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Abstract

The rapid advances in processor, memory, and radio technology have enabled the development of distributed net-

works of small, inexpensive nodes that are capable of sensing, computation, and wireless communication. Sensor

networks of the future are envisioned to revolutionize the paradigm of collecting and processing information in diverse

environments. However, the severe energy constraints and limited computing resources of the sensors, present major

challenges for such a vision to become a reality.

We consider a network of energy-constrained sensors that are deployed over a region. Each sensor periodically

produces information as it monitors its vicinity. The basic operation in such a network is the systematic gathering and

transmission of sensed data to a base station for further processing. During data gathering, sensors have the ability to

perform in-network aggregation (fusion) of data packets enroute to the base station. The lifetime of such a sensor

system is the time during which we can gather information from all the sensors to the base station. A key challenge in

data gathering is to maximize the system lifetime, given the energy constraints of the sensors.

Given the location of n sensors and a base station together with the available energy at each sensor, we are interested

in finding an efficient manner in which data should be collected from all the sensors and transmitted to the base station,

such that the system lifetime is maximized. This is the maximum lifetime data gathering problem. In this paper, we

describe novel algorithms, with worst-case running times polynomial in n, to solve the data gathering problem with

aggregation in sensor networks. Our experimental results demonstrate that the proposed algorithms significantly

outperform previous methods in terms of system lifetime.
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1. Introduction

The recent advances in micro-sensor technology

and low-power analog/digital electronics, have led

to the development of distributed, wireless net-

works of sensor devices [11,18,19]. Sensor net-
works of the future are envisioned to consist of
erved.
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hundreds of inexpensive nodes, that can be readily

deployed in physical environments to collect useful

information (e.g. seismic, acoustic, medical and

surveillance data) in a robust and autonomous

manner. However, there are several obstacles that

need to be overcome before this vision becomes a
reality [9]. Such obstacles arise from the limited

energy, computing capabilities and communica-

tion resources available to the sensors.

We consider a system of sensor nodes that are

homogeneous and highly energy-constrained.

Further, replenishing energy via replacing batteries

on hundreds of nodes (in possibly harsh terrains)

is infeasible. The basic operation in such a system
is the systematic gathering of sensed data to be

eventually transmitted to a base station for pro-

cessing. The key challenge in such data gathering is

conserving the sensor energies, so as to maximize

their lifetime. To this end, there are several power-

aware routing protocols for wireless ad hoc net-

works discussed in the literature [13,20]. In the

context of sensor networks, LEACHLEACH [8] proposes a
clustering-based protocol for transmitting data to

the base station. The main features include local

co-ordination for cluster formation among sen-

sors, randomized rotation of cluster heads for

improved energy utilization, and local data com-

pression to reduce global communication. Chang

and Tassiulas [3,4] describe data routing algo-

rithms that maximize the time until the energies of
the wireless nodes drain out. In related work,

Bhardwaj et al. [2] derive upper bounds on the

lifetime of a sensor network that collects data from

a specified region using some energy-constrained

nodes.

Data fusion or aggregation has emerged as a

basic tenet in sensor networks. The key idea is to

combine data from different sensors to eliminate
redundant transmissions, and provide a rich,

multi-dimensional view of the environment being

monitored. Krishnamachari et al. [12] argue that

this paradigm shifts the focus from address-centric

approaches (finding routes between pairs of end

nodes) to a more data-centric approach (finding

routes from multiple sources to a destination that

allows in-network consolidation of data). Madden
et al. [8] describe the TinyOS operating system that

can be used by an ad hoc network of sensors to
locate each other and route data. The authors

discuss the implementation of five basic database

aggregates, i.e. COUNTCOUNT, MINMIN, MAXMAX, SUMSUM, and

AVERAGEAVERAGE, based on the TinyOS platform and

demonstrate that such a generic approach for ag-

gregation leads to significant power (energy) sav-
ings. The focus of the work in [17] is on a class of

aggregation predicates that is particularly well

suited to the in-network regime. Such aggregates

can be expressed as an aggregate function f over

the sets a and b, such that f ða [ bÞ ¼ gðf ðaÞ; f ðbÞÞ.
Other previous works [9,10,14,15] in the related

area aim at reducing the energy expended by the

sensors during the process of data gathering. Di-
rected diffusion [10] is based on a network of nodes

that can co-ordinate to perform distributed sens-

ing of an environmental phenomenon. Such an

approach achieves significant energy savings when

intermediate nodes aggregate responses to queries.

