
Improved Learning Vector Quantization for Mixed-Type Data 

 

Hung-Yi Tsai 

Department of Information Management National Yunlin University of Science and 

Technology 

g9923761@yuntech.edu.tw 

 

Chung-Chian Hsu 

Department of Information Management National Yunlin University of Science and 

Technology 

hsucc@yuntech.edu.tw 

 

Jiang-Shan Wang 

Department of Information Management National Yunlin University of Science and 

Technology 

g9823703@yuntech.edu.tw 

 

ABSTRACT 

With rapid growth of information technology, most of corporations have collected 

a large amount of digital data, such as data regarding employees, customers and 

transactions, etc. Thus, mining useful patterns from the data becomes an important issue. 

Learning Vector Quantization (LVQ) is a prototype-based classification technique and 

can process a large volume of data within reasonable computation time. However, 

traditional LVQ process only numeric data due to the use of Euclidean distance but 

cannot directly handle categorical data which must be converted in advance, by 

typically using 1-of-k method. Nevertheless, after the conversion, categorical data lose 

their semantic information, leading to reduced classification performance. In this work, 

we propose an Improved LVQ (ILVQ) to deal with mixed-type data by using distance 

hierarchy for expressing relationship between categorical data. Experimental results 

prove ILVQ is better than traditional LVQ in classifying mixed-type data. 

 

Keyword: Learning vector quantization (LVQ), Distance hierarchy, Mixed-type data, 

Categorical data and Classification. 

 



 

Improved Learning Vector Quantization for Mixed-Type Data 

I. INTRODUCTION 

Nowadays, with rapid growth of information technology and e-commerce, business 

companies and organizations have collected a large amount of data, such as data regarding 

employees, customers and transactions, etc. How to transform these data into useful 

information is an issue worthy of exploration. Classification, which is one of commonly used 

technologies in data mining, can predict unknown data and support enterprise to make 

decisions based on the result. Classification is particularly useful for enterprises in data 

analysis and target marketing. 

Learning Vector Quantization (LVQ) is a prototype-based artificial neural network 

(ANN). LVQ is a classifier and can process a large amount of data quickly. However, 

traditional LVQ cannot process categorical data directly. Some preprocess must convert 

categorical values to numeric ones prior to training. A typical conversion method is 1-of-k 

coding. After the coding, the semantics inherent in categorical values are lost and the data 

cannot keep its original structure, leading to increased classification errors. 

In this study, we propose an improved LVQ (ILVQ), integrating distance hierarchy which 

can express the relationship between the categorical values. Moreover, distance hierarchy can 

be automatically constructed so that the need of human experts can be avoided. We 

investigate whether ILVQ can improve classification performance. 

This paper is organized as follows. In Section 2, we review LVQ and distance hierarchy. 

In Section 3, we propose an improved LVQ model which can consider distance hierarchy and 

deal with mixed-type data. In Section 4, we present the experimental results on real datasets 

to demonstrate that our method is able to improve classified accuracy. Finally, we describe 

conclusions of this study. 

 

II. LITERATURE REVIEW 

To establish background knowledge related to our ILVQ, traditional LVQ and distance 

hierarchy are reviewed in this section. 

2.1 Learning Vector Quantization 

Learning Vector Quantization (LVQ) is a prototype-based supervised algorithm proposed 

by Kohonen for classification. It builds up vector quantization with all data samples at the 



training step. LVQ is a special case of ANNs and has the training and adjustment process 

similar to SOM. The structure of LVQ network has three layers: an input layer, a Kohonen 

classification layer and an output layer (Bezdek et al. 1995; Kohonen 1988; Kohonen et al. 

1995). As shown in following Figure 1. 

 

Figure 1. Network architecture of LVQ 

 

The data space of LVQ can be regarded as a Voronoi diagram as shown in Figure 2. In 

Voronoi diagram, there are several prototypes and each prototype has exclusive 

non-overlapping decision region with the others. When input data x locates in prototype a’s 

decision region, x’s class label should be the same as a’s class label. Therefore, through the 

training phase LVQ will construct a favorable Voronoi diagram model so that LVQ classifies 

unknown input data well in the testing phase. 

