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Abstract

An integrated dimensionality reduction technique with distance hierarchy which can
handle mixed-typed data, reduce dimensionality of the data, and visualize data on a 2D map is
proposed. There are two aspects of the integration. First, distance hierarchy (DH) is applied to
handle categorical values which are mapped to the DH. In contrast to 1-of-k coding, DH
considers semantics inherent in categorical values and therefore topological order in the data
can be better preserved. Second, t-SNE is employed to reduce data dimensionality which
transforms the data in a high-dimensional space to a low-dimensional space. t-SNE is better
than other counterparts in separating classes in the lower dimensional space. We use weighted
K-NN to evaluate classification performance of using DH and using 1-of-k coding in the
original data space and in the projection space. We demonstrate the superiority of using DH
against 1-of-k coding by analyzing four real-world datasets.

Keyword: classification of mixed-type data, distance hierarchy, 1-of-k coding, dimensionality
reduction, t-SNE



Apply Distance Hierarchy and Dimensionality Reduction to
Classification of Mixed-Type Data
I. INTRODUCTION
1.1 Motivation

High dimensional data such as commercial transactions, medical history and so on are
incessantly produced in varied domains. A large amount of data usually contains much hidden
knowledge. Most data consists of categorical and numeric attributes at the same time.
However, many data-mining algorithms cannot process mixed-type data. Most of the
algorithms can analyze either only numeric or categorical data.

Complex data including numerical and categorical values are referred to as mixed-type
data. For example, credit card data of customers include numerical type such as revenue, age,
and the number of parents and categorical type such as education and job. Various algorithms
of data-mining techniques cannot directly deal with categorical attributes. Therefore,
conversion methods have been proposed that transform categorical to numerical attributes.
The 1-of-k coding is a well-known conversion method. There are some drawbacks of 1-of-k
coding. First, 1-of-k transforms a categorical value to a vector of binary values in which
semantics inherent in the values is lost. Second, the data can’t retain its original topological
structure. Due to the above two points, the conversion could affect accuracy of algorithms
such as K-NN classifier, K-mean clustering, SOM, etc.

On the other hand, high dimensional data suffers the issue of curse of dimensionality.
Numerous problems occur in high dimensional data. For instance, computational cost
increases with the increased data dimensionality. In order to analyze high-dimensional data,
we need to reduce data dimensionality. Dimensionality reduction methods have been
proposed such as t-distributed stochastic neighbor embedding (t-SNE) (Hinton 2008b),
principal component analysis (PCA) (Pearson 1901), and classical multidimensional scaling
(MDS) (Borg 2005), etc.

1.2 Objective

In this study, a method of dimensionality reduction with distance hierarchy (DRDH) is
proposed, which integrates distance hierarchy (Hsu 2006) to keep semantics for categorical
values and to apply t-SNE (Hinton 2008b) for dimensionality reduction to visualize the data
on a two dimensional map. We will investigate whether classification performance by
processing categorical values with DH is better than that by 1-of-k. Furthermore, we want to
explore whether data processing that is based on DH and 1-of-k will affect data analysis in a
lower data space resulted in dimensionality reduction.

We are going to compare classification performance in the original data space and the
map (or reduced) space with respect to different treatment to categorical values. In particular,
we will use K-NN to evaluate the performance in the data space and the map space by using



the DH method and the 1-of-k coding for handling categorical values. In addition, we will
study the impact of weighting to the neighbors of the input on classification accuracy.
1.3 Organization

This study consists of five sections. In Section 2, we review conversion methods of
categorical values, dimensionality reduction methods, and weighted K-nearest neighbor
classifier. In Section 3, we present DRDH which has three important components include data
preprocessing, dimensionality reduction as well as K-NN classifier. In Section 4, we describe
the experimental setup and the results of four real-world mixed-type datasets. In Section 5, the
experimental results are described.

Il. LITERATURE REVIEW

2.1 1-of-k coding

The 1-of-k coding is a method for converting categorical type to numerical type which
transforms a categorical value to a vector of binary values. 1-of-k coding transforms a
nominal attribute to k unique values that is a set of k binary attributes and one of the binary
attributes relates to one of the nominal values. For instance, the drink type is a nominal
attribute in a drink dataset and its nominal values include black tea, oolong tea, black coffee
and latte. Converting the drink type attribute of nominal values to four attributes each of
which data type is binary (as shown in Table 1).