The SPINSPIN protocol [9] uses meta-data negotiations

between sensors to eliminate redundant data

transmissions through the network. In PEGASISPEGASIS

[14], sensors form chains so that each node trans-

mits and receives from a nearby neighbor. Gath-

ered data moves from node to node, gets

aggregated and is eventually transmitted to the

base station. Nodes take turns to transmit so that

the average energy spent by each node gets re-

duced. Lindsey et al. [15] describe a hierarchical

scheme based on PEGASISPEGASIS that reduces the average
energy consumed and delay incurred in gathering

the sensed data.

In this paper, we describe novel algorithms for

data gathering and aggregation in sensor net-

works. We define the lifetime of a sensor network

to be the time during which we can gather infor-

mation from all the sensors to the base station.

Given the location of sensors and the base station
and the available energy at each sensor, we are

interested in finding an efficient manner in which

the data should be collected and aggregated from

all the sensors and transmitted to the base station,

such that the system lifetime is maximized. This is

the maximum lifetime data aggregation (MLDAMLDA)

problem. We first propose a near-optimal poly-

nomial-time algorithm for solving the MLDAMLDA

problem. The proposed algorithm, while per-

forming significantly better than existing protocols
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in terms of system lifetime, is computationally

expensive for large sensor networks. Conse-

quently, we describe clustering-based heuristics

approaches for maximum lifetime data gathering

and aggregation in large-scale sensor networks.

Finally, we provide experimental results to show
that (i) for smaller sensor networks the MLDAMLDA al-

gorithm achieves system lifetimes that are 1.15–

2.32 times better when compared to an existing

data gathering protocol, (ii) for larger networks,

our clustering-based heuristics achieve as much as

a factor of 2.61 increase in the system lifetime

when compared to the same protocol.

The rest of the paper is organized as follows. In
Section 2, we describe the system model and the

data gathering problem. Section 3 provides a de-

tailed description of our MLDAMLDA algorithm to solve

the maximum lifetime data aggregation problem in

sensor networks. Next, in Section 4, we propose

clustering-based heuristics to solve the problem

efficiently for larger sensor networks. In Section 5,

we present the experimental results and finally we
conclude the paper in Section 6.
2. The data gathering problem

2.1. System model

Consider a network of n sensor nodes 1; 2; . . . ; n
and a base station node t labeled nþ 1 distributed

over a region. The locations of the sensors and the

base station are fixed and known a priori. Each

sensor produces some information as it monitors

its vicinity. We assume that each sensor generates

one data packet per time unit to be transmitted to

the base station. For simplicity, we refer to each

time unit as a round. We assume that all data
packets have size k bits. The information from all

the sensors needs to be gathered at each round and

sent to the base station for processing. We assume

that each sensor has the ability to transmit its

packet to any other sensor in the network or di-

rectly to the base station. Further, each sensor i
has a battery with finite, non-replenishable energy

Ei. Whenever a sensor transmits or receives a data
packet, it consumes some energy from its battery.
The base station has an unlimited amount of en-

ergy available to it.

Our energy model for the sensors is based on the

first order radio model described in [8]. A sensor

consumes �elec ¼ 50 nJ/bit to run the transmitter or

receiver circuitry and �amp ¼ 100 pJ/bit/m2 for the
transmitter amplifier. Thus, the energy consumed

by a sensor i in receiving a k-bit data packet is

given by,

RXi ¼ �eleck ð1Þ
while the energy consumed in transmitting a data
packet to sensor j is given by

TXi;j ¼ �eleck þ �ampd2
i;jk; ð2Þ

where di;j is the distance between nodes i and j.

