Queueing Theory

Frank Y. S. Lin

Information Management Dept. National Taiwan University yslin@im.ntu.edu.tw

References

Leonard Kleinrock, "Queueing Systems
 Volume I: Theory", New York: Wiley, 1975-1976.

 D. Gross and C. M. Harris, "Fundamentals of Queueing Theory", New York: Wiley, 1998.

Agenda

- Introduction
- Stochastic Process
- General Concepts
- *M*/*M*/1 Model
- *M*/*M*/1/*K* Model
- Discouraged Arrivals
- $M/M/\infty$ and M/M/m Models
- *M/M/m/m* Model

Introduction

Queueing System

A queueing system can be described as customers *arriving* for service, *waiting* for service if it is not immediate, and if having waited for *service*, leaving the system after being served.

Why Queueing Theory

- Performance Measurement
 - Average waiting time of customer / distribution of waiting time.
 - Average number of customers in the system / distribution of queue length / current work backlog.
 - Measurement of the idle time of server / length of an idle period.
 - Measurement of the busy time of server / length of a busy period.
 - System utilization.

Why Queueing Theory (cont'd)

Delay Analysis
 Network Delay =

Queueing Delay

+ Propagation Delay (depends on the distance)

+ Node Delay | Processing Delay

(independent of packet length, e.g. header CRC check) Adapter Delay (constant)

Characteristics of Queueing Process

- Arrival Pattern of Customers
 - Probability distribution
 - Patient / impatient (balked) arrival
 - Stationary / nonstationary
- Service Patterns
 - Probability distribution
 - State dependent / independent service
 - Stationary / nonstationary

Characteristics of Queueing Process (cont'd)

- Queueing Disciplines
 - First come, first served (FCFS)
 - Last come, first served (LCFS)
 - Random selection for service (RSS)
 - Priority queue
 - Preemptive / nonpreemptive
- System Capacity
 - Finite / infinite waiting room.

Characteristics of Queueing Process (cont'd)

- Number of Service Channels
 - Single channel / multiple channels
 - Single queue / multiple queues
- Stages of Service
 - Single stage (e.g. hair-styling salon)
 - Multiple stages (e.g. manufacturing process)
 - Process recycling or feedback

Notation

• A queueing process is described by A/B/X/Y/Z

Characteristic	Symbol	Explanation
Interarrival-time distribution (A) Service-time distribution (B)	M D	Exponential Deterministic
	E_k H_k PH	Erlang type k ($k = 1, 2,$) Mixture of k exponentials Phase type
	G	General
Number of parallel servers (X)	1, 2, , ∞	
Restriction on system capacity (Y)	1, 2, , ∞	
Queue discipline (Z)	FCFS LCFS RSS PR GD	First come, first served Last come, first served Random selection for service Priority General discipline

Notation (cont'd)

- For example, *M*/*D*/2/∞/FCFS indicates a queueing process with exponential inter-arrival time, deterministic service times, two parallel servers, infinite capacity, and first-come, first-served queueing discipline.
- *Y* and *Z* can be omitted if $Y = \infty$ and Z = FCFS.

Stochastic Process

Stochastic Process

- Stochastic process: any collection of random variables X(t), $t \in T$, on a common probability space where *t* is a subset of time.
 - Continuous / discrete time stochastic process
 - Example: X(t) denotes the temperature in the class on $t = 7:00, 8:00, 9:00, 10:00, \dots$ (discrete time)
- We can regard a stochastic process as a family of random variables which are "indexed" by time.
- For a random process X(t), the PDF is denoted by $F_X(x;t) = P[X(t) \le x]$

Some Classifications of Stochastic Process

- Stationary Processes: independent of time $F_X(x; t + \tau) = F_X(x; t)$
- Independent Processes: independent variables

$$F_X(x; t) = F_{X_1}, \dots, X_n(x_1, \dots, x_n; t_1, \dots, t_n)$$

= $F_{X_1}(x_1; t_1) \dots F_{X_n}(x_n; t_n)$

Markov Processes: the probability of the next state depends only upon the current state and not upon any previous states.

$$P[X(t_{n+1}) = x_{n+1} | X(t_n) = x_n, ..., X(t_1) = x_1]$$

= $P[X(t_{n+1}) = x_{n+1} | X(t_n) = x_n]$

Some Classifications of Stochastic Process (cont'd)

- Birth-death Processes: state transitions take place between neighboring states only.
- Random Walks: the next position the process occupies is equal to the previous position plus a random variable whose value is drawn independently from an arbitrary distribution.

