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Abstract— By spreading the workload across a sensor network, load balancing issues. Hsiao et al [9] designs a rebalancing
load balancing reduces hot spots in the sensor network and scheme to achieve load balancing for wireless access networks,
increases the energy lifetime of the sensor network. In this ,q,gh not wireless sensor networks. This work assumes the

paper, we design a node-centric algorithm that constructs a load- . - . .
balanced tree in sensor networks of asymmetric architecture. We existence of an initial unbalanced tree that is then readjusted

utilize a Chebyshev Sum metric to evaluate via simulation the OF rebalanced using their algorithm, and selects a random
balance of the routing trees produced by our algorithm. We find neighbor for rebalancing. In contrast, our algorithm presents a

Lhellt our gliorithrr]n achievez fougng t[)eesctjhr?tfare moreheffeCtiver complete solution that forms the initial tree, and rebalances
alanced than the routing based on breadth-first search(BFS) an ; ; ;
o e o t?y TG el (BFS) this tree using topological knowledge rather than random
selection.
|. INTRODUCTION The key contributions of this paper are in the following three
Wireless sensor networks(WSNSs) have recently emergedagisas. First, we identify the importance of the node-centric
an active research area. Typically, a WSN consists of a largeproach. Second, we formulate a node-centric load-balancing
number of nodes that sense the environment and collabgoasblem that helps construct the routing and monitoring struc-
tively work to process and route the sensor data. [4] [6] A lardares for an asymmetric sensor network. Third, we present the
number of application scenarios for such WSNs have emergednstruction algorithms for load balancing.
including battlefield monitoring, habitat monitoring, tracking
of office equipment, and medical/health deployments in the 1. LOAD BALANCING IN SENSORNETWORKS
home [1] [3]. As sensor networks scale up in size, effectively
managing the distribution of the networking load will be of A node-centric load balancing strategy considers the cumu-
great concern. By spreading the workload across the senkive load of data traffic from child nodes in a routing tree on
network, load balancing averages the energy Consump[i(ﬂﬁﬁil’ parent nodes. The WSN routing tree is rooted in the base
This extends the expected lifespan of the whole sensor netwstgtion. The load of child sensor nodes adds to the load of each
by extending the time until the first node is out of energy. Loadpstream parent in the tree. Hence, the sensor nodes nearest
balancing is also useful for reducing congestion hot spot§e base station will be the most heavily loaded. The goal
thereby reducing wireless collisions. of node-centric load balancing is to evenly distribute packet
We focus on WSNs with an asymmetric architecture, i.&affic generated by sensor nodes across the different branches
a powerful base station collects data through a multi-h@s the routing tree.
routing framework of distributed wireless sensor nodes. ThisA shortest path routing algorithm executed on a sensor grid
centralized architecture rooted in the base station is commmoted in a base station doesnt guarantee that the resulting
to sensor networks [7] [5] [12] [13]. A base station serveshortest path tree is load balanced. Figure 1(a) illustrates that
as the data aggregation point or the sink of the data in theshortest path tree that minimizes the number of hops can
network. Typically, the base station has more resources rigsult in a highly unbalanced tree. This is because selecting the
terms of power, computation, memory, and bandwidth thamortest path doesn’t account for the effect of load aggregation
the individual sensor nodes. The base station has thus beanupstream links. The base station is the clear node at the
proposed as the resource-rich focal point for tracking failedot of the tree, and the assumption is of a uniform grid with
nodes [7], securing the sensor network against compromissath node generating the same load, i.e. generating the same
sensor nodes [5], hosting services such as data aggregasiorount of periodic sensor data. In comparison, a balanced tree
[12] [13], or monitoring of WSNs [8] [15]. In this paper, is shown in Figure 1(b), where the load is precisely the same
we also assume the common case of static sensor networkenreach of the branches emanating from the root. The tradeoff
which the position of the sensor nodes are fixed. of achieving a load-balanced tree is that some nodes will have
Previous work in sensor network routing [10] [2] as well aa longer path to the root than the shortest path, e.g. dode
QoS routing in wireless ad hoc Networks [14] largely ignoreis Figure 1.
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a) Shortest Path Tree b) Load Balance Tree