2.2. Problem statement

We define the lifetime T of the system to be the

number of rounds until the first sensor is drained
of its energy. A data gathering schedule specifies,

for each round, how the data packets from all the

sensors are collected and transmitted to the base

station. For brevity, we refer to a data gathering

schedule simply as a schedule. Observe that a

schedule can be thought of as a collection of T
directed trees, each rooted at the base station and

spanning all the sensors i.e. a schedule has one tree
for each round. The lifetime of a schedule equals

the lifetime of the system under that schedule.

Clearly, the system lifetime is intrinsically con-

nected to the data gathering schedule. Our objec-

tive is to find a schedule that maximizes the system

lifetime T .
3. MLDAMLDA: maximum lifetime data gathering with

aggregation

Data aggregation performs in-network fusion of

data packets, coming from different sensors enro-

ute to the base station, in an attempt to minimize

the number and size of data transmissions and

thus save sensor energies [8,10,12,14]. Such ag-
gregation can be performed when the data from

different sensors are highly correlated. As in pre-

vious work [8,10,12,14], we make the simplistic
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assumption that an intermediate sensor can ag-

gregate multiple incoming packets into a single

outgoing packet.

The MLDAMLDA problem. Given a collection of sensors

and a base station, together with their locations
and the energy of each sensor, find a data gathering

schedule with maximum lifetime, where sensors are

permitted to aggregate incoming data packets.

Consider a schedule S with lifetime T rounds.

Let fi;j be the total number of packets that node i
(a sensor) transmits to node j (a sensor or base

station) in S. Since any valid schedule must re-
spect the energy constraints at each sensor, it fol-

lows that for each sensor i ¼ 1; 2; . . . ; n,

Xnþ1

j¼1

fi;jTXi;j þ
Xn

j¼1

fj;iRXi 6Ei: ð3Þ

Recall that each sensor, for each one of the T
rounds, generates one data packet that needs to

be collected, possibly aggregated, and eventually

transmitted to the base station.

The schedule S induces a flow network G ¼
ðV ;EÞ. The flow network G is a directed graph

having as nodes all the sensors and the base sta-

tion, and having edges ði; jÞ with capacity fi;j
whenever fi;j > 0.

Theorem 1. Let S be a schedule with lifetime T ,
and let G be the flow network induced by S. Then,
for each sensor s, the maximum flow from s to the
base station t in G is PT.

Proof. Each data packet transmitted from a sensor

must reach the base station. Observe that, the

packets from s could possibly be aggregated with

one or more packets from other sensors in the

network. Intuitively, we need to guarantee that

each of the T values from s influences the final
value(s) received at the base station. In terms of

network flows, this implies that sensor s must have

a maximum s� t flow of size PT to the base

station in the flow network G. �

Thus, a necessary condition for a schedule to

have lifetime T is that each node in the induced
flow network can push flow T to the base station t.
Stated otherwise, each sensor s must have a mini-

mum s� t cut of capacity ðsizeÞP T to the base

station [5]. Next, we consider the problem of

finding a flow network G with maximum T , that
allows each sensor to push flow T to the base
station, while respecting the energy constraints in

(5) at all the sensors. We call such a flow network

G an admissible flow network with lifetime T . An

admissible flow network with maximum lifetime is

called an optimal admissible flow network. Clearly,

what needs to be found are the capacities of the

edges in G.

3.1. Finding a near-optimal admissible flow network

An optimal admissible flow network can be

found using an integer program with linear con-

straints. The integer program, in addition to the

variables for the lifetime T and the edge capacities

fi;j, uses the following variables: for each sensor

k ¼ 1; 2; . . . ; n, let pðkÞ
i;j be a flow variable indicating

the flow that k sends to the base station t over the
edge ði; jÞ.

