Hidden Markov Model - Part 2

Viterbi algorithm and Baum-Welch algorithm

Po-Chuan, Chien
May 9, 2017

Viterbi algorithm

Viterbi algorithm

- Purpose: given a sequence of observed events, find out the most likely sequence of hidden states, Viterbi path.
- Review:

State space $S=s_{1}, s_{2}, s_{3}, \ldots, s_{K}$
Observation space $Y=y_{1}, y_{2}, y_{3}, \ldots, y_{T}$
Initial state $\Pi=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right]$
Transition probability $A=\left[\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & a_{1, K} \\ a_{2,1} & a_{2,2} & \cdots & a_{2, K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{K, 1} & a_{K, 2} & \cdots & a_{K, K}\end{array}\right]$

Algorithm details

- Approach: dynamic programming.
- Given observed sequence $y_{1}, y_{2}, \ldots, y_{T}$, find out the most likely sequence of $x_{1}, x_{2}, \ldots, x_{k}$.
- Let $V_{t, k}$ be the probability when the hidden state of the $t^{\text {th }}$ observation is k

$$
\begin{aligned}
& V_{1,2}=P\left(y_{1} \mid 2\right) \times \pi_{2} \\
& V_{1, k}=P\left(y_{1} \mid k\right) \times \pi_{k} \\
& V_{t, k}=P\left(y_{t} \mid k\right) \times \max _{x \in S}\left(a_{x, k} \times V_{t-1, x}\right)
\end{aligned}
$$

Algorithms details

- To restore the path, start from the last observed element, y_{T}, the last hidden state is

$$
\underset{x \in S}{\arg \max _{x}\left(V_{y_{T}, x}\right)}
$$

and the remaining path is restored in the same manner.

- Time complexity $=O\left(T \times|S|^{2}\right)$

Baum-Welch algorithm

Baum-Welch algorithm

- Background:

A: state transition probability
B : an $N \times K$ matrix, where $B_{n, k}=$ the probability that result n is chosen at state k
Π : initial state probability
$\theta=(A, B, \Pi)$: hidden Markov chain

- If A, B, and Π are determined, the hidden Markov chain is also determined.

Baum-Welch algorithm

- Purpose: given observed sequence Y, find out the most likely θ, or

$$
\theta^{*}=\underset{\theta}{\arg \max } P(Y \mid \theta)
$$

- Approach: maximum likelihood estimation.
- To begin with, we set A, B, and Π randomly or by previous information.

Algorithm details - forward procedure

- Let

$$
\alpha_{i}(t)=P\left(Y_{1}=y_{1}, \ldots, Y_{t}=y_{t}, X_{t}=i \mid \theta\right)
$$

the probability of the sequence $Y_{1} \ldots Y_{t}$ being seen in state i at time t.

- $\alpha_{i}(t)$ can be obtained from the following recursion

1. $\alpha_{i}(x)=\pi_{i} b_{i, y_{x}}$
2. $\alpha_{j}(t+1)=b_{j, y_{t+1}} \sum_{i=1}^{K} \alpha_{i}(t) a_{i, j}$

Algorithm details - backward procedure

- Let

$$
\beta_{i}(t)=P\left(Y_{t+1}=y_{t+1}, \ldots, Y_{T}=y_{T} \mid X_{t}=i, \theta\right)
$$

the probability of the ending partial sequence if we start from state i at time t.

- $\beta_{i}(t)$ is also found by a recursion:

$$
\begin{aligned}
& \text { 1. } \beta_{i}(T)=1 \\
& \text { 2. } \beta_{i}(t)=\sum_{j=1}^{K} \beta_{j}(t+1) a_{i, j} b_{j, y_{t+1}}
\end{aligned}
$$

Algorithm details - update

- Let

$$
\gamma_{i}(t)=P\left(X_{t}=i \mid Y, \theta\right)=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{j=1}^{K} \alpha_{j}(t) \beta_{j}(t)}=\frac{\text { passing } i}{\text { all paths }}
$$

the probability of passing state i at time t.

- Let

$$
\begin{gathered}
\xi_{i j}(t)=P\left(X_{t}=i, X_{t+1}=j \mid Y, \theta\right)= \\
\frac{\alpha_{i}(t) a_{i j} \beta_{j}(t+1) b_{j, y_{t+1}}}{\sum_{i=1}^{K} \sum_{j=1}^{K} \alpha_{i}(t) a_{i j} \beta_{j}(t+1) b_{j, y_{t+1}}}=\frac{\text { from } i \text { to } j}{\text { from any to any }}
\end{gathered}
$$

the probability of passing from state i to state j from time t to $t+1$

Algorithm details - update

- Expected initial probability:

$$
\pi_{i}^{*}=\gamma_{i}(1)
$$

- The probability from state i to state j

$$
a_{i j}^{*}=\frac{\sum_{t=1}^{T-1} \xi_{i j}(t)}{\sum_{t=1}^{T-1} \gamma_{i}(t)}=\frac{\text { at here and move }}{\text { at here }}
$$

- Expected probability of getting val at state i

$$
b_{i, \text { val }}^{*}=\frac{\sum_{t=1}^{T} 1_{y_{t}=\text { val }} \gamma_{i}(t)}{\sum_{t=1}^{T} \gamma_{i}(t)}=\frac{\text { get val here }}{\text { at here }}
$$

Algorithms - epilogue

1. Forward procedure
2. Backward procedure
3. Update

- The above algorithm can be repeated for several times until the convergence level is desired.

Thanks for listening Are you still alive?