Some disadvantages of 1-of-k coding that lead to reduced accuracy of the algorithms
(Lin 2009). First, 1-of-k transforms a categorical value to a vector of binary values in which
semantics inherent in the values is lost. Second, data can’t reflect its original data structure on
the projection map. Therefore, we adopt distance hierarchy to solve the drawbacks of 1-of-k
coding.

Table 1. 1-of-k coding coverts nominal attribute to k binary attributes.

Drink type Price Amount Id Black Tea | Oolong Tea Black Coffee Latte Price Amount
Black Tea 20 5 1 1 0 0 0 20 5
Oolong tea 25
Black coffee 45
latte 55
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Figure 1. The distance hierarchies for category, ordinal and numeric type. (a) categorical
hierarchy (b) ordinal hierarchy (c) numeric hierarchy
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2.2 DH

Distance hierarchy is a data structure for representing mixed-type data and it can keep
semantics inherent mixed-type data point (Hsu 2006). It is a hierarchical tree structure that
includes nodes, links, and weights. In the distance hierarchy, each node on behalf of a concept
which higher-level nodes represent general concept and lower-level nodes represent
specialized concept likes coffee in the higher-level and latte in the lower-level. Each link
represents the semantic relationship and is associated with a weight representing the distance
between the two nodes. The distance between two mixed-type data points in distance
hierarchy is defined by the total link weight between two mixed-type data points. There are
two ways of assigning the link weight. First, link weight is assigned by objective calculation
(Das et al. 1997; Palmer et al. 2003). Second, link weight is manually assigned based on
expert's domain knowledge.



A point in distance hierarchy is presented by an anchor and a positive offset, denoted as
X = (N, dy), representing a leaf node and the distance from the root to X, respectively. X is
an ancestor of Y if X is in the path from Y to the root in the hierarchy. X and Y are at the same
position where both points are equivalent, denoted as X = ¥. The lowest common ancestor

LCA(X,Y) of two points represents the most specialized common ancestor node of X and Y.

For example, in Figure 1a, LCA of X and Y is Coffee. LCA of Y; and Y, is Any. The common
point LCP(P,Q) of two points is defined by

Por@,if P=@Q
P,if P is an ancestor of Q
Q.if @ is an ancestor of P~

LCA(P,Q), otherwise

LCP(P,Q) = (1)

In Figure la., LCP(X,Y,) = Coffee, LCP(Y,,¥,) = Any and LCP(Y,,¥,) = ¥;. On the
other hand, the distance between two points in the hierarchy is calculated by the total weight
between the two points define as

|P—Ql = dp"'d@ — 2dycp(p,g) (2)
where d,d,and LCP(P,Q) represent distance of point P, Q and LCP(P,Q) from location to
the root.

For instance in Figure 1a, Assume X=(Black coffee, 1.8), Yi=(Latte, 1.7), Y,=(Black Tea,
1.7), and Y3=(Latte, 1.2). LCA of X and Y} is Coffee and LCP equals LCA. LCA of X and Y,
iIs Any and LCP equals Any. LCA of Y; and Y3is Coffee and LCP equals Ys. The distance
between X and Y; is |(Black coffee, 1.8) — (Latte, 1.7)| = 1.8+ 1.7 — 2 %X 1.0=15, the
distance between X and Y,
is |(Black coffee, 1.8) — (Black Tea,1.7)| = 1.8+ 1.7 —2 x 0= 3.5, Y; and the distance

between Y3 is I(Hlack Tea 1.7) — (Latte, 1.2]| =17+12-2x12=0.5

Every attribute of the dataset can be mapped to a distance hierarchy which can be
categorical type, ordinal type or numeric type. A categorical value is mapped to a point at the
leaf node labeled by the same value, and numerical value is mapped to a point on a link of its
numerical hierarchy. Moreover, ordinal value is converted to a numeric value and processed
as a numeric value. The ordinal attribute is associated with numerical type distance hierarchy
and distributed in the same interval to the right edge.

2.3 Dimensionality reduction method

Dimensionality reduction methods transform the data in the high-dimensional space to
low-dimensional space. Many dimensionality reduction methods have been proposed such as
t-Distributed stochastic neighbor embedding (t-SNE) (Hinton 2008b), principal component
analysis (PCA) (Pearson 1901), classical multidimensional scaling (MDS)(Borg 2005), etc.