The integer program computes the maximum

system lifetime T subject to the energy constraint

(5) and the additional linear constraints (6)–(9) for

each sensor, as shown in Table 1. For each sensor

k ¼ 1; 2; . . . ; n, constraints (6) and (7) enforce the

flow conservation principle at the sensor; con-
straint (9) ensures that T flow from sensor k
reaches the base station; and constraint (8) ensures

that the capacity constraints on the edges of the

flow network are respected. Moreover, constraint

(5) is used to guarantee that the edge capacities of

the flow network respect the sensor�s available

energy. Finally, for the integer program, all vari-

ables are required to take non-negative integer
values. The linear relaxation of the above integer

program, i.e. when all the variables are allowed to

take fractional values, can be computed in poly-

nomial-time. Then, we can obtain a very good

approximation for the optimal admissible flow

network by first fixing the edge capacities to the

floor of their values obtained from the linear re-

laxation so that the energy constraints are all sat-
isfied; and then solving the linear program (4)

subject to constraints (6)–(9) without requiring



Table 1

Integer program for finding an optimal admissible flow network for the MLDAMLDA problem

Objective :

maximize T ð4Þ

Constraints :

Xnþ1

j¼1

fi;jTXi;j þ
Xn

j¼1

fj;iRXi 6Ei; ð5Þ

Xn

j¼1

pðkÞ
j;i ¼

Xnþ1

j¼1

pðkÞ
i;j ; 8i ¼ 1; 2; . . . ; n and i 6¼ k; ð6Þ

T þ
Xn

j¼1

pðkÞ
j;k ¼

Xnþ1

j¼1

pðkÞ
k;j ; ð7Þ

06pðkÞ
i;j 6 fi;j; 8i ¼ 1; 2; . . . ; n and 8j ¼ 1; 2; . . . ; nþ 1; ð8Þ

Xn

i¼1

pðkÞ
i;nþ1 ¼ T ; ð9Þ

where k ¼ 1; . . . ; n and all variables are required to be non-negative integers:
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anymore that the flows are integers (since a solu-
tion with integer flows can always be found). 1

3.2. Constructing a schedule from an admissible flow

network

Next, we discuss how to get a schedule from an

admissible flow network. Recall that a schedule is

a collection of directed trees that span all the
sensors and the base station, with one such tree for

each round. Each such tree specifies how data

packets are gathered and transmitted to the base

station. We call these trees aggregation trees. An

aggregation tree may be used for one or more

rounds; we indicate the number of rounds f , that
an aggregation tree is used, by associating the

value f with each one of its edges; we call f to be
the lifetime of the aggregation tree.

Fig. 1 provides an example of an admissible flow

network G with lifetime T ¼ 100 and two aggre-
1 The reduction in the system lifetime achieved, w.r.t. the

fractional optimal lifetime, is at most the maximum cardinality

of any min s� t cut.
gation trees A1 and A2, with lifetimes 60 and 40
rounds respectively. By looking at one of these

trees, say A1, we see that for each one of 60 rounds,

sensors 2 and 3 transmit one data packet to sensor

1, which in turn aggregates the incoming packets

with its own data packet, and then sends one data

packet to the base station. Similarly, for each of

the remaining 40 rounds (using A2), sensors 1 and

2 transmit one data packet to sensor 3, which in
aggregates the incoming packets with its own

packet, and sends one data packet to the base

station. We next describe an algorithm to con-

struct aggregation trees from an admissible flow

network G with lifetime T .

Definition 1. Given an admissible flow network G
with lifetime T and a directed tree A rooted at the
base station t with lifetime f , we define the ðA; f Þ-
reduction G0 of G to be the flow network that re-

sults from G after reducing by f , the capacities of

all of its edges that are also in A. We call G0 the

ðA; f Þ-reduced G.

Definition 2. An ðA; f Þ-reduction G0 of G is feasible

if the maximum flow from v to the base station t in
G0 is P T � f for each vertex v in G0.
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Fig. 1. An admissible flow network G with lifetime 100 rounds, and two aggregation trees A1 and A2 with lifetimes 60 and 40 rounds

respectively.
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Note that A does not have to span all the ver-

tices of G, and thus it is not necessarily an aggre-

gation tree. Moreover, if A is an aggregation tree,

with lifetime f , for an admissible flow network G
with lifetime T , and the ðA; f Þ-reduction of G is

feasible, then the ðA; f Þ-reduced flow network G0

of G is an admissible flow network with lifetime
T � f . Therefore, we can devise a simple iterative

procedure, to construct a schedule for an admis-

sible flow network G with lifetime T , provided we

can find such an aggregation tree A.
We use the GETETTREEREE algorithm in Fig. 2 to

get an aggregation tree A with lifetime f 6 T from

an admissible flow network G with lifetime T .
Throughout this algorithm, we maintain the in-
variant that A is a tree rooted at t and the ðA; f Þ-
reduction of G is feasible. Tree A is formed as
Fig. 2. Constructing aggregation tree A with lifetime f from an

admissible flow network G with lifetime T .
follows. Initially A contains just the base station.

