Queueing Theory

Frank Y. S. Lin
Information Management Dept.
National Taiwan University
yslin@im.ntu.edu.tw

References

- Leonard Kleinrock, "Queueing Systems Volume I: Theory", New York: Wiley, 1975-1976.
- D. Gross and C. M. Harris, "Fundamentals of Queueing Theory", New York: Wiley, 1998.

Agenda

- Introduction
- Stochastic Process
- General Concepts
- M/M/1 Model
- M/M/1/K Model
- Discouraged Arrivals
- $M / M / \infty$ and $M / M / m$ Models
- $M / M / m / m$ Model

Queueing System

- A queueing system can be described as customers arriving for service, waiting for service if it is not immediate, and if having waited for service, leaving the system after being served.

Why Queueing Theory

- Performance Measurement
- Average waiting time of customer / distribution of waiting time.
- Average number of customers in the system / distribution of queue length / current work backlog.
- Measurement of the idle time of server / length of an idle period.
- Measurement of the busy time of server / length of a busy period.
- System utilization.

Why Queueing Theory (cont’d)

- Delay Analysis

Network Delay =
Queueing Delay

+ Propagation Delay (depends on the distance)
+ Node Delay (Processing Delay
(independent of packet length, e.g. header CRC check)

Adapter Delay (constant)

Characteristics of Queueing Process

- Arrival Pattern of Customers
- Probability distribution
- Patient / impatient (balked) arrival
- Stationary / nonstationary
- Service Patterns
- Probability distribution
- State dependent / independent service
- Stationary / nonstationary

Characteristics of Queueing Process (cont'd)

- Queueing Disciplines
- First come, first served (FCFS)
- Last come, first served (LCFS)
- Random selection for service (RSS)
- Priority queue
- Preemptive / nonpreemptive
- System Capacity
- Finite / infinite waiting room.

Characteristics of Queueing Process (cont'd)

- Number of Service Channels
- Single channel / multiple channels
- Single queue / multiple queues
- Stages of Service
- Single stage (e.g. hair-styling salon)
- Multiple stages (e.g. manufacturing process)
- Process recycling or feedback

Notation

- A queueing process is described by $\mathbf{A} / \mathbf{B} / \mathbf{X} / \mathbf{Y} / \mathbf{Z}$

Characteristic	Symbol	Explanation
Interarrival-time distribution (A) Service-time distribution (B)	M D E_{k} H_{k} PH G	Exponential Deterministic Erlang type $k(k=1,2, \ldots)$ Mixture of k exponentials Phase type General
Number of parallel servers (X)	$1,2, \ldots, \infty$	
Restriction on system capacity (Y)	$1,2, \ldots, \infty$	
Queue discipline (Z)	FCFS LCFS RSS PR GD	First come, first served Last come, first served Random selection for service Priority General discipline

Notation (cont'd)

- For example, $M / D / 2 / \infty / F C F S$ indicates a queueing process with exponential inter-arrival time, deterministic service times, two parallel servers, infinite capacity, and first-come, firstserved queueing discipline.
- Y and Z can be omitted if $Y=\infty$ and $Z=$ FCFS.

Stochastic Process

Stochastic Process

- Stochastic process: any collection of random variables $X(t), t \in T$, on a common probability space where t is a subset of time.
- Continuous / discrete time stochastic process
- Example: $X(t)$ denotes the temperature in the class on t $=7: 00,8: 00,9: 00,10: 00, \ldots$ (discrete time)
- We can regard a stochastic process as a family of random variables which are "indexed" by time.
- For a random process $X(t)$, the PDF is denoted by $F_{X}(x ; t)=\mathrm{P}[X(t)<=x]$

Some Classifications of Stochastic Process

- Stationary Processes: independent of time

$$
F_{X}(x ; t+\tau)=F_{X}(x ; t)
$$

- Independent Processes: independent variables

$$
\begin{gathered}
F_{X}(x ; t)=F_{X 1}, \ldots, X_{X n}\left(x_{1}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right) \\
=F_{X 1}\left(x_{1} ; t_{1}\right) \ldots F_{X n}\left(x_{n} ; t_{n}\right)
\end{gathered}
$$