The data set in the high-dimensional space is defined as X = {x,,x,,%5, ...,x,} and

low-dimensional space is defined as ¥ = {v,,v,.¥5, ..., ¥,}. The high-dimensional space
transforms to low-dimensional space (Bunte et al. 2011) is defined by

fX-=VY. (3)

A general principle of dimensionality reduction includes three components which are

characteristics of the data, characteristics of projection and error measure (Bunte et al. 2011).
First, the distance or similarity between data points in the original data space is represented as

d:.'-t‘l:l-' = fdx (xi’xj']' (4)
The situation shows function fa, can be Euclidean distance for MDS, or joint probability for



t-SNE. Second, the distance or similarity on low-dimensional space is defined as
dy,. = fa, 03, 5)
The situation presents where function fa, can be Euclidean distance for MDS, or joint

probability for t-SNE. Finally, the error of projection in low- dimensional space is called cost
function which is defined as

€ = fe(d,.d,). (6)
The function f. can be minimized by weighted least squared error for MDS, and
Kullback-Leibler divergences for t-SNE, etc.

2.4 t-distributed stochastic neighbor embedding

The performance of various dimensionality reduction methods on artificial datasets is
better than real datasets (Hinton 2008b). Moreover, several methods can’t retain the local and
the global structure of the data in low-dimensional space. t-distributed stochastic neighbor
embedding has been proposed. The performance of t-SNE is better than that of other
dimensionality reduction methods.

t-SNE is based on transforming the original data space distance between data points into
conditional probabilities which represent similarities. Reference (Hinton 2008b) indicates
t-SNE including four main components. The conditional probability of data points in
high-dimensionality space is defined by
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The conditional probability of data points in low-dimensionality space is defined by
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The goal is to minimize the Kullback-beibler divergence between joint probability distribution
of high-dimensionality space P and low-dimensionality space @. The cost function is

Pij
C=KL(PIIQ) =X, X;plog L . (9)
where
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It uses gradient descent to minimize the cost function. The gradient of the Kullback-beibler
divergence is defined as
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2.5 K-nearest neighbor

K-nearest neighbor algorithm (Cover et al. 1967) is one of the most popular and simplest
methods for classification. It’s a type of supervised learning that has been employed in
various domains such as data mining, image recognition, patterns recognition, etc. To classify
an unknown record data point, the algorithm uses class labels of nearest neighbors to
determine the class label of unknown record (i.e., in Figure 2a.). However, it’s sensitive to
noise points if k is too small, and the neighborhood may include points from other classes if k



is too large (i.e., in Figure 2b.). On the other hand, the mechanism of weighting can be applied
to K-nearest neighbor (Dudani 1976). It can be useful to weight the neighbors by their
distance with the testing instance. The nearer neighbors are weighted more to increase their
importance than the more distant neighbors.

Unknown record

(a) (b)

Figure 2. K-NN classify class for unknown data points.
m. METHODOLOGY

To improve topological order of mixed-type data including categorical, ordinal and
numeric type, we propose to exploit distance hierarchy to measure the distance in the various
types of value pairs. To reduce dimensionality, t-distribution stochastic neighbor embedding is
employed. We integrate distance hierarchy scheme with t-SNE. The model improves the
existing models by retaining semantics inherent in categorical values, solving complex
calculation and curse of dimensionality.

3.1 Construct Distance Hierarchies

In data preprocessing phase, the mixed-type data can be preprocessed by using distance
hierarchy. We use distance hierarchy algorithm to construct relationship with mixed-type data
points. The different attribute types are presented with different types of distance hierarchy.
There are two ways for constructing distance hierarchies: manual and automated approaches.
In some domain, there are existing hierarchies ready for use such as the hierarchy of the
International Classification for Diseases (ICD) in medicine, the hierarchy of ACM’s
Computing Classification System (CCS) in computer science, and product classification
systems in retail sales.

However, some applications don’t have existing hierarchies or the values of categorical
attributes are encrypted due to privacy. In this situation, we can manually construct the
hierarchies by using domain knowledge or apply the idea in (Das et al. 1997; Palmer et al.
2003) to automatically construct the hierarchies from the dataset.