While A does not span all the sensors, we find and

add to A an edge e ¼ ði; jÞ, where i 62 A and j 2 A,
provided that the ðA0; f Þ-reduction of G is feasi-

ble––here A0 is the tree A together with the edge e,
and f is 1 or the minimum of the capacities of the

edges in A0.
Finally, we can compute a collection of aggre-

gation trees from an admissible flow network G
with lifetime T by using the GETETSCHEDULECHEDULE al-

gorithm in Fig. 3, such that T data packets from

each of the sensors are aggregated and transmitted

to the base station t.
We refer to the algorithm described in this sec-

tion, for computing a maximum lifetime data
gathering schedule, as the MLDAMLDA algorithm.

Theorem 2. Let G ¼ ðV ;EÞ be an admissible flow
network with edge capacities cðeÞ, e 2 E. Let t 2 V
be the base station and T a positive integer i.e. the
lifetime of the system. Then, the GETETSCHEDULECHEDULE

algorithm can always find a sequence of aggregation

trees that can be used to aggregate and transmit T
data packets from each sensor to the base station.
Fig. 3. Constructing a schedule S from an admissible flow

network G with lifetime T .
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Proof. Refer to Appendix A for proof details. �

3.3. Worst-case running time of MLDAMLDA

The running time analysis of the MLDAMLDA algo-

rithm is based on the following three lemmas.

Lemma 1 (Bertsimas and Tsitsiklis [1]). An �-op-
timal solution to a linear program with n variables
can be found in Oðn3:5 logð1=�Þ þ n5 logðnUÞÞ time,
where U is the maximum magnitude of the coeffi-

cients of the linear program.

Proof. See the complexity analysis of the potential

reduction algorithm in [1, p. 418]. �

Lemma 2 (Goldberg and Rao [7]). Given a flow
network G ¼ ðV ;EÞ with integral edge capacities
bounded by U , a maximum s� t flow can be com-
puted in OðminðV 2=3;E1=2ÞE logðV 2=EÞ logUÞ time,
where s and t are any two vertices of G.

Proof. See [7]. �

Lemma 3. Consider a sensor network with a base
station t and n sensors. Each sensor has initial energy
no more than Emax and consumes energy for receiv-

ing and transmitting k-bit data packets according to
the first order radio model [8]. Then, the lifetime of

the sensor network is 6Emax=ð�eleckÞ ¼ Oð1Þ.

Proof. Let dmin be the minimum distance of a

sensor from the base station t. In each round, one
data packet needs to be collected from each of the

sensors and transmitted to the base station. From

the first order radio model, Eqs. (1) and (2), the

minimum total energy expended by all the sensors

in one round is at least
ðn� 1Þ�eleck þ ð�eleck þ �ampd2
minkÞ

¼ n�eleck þ �ampd2
mink; ð10Þ
2 Note that since each edge of G needs to be checked at most

once for inclusion in the aggregation tree [16], the GETETTREEREE

routine can be implemented to use OðVEÞ MAXFLOWMAXFLOW compu-

tations.
since there are n� 1 packet transmissions over

distance at least 0, and one packet transmission

over distance at least dmin. Therefore, the system

lifetime T , i.e. the number of rounds before the

first sensor is drained of its energy, is at most
total energy of all the sensors

minimum energy consumed in one round

¼ nEmax

n�eleck þ �ampd2
mink

6
Emax

�eleck
¼ Oð1Þ: �

ð11Þ
Theorem 3. The worst-case running time of the

MLDAMLDA algorithm is Oðn15 log nÞ, where n is the

number of sensors.