Fig. 1. Unbalanced shortest path tree vs. Top-level balanced tree
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Fig. 3. A top-level load balanced tree on a 10x10 grid network
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Fig. 2. Load Balanced Trees on the Grid Topology

and

All nodes in the sensor network periodically broadcast their
existence, e.g. an IMA message in the WSNDiag protocol [11], by >by>bg>...>b,
and neighboring information. After collecting this information,
the base station constructs the graptl/, ) (whereV is the Consequently:
vertex set whileF is the set of all edges). An algorithm is " N N
executed on to construct a load-balanced tree. The “load”
associated with a given sensor node represents the amount of n;akbk = <Z ak)<z )
data periodically generated by that sensor node.

Load balanced trees can be classified into different cate-Let W;; be the weight (cumulative load) on thg, branch
gories. We define the “level” to be the distance from a node @ the routing tree. Form a vector of the weighis =
the base station. A load-balanced tree could be fully balancédVs1, Wy, W3, . .., Wey, }. For example, in a square grid, the
top-level balanced or hierarchy-balanced. A fully balanced tréase station in the center of the grid will have four neighbors,
is a tree in which the branches on the same level carry the sasaethere will be four weights.
total amount of load. A top-level balanced tree is a tree suchTo assess the degree of balance among the different branch
that each branch at the top level closest to the base statieeights ofw, leta = b = w. In this case, the inequalities will
carries the same amount of load [9]. Both fully balanced trebscome
and top-balanced trees are extreme cases of hierarchy-balanced o Z W2 > (Z Wie)?

k=1 k=1

k=1 k=1

trees, i.e. a tree in which the branches in certain levels carry

the same total amount of load. Figure 2 provides examples

that illustrate these three versions of balanced trees in a ser®or

grid. In this paper, our node-centric load balancing technique (r We)?
focuses on constructing a top-balanced tree over the sensor 1= m
network. Figure 3 shows a top-balanced tree constructed using B

our load balancing algorithm on a 10x10 grid sensor networwith equality if and only if Wy, = Wi = Wi = ... =
Wh, for all Wy, k € [1,n]. The balance factof used in the

[1l. L OAD BALANCING ALGORITHM algorithm is defined as
This section discusses the construction and adjustment of (r_, Wir)?
the top-level balanced tree for a WSN. A grid topology is 0 = m

assumed for simplicity, though the algorithm is not limited

to a sensor grid. In the grid, one of the nodes is randomly As the weights in each branch converge to the same value,

selected and assigned to be the base station. i.e. the load across the different branches of the routing tree
To measure how well the load is balanced across differdsécomes more balanced, the balance factor monotonically

branches of a routing tree, the Chebyshev Sum Inequalityinereases towards 1. When the weights of all the branches are

selected as the load balancing metric. The definition of tlegual, the result of the inequality will be 1, i.e. the maximum

Chebyshev Sum Inequality is as follows: for allc CY and value.
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TABLE |

BASIC LOAD BALANGING ALGORITHM A key concept in this algorithm is the “growth space” of a

node, i.e. a measure of the freedom to grow the tree towards
this node. The greater the growth space, the more open area

%,if:(,\ﬁ lfs”ﬁglfs;mpty) do there is to expand the load-balanced routing tree through this
step 0: Select the lightest most restricted branch node. Each sensor node has a humber of unmarked neighbors.
B =B[0] The growth space of a node is the sum of the number of
for each Bl do ked neighbors of all the node’ ked neighb