The automated method of constructing hierarchies includes two components. In the first
component, an approach to quantifying the dissimilarity between two categorical values is to
measure the relationship between the values and an external probe. If two categorical values
have about the same extent of co-occurrence with the external probe, the values are regarded
as similar (Palmer et al. 2003). Therefore, the dissimilarity between two categorical values, A
and B, in a feature attribute with regard to the set of labels in class attribute P is defined by
(Hsu et al. 2012).

d(A,B) = X,p lconf(A = D) — conf(B = D)|, (11)
where conf(A = D) represents the frequency of co-occurrence of Aand D.
In the second component, the distance matrix of all pair of categorical values in a



categorical attribute is calculated, which is denoted as D... where € is the number of
categorical values. The dengrogram is constructed by applying a hierarchical clustering
algorithm on the matrix. The clustering can be performed with single link, average link or
complete link.

Algorithm 1 constructs distance hierarchy k., from different attribute A.. If construction
type of hierarchy is manual, distance hierarchies are constructed by using manual manner
based on domain knowledge. Otherwise, distance hierarchies are constructed by using
automated manner. There are two phases in the automated construction hierarchy. First, the
similarity d(a;; a; ) between two categorical values in the feature attribute is calculated and
distance matrix D, is created. Second, the hierarchical clustering algorithms apply to

construct distance hierarchies h; based on distance matrix D, 0f each attribute.

Algorithm 1: Construct Distance Hierarchies

-
=]

Input: A my; . dimension of mixed-type dataset X = [¥u,%z0 e X,

a type of hierarchical clustering algorithm HC

Output: Aset of distance hierarchy H = [fiy iz, . ﬁ__.‘.d;;

Stepl. Chose distance hierarchies construction type
if construction type is manual then
Step2.1. Construct manually
Construct distance hierarchies manually based on domain knowledge
else
Step2.2. Construct automatically

fori=1to my; .
Step2.2.1 Calculate similarity between two categorical values in the feature attribute

if A; is category

for each different attribme vales a; e 4; € X

A8y 3y 1= Epap ju |200f (35 =2 D} — conf(ay, = I|
end for
Step2.2.1.1 Apply hierarchical clustering algorithm to construct distance hierarchies
switch HC

case single link:

i; = single_link(D.,.-,)
case average link:

ii; = average_link(D'z, .z,
case complete link:

ii; = complete_link(Diz,..)

end switch
Step2.2.2 Construe numeric distance hierarchy

else if 4; is numeric then
h; = numeric_hiemrchy (A
Step2.2.3 Construe ordinal distance hierarchy
else if A; is ordinal then
h; = ordinal hismrchy(4;)

end if
end for
end if

3.2 Dimensionality reduction with distance hierarchy

Several problems exist with analyzing high dimensional data. For instance,
computational cost increases with the increased dimensionality. Despite of the proposed



dimensionality reduction methods, the performance of these methods on artificial datasets is
better than real-world datasets. In section 2, we discussed t-SNE presented in (Hinton 2008b).
The performance of t-SNE is better than that of other dimensionality reduction methods.
However, the original t-SNE was studied under numeric, instead of mixed-type, data. In this
work, we integrate t-distribution stochastic neighbor with distance hierarchy for mixed-type
data.

The dimensionality reduction with distance hierarchy (DRDH) consists of three
components in Algorithm 2 which includes mapping original data points to distance
hierarchies, computing similarity between data points on distance hierarchies, and projecting
data to the lower data space.

In the mapping phase, we use different types of distance hierarchy to map different types
of attributes. Distance hierarchies can be divided into three types including categorical,
ordinal, and numeric one. First, a categorical value is mapped to a point at the leaf node
labeled by the same value. Second, a numerical value is mapped to a point on the link of its
numerical hierarchy. Finally, an ordinal value needs to be converted to a numeric value and
then handled by the same way as the numeric one.

In the phase of similarity computation, a distance matrix of pair-wised data points is
constructed by summing the weights between two points in individual DHs. The total weight
between two points is defined by Eq. (1) and (2).

In the projection phase, the data is projected onto a lower dimensional space by using
t-SNE. The t-SNE algorithm consists of four steps which include similarity calculation
between data points in the original data space, similarity calculation between data points in
the map space, cost calculation between the data and the map space, and minimization of the
cost function by using gradient descent.

