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A. Description and Scenario

• End users of cloud computing hope cloud service providers can offer high quality

cloud environments that satisfy their individual requirements. Cloud computing

service providers wish to maximize their resource utilization, while maximizing

their profits. To make efficient use of their cloud computing system resources

while ensuring those resources’ availability to the end users, service providers

need to adopt a suitable load balance technique. Hence, to provide an efficient

cloud service to users while maximizing profit margins at the same time is

imperative to cloud service providers.

4



A. Description and Scenario (Cont’d)

• We proposed a generic mathematical programming model that can

be used for developing an algorithm for allocating resources and

virtual machines. The algorithm simulates the roles of the cloud

service provider and users in a cloud computing system. The

Lagrangean Relaxation Method was adopted here to obtain the optimal

solution for the problem of allocation.
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A. Description and Scenario (Cont’d)
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Notation Description

Bk
s internal communication bandwidth of server k

� S

Bc shared communication bandwidth within the
cloud computing system

Pk total number of CPU cores in server k � S

Mk total amount of RAM capacity in server k � S

Hk total amount of HD capacity in server k � S

Vk
the maximum number of VMs allowable on
server k � S



B. Mathematical Formulation

Problem Assumptions
• Virtual machines leased by specific users cannot be shared with others. 
• Rewards gained from each user’s satisfaction is not in complete accord. 
• Some users’ virtual machines should not be in the same physical 

machine due to privacy considerations. 
• The CPU core capability of each physical machine varies. 
• The number of virtual machines each user needs varies.
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Given Parameter
Given Parameter
Notation Description

S
the index set of physical servers in the cloud computing system, which is
equal to {1,2,3,…,s}

Bk
s internal communication bandwidth of server k � S

Bc shared communication bandwidth within the cloud computing system
Pk total number of CPU cores in server k � S
Sk processing capability of each CPU core in server k � S
Mk total amount of RAM capacity in server k � S
Hk total amount of HD capacity in server k � S
Vk the maximum number of VMs allowable on server k � S
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Given Parameter
Notation Description

D the index set of demands, hereafter referred to as either VPCs or users interchangeably,
onto the cloud computing system, which is equal to {1,2,3,…,d}

Ji
the reward of admitting user i � D (user i can be admitted only if his/her demands on
all types of resources be fully satisfied)

Wi
the index set of VMs required by user i � D, which is equal to {1,2,3,…,wi} (wi is also
referred to as the total number of VMs required by user i � D)

pij total amount of CPU processing capability required by user i � D on VM j � Wi

mij total amount of RAM capability required by user i � D on VM j � Wi

hij total amount of HD capability required by user i � D on VM j � Wi

cijk
total amount of communication channel capacity required by user i � D between VMs j
and k � Wi

aijkl
the indicator function which is 1 if VM j � Wi and VM l � Wk are allowed to be
allocated on the same physical server, where users i and k are in D, and 0 otherwise
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Decision Variables
Decision Variables
Notation Description

yi
1 if user i � D is admitted to the cloud computing system, and 0
otherwise

xijk 1 if VM j � Wi of user i � D is allocated to server k � S, and 0 otherwise
tijk the number of CPU cores allocated to VM j of user i on server k

fijkl
1 if VM j � Wi of user i � D and VM k � Wi of user i � D are allocated
to server l � S, and 0 otherwise
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Objective Function

• The problem is then formulated as the following problem to maximize

the total revenue:

(IP 1)
1

max
d

i i
i

yJ
 
¦
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II. Solution Approach
A. Lagrangean Relaxation
B. Getting Primal Feasible Solutions
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Lagrangean Relaxation
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Lagrangean Relaxation (Cont’d)
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Lagrangean Relaxation (Cont’d)
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Subject to:

𝑦𝑖 = 0 𝑜𝑟 1, ∀𝑖 ∈ 𝐷 (LR 1.1)

𝑡𝑖𝑗𝑘 ≥ 0, ∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑊𝑖, ∀𝑘 ∈ 𝑆 (LR 1.2)

