System Planning and Capacity Management

Frank Yeong-Sung Lin (林永松)
Department of Information Management
National Taiwan University
Taipei, Taiwan, R.O.C.

Outline

- Introduction
- System planning & capacity management
- Examples
- Summary
- Conclusion

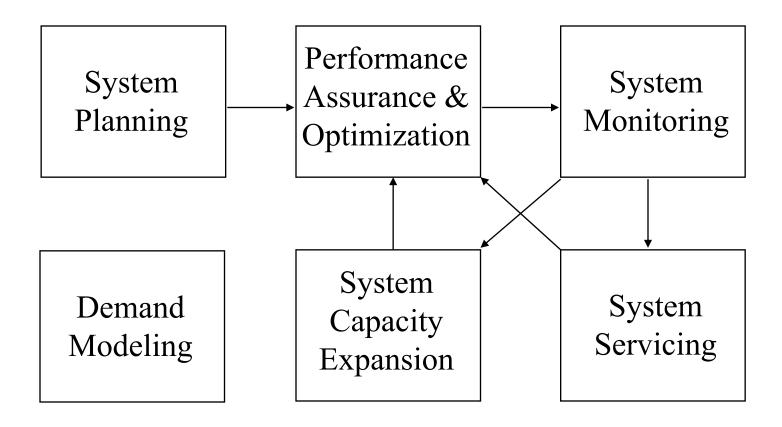
Introduction

Motivation

- complexity of systems
- needs of decision support systems (DSSs) and operation support systems (OSSs)

Considerations

- installation/operation/maintenance cost
- performance (sanity)
- integrity


Introduction (cont'd)

• Issues

- efficiency and effectiveness
- timeliness (development and response)
- capacity
- environment
- user friendliness
- integration and reliability
- cost

System Planning & Capacity Management

• System architecture

- System planning
 - to design a system with the minimum installation and operation cost subject to performance (QoS), survivability/reliability and other constraints
- System performance assurance/optimization
 - for an in-service system, to assure pre-specified
 QoS requirements and/or to optimize certain
 performance measures, e.g. to minimize the total
 system throughput/revenue or to minimize the
 average cross-system delay

- System monitoring
 - for an in-service system, by using relevant measurements or performance modeling techniques (or a combination of the two) to identify potential performance exceptions and to activate corrective actions
 - to collect relevant measurements for load forecasting purposes (to feed the servicing and the capacity expansion processes)

- System servicing
 - using corrective actions to alleviate the performance exceptions identified by the monitoring process
 - three typical approaches
 - » load balancing
 - » resource reallocation
 - » sizing (minimal-cost capacity augmentation to satisfy the current demand)

- System capacity expansion
 - for an in-service system, to determine the capacity augmentation strategy at each decision stage over a pre-specified time horizon such that the total cost, considering the effect of economies of scale and composite cost of money, is minimized

Performance Considerations

- Performance/service objectives/constraints
 - throughput
 - peak delay
 - mean delay
 - delay jitter
 - tail distribution of delay (percentile type)
 - call set-up delay
 - call blocking probability
 - packet/cell loss probability
 - interference
 - availability/reliability/survivability

Performance evaluation

- traffic measurements
 - » call/packet/cell counts
 - » packet/cell loss counts
 - » call blocked counts
 - » delay counts are usually not directly available
- performance modeling
 - » to derive performance measures from available traffic measurements & appropriate queueing models
 - » optimization is used to derive performance bounds from imperfect information for engineering purposes

- Performance evaluation (cont'd)
 - introduction to queueing theories
 - » components of queueing systems
 - probability density function (pdf) of interarrival times
 - pdf of service times
 - the number of servers
 - the queueing disciplines
 - the amount of buffer

- Performance evaluation (cont'd)
 - introduction to queueing theories (cont'd)
 - » notation
 - *M*: exponential probability density
 - D: deterministic
 - *G*: general e.g. *M*/*M*/1, *M*/*M*/*m*/*m*, *M*/*D*/1/*K*, *G*/*G*/*m*
 - » Little's result $N = T\lambda$.
 - M/G/1 queues are fully solvable (P-K formula).
 - » *GI/GI*/1 queues can be approximately analyzed by using the first two moments of the interarrival times and the service times.
 - » *M/M/m/m* queueing models can be used to analyze the call blocking probability (Erlang B formula).

Notion of equivalent bandwidth

- Reference: R. Guerin et al, "Equivalent capacity and its application to bandwidth allocation in high-speed networks", IEEE Journal on Selected Areas in Communications, 9(7), Sep. 1991
- The approximation for the equivalent capacity is based on a fluidflow model, which focuses on the representation of traffic source.
- A traffic source is modeled by a two-state Markov source, characterized by the connection metric vector (R_{peak}, ρ, b)

- » R_{peak} : the peak rate of the connection
- » b: the mean of burst period (the mean of times during which the source is active)
- » ρ : utilization (fraction of time the source is active)

Notion of equivalent bandwidth (cont'd)

- We wish to determine the bandwidth to allocate to the associated connection in isolation.
- The distribution of the buffer contents, when such a source is feeding a buffer served by a constant rate server, can be derived using standard techniques.
- From this distribution, it is then possible to determine the equivalent capacity \hat{c} , needed to achieve a given buffer overflow probability.
- Assuming a finite buffer of size x and overflow probability ε (the PDU loss requirement), the equivalent capacity is obtained by

$$\hat{c} = \frac{\alpha b (1 - \rho) R_{peak} - x + \sqrt{\left[\alpha b (1 - \rho) R_{peak} - x\right]^2 + 4x\alpha b \rho (1 - \rho) R_{peak}}}{2\alpha b (1 - \rho)}$$
where $\alpha = \ln(1/\varepsilon)$

Cost Considerations

- Deployment cost
 - fixed cost
 - » real estate
 - » other infrastructure and basic components
 - variable cost
 - » transmission/switching capacity
 - » processing/storage capability
- Operational cost
 - maintenance cost
 - personnel cost

Data in Support of System Planning & Capacity Management

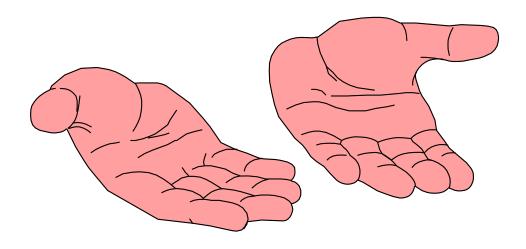
- Location data
 - candidate locations and corresponding real estate costs
- Load/Resource requirements
 - end-to-end (preferred) or system element demand
- QoS requirements

Data in Support of System Planning & Capacity Management (cont'd)

- System element cost structure
 - cost of system elements considering pricing of available system element types and economies of scale
- System element characteristics
 - load-service curves of each system element
- Performance objectives
 - user or system performance objectives specified by requirements or service contracts

Examples for System Planning & Capacity Management

- Maximization of cloud computing system survivability under malicious and intelligent attacks
- Design of a cloud computing system


Summary

- Architecture and functionality of system planning & capacity management (SPCM) are presented.
- Examples are given.

Conclusion

- Information (technology) is power!
- Cloud computing is a trend of the information era.
- Cloud computing system planning & capacity management is crucial for reliable and efficient information processing, acquisition, exchange and distribution.
- Information over planned and well managed cloud computing systems is even more powerful!

Q&A