Algorithm 2: dimensionality reduction with Distance hierarchy

Input: A my;_. dimension of mixed-type dataset X = [¥1.%. . X1,
aset of distance hierarchy H = [fiz.fig e i, 30
number of low-dimensionality ).,
t-SNE cost function parameters perplsxity
Output: A 1y, dimensional of low-dimensionality space T = [¥y; ¥g: e :¥n],
a distance matrix of original data space Di;yn = [Gy1: Sage v G}
Step 1. Map attribute values @; on distance hierarchies f;.

foreach x X

map attribute value s; = x on distance hierarchy i; € H
end for

Step2. Calculate distance &;; between data points on original data by distance hierarchy
foreach x X

d;;=Calculate distance by DH(x;, x;1 (using Equation 1 and 2)

end for




Step3. Reduce ;. dimension of high-dimensionality space X to 1, dimension of low-dimensionality space ¥

T = t-ENE(D, e My Barplaxiry) (using t-SNE dimensionality reduction method)

3.3 Classification by Using K-NN for Distance Hierarchy Dimensionality Reduction

To evaluate classification performance of DRDH, we use K-nearest neighbor algorithm.
K-NN is one of the most popular and simplest methods for classification. It is said that
weighting the neighbors by their distance to the testing instance is beneficial. The nearer
neighbors are weighted more to increase their importance than the more distant neighbors.
Therefore, we investigate the performance of K-NN with different weighting mechanisms to
classify unknown records which are created by DRDH.

There are three phases for weighted K-NN using on data space and map space which
include decomposition data into training data and testing data, weighting for distance between
two data points, and prediction class label for unknown record. The process of classification is
presented in Algorithm 3.

In the first phase, we decompose the dataset into training data and testing data. The
training data of data space is denoted as D and map space is denoted as ¥, ..... The
testing data of data space is denoted as D,__.;,, and map space is denoted as ¥, In the
weighting phase, the distance of pairwise data point dxl-.- and d}'[." can be compressed or

tasting

gsting *

enlarged through transformation function f. There are two weighting processes with different
transformation functions which are defined in Table 2. In the prediction phase, determining
class labels for testing data in map space by k nearer neighbors is defined by

}T:Ebﬂzre.sr[ng - argmf'xz':}'rru[n[ng_[#)'te.sr[ng_[:'ED}- W}'[_— X I(EJ - Ff”ffngsfj' (12)
Determining class labels for testing data in data space by k nearer neighbors is defined by
x:ﬂbﬂ:re.sr[ng - CIT"Q'T?‘IE,I Z':xrra[n[ng_[-'xre.sr[ng_[:'EDx Wx[_." X f(i'.:l = xf”ff”ﬂafj' (13)

The is a training example from k-nearest neighbors

(}Ttraining,il Ftasting,i )

D,, (x ) is a training example from k-nearest neighbors D, w,. is

X i

training, i’ " testing.i

weighting to distance between testing data point and training data point, and I is an indicator
function returning 1 if the condition is evaluated true and O otherwise.

Algorithm 3: K-NN Classifier for Generalized Distance Hierarchy Dimensionality Reduction




Input: A my,, dimensional of low-dimensionality space T = [y ¥g: we : ¥nl,

a distance matrix of original data space D,
neighbors parameter k.
Output: the predicated class labels for testing data in data space Dﬂ_ﬂh__:” and map space‘L'ﬂw._u:”

Step 1. Divide into training and testing data for data and map space

Divide training data T, oinin g Diraining and testing data Yoo oeen oo Decgeing
Step 2. Weight distance for each nearer neighbor
if space is data space then
Wi = 1 fde,)
else
Wy = 1/ gy,
end if
Step 3. Determine class labels for testing data by k nearer neighbors
if data is map space then
Flabolyp, — SFFTOLT Z Wi ¥ I(F = Fecaringid
T {remateg Avereag JEDg
else
Tty = GNFMOX Z Wi %IV = Tyoguing ]
) {Tormatayg tTmariag s FRDS
end if
Table 2. Weighting of the distance used in K-NN.
K-NN type Method Weighting Function Transformation function f
Log(d; +1) =log (d; + 1)
1 Powid;,,2) = (d;)"2
m, if weight =—Exp (A5 2) ()
Weighted-KNN Tf wy =5 '“'1 Expidy; ) = edy)
————— .otherwise
fldg) +1 Sqrt(d.) = (d;;)"0.5
Orgld;) =d;
Original-KNN w1 w; =1 f(dy;)=dy;

IV. EXPERIMENTS

To evaluate DRDH, we present experiments in which DRDH is compared to
dimensionality reduction with 1-of-k coding, referred to as DR1K hereafter, on map space.
Classification accuracy by K-NN with distance hierarchy and 1-of-k coding on data space is
also compared. Furthermore, the effect of distance weighting on K-NN is investigated as well.
4.1. Experimental data

We used four real-world datasets from the UCI machine learning repository (Merz et al.
1996). The Adult dataset has 48,842 data points of 15 attributes including 8 categorical and 6
numeric and one class attribute indicating salary =50K or =50K. The distribution is about
76% of =50K and 24% of =50K. We selected 7 attributes according to (Hsu 2006) which
includes three categorical (Marital-status, Relationship and Education) and four numeric
attributes (Capital-gain, Capital-loss, Age and Hours-per-week).