- Markov Processes: the probability of the next state depends only upon the current state and not upon any previous states.

$$
\begin{aligned}
& \mathrm{P}\left[X\left(t_{n+1}\right)=x_{n+1} \mid X\left(t_{n}\right)=x_{n}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
& \quad=\mathrm{P}\left[X\left(t_{n+1}\right)=x_{n+1} \mid X\left(t_{n}\right)=x_{n}\right]
\end{aligned}
$$

Some Classifications of Stochastic Process (cont’d)

- Birth-death Processes: state transitions take place between neighboring states only.
- Random Walks: the next position the process occupies is equal to the previous position plus a random variable whose value is drawn independently from an arbitrary distribution.

General Concepts

Continuous-time Memoryless Property

If $X \sim \operatorname{Exp}(\lambda)$, for any $a, b>0$, $P[X>a+b \mid X>a]=P[X>b]$

Proof:

$$
\begin{aligned}
& P[X>a+b \mid X>a] \\
= & \frac{P[(X>a+b) \cap(X>a)]}{P(X>a)} \quad(X>a+b) \subset(X>a) \\
= & \frac{P(X>a+b)}{P(X>a)}=\frac{1-F_{x}(a+b)}{1-F_{x}(a)}=\frac{e^{-\lambda(a+b)}}{e^{-\lambda a}}=e^{-\lambda b}=P(X>b)
\end{aligned}
$$

Global Balance Equation

- Define $P_{i}=\mathrm{P}$ [system is in state i]
$P_{i j}=\mathrm{P}[$ get into state j right after leaving state $i]$

General Balance Equation

- Define S = a subset of the state space

$$
\sum_{\substack{j=0 \\(j \in s)}}^{\infty} P_{j} \cdot \sum_{\substack{i=0 \\(i \notin s)}}^{\infty} P_{i j}=\sum_{\substack{i=0 \\(i \notin s)}}^{\infty} P_{i} \cdot \sum_{\substack{j=0 \\(j \in s)}}^{\infty} P_{i j}
$$

S

rate in = rate out

General Equilibrium Solution

- Notation:
- $P_{k}=$ the probability that the system contains k customers (in state k)

$$
\sum_{k=0}^{\infty} P_{k}=1
$$

- $\lambda_{k}=$ the arrival rate of customers when the system is in state k.
- $\mu_{k}=$ the service rate when the system is in state k.

General Equilibrium Solution (cont’d)

- Consider state $\leq k$:

$$
\begin{aligned}
& \text { rate in }=\text { rate out } \\
& P_{k} \cdot \lambda_{k}=P_{k+1} \cdot \mu_{k+1} \\
\Rightarrow & P_{k+1}=\frac{\lambda_{k}}{\mu_{k+1}} P_{k} \\
\Rightarrow & P_{k}=\frac{\lambda_{k-1}}{\mu_{k}} P_{k-1}
\end{aligned}
$$

$$
\Rightarrow P_{k}=\frac{\lambda_{k-1}^{\cdot} \cdot \lambda_{k-2} \cdots \lambda_{0}}{\mu_{k} \cdot \mu_{k-1} \cdots \mu_{1}} P_{0}=\prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}} \cdot P_{0}
$$

General Equilibrium Solution (cont’d)

$$
\begin{aligned}
& \sum_{k=0}^{\infty} P_{k}=1 \\
\Rightarrow & \sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}} \cdot P_{0}=1 \\
\therefore & P_{0}=\frac{1}{1+\sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}}} \quad \lambda=\sum_{k=0}^{\infty} P_{k} \lambda_{k}, \quad T=\frac{\bar{N}}{\lambda}
\end{aligned}
$$

waiting time $w=T-\frac{1}{\mu}$

Little's Result

- $\bar{N}=$ average number of customers in the system
- $T=$ system time (service time + queueing time)
- $\lambda=$ arrival rate
$\rightarrow \bar{N}=\lambda T$