 
Figure 2. Voronoi diagram 

 

At first of the training, LVQ neural network is defined by a set of prototypes referred to 

as codebook vectors, which are randomly drawn from the training data instances. Then for 

each data sample  in discrete time step t, the closest codebook vector  is selected 

by identifying the shortest distance between  and  according to some distance 

function, such as Euclidean distance (Bezdek et al. 1995; Kohonen et al. 1995). Formally, the 

process of the closest vector identification is defined by Eq. (1). 



 

   (1) 

 

Second, the winner codebook vector gets the update as follows. If  and  

have the identical class label, then mc is pushed closer to  by some amount proportional 

the distance between  and ; otherwise mc is pulled away from  by a similar 

amount. The updating functions are defined as follows. 

 

 

If  and  have the same class, 

      (2) 

If  and  have different classes, 

 

 

where  is the monotonically decreasing learning rate with t, and the range is 0< <1. 

2.2 Distance Hierarchy 

Distance Hierarchy (DH) can be used to express similarity between values which can be 

categorical, ordinal or numeric (Hsu et al. 2012; Hsu et al. 2011; Hsu 2006). DH has a 

tree-like hierarchical structure consisting of nodes, links, and weights. Each node and link 

represents a concept and the hierarchical relationship between two different concepts, 

respectively. Each link is associated with a weight representing a distance. The distance 

between the root and a node expresses similarity extent between the concept and the root. The 

more distant the more dissimilar. For categorical data, the link weights can be assigned 

according to some hierarchal clustering algorithm automatically (Das et al. 1998; Palmer et al. 

2003) or assigned according to expert’s domain knowledge manually. The structures of DH 

for categorical, ordinal and numeric attributes are depicted in Figure 3. 

 

 

Figure 3. Distance hierarchies for categorical, ordinal and numeric data. 



 

As shown in Figure 4, a point can be placed at any position in a distance hierarchy. 

Formally, a point  is described by an anchor and a positive offset, denoted as , 

representing a leaf node and the distance from the root to , respectively.  is an ancestor of 

another point  if  is in the path from  to the root. If they are at the same position,  

and  are equivalent, i.e., . The lowest common ancestor of two points represents the 

most specific common ancestor node of  and , denoted as . In Figure 4,  

of  and  is Carbonated, and  of  and  is the root Any. The lowest common 

point  of two points  and  is defined as following Eq. (3). 

 

  (3) 

 

The distance between two points in a distance hierarchy is defined by the weight 

between the two points; the distance formula can be expressed as Eq. (4) 

 

  (4) 

 

where ,  and  refer to the distance from , , and  to the root, 

respectively. 

 

 

Figure 4. A categorical distance hierarchy for the categorical attribute Drink. X and M 

represent the mapping points of the Drink attribute of a training pattern x and an ILVQ 

prototype m. 

 

For the example in Figure 4, assume that ,  and 

.  of  and  is the root Any, i.e.,  = Any. LCA between 



 and  is Carbonated, i.e., .  of  and  is also 

Carbonated since neither  or  is an ancestor of the other. The distance between  and 

 is  while the distance between 

 and  is . As shown in the 

example, the semantic similarity inherent in categorical values can be reflected by the scheme 

of distance hierarchy. 

 

III. IMPROVED LEARNING VECTOR QUANTIZATION 

3.1 Improved Learning Vector Quantization 

In this section, the improved learning vector quantization (ILVQ) is presented. The main 

idea of LVQ is to drag closer the prototype of the best matching codebook vector to its 

training datum if the prototype has the same class label with the datum and to push away the 

prototype if it has a different class label from the datum. ILVQ is an LVQ extended with 

distance hierarchy to address the handle of categorical data. Therefore, ILVQ can process 

mixed-type and categorical datasets well. The procedure of ILVQ training algorithm is as 

follows. 

At the training step, the first step is to find the winner codebook vector. In order to find 

the winner, ILVQ requires a formula for calculating the distance between the input data and 

each codebook vector. DH can measure the distance in a unified manner in various type of 

values including categorical, ordinal and numeric values. The distance between input data 

 and codebook vector  is defined by Eq. (5). 

