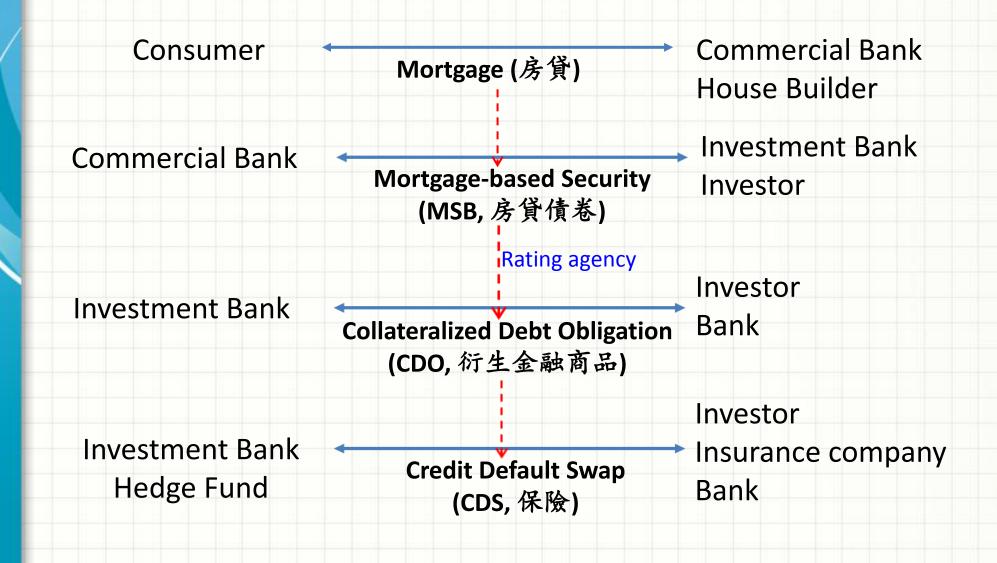


From Financial Tsunami to FinTech

A CAUTIONARY TALE ON 2008 FINANCIAL TSUNAMI



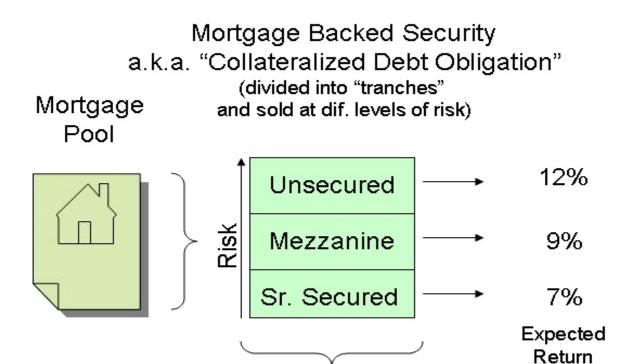
A Near Armageddon

- Worst recession since the 1930 Great Depression
- Price tag:
 - Estimated GDP loss is \$12.8 trillion.
 - 8.8 million jobs were lost.
 - 9.3 million Americans lost their health insurance.
 - 11 million homeowners, almost 1 in 4, are saddled with mortgages higher than the value of their homes.
 - The largest 5 investment banks ceased to exist.
 - Two out of the Big Three auto makers went bankrupt.
- What actually happened?

The Gist

Mortgage-Backed Security (MSB)

Mortgages



a.k.a. "Derivatives" (broken up into groups and 'derived' from the original pool)

Collateralized Debt Obligation (CDO)

Collateralized Debt Obligations

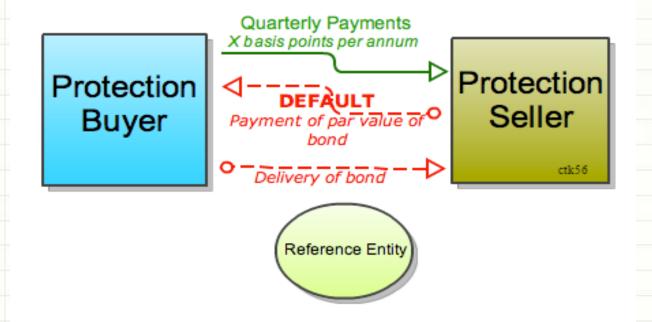
Collateralized debt obligations (CDOs) are structured financial instruments that purchase and pool financial assets such as the riskier tranches of various mortgage-backed securities.