Service time

System time T

M/M/1 Model

Single Server, Single Queue (The Classical Queueing System)

M/M/1 Queue

- Single server, single queue, infinite population:

$$
\left\{\begin{array}{l}
\lambda_{k}=\lambda \\
\mu_{k}=\mu
\end{array}\right.
$$

- Interarrival time distribution:

$$
p_{\lambda}(t)=\lambda e^{-\lambda t}
$$

- Service time distribution

$$
p_{\mu}\left(t<t_{0}\right)=\int_{0}^{t_{0}} \mu e^{-\mu t} d t=1-e^{-\mu t_{0}}
$$

- Stability condition $\lambda<\mu$

M/M/1 Queue (cont’d)

- System utilization

$$
\rho=\frac{\lambda}{\mu}=\mathrm{P}[\text { system is busy }], \quad 1-\rho=\mathrm{P}[\text { system is idel }]
$$

- Define state $S_{n}=n$ customers in the system ($n-1$ in the queue and 1 in service) $S_{0}=$ empty system

M/M/1 Queue (cont’d)

- Define $p_{n}=\mathrm{P}[n$ customers in the system]

$$
\begin{aligned}
& \lambda \times p_{n}=\mu \times p_{n+1} \text { (rate in = rate out) } \\
& p_{n+1}=\frac{\lambda}{\mu} \times p_{n}=\rho \times p_{n} \\
& \Rightarrow p_{n+1}=\rho^{n+1} \times p_{0}
\end{aligned}
$$

Since $\sum_{i=0}^{\infty} p_{i}=1 \rightarrow \sum_{i=0}^{\infty} p_{0} \rho^{n}=1 \quad \rightarrow p_{0} \sum_{i=0}^{\infty} \rho^{n}=1$

$$
\Rightarrow \quad p_{0}=1-\rho, \quad p_{n}=\rho^{n} \times(1-\rho)
$$

M/M/1 Queue (cont’d)

- Average number of customers in the system

$$
\begin{aligned}
\bar{N} & =\sum k \cdot(1-\rho) \rho^{k}=(1-\rho) \sum k \cdot \rho^{k} \\
& =(1-\rho) \cdot \rho \cdot \sum d \rho^{k} / d \rho \\
& =(1-\rho) \cdot \rho \cdot \frac{d}{d \rho} \sum \rho^{k} \\
& =(1-\rho) \cdot \rho \cdot \frac{d}{d \rho}\left(\frac{1}{1-\rho}\right) \quad{ }^{\bar{N}} \\
& =\frac{\rho}{1-\rho} \\
& \therefore \bar{N}=\frac{\rho}{1}
\end{aligned}
$$

$$
\therefore \bar{N}=\frac{\rho}{1-\rho}
$$

Figure 3.3 The average number in the system M/M/1.

M/M/1 Queue (cont’d)

- Average system time

$$
\begin{aligned}
T & =\frac{\bar{N}}{\lambda} \quad \text { (Little's Result) } \\
& =\frac{\frac{\rho}{1-\rho}}{\lambda}=\frac{1 / \mu}{1-\rho}=\frac{1}{\mu-\lambda}
\end{aligned}
$$

Figure 3.4 Average delay as a function of ρ for $\mathrm{M} / \mathrm{M} / 1$.

- $\mathrm{P}[\geqq k$ customers in the system $]$

$$
=\sum_{i=k}^{\infty}(1-\rho) \rho^{i}=(1-\rho) \frac{\rho^{k}}{1-\rho}=\rho^{k}
$$

M/M/1/K Model

Single Server, Finite Storage

M/M/1/K Model

- The system can hold at most a total of K customers (including the customer in service)

$$
\begin{aligned}
& \lambda_{k}= \begin{cases}\lambda & \text { if } k<K \\
0 & \text { if } k \geq K\end{cases} \\
& \mu_{k}=\mu
\end{aligned}
$$

