets the update as follows. If x(t) and m_(t)
have the identical class label, then mc is pushed closer to x(t) by some amount proportional
the distance between x(t) and m_(t); otherwise mc is pulled away from x(t) by a similar
amount. The updating functions are defined as follows.

m(t+1) =m_ +a(t)[x(t) — m (£)]
If x and m_ have the same class,
m (t+1) = m, — a(®) [x(t) — m ()] )
If x and m_ have different classes,

m;(t+ 1) =m,(t) fori # ¢

where «(t) is the monotonically decreasing learning rate with t, and the range is O<a(t)<1.

2.2 Distance Hierarchy

Distance Hierarchy (DH) can be used to express similarity between values which can be
categorical, ordinal or numeric (Hsu et al. 2012; Hsu et al. 2011; Hsu 2006). DH has a
tree-like hierarchical structure consisting of nodes, links, and weights. Each node and link
represents a concept and the hierarchical relationship between two different concepts,
respectively. Each link is associated with a weight representing a distance. The distance
between the root and a node expresses similarity extent between the concept and the root. The
more distant the more dissimilar. For categorical data, the link weights can be assigned
according to some hierarchal clustering algorithm automatically (Das et al. 1998; Palmer et al.
2003) or assigned according to expert’s domain knowledge manually. The structures of DH
for categorical, ordinal and numeric attributes are depicted in Figure 3.
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Figure 3. Distance hierarchies for categorical, ordinal and numeric data.



As shown in Figure 4, a point can be placed at any position in a distance hierarchy.
Formally, a point X is described by an anchor and a positive offset, denoted as ¥ = (N, d..),
representing a leaf node and the distance from the root to X, respectively. X is an ancestor of
another point ¥ if X is in the path from ¥ to the root. If they are at the same position, X
and ¥ are equivalent, i.e., X = ¥. The lowest common ancestor of two points represents the
most specific common ancestor node of X and ¥, denoted as LCA(X,Y¥). In Figure 4, LCA
of X and M is Carbonated, and LCA of ¥ and M is the root Any. The lowest common
point LCP(P,Q@) of two points P and @ is defined as following Eg. (3).

P,ifP=0Q

P,if P is an ancestor of ¢
@,if @ is an ancestor of P
LCA(P,Q),otherwise

LCP(P, Q)= 3)

The distance between two points in a distance hierarchy is defined by the weight
between the two points; the distance formula can be expressed as Eq. (4)

|P—@Ql =d, + dg — 2dycpipg) (4)

where dp, dy and dy.p(p 4 refer to the distance from P, @, and LCP(P,@) to the root,

respectively.
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Figure 4. A categorical distance hierarchy for the categorical attribute Drink. X and M
represent the mapping points of the Drink attribute of a training pattern x and an ILVQ
prototype m.

For the example in Figure 4, assume that X = (Coke,2.0), ¥ = (Mocca,1.2) and
M = (Pepsi, 1.6). LCA of ¥ and M isthe root Any, i.e., LCA(Y,M) = Any. LCA between



X and M is Carbonated, i.e., LCA(X,M) = Carbonated. LCP of X and M is also
Carbonated since neither X or M is an ancestor of the other. The distance between X and
M is |(Caoke,2.0) — (Pepsi,1.6)| = 2.0 + 1.6 — 2 x 1.0 = 1.6 while the distance between
X and Y is [(Coke,2.0) — (Mocca,1.2)| =2.0+1.2—2x 0= 3.3. As shown in the
example, the semantic similarity inherent in categorical values can be reflected by the scheme
of distance hierarchy.

I1l. IMPROVED LEARNING VECTOR QUANTIZATION
3.1 Improved Learning Vector Quantization

In this section, the improved learning vector quantization (ILVQ) is presented. The main
idea of LVQ is to drag closer the prototype of the best matching codebook vector to its
training datum if the prototype has the same class label with the datum and to push away the
prototype if it has a different class label from the datum. ILVQ is an LVQ extended with
distance hierarchy to address the handle of categorical data. Therefore, ILVQ can process
mixed-type and categorical datasets well. The procedure of ILVQ training algorithm is as
follows.