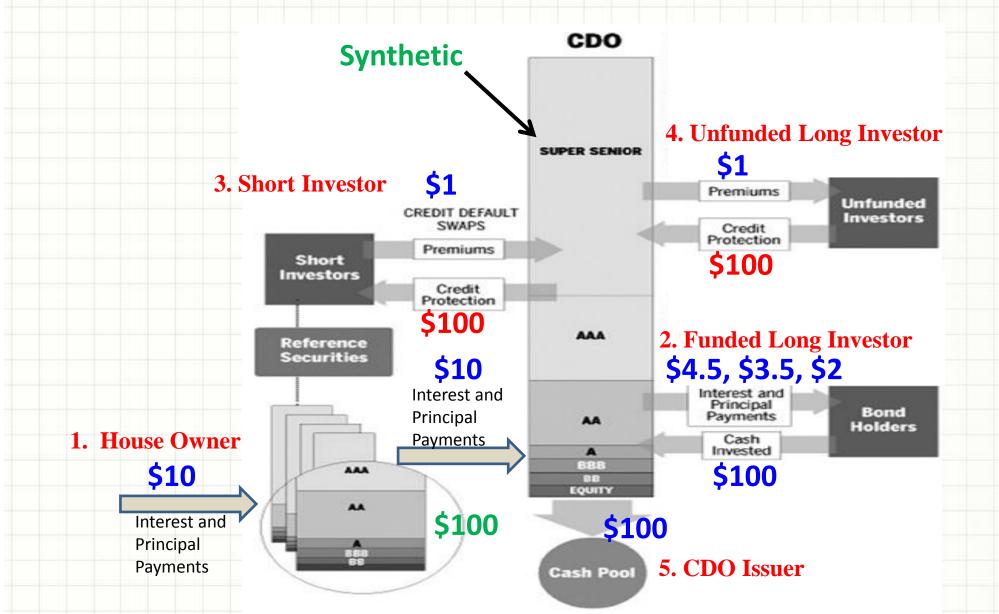
3. CDO tranches

Similar to mortgage-backed securities, the CDO issues securities in tranches that vary based on their place in the cash flow waterfall.

Low risk, low yield

1. Purchase


The CDO manager and securities firm select and purchase assets. such as some of the lower-rated tranches of mortgage-backed securities.


Credit Default Swap (CDS)

- How to short a CDO?
- An insurance against the default of a CDO
- Naked CDS
 - Unbounded market size → 80% of the CDS market
 - Arsonist buying a fire insurance on a victim's house

Credit Default Swaps

Synthetic CDO

The Big Short

- Amplification of Risk due to CDS and synthetic CDO
 - In 2006, 1.2 trillion subprime loans vs. 5 trillion synthetic CDOs
 - In 2012, only 2 billion of synthetic CDOs existed.
- Short investors used heavy leverage to bet against the housing market.

- Consumers are able to borrow more and more money from bank to pay for mortgage because of rising housing price.
- When the housing market crashed, all hells broke loose...
 - Frozen liquidity → banking system failure → global recession
 - Losers: consumer, builder, bank, investment bank, insurance company, investor
 - Winner: short investor
 - John Paulson → \$4 billion in 2007 and \$4.9 billion in 2010

The First Cracking Sounds

- Early in 2006: commercial banks stopped subprime lending and AIG stopped selling CDS
- December 2006: Goldman Sachs [1] started buying CDS
- April 2007: New Century Financial filed for Chapter 11
- October 2007: Merrill Lynch [3] announced a \$8.4 billion loss
- March 2008: Bear Stearns [5] was acquired for \$2 a share by JP Morgan Chase in a fire sale, with a \$30B backing from US gov.
- July 2008: Indymac Bank, the 7th-largest mortgage originator in the US, was placed into receivership of the US government
- July 2008: Accumulative loss of major banks in mortgage-based securities reached \$475B
- Most bond insurance companies that provided insurance against subprime CDO tranches all crashed in 2008

Days of Reckoning

- 9/7/2008: US gov. took over of Fannie Mae and Freddie Mac, which guaranteed about half of U.S.'s \$12T mortgage market.
- 9/14/2008: Merrill Lynch [3] was sold to Bank of America amidst fears of a liquidity crisis.
- 9/15/2008: Lehman Brothers [4] filed for bankruptcy protection.
- 9/17/2008: The US Federal Reserve lent \$85 billion to American International Group (AIG) to avoid bankruptcy.
- 9/25/2008: Washington Mutual was sold to JP Morgan.
- 9/29/2008: Citigroup acquired banking operations of Wachovia.
- **10/6-10**: Worst week for the US stock market in 75 years. The Dow Jones lost 22.1 percent.