General Concepts

Continuous-time Memoryless Property

If $X \sim \text{Exp}(\lambda)$, for any a, b > 0, P[X > a + b / X > a] = P[X > b]

Proof:

$$P[X > a + b \mid X > a]$$

$$= \frac{P[(X > a + b) \cap (X > a)]}{P(X > a)} \quad (X > a + b) \subset (X > a)$$

$$= \frac{P(X > a + b)}{P(X > a)} = \frac{1 - F_x(a + b)}{1 - F_x(a)} = \frac{e^{-\lambda(a + b)}}{e^{-\lambda a}} = e^{-\lambda b} = P(X > b)$$

Global Balance Equation

Define P_i = P[system is in state i]
 P_{ij} = P[get into state j right after leaving state i]

$$P_{j} \cdot \sum_{\substack{i=0 \ (i \neq j)}}^{\infty} P_{ij} = \sum_{\substack{i=0 \ (i \neq j)}}^{\infty} P_{i} \cdot P_{ij}$$
rate out of state j = rate into state j

General Balance Equation

• Define S = a subset of the state space

rate in = rate out

General Equilibrium Solution

• Notation:

P_k = the probability that the system contains *k* customers (in state *k*)

$$\sum_{k=0}^{\infty} P_k = 1$$

- λ_k = the arrival rate of customers when the system is in state *k*.
- μ_k = the service rate when the system is in state *k*.

General Equilibrium Solution (cont'd)

General Equilibrium Solution (cont'd)

$$\sum_{k=0}^{\infty} P_{k} = 1$$

$$\Rightarrow \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}} \cdot P_{0} = 1$$

$$\therefore P_{0} = \frac{1}{1 + \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}}} \qquad \lambda = \sum_{k=0}^{\infty} P_{k} \lambda_{k}, \quad T = \frac{\overline{N}}{\lambda}$$
waiting time $w = T - \frac{1}{\mu}$

 ∞

Little's Result

- \overline{N} = average number of customers in the system
- T = system time (service time + queueing time)
- $\lambda = arrival rate$
- $\Rightarrow \overline{N} = \lambda T$

Queueing time

System time T

Single Server, Single Queue (The Classical Queueing System)

M/M/1 Queue

Single server, single queue, infinite population:

$$\begin{cases} \lambda_k = \lambda \\ \mu_k = \mu \end{cases}$$

Interarrival time distribution:

$$p_{\lambda}(t) = \lambda e^{-\lambda t}$$

Service time distribution

$$p_{\mu}(t < t_0) = \int_0^{t_0} \mu e^{-\mu t} dt = 1 - e^{-\mu t_0}$$

• Stability condition $\lambda < \mu$

M/M/1 Queue (cont'd)

- System utilization
 - $\rho = \frac{\lambda}{\mu} = P[\text{system is busy}], \quad 1 \rho = P[\text{system is idel}]$
- Define state S_n = n customers in the system
 (n-1 in the queue and 1 in service)
 S₀ = empty system

$$M/M/1$$
 Queue (cont'd)

• Define $p_n = P[n \text{ customers in the system}]$ $\lambda \times p_n = \mu \times p_{n+1} \text{ (rate in = rate out)}$ $p_{n+1} = \frac{\lambda}{\mu} \times p_n = \rho \times p_n$

 $\rightarrow p_{n+1} = \rho^{n+1} \times p_0$

Since
$$\sum_{i=0}^{\infty} p_i = 1 \Rightarrow \sum_{i=0}^{\infty} p_0 \rho^n = 1 \Rightarrow p_0 \sum_{i=0}^{\infty} \rho^n = 1$$