𝑥𝑖𝑗𝑘 = 0 𝑜𝑟 1, ∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑊𝑖, ∀𝑘 ∈ 𝑆 (LR 1.3)

𝑓𝑖𝑗𝑘𝑙 = 0 𝑜𝑟 1, ∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑊𝑖, ∀𝑘 ∈ 𝑊𝑖, k ≠ j, ∀𝑙 ∈ 𝑆 (LR 1.4)



Lagrangean Relaxation (Cont’d)
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• The Lagrangean multipliers 𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7, 𝜇8, 𝜇9, 𝜇10, 𝜇11

are the vectors of {𝜇𝑖1}, {𝜇𝑖𝑗𝑘2 }, {𝜇𝑖𝑗𝑘𝑙𝑚3 }, {𝜇𝑙4}, {𝜇𝑘5}, {𝜇𝑘6}, {𝜇𝑘7}, {𝜇𝑘8}, 

{𝜇𝑙9}, {𝜇𝑖𝑗10} and {𝜇𝑖𝑗𝑘𝑙11 }, respectively, where 

𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7, 𝜇8, 𝜇9, 𝜇10, 𝜇11 are non-negative. In order to 

solve (LR 1), it is decomposed into four independent and easily 

solvable subproblems, as shown below.



Subproblem 1.1
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related to decision variable 𝒚𝒊:

Subject to:

0 1,iy or i D � � ( 1.1.1)sub
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Lagrangean Relaxation (Cont’d)

19

• Subproblem 1.1 (sub 1.1) is further decomposed into |D| independent

minimization subproblems. In Subproblem 1.1 (sub 1.1), decision

variable 𝑦𝑖 has two options. The 𝑦𝑖 can be decided by examining the

coefficient −𝛾𝑖 + 𝜇𝑖1𝑤𝑖. When −𝛾𝑖 + 𝜇𝑖1𝑤𝑖 is negative or zero, we set

𝑦𝑖 to 1. Otherwise, we set 𝑦𝑖 to 0.

• The time complexity of Subproblem 1.1 (sub 1.1) is O(|D|).



Subproblem 1.2
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related to decision variable 𝒕𝒊𝒋𝒌:
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Lagrangean Relaxation (Cont’d)
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• Subproblem 1.2 (sub 1.2) can be further decomposed to |D|×|𝑊𝑖 |×|S| 

subproblems. This subproblem can be simply and optimally solved by 

examining the coefficient of decision variable 𝑡𝑖𝑗𝑘. If the coefficient 

𝜇𝑘5 − 𝜇𝑖𝑗𝑘2 𝜋𝑘 is negative or zero, the value of 𝑡𝑖𝑗𝑘 is set the biggest 

value; conversely, if 𝜇𝑘5 − 𝜇𝑖𝑗𝑘2 𝜋𝑘 is bigger than zero, 𝑡𝑖𝑗𝑘 is set to zero. 

• The time complexity of Subproblem 1.2 (sub 1.2) is O(|D|×|𝑊𝑖 |×|S|).



Subproblem 1.3
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related to decision variable 𝒙𝒊𝒋𝒌:
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Subject to:

( 1.3.1)sub𝑥𝑖𝑗𝑘 = 0 𝑜𝑟 1, ∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑊𝑖, ∀𝑘 ∈ 𝑆



Lagrangean Relaxation (Cont’d)
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• In order to solve the subproblem 1.3 (sub 1.3), we first reformulate 

(sub 1.3) by applying [1], as shown below.
[1] Frank Yeong-Sung Lin, “Quasi-static Channel Assignment Algorithms for Wireless Communications Networks,” 

Information Networking, 1998. (ICOIN-12) Proceedings, Twelfth International Conference, pp. 434-437, Jan 1998.



Subproblem 1.3’
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related to decision variable 𝒙𝒊𝒋𝒌:
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Lagrangean Relaxation (Cont’d)
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• In Subproblem 1.3’ (sub 1.3’), decision variable 𝑥𝑖𝑗𝑘 has two options. 

