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Viterbi algorithm



Viterbi algorithm

• Purpose: given a sequence of observed events, find
out the most likely sequence of hidden states,
Viterbi path.

• Review:
State space S = s1, s2, s3, . . . , sK
Observation space Y = y1, y2, y3, . . . , yT
Initial state Π = [π1, π2, . . . , πK]

Transition probability A =


a1,1 a1,2 · · · a1,K
a2,1 a2,2 · · · a2,K
... ... . . . ...
aK,1 aK,2 · · · aK,K
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Algorithm details

• Approach: dynamic programming.
• Given observed sequence y1, y2, . . . , yT, find out the
most likely sequence of x1, x2, . . . , xK.

• Let Vt,k be the probability when the hidden state of
the tth observation is k
V1,2 = P(y1|2)× π2
V1,k = P(y1|k)× πk
Vt,k = P(yt|k)×max

x∈S
(ax,k × Vt−1,x)
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Algorithms details

• To restore the path, start from the last observed
element, yT, the last hidden state is

argmax
x∈S

(VyT,x)

and the remaining path is restored in the same
manner.

• Time complexity = O
(
T× |S|2

)
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Baum–Welch algorithm



Baum–Welch algorithm

• Background:
A: state transition probability
B: an N× K matrix, where Bn,k = the probability that
result n is chosen at state k
Π: initial state probability
θ = (A,B,Π): hidden Markov chain

• If A, B, and Π are determined, the hidden Markov
chain is also determined.
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Baum–Welch algorithm

• Purpose: given observed sequence Y, find out the
most likely θ, or

θ∗ = argmax
θ

P(Y|θ)

• Approach: maximum likelihood estimation.
• To begin with, we set A, B, and Π randomly or by
previous information.
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Algorithm details - forward procedure

• Let
αi(t) = P(Y1 = y1, . . . , Yt = yt, Xt = i|θ)

the probability of the sequence Y1 . . . Yt being seen in
state i at time t.

• αi(t) can be obtained from the following recursion
1. αi(x) = πibi,yx

2. αj(t+ 1) = bj,yt+1
K∑
i=1

αi(t)ai,j
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Algorithm details - backward procedure

• Let

βi(t) = P(Yt+1 = yt+1, . . . , YT = yT|Xt = i, θ)

the probability of the ending partial sequence if we
start from state i at time t.

• βi(t) is also found by a recursion:
1. βi(T) = 1

2. βi(t) =
K∑
j=1

βj(t+ 1)ai,jbj,yt+1
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Algorithm details - update

• Let

γi(t) = P(Xt = i|Y, θ) = αi(t)βi(t)∑K
j=1 αj(t)βj(t)

=
passing i
all paths

the probability of passing state i at time t.
• Let

ξij(t) = P(Xt = i, Xt+1 = j|Y, θ) =
αi(t)aijβj(t+ 1)bj,yt+1∑K

i=1
∑K

j=1 αi(t)aijβj(t+ 1)bj,yt+1
=

from i to j
from any to any

the probability of passing from state i to state j from
time t to t+ 1
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Algorithm details - update

• Expected initial probability:

π∗
i = γi(1)

• The probability from state i to state j

a∗ij =
∑T−1

t=1 ξij(t)∑T−1
t=1 γi(t)

=
at here and move

at here

• Expected probability of getting val at state i

b∗i,val =
∑T

t=1 1yt=valγi(t)∑T
t=1 γi(t)

=
get val here
at here
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Algorithms - epilogue

1. Forward procedure
2. Backward procedure
3. Update

• The above algorithm can be repeated for several
times until the convergence level is desired.
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Thanks for listening
Are you still alive?
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