 $\Rightarrow p_0 = 1 - \rho, \quad p_n = \rho^n \times (1 - \rho)$
#

• $P[\ge k \text{ customers in the system}]$ = $\sum_{i=k}^{\infty} (1-\rho)\rho^i = (1-\rho)\frac{\rho^k}{1-\rho} = \rho^k$

Single Server, Finite Storage

M/M/1/K Model

• The system can hold at most a total of *K* customers (including the customer in service)

$$\lambda_k = \begin{cases} \lambda & \text{if } k < K \\ 0 & \text{if } k \ge K \end{cases}$$

 $\mu_k = \mu$

$$\begin{cases} M/M/1/K \text{ Model (cont'd)} \\ P_k = P_0 \prod_{i=0}^{k-1} \frac{\lambda}{\mu} = P_0 \left(\frac{\lambda}{\mu}\right)^k \quad k \le K \\ P_k = 0 \quad k > K \end{cases}$$

$$\Rightarrow P_0 = \left\{ \begin{array}{l} \left[1 + \sum_{k=1}^{K} \left(\lambda / \mu \right)^k \right]^{-1} = \frac{1 - \lambda / \mu}{1 - \left(\lambda / \mu \right)^{K+1}} & 0 \le k \le K \\ 0 & \text{otherwise} \end{array} \right.$$

Discouraged Arrivals

Discouraged Arrivals

 Arrivals tend to get discouraged when more and more people are present in the system.

$$\begin{cases} \lambda_k = \frac{\alpha}{k+1} \\ \mu_k = \mu \end{cases}$$

Discouraged Arrivals (cont'd)

$$P_{k} = P_{0} \cdot \prod_{i=0}^{k-1} \frac{\alpha / (i+1)}{\mu} = (\alpha / \mu)^{k} \cdot \frac{1}{k!} \cdot P_{0}$$

$$P_{0} = \frac{1}{1 + \sum_{k=1}^{\infty} (\alpha / \mu)^{k} \cdot \frac{1}{k!}} = e^{-\frac{\alpha}{\mu}}$$

$$\Rightarrow P_{k} = \frac{(\alpha / \mu)^{k}}{k!} \cdot e^{-\frac{\alpha}{\mu}} \qquad \therefore \overline{N} = \frac{\alpha}{\mu}$$

Discouraged Arrivals (cont'd)

$$\overline{\lambda} = \sum_{k=0}^{\infty} \lambda_k P_k = \sum_{k=0}^{\infty} \frac{\alpha}{k+1} \cdot \frac{(\alpha/\mu)}{k!} \cdot e^{-(\alpha/\mu)}$$
$$= \mu \Big[1 - e^{-(\alpha/\mu)} \Big] \quad (\because \lambda = \mu \rho, \rho = 1 - P_0)$$
$$T = \frac{\overline{N}}{\lambda} = \frac{\alpha/\mu}{\mu(1 - e^{-\alpha/\mu})}$$

$M/M/\infty$ and M/M/m

 $M/M/\infty$ - Infinite Servers, Single Queue (Responsive Servers) M/M/m - Multiple Servers, Single Queue (The *m*-Server Case)

$M/M/\infty$ Queue

• There is always a new server available for each arriving customer.

$$\begin{cases} \lambda_k = \lambda \\ \mu_k = k \mu \end{cases}$$

$$M/M/\infty \text{ Queue (cont'd)}$$

$$P_k = P_0 \prod_{i=0}^{k-1} \frac{\lambda}{(i+1)\mu} = \frac{(\lambda/\mu)^k}{k!} e^{-\lambda/\mu}$$

$$\Rightarrow \overline{N} = \frac{\lambda}{\mu}$$

$$\Rightarrow T = \frac{1}{\mu} \text{ (Little's Result)}$$

M/M/m Queue

- The M/M/m queue
 - An *M/M/m* queue is shorthand for a single queue served by multiple servers.
 - Suppose there are *m* servers waiting for a single line.
 For each server, the waiting time for a queue is a system with service rate μ and arrival rate λ/m.
 - The *M*/*M*/1 analysis has been done, at risk conclusion: delay = $\frac{1}{\mu - \lambda/n}$

throughput
$$\rho = \frac{\lambda / n}{\mu} = \frac{\lambda}{n\mu}$$

$$\lambda_{k} = \lambda$$
$$\mu_{k} = \begin{cases} k \mu & \text{if } k \leq m \\ m \mu & \text{if } k > m \end{cases}$$

