Information Security
 Midterm Exam - Part II

1. (8 points) In a public key system using RSA.
(a) You intercept a ciphertext $C=15$ sent to a user whose public key is ($n=91, e=13$). What is the plaintext M ?
(b) If the public key of a given user is (n, e) where $n=3599$ and e is selected to be the smallest among all legitimate numbers to minimize the encryption complexity, what is the private key of this user?
2. (6 points) Please prove in detail why the RSA method works as showed in the class.
3. (6 points) Please compare the 4 public key distribution methods discussed in the class.
4. (6 points) Consider the Diffie-Hellman key exchange algorithm with a common prime 997 and its smallest primitive root.
(a) If user A has public key $Y_{\mathrm{A}}=1$, what is A's private key X_{A} ?
(b) If user B has public key $Y_{\mathrm{B}}=97$, what is the shared secret key K that A calculates?
5. (6 points) Please answer the following questions.
(a) Describe the principle of the probabilistic primality test discussed in the class.
(b) Find the smallest nonnegative integer i that satisfies $3^{i} \equiv 7 \bmod 11$.
(c) Calculate the multiplicative inverse modulo 35 of 11 using (1) the Euler's theorem and (2) the Euclid's algorithm, respectively.
6. (4 points) For a number n that is the product of two prime numbers p and q, if $\phi(n)$ (Euler totient function) is known to be 460 , please find p and q.
7. (14 points) Consider the elliptic group $\mathrm{E}_{23}(2,2)$ of 19 solutions, where $G=(3,9)$ and B 's private key is $n_{B}=12$. Assume that the following results are known: $2 G=(12,11), 4 G=(8,1), 8 G=$ $(9,17), 16 G=(8,22)$ and $32 G=(9,6)$.
(a) (2 points) Please show that $(2,2)$ is a valid choice for (a, b) to form a legitimate elliptic group.
(b) (4 points) What is the smallest n such that $n G=O$? (Hint: An efficient way is possible from a direct observation on the given results.) If another result $10 G=(6,0)$ is also given, can you find another efficient way to calculate n ? In addition, is $G=(6,0)$ a good choice and why?
(c) (2 points) Find B 's public key P_{B}.
(d) (2 points) If A wishes to exchange a secret key with B using this ECC system and choosing his/her private key as $n_{A}=3$, what will be the secret key that A and B exchange?
(e) (2 points) A wishes to encrypt the message $P_{m}=(8,1)$ and chooses the random value $k=2$. Determine the ciphertext C_{m}.
(f) (2 points) Show the detailed calculation by which B recovers P_{m} from C_{m}. Hint: If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ with $P \neq-Q$, then $P+Q=\left(x_{3}, y_{3}\right)$ is determined by the following rules:

$$
\begin{aligned}
& x_{3} \equiv \lambda^{2}-x_{1}-x_{2}(\operatorname{mo\phi }) \\
& y_{3} \equiv \lambda\left(x_{1}-x_{3}\right)-y_{1}(\operatorname{mo\phi })
\end{aligned}
$$

where

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P \neq Q \\ \frac{3 x_{1}{ }^{2}+a}{2 y_{1}} & \text { if } P=Q\end{cases}
$$