At the training step, the first step is to find the winner codebook vector. In order to find
the winner, ILVQ requires a formula for calculating the distance between the input data and
each codebook vector. DH can measure the distance in a unified manner in various type of
values including categorical, ordinal and numeric values. The distance between input data
x(t) and codebook vector m,(t) is defined by Eq. (5).

lx(6) = m (&)l = i, (dhy(x,(9) =~ dhy(m, () (5)

where k is the number of attributes, j represents the jth attribute, and dh;(e) represents the
mapping of its argument to its associated distance hierarchy.

At the adjustment step, the concept of distance measure is the same with Eq. (5) and the
mapping points of the prototype are moved closer to or away from the mapping points of the
input. In fact, for adjusting numeric values, we only need to adjust the value by plus or minus
the adjustment amount . For adjusting categorical values, we must adjust the value and
consider their new position in the hierarchy. In some cases, the anchor of the point needs to be
changed after the adjustment. In the following section, we will introduce the adjustment of a
point in a categorical distance hierarchy by referring to Figure 5 and 6. Suppose X and M
represent the mapping points of two categorical values from a training data sample x(t) and
ILVQ winner prototype m_(t), respectively.



ILVQ is based on LVQ, and thus ILVQ will encounter two situations in adjusting the
codebook vector. In the first situation, assume the winner codebook vector M has the same
class label with data sample X, M moves towards X. In this situation, all possible adjustments
are described in Figure 5. As shown in Figure 5(a) and (b), M moves towards X. The offset of
M pluses the adjustment amount & and the anchor does not change. In the case Figure 5(c), the
offset of M minus the adjustment amount & and the anchor does not change. In the case Figure
5(d), the offset of M must be calculated again because the anchor of M will be changed; the
newest offset value is 2d; 450y —dyy + & and the anchor changes from Q to P.
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Figure 5. All possible adjustment situations for prototype M moving towards data sample X.
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In the second situation, assume the winner codebook vector M has the different class
label with data sample X, and M moves away X. In this situation, all possible adjustments are
described in Figure 6. In the case of Figure 6(a), M moves away from X and the offset of M
pluses the adjustment amount becomes the new position of M’. In Figure 6(b), M moves away
in different direction with M in Figure 6(a) but the anchor does not change. In Figure 6(c), M
crosses the root node. Not only does the offset need to be calculated again but also the anchor
of M will be changed; the new offset value is —(d,, — &) and the anchor changes from Q to
non-Q.
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Figure 6. All possible adjustment situations for prototype M moving away data sample X.

For example, Figure 7 shows the adjustment of the winner codebook vector m(t) with
respect to data sample x(t) in a distance hierarchy. Assume that X = (Coke, 2.0},
M = (Pepsi,1.2) and &= 0.25. If X and M have the same class label, M must move
towards to X. Therefore, the new value is M = (Coke, 1.05) that calculated by referred
Figure 4(d), and the process of adjustment can refer to Figure 7(a). On the other hand, if X
and M have the different class label, M must move away from X, and the process of
adjustment can be referred in Figure 7(b). The new value is M = (Pepsi, 1.45).
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Figure 7. Two distance hierarchies present the example for adjustment calculation.
3.2 Construct Distance Hierarchy

Distance hierarchy can be constructed by two approaches. The first is to use domain
knowledge and to construct manually by experts. However, in some applications, categorical
values neither have existing domain knowledge nor have experts. It is also possible that the
values of categorical attributes are encrypted due to privacy consideration. Thus, the second
approach is proposed by using existing information in the data to construct distance hierarchy
automatically.

For automatically constructing distance hierarchy, we use a dissimilarity index between a
pair of categorical values which measures the relationship between the pair and an external
probe. If two categorical values have the same extent of co-occurrence with the external probe,
the values are deemed similar(Das et al. 1998). Accordingly, we define the dissimilarity
between two categorical values, A and B, in a feature attribute with respect to the set of labels
in class attribute P as Eq. (10).



d(A,B) =Y peplconf(A = D) — conf(B = D)| (10)

where conf(A=D) denotes the ratio of co-occurrence of A and D.