 

  (5) 

 

where k is the number of attributes, j represents the jth attribute, and dhj() represents the 

mapping of its argument to its associated distance hierarchy. 

At the adjustment step, the concept of distance measure is the same with Eq. (5) and the 

mapping points of the prototype are moved closer to or away from the mapping points of the 

input. In fact, for adjusting numeric values, we only need to adjust the value by plus or minus 

the adjustment amount . For adjusting categorical values, we must adjust the value and 

consider their new position in the hierarchy. In some cases, the anchor of the point needs to be 

changed after the adjustment. In the following section, we will introduce the adjustment of a 

point in a categorical distance hierarchy by referring to Figure 5 and 6. Suppose X and M 

represent the mapping points of two categorical values from a training data sample  and 

ILVQ winner prototype , respectively. 



ILVQ is based on LVQ, and thus ILVQ will encounter two situations in adjusting the 

codebook vector. In the first situation, assume the winner codebook vector M has the same 

class label with data sample X, M moves towards X. In this situation, all possible adjustments 

are described in Figure 5. As shown in Figure 5(a) and (b), M moves towards X. The offset of 

M pluses the adjustment amount  and the anchor does not change. In the case Figure 5(c), the 

offset of M minus the adjustment amount  and the anchor does not change. In the case Figure 

5(d), the offset of M must be calculated again because the anchor of M will be changed; the 

newest offset value is  and the anchor changes from Q to P. 
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Figure 5. All possible adjustment situations for prototype M moving towards data sample X. 

 

In the second situation, assume the winner codebook vector M has the different class 

label with data sample X, and M moves away X. In this situation, all possible adjustments are 

described in Figure 6. In the case of Figure 6(a), M moves away from X and the offset of M 

pluses the adjustment amount becomes the new position of M’. In Figure 6(b), M moves away 

in different direction with M in Figure 6(a) but the anchor does not change. In Figure 6(c), M 

crosses the root node. Not only does the offset need to be calculated again but also the anchor 

of M will be changed; the new offset value is  and the anchor changes from Q to 

non-Q. 
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Figure 6. All possible adjustment situations for prototype M moving away data sample X. 

 

For example, Figure 7 shows the adjustment of the winner codebook vector  with 

respect to data sample  in a distance hierarchy. Assume that , 

 and . If X and M have the same class label, M must move 

towards to X. Therefore, the new value is  that calculated by referred 

Figure 4(d), and the process of adjustment can refer to Figure 7(a). On the other hand, if X 

and M have the different class label, M must move away from X, and the process of 

adjustment can be referred in Figure 7(b). The new value is .  

 

 

 

Figure 7. Two distance hierarchies present the example for adjustment calculation.  

3.2 Construct Distance Hierarchy 

Distance hierarchy can be constructed by two approaches. The first is to use domain 

knowledge and to construct manually by experts. However, in some applications, categorical 

values neither have existing domain knowledge nor have experts. It is also possible that the 

values of categorical attributes are encrypted due to privacy consideration. Thus, the second 

approach is proposed by using existing information in the data to construct distance hierarchy 

automatically.  

For automatically constructing distance hierarchy, we use a dissimilarity index between a 

pair of categorical values which measures the relationship between the pair and an external 

probe. If two categorical values have the same extent of co-occurrence with the external probe, 

the values are deemed similar(Das et al. 1998). Accordingly, we define the dissimilarity 

between two categorical values, A and B, in a feature attribute with respect to the set of labels 

in class attribute P as Eq. (10).  

(a) (b) 



 

  (10) 

 

where conf(A⇒D) denotes the ratio of co-occurrence of A and D. 

According to the above dissimilarity definition, we can measure the similarity degree 

between any pair of categorical values in the categorical attribute. The similarity degree of all 

pairs can form a proximity matrix. Then, the distance hierarchy can be constructed by using 

hierarchical clustering to cluster the distance matrix. The procedure of constructing a distance 

hierarchy is depicted in Figure 8. 
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Figure 8. The procedure of constructing distance hierarchy from the dataset. 