The Nursery dataset has 12,960 data points of 8 categorical and one class attribute
indicating not_recom, recommend, very_recom, priority, and spec_prior. The distribution is
about 33% of not_recom, 0.015% of recommend, 2.531% of very_recom, 32.917% of priority,



and 31.204% of spec_prior.

The Car evaluation dataset has 1728 data points of 6 categorical and one class attribute
indicating unacc, acc, good, and v-good. The distribution is about 77.023% of unacc, 22.222
% of acc, 3.993 % of good, or 3.762 % of v-good.

The Australian credit approval dataset has 690 data points of 14 attributes including 8
categorical, 6 numerical and one class attribute indicating 1(+) and O(-). The distribution is
about 44.5% of 1 and 55.5% of 0. We selected 11 attributes according to a chi-square test
which includes five categorical (A4, A5, A6, A8 and A9) and six numeric attributes (A2, A3,
A7,A10, Al3 and Al4).

4.2. Experimental setup

We start by using distance hierarchy or 1-of-k to convert categorical values to numeric
values in the data preprocessing stage. The distance hierarchies were automatically
constructed by using a hierarchical clustering algorithm with average link, complete link and
single link.

Due to high computation complexity of t-SNE, random sampling was used to choose
6000 data points for the two large datasets Adult and Nursery. For the other two small datasets
Car evaluation and Australian credit approval, all of the instances were used.

Parameters of t-SNE (Hinton 2008a) were set according to the suggestion in the
reference (Hinton 2008a). However, we need to modify the parameter Perplexity in some
situation, for instance, pairwise data points of dataset are high degree of similarity which will
cause the cost function closer to zero in the initial stage for t-SNE.

For evaluation, the holdout method 80%-20% was applied to the large datasets and
10-fold cross-validation was applied to the small datasets. The results of dimensionality
reduction were further used to classify the testing by the K-NN method. Classification by
K-NN on the original data space with distance hierarchy and 1-of-k is also conducted. The
detail of experimental parameter setting is shown in Table 3.

Table 3. The parameter setting of experiments for four real world datasets.

Parameter Adult Nursery Car evaluation Australian credit
Setting dataset dataset dataset approval dataset

Data 1-of-k method
preprocessing DH with average link, complete link and single link

Perplexity of
t-SNE

lofk sets Perp=230
Single sets Perp=50
Average sets Perp=50
Complete sets Perp=50

lofk sets Perp=100
Single sets Perp=30
Average sets Perp=30
Complete sets Perp=30

lofk sets Perp=30
Single sets Perp=30
Average sets Perp=30
Complete sets Perp=30

1ofk sets Perp=30
Single sets Perp=30
Average sets Perp=30
Complete sets Perp=30

The weighted K-NN and the original K-NN are applied to evaluate performance on the data space and map space.
K-NN Moreover, weighted K-NN transform distance with different weight functions to weight distance between pair of data
point. The transformation functions of weighting distance are shown in Table 2.

K value K value sets 1 to 31.

Evaluation Holdout

| Holdout | 10-fold Cross-validation | 10-fold Cross-validation

4.3. Analysis of experimental results

To analyze the four experimental results by different point of views, we collect the
accuracy of experiments in which the experimental results is analyzed by the best accuracy
and the average accuracy. The best accuracy is defined by equation (14). The average




accuracy is defined by equation (15). The k value of best accuracy is analyzed in which is
defined by equation (16).

Accuracy, .. = mfx(accura:cyk:l, ey ACCUTACY =51 ) (14)
31
1
Accuracy,,, = 31/, Gecuracyy . (15)
k=1
K, ..=arg mfx[accuracykzl, woey QCCUTACY =31 ) - (16)

4.3.1 The accuracy of 1-nearest neighbor

Via accuracy of 1-nearest neighbor classification, we like to prove that structure of the
data is better reflected by measuring distance between data with distance hierarchy rather than
with 1-of-k coding.