it (Weight(B) # Weight(B[i]) unmarked neighbors of all the node’s unmarked neighbors
I* select lightest branch */ minus common links. For example, Figure 4 shows a load
elseB « lighter (B[i], B); balanced tree in the process of construction, with four branches
/* if same load, select most restricted branch */ emanating from the root base station. In Figure 4(a), node
B « minFreedom(B([i], B); 7 has 2 unmarked neighbors to its east and south, while
teb 1: Select the heaviest border node with most arowth each of these unmarked neighbors has 3 unmarked neighbors
Z,ei o éi\(f:, N?S gg‘vgﬁfdef’noze |?5te With Most growh SRACE themselves. _Therefore, the grovvth spaceZoéquaIs 3+3-
for eachn; C N (2 common links) = 4, as shown in Figure 4(b).
if W’/e*iggt(ln) fhWeitht@bi)d o The growth space is used in the algorithm of Table | in
o heavietn! mpy two places. First, it is used in step 0 to break ties between
else equally lightly loaded branches. The growth space bfanch
/> Select "C':Ofd%f node with max growth space */ is defined as the sum of the growth spaces of all nodes within
n’ —maxFreedorw’, n); the branch. This is a measure of how much freedom the
step 2: graft node and update metrics branch has to expand. If there is a tie between multiple lightly
;i}; {n'} loaded branches, then the branch with the most restrictions,
M= M*_{fn,}}. i.e. smallest growth space, is selected. This enables restricted
for each unmarked border nodef n’ branches the most opportunity to grow, and avoid being
done N =N +{i}; hemmed in, which would lead to unbalanced trees. Second, the

growth space is used in step 1 to break ties between equally
heavily loaded border nodes, for the reasons outlined earlier.

A. Basic Algorithm P
The node-centric algorithm iteratively grows a load- .2
balanced tree outwards from the base station root. At each step, 3
the algorithm first selects the branch with the lightest load, and L
then grafts onto this branch the unassigned/unmarked border ol o’ o @
node generating the heaviest load. Intuitively, the algorithm a) UnmarkedNeighbors b) Growth Spaces

absorbs the nOd.eS generating the g.r(.aaIESt |an to the |Igh'T:(IES.t4. (a) Number of unmarked neighbors of each node (b) growth space
branches to achieve balance. In addition, a crucial observatg:p?gach node

is that absorbing the heaviest nodes at the earliest possible

step maintains the greatest flexibility for future balance. In

comparison, absorbing the heaviest nodes at the end of thd "€ time complexity of the algorithm is comparable to the
algorithm could lead to highly unbalanced trees. algorithm constructing the shortest path tree, because at the

If there are multiple “heaviest” border nodes, as in auniforr%nd of each iteration, information related to neighbor nodes

sensor network, then select the unmarked border node with ﬁ'ﬂg branches needs to be updated. The m_odlflc_ano_ns are
greatest “growth space”. Intuitively, the algorithm expands _r_nllar to tho_se on the path Iength after each iteration in the
grows the routing tree into the most open areas in the sen &k;tra algorlthm: With appropriate data structures supported,
grid before filling in the crowded areas. The motivation i5'¢ iMme complexity could b&(nlogn).
to maximize the flexibility in terms of routing options at each
step. This approach reduces the chance that a given branch Ril
become hemmed in, unable to grow, which would create anwhile the basic algorithm produces a roughly load balanced
unbalanced tree with an abridged branch carrying an unusualye at the top level, an additional adjustment algorithm is
light load. needed to achieve further load balancing. There are sev-
The pseudo code for the algorithm is shown in Table I. Theral adjustment techniques available. The random adjustment
base station collects the initial topology and load informatiomethod [9] has been previously used to re-adjust a roughly
and computes the backbone tree from gréphVe define the balanced tree. However, these algorithms are blind to the
following variables: the current tre€; the array of branches topology information. Here we propose a spiral adjustment
BJi]; the selected brancB; lists of the border nodes for eachalgorithm that uses the topology information obtained in the
branch N[, and the set of unmarked nod#s. first phase.

jAdjustment
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TABLE I

a rotational fashion, rotating between branches. All nodes a
ADJUSTMENTALGORITHM

distanceN hops from the root are appended to the branches
in rotational fashion, before proceeding to all nodgst+ 1