 

In this study, we use the popular agglomerative hierarchical clustering algorithm with 

single-linkage, compete-linkage and average-linkage, respectively, to construct various type 

of distance hierarchies. Experimental results will show three different performances for ILVQ 

with different types of distance hierarchies. The results will be described in next section. 

 

IV. EXPERIMENTS 

We compare traditional LVQ and ILVQ on three real datasets (Adult, Nursery and Car 

evaluation) from UCI repository. In our experiments, we use two testing methods, 10-fold 

cross validation and 70%-30% validation. The 10-fold cross validation which splits the 

dataset to ten parts with nine parts as training data and one part as testing data in turn, and 

executes ten rounds. That is, in each round, it will change content of training data and testing 

data. The 70%-30% validation uses 70% of the dataset as training data and 30% as testing 

data. We used 10-fold cross validation for the small dataset Car evaluation, and 70%-30% 

validation for the large datasets Adult and Nursery. Information about the datasets is 

summarized in Table 2. 

 



Table 1. The experimental UCI datasets.  

Data Set Samples Dimension Numeric attr. Categorical attr. Classes 

Adult 48,842 22 19 3 2 

Nursery 12,960 9 0 9 5 

Car evaluation 1,728 7 0 7 4 

 

 The experimental setting is noted in Table 3. LVQ has three parameters, the amount of 

codebook vector, training times and the learning rate. According to the suggested setting in 

(Kohonen et al. 1995), we set the learning rate to 0.3 and training to 50 times of the amount of 

codebook vectors. The amount of codebook vectors were not suggested in Kohonen’s paper. 

Due to consideration of computational time, we decide the maximum amount of codebook 

vectors should not exceed one-third of the training samples. 

 

Table 2. The experimental setting for the UCI datasets.  

Data Set Test model Learning rate Training samples 

Adult 70%-30% 0.3 34,189 

Nursery 70%-30% 0.3 9,072 

Car evaluation 10-fold 0.3 1,555 

 

For distance hierarchies, we utilize automatically-constructed ones to process categorical 

data. Due to space limitation, we show just the sample of using single-linkage hierarchical 

clustering for the three categorical attributes (Education, Marital_status and Relationship) of 

the Adult dataset. The clustering dendrograms are presented as shown in Figure 8. Distance 

hierarchies for ordinal and numeric attributes can be easily constructed manually as 

mentioned in section 2.2. 

The experimental results for the three datasets listed in Table 4, 5 and 6 demonstrate that 

ILVQ with distance hierarchy outperforms traditional LVQ with 1-of-k coding. The 

performance of ILVQ with distance hierarchy is enhanced obviously. 

As performance of using distance hierarchies constructed by the clustering algorithm 

with various types of linkages, the ones by average linkage outperformed the ones by single 

and complete linkage in average. 

In Nursery and Car Evaluation datasets, the more number of codebook vectors, the better 

performance. However, in the Adult dataset, classification accuracy did not improve along 

with the increasing number of codebook vectors. Furthermore, 10-fold cross-validation was 

used for the small dataset Car Evaluation, and the result shows that the more number of 

codebook vectors the smaller the standard deviation of the predication accuracy. That is, the 

classifier was more stable when more codebook vectors were used. Note that the result of 

using 1-of-k coding was obtained by running the LVQ program in Weka which does not give 

the standard deviation of 10-fold cross validation. 
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Figure 9. Distance hierarchies constructed by single-linkage hierarchical clustering for (a) 

Education (b) Relationship and (c) MaritalStatus attributes of dataset Adult. 

 

 



Table 3. The experimental result on the Adult Dataset. 

Model 
# codebook vectors 

Avg 
2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 

1-of-k 82.54  81.77  81.98  81.44  81.92  81.66  81.16  80.98  80.97  80.98  81.54  

single DH 82.74  82.37  82.29  82.46  81.87  81.67  81.68  81.73  81.75  81.74  82.03  

complete DH 82.27  82.65  82.56  81.98  81.60  81.49  81.73  81.29  81.09  81.14  81.78  

average DH 82.54  82.46  82.62  82.02  82.52  81.60  82.14  81.94  81.68  82.00  82.15  

 

Table 4. The experimental result on the Nursery Dataset. 