According to Table 4, in the projection space DRDH vyields better results than DR1K and
in the data space DH outperforms 1-of-k as well. In Car Evaluation, the accuracy of DH is
significantly better than that of 1-of-k coding either on the map space or on the data space. In
addition, all results on the data space are better than those on the projection space. The dataset
lost some data structure by applying dimensionality reduction. The extent of loss by DR1K is
worse than by DRDH.

4.3.2 The k value of best accuracy

Table 5 shows the k value which results in the best accuracy. Except for Australian Credit
Approval, most datasets have a small k when distance hierarchy was used. Moreover, with
1-of-k more nearest neighbors are required to obtain the best result.

4.3.3 Comparison accuracy of different space

The best accuracy in different spaces is compared in the Figure 3. The accuracy with
differently weighted K-NNs was indicated by Exp, Log, Org, Pow, or Sqgrt. The accuracy with
a K-NN without weighting was indicated by Non. The results show most of accuracy on the
data space is better than on the map space. The high dimensional space converted to a low
dimension space will lose information. We found that DRDH vyields better results than DR1k
on the map space.

On the other hand, the average accuracy is compared in Figure 4. The average accuracy
is overall evaluation accuracy for weighted K-NN and original K-NN on the different space.
For the original K-NN, the results of the average accuracy and the best accuracy are
consistency which most results show data space yields better results than map space. The
comparison average accuracy of weighted K-NN is different form comparison best accuracy.
The weighted K-NN is beneficial to improve accuracy in the projection space more than in the
data space. We found that the results of average accuracy were improved with weighted
K-NN in the projection space. For instance, the Figure 4 obviously shows that the average



accuracy is improved with weighted K-NN for the Adult dataset and the Nursery dataset in
the projection.

4.3.4 Comparison accuracy of 1ofk and DH

In the Figure 3 and the Figure 4 prove consistently result which DH better than 1-of-k
coding on the data space and on the map space. Most experimental results indicate DHRD
with complete or average link outperforms DHRD with single link.

4.3.5 Comparison accuracy of transformation function with K-NN

Figure 3 did not show significant differences in performance by the different
transformation functions. Because all of the transformation functions got the same best
accuracy in the both space. However, in Figure 4 regarding average performance, most
experimental results indicate the expansive weighting schemes which expands the original
distance are better than the compressive methods. The accuracy ranking of the schemes are

Exp > Pow > Org > Sqgrt > Log.

Table 4. The accuracy of 1-nearest neighbor for the four datasets.

Dataset Space lofk Average Complete Single
Car Data 0.7920 (0.1241) 0.9033 (0.0764) 0.9033 (0.0764) 0.9033 (0.0764)
Evaluation Map 0.7673 (0.0475) 0.8912 (0.0767) 0.8958 (0.0780 0.8755 (0.0851)
Australian Data 0.7913(0.0472) 0.8130(0.0320) 0.8014(0.0459) 0.8145(0.0371)
Map 0.7652(0.0429) 0.8043(0.0490) 0.7942(0.0604) 0.7942(0.0409)

Adult Data 0.8592 0.8667 0.8675 0.8617

Map 0.8400 0.8583 0.8533 0.8467

Nursery Data 0.9458 0.9675 0.9675 0.9558

Map 0.8642 0.9625 0.9608 0.9558

Table 5. The k value of best accuracy for (a) Car Evaluation dataset (b) Australian dataset (c)
Adult dataset (d) Nursery dataset.