Too Big to Fail

- 10/3/2008: President Bush created TARP with \$700B.
- 10/14/2008: The US gov. injected \$125B into nine largest US banks by taking an equity position in them.
 Goldman Sachs [1] and Morgan Stanley [2] became depository banks

- 11/17/2008: The US gov. gave out extra \$33.6B to 21 banks.
- 11/24/2008: The US gov. agreed to rescue Citigroup with \$20B after its stock

price plummeted by 60% in one week

- Fed's Quantitative Easing (QE): Buying bonds or financial assets from private financial institutions rather than Treasury bonds
 - 11/2008 to 10/2014: \$4.5 trillion in accumulated asset over QE 1/2/3
 - Interest rate was raised by 0.25% on 12/16/2015
 - Stimulating domestic private lending vs. exporting bubbles/inflation to the rest of the world

Culprit Analysis

- Collapse of mortgage underwriting standards
- Predatory lending: adjustable-rate mortgage
- Complex and ungrounded financial innovations
- Inability to accurately estimate risks
- Conflict of interest is rife in investment banking operations
 - Simultaneously selling CDO and buying CDS
 - Investing client assets on risky instruments vs. returning them to clients
- Overleveraging in banks: high debt/asset ratio
 - Off-balance sheet
 - 5 largest investment banks, Fannie Mae and Freddie Mac had over \$9
 trillion in debt or guarantee obligations in 2007 without being regulated like depository banks

Lessons

- Bubble, especially housing bubble, is the root cause of many financial crises, e.g. the 1987 savings and loan crisis.
- Dodd–Frank Wall Street Reform and Consumer Protection Act, passed in 2010, addressed some of the observed problems.
- No major bank leaders were prosecuted, and Wall Street excesses have returned to its pre-crisis level.
 - Occupy Wall Street Movement, aka 1% vs. 99%
- Greed can never be cured → when will the next financial tsunami come
 - Emergence of CDO-like instruments: Bespoke
 Tranche Opportunity because of negative or zero interest rate policy
- What about Financial Technology (Fintech)?

EMERGENCE OF FINANCIAL TECHNOLOGY

Nature of Financial Service

- Basically a database update problem
 - Payment
 - Lending/borrowing
 - Trading
 - Investing
- The only other barriers are trust, which is what regulation is for, and risk, which needs to be estimated and managed.
- Like publishing, financial service is fundamentally digital and is thus susceptible to disruption by internet services.
- And now the day of reckoning is coming.....

Financial Technologies (FinTech)

- Make it more convenient for bank users
 - E-banking
- Make banks more efficient
 - Unmanned banking
- Make banks more competitive traders
 - Algorithmic trading machine
- Obsolete banks with more convenient and cheaper internetbased services
 - Payment
 - Lending
 - Investment
 - Insurance

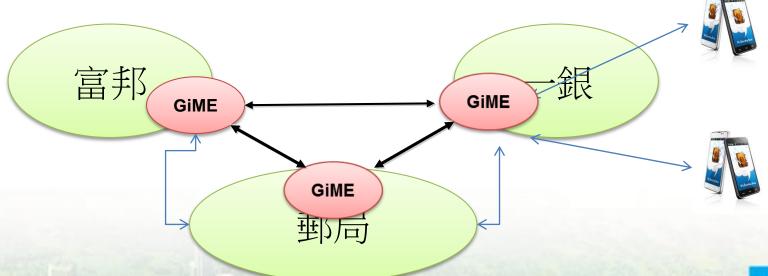
FinTech Services

- Methodology: go through every detailed step in standard financial service flows, and explore how IT can facilitate, simplify or remove it.
- Examples:
 - Payment: Square, Stripe
 - Money exchange: Transferwise, Worldremit
 - Virtual currency: ChangeCoin, CHAIN, Codius
 - Financing: Zestfinance, HelloWallet, Vouch, Fluent Network
 - P2P lending: Zopa, Lending Club
 - Crowdfunding: IndieGoGo, KickStarter
 - Investment Robot: EquityZen, Kensho, Visible Alpha, Mint
 - Insurance: Zenefits, FounderShield, AccuScore, Cuvva

MyNetWorth (我的淨值)

- Goal: The easiest way to find out a person's net worth
- Visibility is the basis of all management
 - Real-time personal health status monitoring
 - Real-time personal finance status monitoring
- Service model: provide a free up-to-date consolidated view of the bank accounts of an individual in an easy-to-use fashion
 - Bank accounts, credit card accounts, investment fund accounts, insurance accounts, retirement fund accounts, etc.
- Approaches
 - API economy
 - Automation of e-banking apps
- Business model: personal wealth management