M/M/1/K Model (cont'd)

$$
\begin{cases}P_{k}=P_{0} \prod_{i=0}^{k-1} \frac{\lambda}{\mu}=P_{0}\left(\frac{\lambda}{\mu}\right)^{k} & k \leq K \\ P_{k}=0 & k>K\end{cases}
$$

$$
\Rightarrow P_{0}= \begin{cases}{\left[1+\sum_{k=1}^{K}(\lambda / \mu)^{k}\right]^{-1}=\frac{1-\lambda / \mu}{1-(\lambda / \mu)^{K+1}}} & 0 \leq k \leq K \\ 0 & \text { otherwise }\end{cases}
$$

- Discouraged Arrivals +

Discouraged Arrivals

- Arrivals tend to get discouraged when more and more people are present in the system.

$$
\left\{\begin{array}{l}
\lambda_{k}=\frac{\alpha}{k+1} \\
\mu_{k}=\mu
\end{array}\right.
$$

Discouraged Arrivals (cont'd)

$$
\begin{aligned}
& P_{k}=P_{0} \cdot \prod_{i=0}^{k-1} \frac{\alpha /(i+1)}{\mu}=(\alpha / \mu)^{k} \cdot \frac{1}{k!} \cdot P_{0} \\
& P_{0}=\frac{1}{1+\sum_{k=1}^{\infty}(\alpha / \mu)^{k} \cdot \frac{1}{k!}}=e^{-\frac{\alpha}{\mu}} \\
& \Rightarrow P_{k}=\frac{(\alpha / \mu)^{k}}{k!} \cdot e^{-\frac{\alpha}{\mu}} \quad \therefore \bar{N}=\frac{\alpha}{\mu}
\end{aligned}
$$

Discouraged Arrivals (cont’d)

$$
\begin{aligned}
\bar{\lambda}=\sum_{k=0}^{\infty} \lambda_{k} P_{k} & =\sum_{k=0}^{\infty} \frac{\alpha}{k+1} \cdot \frac{(\alpha / \mu)}{k!} \cdot e^{-(\alpha / \mu)} \\
& =\mu\left[1-e^{-(\alpha / \mu)}\right] \quad\left(\because \lambda=\mu \rho, \rho=1-P_{0}\right)
\end{aligned}
$$

$$
T=\frac{\bar{N}}{\lambda}=\frac{\alpha / \mu}{\mu\left(1-e^{-\alpha / \mu}\right)}
$$

$M / M / \infty$ and $M / M / m$

$M / M / \infty$ - Infinite Servers, Single Queue
(Responsive Servers)
$M / M / m$ - Multiple Servers, Single Queue
(The m-Server Case)

$M / M / \infty$ Queue

- There is always a new server available for each arriving customer.
$\left\{\begin{array}{l}\lambda_{k}=\lambda \\ \mu_{k}=k \mu\end{array}\right.$

M/M/ ∞ Queue (cont'd)

$$
\begin{aligned}
& P_{k}=P_{0} \prod_{i=0}^{k-1} \frac{\lambda}{(i+1) \mu}=\frac{(\lambda / \mu)^{k}}{k!} e^{-\lambda / \mu} \\
& \Rightarrow \bar{N}=\frac{\lambda}{\mu} \\
& \Rightarrow T=\frac{1}{\mu} \text { (Little's Result) }
\end{aligned}
$$

M/M/m Queue

- The $M / M / m$ queue
- An $M / M / m$ queue is shorthand for a single queue served by multiple servers.
- Suppose there are m servers waiting for a single line. For each server, the waiting time for a queue is a system with service rate μ and arrival rate λ / m.
- The $M / M / 1$ pnalysis has been done, at risk conclusion: delay $=\overline{\mu-\lambda / n}$
throughput $\quad \rho=\frac{\lambda / n}{\mu}=\frac{\lambda}{n \mu}$

M/M/m Queue (cont'd)