Coding Space Exp Log Org Pow Sqrt Non Coding Space Exp Log Org Pow Sqrt Non
Data 5 5 5 5 5 5 Data 25 25 25 25 25 23
Lofk Map 31 31 31 29 31 11 Lofk Map 5 5 5 5 5 9
Data 3 3 3 3 3 1 Data 19 19 19 19 19 19
Average Average
J Map 1 3 1 1 3 1 J Map 21 11 15 17 13 13
Complete Data 1 3 3 3 3 1 Complete Data 17 17 17 17 17 17
P Map 1 1 1 1 1 1 P Map 17 13 17 15 13 17
. Data 3 3 3 3 3 1 . Data 21 17 21 21 25 25
Single Map 3 3 3 3 3 1 Single Map 15 19 19 19 19 21
(a) (b)
Coding Space Exp Log Org Pow Sqrt Non Coding Space Exp Log Org Pow Sqrt Non
Data 1 1 1 1 1 1 Data 15 11 11 15 11 11
Lofk Map 1 1 1 1 1 1 Lofk Map 13 1 3 1 3 1
Data 1 1 1 1 1 1 Data 1 1 1 1 1 1
Average Average
J Map 1 1 1 1 1 1 9 Map 1 1 1 1 1 1
Complete Data 1 1 1 1 1 1 Complete Data 1 1 1 1 1 1
P Map 1 1 1 1 1 1 P Map 1 1 1 1 1 1
. Data 1 1 1 1 1 1 . Data 1 1 1 1 1 1
Single Map 1 1 1 1 1 1 Single Map 1 1 1 1 1 1
(© (d)
080 P 30
i m ! m
080 - % =
075 = g =
(i) - 77 C
0.65
Data Map Data Map Data Map Data Map Data Map Data Map Data Map Data Map
Lofk Average Complete Single Lofk Average Complete Single
Exp |0.7954 0.8209 0.9108 0.8912 09108 0.8958 0.9103 0.8859 Exp |0.82609 0.8174 0.8725 0.8762 0.8754 0.8754 0.8667 0.8652
Log [0.7954 0.5284 09108 0.82928 09108 0.8953 09103 0.877% Log |0.8530 0.8174 08725 0.8710 0.875%4 08763 08638 0.8725
Org |0.7954 0.8278 0.9] 08912 0.9108 0.8958 09103 0.8824 Org |0.8609 0.8145 0.8725 0.8739 0.8754 08763 0.8652 0.872%
Pow | 0.7954 0.8272 0.9] 08912 0.9108 0.8958 09103 0.8773 Pow | 0.8638 0.8130 0.8725 0.8783 0.8754 0.8754 0.8652 0.8725
Sqrt | 0.7954 0.8284 0.9108 0.8928 091082 08953 09103 0.8778 Sqrt | 0.8565 0.8174 0.8725 0.8725 0.8754 08763 0.8652 0.872%
Mon [0.7954 05234 09033 08912 0.9033 0.8958 0.90 0.875% Mon | 0.8551 0.8116 0.8725 0.82667 0.87%4 0.8783 08652 0.8725
WE:p Wlog WOrg MWPow mSqrt Maon WE:p Wlog WOrg MWPow mSqrt Man
(a) (b}




087 087

05 05

035 035

031 031

0383 0383

oii -m oii -m
02l 02l

050 050

Data Map Data Map Data Map Data Map Data Map Data Map Data Map Data Map
Lofk Average Complete Single Lofk Average Complete Single
Exp |0.8592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.8487 Exp |0.8592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.8487
Log [0.8592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.84&7 Log [0.8592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.84&7
Org |0.8592 0.82400 0.82667 0.8583 0.8675 0.8533 0.8617 0.8467 Org |0.8592 0.82400 0.82667 0.8583 0.8675 0.8533 0.8617 0.8467
Pow | 0.8592 0.8400 0.8667 0.8583 0.8675 0.8550 0.8617 0.8487 Pow | 0.8592 0.8400 0.8667 0.8583 0.8675 0.8550 0.8617 0.8487
Sqrt | 0.8592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.8467 Sqrt | 0.8592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.8467
Mon | 08592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.84&7 Mon | 08592 0.8400 0.8667 0.8583 0.8675 0.8533 0.8617 0.84&7
EMExp Wlog mOrg WMPow mMSqrt m Non EMExp Wlog mOrg WMPow mMSqrt m Non
(c) (d)

Figure 3. The best accuracy of different space with different type K-NN. (a) Car Evaluation
dataset (b) Australian dataset (c) Adult dataset (d) Nursery dataset
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Figure 4. The average accuracy of different space with different type K-NN. (a) Car
Evaluation dataset (b) Australian dataset (c) Adult dataset (d) Nursery dataset

V. CONCLUSION

We proposed a method of dimensionality reduction with distance hierarchy (DRDH)
which can handle mixed-typed data and reduce data dimensionality. DRDH benefits from two
important properties: DH considers semantics inherent in categorical values and therefore
topological order in the data can be preserved better. The classes in the lower dimensional
space can be better separated.

The experimental results prove that the structure of the data is more properly reflected by
measuring distance between data with distance hierarchy rather than with 1-of-k coding. The
DRDH yields superior classification results than DR1K on the map space. The data space also
gives consistent outcome that DH outperforms 1-of-k coding. Moreover, the weighted K-NN
is beneficial in improving accuracy in the projection space more than in the data space. The




average accuracy is significantly improved with expansive distance weighting schemes on
K-NN in the projection space.
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