As a result, the value of 𝑥𝑖𝑗𝑘 can be determined by applying 

exhaustive search. 

• The time complexity of Subproblem 1.3’ (sub 1.3’) is O(|D|×|𝑾𝒊|×|S|).



Subproblem 1.4
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related to decision variable 𝒇𝒊𝒋𝒌𝒍:
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Lagrangean Relaxation (Cont’d)
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• Subproblem 1.4 (sub 1.4) can be optimally solved through analyzing the 

composition of (sub 1.4). When 

σ∀𝑙∈𝑆 σ∀𝑖∈𝐷 σ∀𝑗∈𝑊𝑖,𝑘∈𝑊𝑖,𝑗≠𝑘(𝜇𝑙
4𝑐𝑖𝑗𝑘𝑓𝑖𝑗𝑘𝑙 + 𝜇𝑙9𝑐𝑖𝑗𝑘(1 − 𝑓𝑖𝑗𝑘𝑙)) of 

subproblem 1.4 (sub 1.4) has minimum value and 

σ∀𝑖∈𝐷 σ∀𝑗∈𝑊𝑖
σ∀𝑘∈𝑊𝑖

σ∀𝑙∈𝑆 𝜇𝑖𝑗𝑘𝑙11 (𝑓𝑖𝑗𝑘𝑙 + 1) − σ∀𝑙∈𝑆(𝜇𝑙4𝐵𝑘𝑆 + 𝜇𝑙9𝐵𝑐) of 

subproblem 1.4 (sub 1.4) has maximum value, (sub 1.4) is minimized. 

• The time complexity of Subproblem 1.4 (sub 1.4) is O(|D|×|𝑾𝒊|×|𝑾𝒊|×|S|).



Getting Primal Feasible Solutions

• By applying Lagrangean Relaxation method, a theoretical lower bound
on primal objective function can be found. Moreover, it provides some
suggestions for obtaining primal feasible solutions.

• However, the result of the dual problem may be invalid to the original
problem since some important and complex constraints are relaxed.
Therefore, a heuristic is needed here to tune infeasible solutions
feasible.

• In order to obtain primal feasible solutions and an upper bound of (IP
1), the outcome of (LR 1) and Lagrangean multipliers are used as hints
for deriving solutions. The concept of the proposed heuristic is
described below.
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Getting Primal Feasible Solutions (Cont’d)

• Recall that subproblem 1.1 is related to decision variable 𝑦𝑖, which
determines whether the user is admitted by cloud service provider or
not. The concept used to develop a Drop and Add Heuristic to obtain
primal feasible solutions by dropping and adding users to cloud
environment.

• Initially, we check whether the outcome of (LR 1) can satisfy all
constraints of (IP 1). If one of the constraints of (IP 1) is not satisfied,
Drop and Add Heuristic will be used. There are two steps in Drop and
Add Heuristic and the first step is dropping step.
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Getting Primal Feasible Solutions (Cont’d)

• The main purpose of the dropping step is to drop users one by one
through adjusting the number of users or particular users we admit. By
using the hint provided by subproblem 1.1, we propose three
strategies.

• In the first strategy, subproblem 1.1 has the minimum value when 𝜇𝑖1𝑤𝑖 is
minimized. Hence, we drop the biggest 𝜇𝑖1𝑤𝑖 one after another.

• In the second strategy, once −𝛾𝑖 has the smallest value, the subproblem 1.1
can obtain the optimal solution. Therefore, we drop the biggest −𝛾𝑖 one by one.

• The third strategy is similar to the first and second strategy. When −𝛾𝑖 + 𝜇𝑖1𝑤𝑖
is minimized, subproblem 1.1 is also minimized. As a result, we drop the
biggest −𝛾𝑖 + 𝜇𝑖1𝑤𝑖 one after another.
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Getting Primal Feasible Solutions (Cont’d)

• The dropping process keeps dropping users sequentially according the 
given strategies mentioned above, and it stops while all the decision 
variables meet the constrains of (IP 1).