For $k \leq m \quad p_{k}=p_{0} \frac{\lambda}{\mu} \frac{\lambda}{2 \mu} \cdots \frac{\lambda}{k \mu}=p_{0}\left(\frac{\lambda}{\mu}\right)^{k} \frac{1}{k!}$
For $k>m \quad p_{k}=p_{0} \frac{\lambda}{\mu} \frac{\lambda}{2 \mu} \cdots \frac{\lambda}{n \mu} \cdots \frac{\lambda}{n \mu}=p_{0}\left(\frac{\lambda}{\mu}\right)^{k} \frac{1}{n!}\left(\frac{1}{n}\right)^{k-n}$

M/M/n Queue (cont’d)

$$
\begin{aligned}
& \sum_{i=0}^{\infty} p_{i}=1 \\
& \therefore \quad p_{0}=\frac{1}{\sum_{k=0}^{n-1} p_{i} \frac{(n p)^{k}}{k!}+\frac{(n p)^{n}}{n!} \frac{1}{(1-\rho)}} \quad \text { where } \rho=\frac{\lambda}{n \mu}
\end{aligned}
$$

P [queueing] $=\sum_{k=m}^{\infty} p_{k}$
Total system time $=\frac{1}{\mu}+\frac{\lambda(/ \mu)^{n} \mu}{(n-1)!(n \mu-\lambda)^{2}} \times p_{0}$

Comparisons (cont’d)

- $M / M / 1$ v.s $M / M / 4$

If we have $4 M / M / 1$ systems: 4 parallel communication links that can each handle $50 \mathrm{pps}(\mu)$, arrival rate $\lambda=25$ pps per queue.
\rightarrow average delay $=40 \mathrm{~ms}$.
Whereas for an $M / M / 4$ system,
\rightarrow average delay $=21.7 \mathrm{~ms}$.

Comparisons (cont’d)

- Fast Server v.s A Set of Slow Servers \#1

If we have an $M / M / 4$ system with service rate $\mu=50 \mathrm{pps}$ for each server, and another $M / M / 1$ system with service rate $4 \mu=200 \mathrm{pps}$. Both arrival rate is $\lambda=100 \mathrm{pps}$
\rightarrow delay for $M / M / 4=21.7 \mathrm{~ms}$
\rightarrow delay for $M / M / 1=10 \mathrm{~ms}$

Comparisons (cont’d)

- Fast Server v.s A Set of Slow Servers \#2

If we have $n M / M / 1$ system with service rate μ pps for each server, and another $M / M / 1$ system with service rate $n \mu$ pps. Both arrival rate is $n \lambda$ pps

$M / M / m / m$

Multiple Servers, No Storage
(m-Server Loss Systems)

M/M/m/m

- There are available m servers, each newly arriving customers is given a server, if a customers arrives when all servers are occupied, that customer is lost e.g. telephony system.

$$
\left\{\begin{array}{l}
\lambda_{k}= \begin{cases}\lambda & \text { if } k<m \\
0 & \text { if } k<m\end{cases} \\
\mu_{k}=k \mu
\end{array}\right.
$$

M/M/m/m (cont'd)

$$
\begin{aligned}
& P_{k}= \begin{cases}P_{0} \cdot(\lambda / \mu)^{k} \frac{1}{k!} & \text { if } \mathrm{k} \leq \mathrm{m} \\
0 & \text { if } \mathrm{k}>\mathrm{m}\end{cases} \\
& \Rightarrow P_{0}=\left[\sum_{k=0}^{\infty}(\lambda / \mu)^{k} \frac{1}{k!}\right]^{-1}
\end{aligned}
$$

M/M/m/m (cont’d)

- Let p_{m} describes the fraction of time that all m servers are busy. The name given to this probability expression is Erlang's loss formula and is given by

$$
p_{m}=\frac{(\lambda / \mu)^{m} / m!}{\sum_{k=0}^{m}(\lambda / \mu)^{k} / k!}
$$

- This equation is also referred to as Erlang's B formula and is commonly denoted by $B(m, \lambda / \mu)$
- http://www.erlang.com