Unified e-Banking App


GiME (人情帳): C2C Payment

- Goal: Record the financial dimension of social networks
- Service model: a recording service for friend-to-friend money and gift exchanges
 - A pays B X dollars: no money changes hand, just an IOU record
 - A gives B a gift
- The debts from A to B and the debts from B to A can cancel each other.
- When the net debt from A to B exceeds a threshold, the system alerts A
 to clear it. Clearing could be done in cash exchange, or via intra-bank or
 inter-bank fund transfer.
- Detailed IOU records with timestamps and event annotations are kept forever.
- Extended from money exchange to gift exchange

Key Insight

- Problem: Inter-bank fund transfer costs money.
- Solution:
 - Take advantage of 郵局行動金融服務 Why? 每位大學生幾乎都有郵局帳號
 - Virtual inter-bank fund transfer

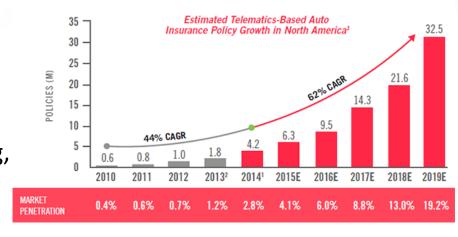


MySpendingBook (花冊)

- Goal: The easiest way to find out how one spends his/her money
- Service Concept: A personal or family archive of electronic invoices
 - (電子發票) stored in Ministry of Finance
- Free services offered to consumers
 - A permanent record of all spendings involving electronic invoices
 - Basic analysis tools for spending records
 - Donation of e-invoice awards to charities
 - Discount notification and e-coupon delivery
 - Exchange and trade of e-coupons
 - Formation of purchase groups for store-initiated volume discounts
 - Active initiation of consumer-initiated volume discounts
 - ²² Giving ratings and reviews on products/services

Example

日 □ □ ② ○ → 80% ■ 上午11:59		
← 財政部中獎號碼		
〈 民國104年09-10月		
特別獎	一千萬	07332260
特獎	兩百萬	20119263
頭獎	二十萬	
二獎	四萬(末7碼)	76833937
三獎	一萬(末6碼)	28338875
四獎	四千(末5碼)	83689131
五獎	一千(末4碼)	03009131
六獎	兩百(末3碼)	
增開六獎	兩百(末3碼)	096
		819
		105


Insurance Technology (InsurTech)

- Many issues could be solved by ICL technologies
 - Premium calculation based on accurate risk profiling
 - Maximize the percentage of insured with low risk
 - Name of the game: Take into accounts as many factors as possible to derive the most comprehensive profile and thus most competitive premium
 - Keep insurance claim rate low
 - Actively encourage good behavior
 - Simplify insurance claim process
 - Effectively detect insurance fraud
 - Provide best support for the insured at time of need

Usage-based Auto Insurance

- Insurance premium is tied with
 - Driving distance (Odometer)
 - Actual roads travelled (GPS)
 - Time of driving
 - Degree of congestion (GoogleMap)
 - Driving behavior: speeding, sudden braking, frequent lane changes, using smartphones while driving, distraction, or drunk driving

- Sensor choices: OBD II, Smartphone, In-vehicle video recorder
- Mechanisms to encourage good driving behavior and thus decrease insurance claims
 - Peer-to-peer insurance: peer pressure in social networks
 - Active reward mechanisms at the right moments

Regulatory Technology (RegTech)

Vision:

I have a dream. It is futuristic, but realistic. It involves a Star Trek chair and a bank of monitors. It would involve tracking the global flow of funds in close to real time (from a Star Trek chair using a bank of monitors), in much the same way as happens with global weather systems and global internet traffic. Its centerpiece would be a global map of financial flows, charting spill-overs and correlations. I

Andy Haldane, Chief Economist, Bank of England (2014)

Benefits:

- Reduce compliance cost and risk of traditional financial institutions
- Enable data-driven regulation for regulators
- Balance the regulatory requirements and financial service innovations
 - Fintech is going to be as developed as Regtech allows

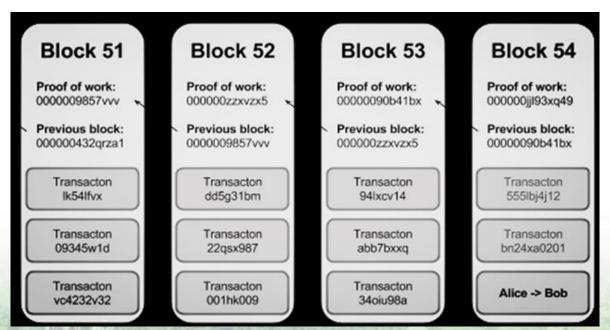
RegTech Examples

Categories:

- Risk data aggregation and management, and regulatory reporting
- Modeling, scenario analysis and forecasting
- Real-time trading monitoring and surveillance
- Identity verification
- Scalable automated regulatory report analysis

• Examples:

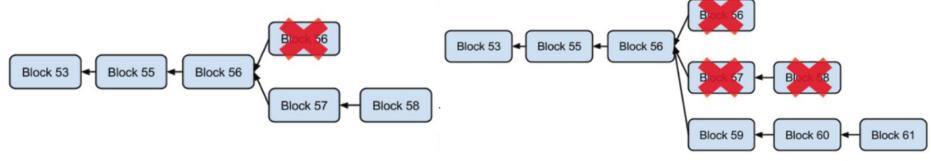
- Trade fraud detection: AlgoDynamix, Sybenetix
- Compliance risk assessment: Corlytics
- Risk aggregation and analysis: Percentile
- Know-your-customer and Customer due diligence: Passfort
- Shareholding disclosure: Fundapps
- Data protection: CheckRecipient


Blockchain Overview

- The underpinning of Bitcoin: A distributed and replicated database that keeps track of coin ownership, is irrevocable, and is not administered by a central authority
- Economic mechanism design
 - Voting mechanism to reach consensus among distributed nodes
 - Reward mechanism to encourage participation in the assurance of data irrevocability
- Evolution towards autonomous distributed database
 - A centralized database
 - A distributed database with each node administered by the same authority
 - A distributed database with each node administered by a different authority
 - A distributed database with each node administered by a different authority that may not play by the rules

Basics of Public Blockchain

- Clients: generate transaction records and/or read the database
- Miners: group transaction records into blocks, generate qualified blocks and send them to participants
- Participants: maintain a copy of the database and the log by receiving qualified blocks, verifying them, appending them to the log, and propagating the transaction records contained within to the database



Proof of Work (POW)

- A miner generates a new qualified block from a set of transaction records by computing a Merkel tree of the transaction records and the hash value of the existing block to which the new block is to be attached.
 - Every new block implicitly contains information in the entire sequence of blocks that precede it, i.e., the blocks are chained.
 - The attachment point is the frontier of the longest branch in the blockchain.

• The longest branch corresponds to the most effort spent

- Compute nonce such that f(merkel_hash_value, nonce) < D, where D is
 a difficulty target. The effort to find nonce serves to
 - Reduces the collision among miners competing to generate new qualified blocks

 Makes it harder to tamper with the existing chain of blocks

Current Status of Blockchain

- Type: Public vs. Consortium vs. Private
- Private vs. Public Blockchain: A choice on degree of decentralization
 - How to become a participant node:
 - Permissionless vs. Permission-based
 - How to become a miner: generate qualified blocks
 - Economic incentives vs. Duty
 - How to become a user: generate transaction records
 - Censorship resistance vs. Permission-based
- Challenges:
 - Compelling applications are hard to find
 - Performance is too slow: <10 updates/sec vs. > 1000 updates/sec
 - Data veracity

Data Alchemy Service Model

- No. 1 problem in Data Economy: How to effectively combine closed and administratively disparate data islands to maximize their collective value
 - Maintenance of data ownership
 - Profit distribution according to contributions
- Secure Multi-party computation
 - Let Di is private data of Pi, i = 1,2....n. Wish to perform a computation f(D1, D2.....Dn) = (Y1, Y2.....Yn). Yi is private output value for Pi.
 - Correctness: Parties correctly compute f().
 - Privacy: For P1, P2.....Pn, each player's input remains private.
 - Output Delivery: Protocol never ends until everyone receives an output.
 - Fairness: If one party gets the answer, so does every one else.

Summary

- FinTech, InsurTech and RegTech are on the rise.
 - Competition takes the form of innovations on service models rather than unique IT technologies.
 - Innovation Methodlogy: go through every detailed step in standard financial service flows, and ask how IT can facilitate, simplify or remove it.
 - Disintermediation via decentralization: P2P X
- InsurTech is one of the most compelling IoT applications
- RegTech is about automation of regulatory report delivery and analysis and data-driven compliance
- Distributed trust system builds trust without a central authority

Thank You!

Questions and Comments?

tcc@itri.org.tw