According to the above dissimilarity definition, we can measure the similarity degree
between any pair of categorical values in the categorical attribute. The similarity degree of all
pairs can form a proximity matrix. Then, the distance hierarchy can be constructed by using
hierarchical clustering to cluster the distance matrix. The procedure of constructing a distance
hierarchy is depicted in Figure 8.
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Figure 8. The procedure of constructing distance hierarchy from the dataset.

In this study, we use the popular agglomerative hierarchical clustering algorithm with
single-linkage, compete-linkage and average-linkage, respectively, to construct various type
of distance hierarchies. Experimental results will show three different performances for ILVQ
with different types of distance hierarchies. The results will be described in next section.

IV. EXPERIMENTS

We compare traditional LVQ and ILVQ on three real datasets (Adult, Nursery and Car
evaluation) from UCI repository. In our experiments, we use two testing methods, 10-fold
cross validation and 70%-30% validation. The 10-fold cross validation which splits the
dataset to ten parts with nine parts as training data and one part as testing data in turn, and
executes ten rounds. That is, in each round, it will change content of training data and testing
data. The 70%-30% validation uses 70% of the dataset as training data and 30% as testing
data. We used 10-fold cross validation for the small dataset Car evaluation, and 70%-30%
validation for the large datasets Adult and Nursery. Information about the datasets is
summarized in Table 2.



Table 1. The experimental UCI datasets.

Data Set Samples | Dimension | Numeric attr. | Categorical attr. | Classes
Adult 48,842 22 19 3 2
Nursery 12,960 9 0 9 5
Car evaluation 1,728 7 0 7 4

The experimental setting is noted in Table 3. LVQ has three parameters, the amount of
codebook vector, training times and the learning rate. According to the suggested setting in
(Kohonen et al. 1995), we set the learning rate to 0.3 and training to 50 times of the amount of
codebook vectors. The amount of codebook vectors were not suggested in Kohonen’s paper.
Due to consideration of computational time, we decide the maximum amount of codebook
vectors should not exceed one-third of the training samples.

Table 2. The experimental setting for the UCI datasets.

Data Set Test model Learning rate Training samples
Adult 70%-30% 0.3 34,189
Nursery 70%-30% 0.3 9,072
Car evaluation 10-fold 0.3 1,555

For distance hierarchies, we utilize automatically-constructed ones to process categorical
data. Due to space limitation, we show just the sample of using single-linkage hierarchical
clustering for the three categorical attributes (Education, Marital_status and Relationship) of
the Adult dataset. The clustering dendrograms are presented as shown in Figure 8. Distance
hierarchies for ordinal and numeric attributes can be easily constructed manually as
mentioned in section 2.2,

The experimental results for the three datasets listed in Table 4, 5 and 6 demonstrate that
ILVQ with distance hierarchy outperforms traditional LVQ with 1-of-k coding. The
performance of ILVQ with distance hierarchy is enhanced obviously.

As performance of using distance hierarchies constructed by the clustering algorithm
with various types of linkages, the ones by average linkage outperformed the ones by single
and complete linkage in average.

In Nursery and Car Evaluation datasets, the more number of codebook vectors, the better
performance. However, in the Adult dataset, classification accuracy did not improve along
with the increasing number of codebook vectors. Furthermore, 10-fold cross-validation was
used for the small dataset Car Evaluation, and the result shows that the more number of
codebook vectors the smaller the standard deviation of the predication accuracy. That is, the
classifier was more stable when more codebook vectors were used. Note that the result of
using 1-of-k coding was obtained by running the LVVQ program in Weka which does not give
the standard deviation of 10-fold cross validation.
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Figure 9. Distance hierarchies constructed by single-linkage hierarchical clustering for (a)
Education (b) Relationship and (c) MaritalStatus attributes of dataset Adult.



Table 3. The experimental result on the Adult Dataset.