Avr «—— the average number of the nodes on a brunch
B «—— Heaviest Brunch that has maximum neighbors hODS from the root.
While (Not meet the stop criteria) do
if Weight(B) is bigger than average
0 =|B| — Avr;
if there is nodem that has load close t& 101
Pushm to B’s unmarked neighbor w"‘“\(*‘-‘-‘w
else gos
connect :_ill leaf nodes to neighboring branches gon H""-»""RL .__\_‘__A_’W"*M
that can improve the balance factor o ofod s
if Weight(B) is smaller than average 3 ‘
Pull the leave nodes from the neighbor e
B = the next connected unmarked neighbor —e—BFS
o —=— Shortest
0 —a— Load Balance

1 234 56 7 8910 1112131415 1617 1818 20 212223 24 25 26 27 2829 30
Number of Nodes On the Square Side

After the first phase, i.e. after the basic algorithm has been Fig. 5. Average Performance Comparison
completed, the adjustment algorithm iteratively rebalances the
tree by moving nodes from the heaviest loaded branches to
more lightly loaded neighboring branches. First, the most
heavily loaded branch is found, and the deviation from the op-
timally balanced load is calculated by subtracting the branch’s 10]

load from the average load of an optimally balanced tree. DSW
A A

moved to a neighboring branch. The algorithm first attempts to
move a node whose load most closely matches the deviation.
If such a node cannot be moved, e.g. it is an interior node,

Second, a node within this heaviest branch is selected to be

Balance Factor

; : —e—BFS
then the algorithm searches among all of its border nodes 02 s st
that are also leaves. The algorithm continues to migrate leaf ; —+—Load Balance

1 234 56 7 89101112 131415 1617 1819 20 212223 2425 2627 2829 30

nodes to neighboring branches as long as the balance factor Niise e of 1oies On it aiars oie

is improved. The algorithm finishes after a stop criterion is
reached, e.g. stop after 10 iterations.

The algorithm spirals in the sense that it rotates through
each of the tree’s top-level branches, either pushing neighbor$igure 5 and Figure 6 assess the balance factor of the routing
from heavily loaded branches to lighter ones, or by pullingiees produced by the three algorithms as a function of the
neighbors to lightly loaded branches from heavier ones. Teguare grid's length on a side for a uniform load. For each
ble Il provides the pseudo-code for the adjustment algorithf, the square lengths, the experiment is executed 20 times.

The root is assigned randomly in each set of the experiments.
IV. SIMULATION AND PERFORMANCEEVALUATION From Figure 5, the shortest path algorithm produces the

We have built a Java simulator to evaluate the load balancingst unbalanced trees, while our basic algorithm is slightly
performance of our spiral node-centric strategy, and habetter balanced on average than BFS. In the worst, our basic
compared the balance factor resulting from our basic algorithatgorithm considerably outperforms both SPT and BFS. Worst
with the routing trees produced by breadth-first-search (BF&)ses occur when the root base station is located near the edge
and shortest path routing in sensor networks. Square sensiocorner of the square grid, so that both BFS and SPT produce
grids with both uniform and non-uniform load distributionhighly unbalanced trees, i.e. some branches are hemmed in
were studied. The convergence speed of our spiral adjustmant therefore especially short. In contrast, our basic algorithm
algorithm was also compared to a random adjustment algitempts to expand the lightest branches into open space, to
rithm. avoid confining the growth of branches.

First we evaluate the load balancing performance of ourln Figure 7, we randomly assign different load-generating
basic algorithm compared with shortest path tree (SPT) amgights to several nodes. Each of the selected nodes is
the tree created by BFS. The shortest path tree was generatesigned weight 20, while all the other nodes have weight
using Dijkstra’s algorithm using a link cost of 1 for each linkl. The number of “heavy nodes” is increased from 1 to 10. In
Since there will be many nodes at each iteration that are each case, we repeat the experiment for 20 times. The square
equal distance from the SPT, i.e. all border nodes are exadajlyd is 20x20. Figure 8 shows that our basic algorithm achieves
distance 1 from the SPT, then a node is randomly selected.nhuich better load balancing than BFS and SPT for uneven
practice, heuristics such as lowest address ID are used to breasor networks, because BFS and SPT are not accounting for
such ties. The BFS algorithm grows the tree from the root Inad aggregation. In comparison to uniform sensor networks,

Fig. 6. Worst Performance Comparison
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