24

Ш

For $k \le m$ $p_k = p_0 \frac{\lambda}{\mu} \frac{\lambda}{2\mu} \cdots \frac{\lambda}{k\mu} = p_0 (\frac{\lambda}{\mu})^k \frac{1}{k!}$ For k > m $p_k = p_0 \frac{\lambda}{\mu} \frac{\lambda}{2\mu} \cdots \frac{\lambda}{n\mu} \cdots \frac{\lambda}{n\mu} = p_0 (\frac{\lambda}{\mu})^k \frac{1}{n!} (\frac{1}{n!})^{k-n}$ 42

 $(m-1)\mu$

mμ

mμ

mμ

$$\sum_{i=0}^{\infty} p_i = 1$$

$$\therefore \quad p_0 = \frac{1}{\sum_{k=0}^{n-1} p_i \frac{(np)^k}{k!} + \frac{(np)^n}{n!} \frac{1}{(1-\rho)}} \quad where \ \rho = \frac{\lambda}{n\mu}$$

P[queueing] =
$$\sum_{k=m}^{\infty} p_k$$

Total system time = $\frac{1}{\mu} + \frac{\lambda(/\mu)^n \mu}{(n-1)!(n\mu - \lambda)^2} \times p_0$

Comparisons (cont'd)

■ *M*/*M*/1 v.s *M*/*M*/4

If we have 4 *M*/*M*/1 systems: 4 parallel communication links that can each handle 50 pps (μ), arrival rate $\lambda = 25$ pps per queue.

 \rightarrow average delay = 40 ms.

Whereas for an M/M/4 system,

 \rightarrow average delay = 21.7 ms.

Comparisons (cont'd)

Fast Server v.s A Set of Slow Servers #1
If we have an *M*/*M*/4 system with service rate μ =50 pps for each server, and another *M*/*M*/1 system with service rate 4 μ = 200 pps. Both arrival rate is λ = 100 pps
→ delay for *M*/*M*/4 = 21.7 ms
→ delay for *M*/*M*/1 = 10 ms

Comparisons (cont'd)

• Fast Server v.s A Set of Slow Servers #2

If we have n M/M/1 system with service rate μ pps for each server, and another M/M/1 system with service rate $n \mu$ pps. Both arrival rate is $n \lambda$ pps

Multiple Servers, No Storage (*m*-Server Loss Systems)

M/M/m/m

• There are available *m* servers, each newly arriving customers is given a server, if a customers arrives when all servers are occupied, that customer is lost

e.g. telephony system.

$$\begin{cases} \lambda_k = \begin{cases} \lambda & \text{if } k < m \\ 0 & \text{if } k < m \end{cases} \\ \mu_k = k \mu \end{cases}$$

$$M/M/m/m (\text{cont'd})$$

$$P_{k} = \begin{cases} P_{0} \cdot (\lambda / \mu)^{k} \frac{1}{k!} & \text{if } k \leq m \\ 0 & \text{if } k > m \end{cases}$$

$$\Rightarrow P_0 = \left[\sum_{k=0}^{\infty} \left(\lambda / \mu\right)^k \frac{1}{k!}\right]^{-1}$$

M/M/m/m (cont'd)

Let p_m describes the fraction of time that all m servers are busy. The name given to this probability expression is *Erlang's loss formula* and is given by

$$p_m = \frac{(\lambda / \mu)^m / m!}{\sum_{k=0}^m (\lambda / \mu)^k / k!}$$

- This equation is also referred to as *Erlang's B* formula and is commonly denoted by $B(m, \lambda/\mu)$
- http://www.erlang.com