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Introduction
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Queueing System
A queueing system can be described as customers 
arriving for service, waiting for service if it is not 
immediate, and if having waited for service, leaving 
the system after being served.
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Why Queueing Theory
Performance Measurement

Average waiting time of customer / distribution  of 
waiting time.
Average number of customers in the system / 
distribution of queue length / current work backlog.
Measurement of  the idle time of server /  length of an 
idle period.
Measurement of  the busy time of server /  length of a 
busy period.
System utilization.
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Why Queueing Theory (cont’d)
Delay Analysis
Network Delay = 

Queueing Delay 
+ Propagation Delay (depends on the distance)
+ Node Delay     Processing Delay

(independent of packet length, 
e.g. header CRC check)

Adapter Delay (constant)
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Characteristics of Queueing Process
Arrival Pattern of Customers

Probability distribution
Patient / impatient (balked) arrival
Stationary / nonstationary

Service Patterns
Probability distribution
State dependent / independent service
Stationary / nonstationary
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Characteristics of Queueing Process 
(cont’d)

Queueing Disciplines
First come, first served (FCFS)
Last come, first served (LCFS)
Random selection for service (RSS)
Priority queue
Preemptive / nonpreemptive

System Capacity
Finite / infinite waiting room.
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Characteristics of Queueing Process 
(cont’d)

Number of Service Channels
Single channel / multiple channels
Single queue / multiple queues

Stages of Service
Single stage (e.g. hair-styling salon)
Multiple stages (e.g. manufacturing process)
Process recycling or feedback 
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Notation
A queueing process is described by A/B/X/Y/Z



12

Notation (cont’d)
For example, M/D/2/∞/FCFS indicates a 
queueing process with exponential inter-arrival 
time, deterministic service times, two parallel 
servers, infinite capacity, and first-come, first-
served queueing discipline.
Y and Z can be omitted if Y = ∞ and Z = FCFS.
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Stochastic Process
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Stochastic Process
Stochastic process: any collection of random 
variables Χ(t), t T, on a common probability 
space where t is a subset of time.

Continuous / discrete time stochastic process
Example: Χ(t) denotes the temperature in the class on t 
= 7:00, 8:00, 9:00, 10:00, … (discrete time)

We can regard a stochastic process as a family of 
random variables which are “indexed” by time.
For a random process X(t), the PDF is denoted by 
FX(x;t) = P[X(t) <= x]

∈
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Some Classifications of Stochastic 
Process

Stationary Processes: independent of time
FX (x; t + τ) = FX (x; t)

Independent Processes: independent variables
FX (x; t) = FX1,…, Xn(x1,…, xn ; t1,…,tn)

= FX1(x1; t1) …FXn(xn; tn) 

Markov Processes: the probability of the next state 
depends only upon the current state and not upon any 
previous states.

P[X(tn+1) = xn+1 | X(tn) = xn, …., X(t1) = x1]
= P[X(tn+1) = xn+1 | X(tn) = xn]
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Some Classifications of Stochastic 
Process (cont’d)

Birth-death Processes: state transitions take place 
between neighboring states only.

Random Walks: the next position the process occupies 
is equal to the previous position plus a random variable 
whose value is drawn independently from an arbitrary 
distribution.



17

General Concepts
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Continuous-time Memoryless 
Property

If X ~Exp(λ), for any a,b > 0, 
PP[[X > a + b | X > aX > a + b | X > a] ] = P= P[[X > bX > b]]

Proof:
P[X > a + b | X > a]
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Global Balance Equation
Define Pi = P[system is in state i] 
Pij = P[get into state j right after leaving state i]

rate out of state j   =  rate into state j
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General Balance Equation
Define S = a subset of the state space
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General Equilibrium Solution
Notation:

Pk = the probability that the system contains k
customers (in state k)

λk= the arrival rate of customers when the system is in 
state k.
μk= the service rate when the system is in state k.
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General Equilibrium Solution (cont’d)
Consider state ≤ k:
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General Equilibrium Solution (cont’d)
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Little’s Result
= average number of customers in the system