• The process in dropping step reallocates the remaining users’ VMs as 
much centralized as possible (on the same physical machine) under the 
premise that all constrains of (IP 1) are met. This reduces the severity 
of internal fragmentation, and we named such process as compression.
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Getting Primal Feasible Solutions (Cont’d)

• When we drop users sequentially, the degree of violation of constraints

are also reduced. However, when the number of users is decreased, the

rewards are also reduced. So, when we reduce the number of users that

satisfy all constraints of (IP 1), we should consider about admitting

more users to gain more rewards.
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Getting Primal Feasible Solutions (Cont’d)

• The second step of Drop and Add Heuristic is adding step. There are also
three strategies.

• The first strategy considers the rewards that users give to cloud service provider. We
add users with the biggest reward one by one.

• In the second strategy, the cloud service provider has to spend resources for
admitting users into cloud environment. Consequently, we admit users who has the
smallest requirement one after another.

• At last, we use the net profit to decide the order of admitting users. The users with
the biggest net profits are added into our system one by one.
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Getting Primal Feasible Solutions (Cont’d)

• The adding process considers the resource limits of physical machines

and the upper limit of VM instances. When the given constrains are

met, the cloud service provider allocates the VM j of user i on physical

machine k, and check over all constrains of (IP 1).

• Then executes these actions repeatedly until all constrains of (IP 1) are

satisfied. Every user requests will perform the compression process to

minimize internal fragmentation.
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Getting Primal Feasible Solutions (Cont’d)
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III. Experiment Results
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Experiment Results

• To prove the LR algorithm and the proposed heuristic are effective,

we used the optimal software Lingo for comparison purposes.

• Before that, we compared the different drop and add strategy

combinations in the LR algorithm to determine which drop and add

combination is more effective.
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Experiment Results (Cont’d)

• Parameter setting

• User demand (including CPU, RAM, HD respectively)

• Level 1: Highest demand (150)

• Level 2: Medium demand (80)

• Level 3: Lowest demand (60)

• Cloud service provider

• Total number of VM: 50

• Total number of physical server: 50

• Total number of CPU cores, computing capability, RAM and HD: 3,000
40



Experiment Results (Cont’d)

41

Case 1: drop users by 𝜇𝑖1𝑤𝑖 Case2: drop users by −𝛾𝑖
Case3: drop users by 
− 𝛾𝑖 + 𝜇𝑖1𝑤𝑖

Case 1: add users by 
their rewards (𝛾𝑖)

Reward 7,100 Reward 6,800 Reward 7,100

Time (m) 168.2 Time (m) 201.6 Time (m) 189.7

Case 2: add users by 
their costs (𝜇𝑖1𝑤𝑖)

Reward 7,100 Reward 6,800 Reward 7,100

Time (m) 168.2 Time (m) 177.3 Time (m) 191.3

Case 3: add users by 
their net profits (−𝛾𝑖 +
𝜇𝑖1𝑤𝑖)

Reward 7,400 Reward 7,100 Reward 7,400

Time (m) 185.3 Time (m) 177.1 Time (m) 190.9



Experiment Results (Cont’d)
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Reward of Different Algorithm



Experiment Results (Cont’d)
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Time Consumption of Different Algorithm



Experiment Results (Cont’d)

44

(20, 50, 15) (30, 50, 15) (40, 50, 15)

Lagrangean Relaxation 0% 4.17% 5.71%

Lingo (Local Solution) 0% 10.34% 10.67%

Lingo (Global Solution) 0% 0% 0%

Gap of Different Algorithms



IV. Conclusions
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Conclusions

46

• The main contribution of this research is the production of a generic
mathematical model that can develop an algorithm for allocating resources
and virtual machines.

• From the experiment result, we found that our proposed Lagrangean
relaxation-based algorithm and drop and add heuristic show excellent
performance in effectiveness and efficiency in comparison with Lingo.

• From the outcomes of these experiments, we conclude that our research can
be effectively applied in real-world situations.
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