Model # codebook vectors Avg

2k 3k 4k 5k 6k 7K 8k 9k 10k 11k

1-of-k 82.54 | 81.77 | 81.98 | 81.44 | 81.92 | 81.66 | 81.16 | 80.98 | 80.97 | 80.98 | 81.54

single DH 82.74 | 82.37 | 82.29 | 82.46 | 81.87 | 81.67 | 81.68 | 81.73 | 81.75 | 81.74 | 82.03

complete DH | 82.27 | 82.65 | 82.56 | 81.98 | 81.60 | 81.49 | 81.73 | 81.29 | 81.09 | 81.14 | 81.78

average DH 82.54 | 82.46 | 82.62 | 82.02 | 82.52 | 81.60 | 82.14 | 81.94 | 81.68 | 82.00 | 82.15

Table 4. The experimental result on the Nursery Dataset.

Model # codebook vectors Avg

100 200 300 400 500 1k 1.5k 2k 2.5k 3k

1-of-k 88.04 | 89.12 | 89.66 | 88.63 | 87.24 | 88.30 | 88.14 | 88.14 | 86.75 | 86.27 | 88.03

single DH 88.25 | 88.48 | 88.81 | 88.30 | 87.81 | 88.91 | 90.35 | 90.61 | 90.79 | 91.49 | 89.38

complete DH | 86.63 | 87.83 | 89.53 | 89.35 | 89.17 | 91.59 | 92.88 | 93.26 | 94.19 | 95.04 | 90.95

average DH 87.27 | 88.37 | 87.94 | 89.15 | 89.81 | 91.82 | 93.42 | 93.93 | 94.16 | 94.26 | 91.01

Table 5. The experimental result on the Car Evaluation Dataset.

# codebook vectors

Model Avg
10 30 50 100 150 200 250 300 400 500

1-of-k 73.96 | 82.58 | 85.01 | 88.60 | 88.95 | 89.53 | 88.77 | 89.35 | 88.95 | 86.69 | 86.24

single DH 76.60 | 86.70 | 88.43 | 92.09 | 93.48 | 93.79 | 94.42 | 94.47 | 94.71 | 95.06 | 90.98

(0.79) | (0.91) | (0.70) | (0.44) | (0.42) | (0.66) | (0.39) | (0.27) | (0.49) | (0.56) | (0.56)

78.95 | 88.32 | 90.12 | 93.52 | 93.99 | 94.52 | 94.80 | 95.40 | 95.75 | 96.15 | 92.15

complete DH | 53y | (0.31) | (0.74) | (0.59) | (0.64) | (0.28) | (0.38) | (0.30) | (0.41) | (0.33) | (0.62)

83.11 | 88.41 | 88.56 | 91.58 | 94.21 | 95.36 | 95.59 | 96.06 | 96.36 | 96.36 | 92.56

average DH | 551y | (1.01) | (0.53) | (0.59) | (0.44) | (0.27) | (0.41) | (0.71) | (0.36) | (0.51) | (0.71)

V. CONCLUSION

In this study, we have proposed an improved LVQ with distance hierarchy to deal with
mixed-type dataset. The improved LVQ shows better performance than traditional LVQ,
which uses 1-of-k coding for transforming categorical values. Since distance hierarchy
considers semantics inherent in categorical values, the similarity relationship between
categorical values can be preserved better than by 1-of-k coding. In other words, distance
hierarchy results in less information loss than 1-of-k coding, and thus our model yields better
outcome than traditional LVQ.

In addition, we have utilized automatically-constructed distance hierarchy to replace the
manually constructed method. Since constructing distance hierarchy manually is
time-consuming and infeasible for datasets with encrypted attributes, an approach to
automatically constructing distance hierarchy is necessary. Thus, in our work, we proposed an
approach to automatically constructing distance hierarchies for categorical attributes.
Experimental results prove the improved LVQ can handle the mix-type data better than
traditional LVQ.

In the future, we will construct and compare with the other versions of LVQ, such as




LVQ2.1 and LVQ3.
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