T = system time  (service time + queueing time)
λ= arrival rate

N

N Tλ=

Black box

Nλ

System time T

…

Queueing time

Service time
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M/M/1 Model

Single Server, Single Queue
(The Classical Queueing System)
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M/M/1 Queue
Single server, single queue, infinite population:

Interarrival time distribution:

Service time distribution

Stability condition λλ < < μμ
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M/M/1 Queue (cont’d)
System utilization

Define state Sn = n customers in the system
(n-1 in the queue and 1 in service)
S0 = empty system

= P[system is busy],    1- P[system is idel]λρ ρ
μ

= =

rate out

rate in

S
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M/M/1 Queue (cont’d)
Define pn = P[n customers in the system]

(rate in = rate out)

Since                  
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M/M/1 Queue (cont’d)
Average number of customers in the system
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M/M/1 Queue (cont’d)
Average system time

P[≧ k customers in the system]

(Little’s Result)
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M/M/1/K Model

Single Server, Finite Storage
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M/M/1/K Model
The system can hold at most a total of K
customers (including the customer in service)
λk =  λ if k < K

0     if k ≥ K
μk =  μ
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M/M/1/K Model (cont’d)
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Discouraged Arrivals
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Discouraged Arrivals
Arrivals tend to get discouraged when more and 
more people are present in the system.
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Discouraged Arrivals (cont’d)
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Discouraged Arrivals (cont’d)
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M/M/∞ and M/M/m

M/M/∞ - Infinite Servers, Single Queue
(Responsive Servers)

M/M/m - Multiple Servers, Single Queue
(The m-Server Case)
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M/M/∞ Queue

kλ λ=

k kμ μ=

There is always a new server available for each 
arriving customer.
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M/M/∞ Queue (cont’d)
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M/M/m Queue
The M/M/m queue

An M/M/m queue is shorthand for a single queue served 
by multiple servers.
Suppose there are m servers waiting for a single line. 
For each server, the waiting time for a queue is a 
system with service rateμ and arrival rate λ/m.
The M/M/1 analysis has been done, at risk conclusion:
delay = 

throughput 

1
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M/M/m Queue (cont’d)

λk = λ
μk =   kμ if k ≤ m

mμ if k > m

For k ≤ m

For k > m
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M/M/n Queue (cont’d)

∴
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Comparisons (cont’d)
M/M/1 v.s M/M/4
If we have 4 M/M/1 systems: 4 parallel communication 
links that can each handle 50 pps (μ), arrival rate λ = 25 
pps per queue. 

average delay = 40 ms.
Whereas for an M/M/4 system, 

average delay = 21.7 ms.
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Comparisons (cont’d)
Fast Server v.s A Set of Slow Servers #1
If we have an M/M/4 system with service rate μ=50 pps
for each server, and another M/M/1 system with service 
rate 4μ = 200 pps. Both arrival rate is λ = 100 pps

delay for M/M/4 = 21.7 ms
delay for M/M/1 = 10 ms
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Comparisons (cont’d)
Fast Server v.s A Set of Slow Servers #2
If we have n M/M/1 system with service rate μ pps for 
each server, and another M/M/1 system with service rate 
nμ pps. Both arrival rate is nλ pps
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M/M/m/m

Multiple Servers, No Storage
(m-Server Loss Systems)
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M/M/m/m
There are available m servers, each newly arriving 
customers is given a server, if a customers arrives 
when all servers are occupied, that customer is lost
e.g. telephony system.  

kλ =
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0 if k m<
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M/M/m/m (cont’d)
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M/M/m/m (cont’d)
Let pm describes the fraction of time that all m
servers are busy. The name given to this 
probability expression is Erlang’s loss formula
and is given by

This equation is also referred to as Erlang’s B 
formula and is commonly denoted by B(m,λ/μ)
http://www.erlang.com
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