Model 
# codebook vectors 

Avg 
100 200 300 400 500 1k 1.5k 2k 2.5k 3k 

1-of-k 88.04 89.12 89.66 88.63 87.24 88.30 88.14 88.14 86.75 86.27 88.03 

single DH 88.25 88.48 88.81 88.30 87.81 88.91 90.35 90.61 90.79 91.49 89.38 

complete DH 86.63 87.83 89.53 89.35 89.17 91.59 92.88 93.26 94.19 95.04 90.95 

average DH 87.27 88.37 87.94 89.15 89.81 91.82 93.42 93.93 94.16 94.26 91.01 

 

Table 5. The experimental result on the Car Evaluation Dataset.  

Model 
# codebook vectors 

Avg 
10 30 50 100 150 200 250 300 400 500 

1-of-k 73.96 82.58 85.01 88.60 88.95 89.53 88.77 89.35 88.95 86.69 86.24 

single DH 
76.60 

(0.79) 

86.70 

(0.91) 

88.43 

(0.70) 

92.09 

(0.44) 

93.48 

(0.42) 

93.79 

(0.66) 

94.42 

(0.39) 

94.47 

(0.27) 

94.71 

(0.49) 

95.06 

(0.56) 

90.98 

(0.56) 

complete DH 
78.95 

(2.23) 

88.32 

(0.31) 
90.12 

(0.74) 
93.52 

(0.59) 

93.99 

(0.64) 

94.52 

(0.28) 

94.80 

(0.38) 

95.40 

(0.30) 

95.75 

(0.41) 

96.15 

(0.33) 

92.15 

(0.62) 

average DH 
83.11 

(2.21) 
88.41 

(1.01) 

88.56 

(0.53) 

91.58 

(0.59) 
94.21 

(0.44) 
95.36 

(0.27) 
95.59 

(0.41) 
96.06 

(0.71) 
96.36 

(0.36) 
96.36 

(0.51) 
92.56 

(0.71) 

 

V. CONCLUSION 

In this study, we have proposed an improved LVQ with distance hierarchy to deal with 

mixed-type dataset. The improved LVQ shows better performance than traditional LVQ, 

which uses 1-of-k coding for transforming categorical values. Since distance hierarchy 

considers semantics inherent in categorical values, the similarity relationship between 

categorical values can be preserved better than by 1-of-k coding. In other words, distance 

hierarchy results in less information loss than 1-of-k coding, and thus our model yields better 

outcome than traditional LVQ. 

In addition, we have utilized automatically-constructed distance hierarchy to replace the 

manually constructed method. Since constructing distance hierarchy manually is 

time-consuming and infeasible for datasets with encrypted attributes, an approach to 

automatically constructing distance hierarchy is necessary. Thus, in our work, we proposed an 

approach to automatically constructing distance hierarchies for categorical attributes. 

Experimental results prove the improved LVQ can handle the mix-type data better than 

traditional LVQ. 

In the future, we will construct and compare with the other versions of LVQ, such as 



LVQ2.1 and LVQ3. 
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摘要 

隨著資訊科技的成長，大部份的公司擁有大量的數位資料，例如：員工、客戶和交

易資料…等等。因此，從這些資料探勘出有用的模型變成一個很重要的議題。學習向量

量化(LVQ)是一個以代表點為基礎的分類技術並且可以在合理的時間內處理大量的資

料。然而，由於傳統的學習向量量化是利用歐基理德距離所以僅能處理數值型資料而無

法直接處理種類型資料，種類型資料必須進階使用 1-of-k 的方法做轉換才能處理。不過

經由 1-of-k 轉換後，種類型資料會遺失原有的語義資訊並且導致分類效率下降。本篇研

究，我們設計一個改良式的學習向量量化藉由利用可以表達種類型資料之間關係的距離

階層去處理混合型的資料。實驗的結果證明改良式的學習向量量化在分類混合型資料可

以優於傳統型的學習向量量化。 

關鍵詞：學習向量量化、距離階層、混合型資料、種類型資料、分類。 
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