Proof. Consider a sensor network with n sensors

and maximum lifetime T .
To compute an admissible flow network, the

MLDAMLDA algorithm solves the linear program (4)

twice. Observe that the linear program (4) has

Oðn3Þ variables and coefficients of magnitude

OðT Þ. Using Lemmas 3 and 1, it follows that the
time tLP to compute an �-approximate solution to

the linear program (4) is

tLP ¼ O n10:5 log
1

�

�
þ n15 log n

�
¼ Oðn15 log nÞ;

ð12Þ
since � is assumed to be a small constant.

Next, we look at the running time of the
GETETSCHEDULECHEDULE procedure. The GETETSCHEDULECHEDULE

procedure makes OðT Þ calls to the GETETTREEREE rou-

tine. Each call of the GETETTREEREE routine involves

OðV 2EÞ MAXFLOWMAXFLOW computations on the admissi-

ble flow network G ¼ ðV ;EÞ. 2 Since G has OðnÞ
vertices and Oðn2Þ edges with capacity OðT Þ ¼
Oð1Þ, using Lemma 2, the running time of a

MAXFLOWMAXFLOW computation on G is tMAXFLOW ¼
Oðn8=3 log nÞ. Thus, the running time of the

GETETSCHEDULECHEDULE routine is

6TV 2EtMAXFLOW ¼ Oðn20=3 log nÞ: ð13Þ

Therefore, the total worst-case running time of

MLDAMLDA is
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6 2tLP þOðn20=3 log nÞ
¼ Oðn15 log nÞ þOðn20=3 log nÞ
¼ Oðn15 log nÞ: ð14Þ

We report actual running times of sample runs of

the MLDAMLDA algorithm in Section 5. �
4. CMLDACMLDA: clustering-based MLDAMLDA

Given the location of n sensors and a base sta-

tion t, we can find a maximum lifetime data

gathering schedule using the MLDAMLDA algorithm.

However, it involves solving a linear program (in

Table 1) with Oðn3Þ variables and constraints. For
large sensor networks, i.e. for large values of n, this
can be computationally expensive.

In this section, we propose a clustering-based

approach to solve the data gathering problem

efficiently for large networks. In particular, we

describe two heuristics––GREEDY CMLDAREEDY CMLDA and

INCREMENTAL CMLDANCREMENTAL CMLDA, based on the MLDAMLDA al-

gorithm in Section 3.
Consider the set of n sensors 1; 2; . . . ; n and a

base station t labeled as nþ 1. We assume, without

loss of generality, that each sensor has initial en-

ergy E. Let the sensors be partitioned into m
clusters /1; . . . ;/m each consisting of at most c
sensors, i.e. j/ij6 c, for i ¼ 1; 2; . . . ;m, where c is

some constant. We refer to each cluster as a super-

sensor. Such a partitioning of the sensors can be
achieved using an appropriate proximity-based

clustering algorithm. Let super-sensor /mþ1 consist

only of the base station t.

4.1. The greedy CMLDACMLDA heuristic

We propose a simple heuristic for finding a

maximum lifetime data gathering schedule in sen-
Fig. 4. Constructing an aggregation tree A
sor networks. Our approach is to compute a

maximum lifetime schedule for the super-sensors

/1; . . . ;/m with the base station /mþ1, and then use

this schedule to construct aggregation trees for the

sensors.

Fig. 6 gives a high level view of the greedy
clustering-based MLDAMLDA (GREEDY CMLDAREEDY CMLDA) heu-

ristic. In the first phase, we assign the initial energy

of each super-sensor /i ði ¼ 1; 2; . . . ;mÞ to be the

sum of the initial energies of the sensors within it,

i.e. E/i
¼ Ej/ij. The initial energy of super-sensor

/mþ1 is set to infinity. The distance between two

super-sensors /i and /j is assigned to be the

maximum distance between any two nodes (sensor
or base station) u and v, such that u 2 /i and

v 2 /j. Having set up the initial energies and the

distances between the super-sensors, we can find a

maximum lifetime schedule for the super-sensors

/1; . . . ;/m with the base station as /mþ1, using the

MLDAMLDA algorithm. Recall that such a schedule

consists of a collection of directed trees T1; . . . ;
Tk, each rooted at /mþ1 and spanning over all the
super-sensors. To distinguish it from an aggrega-

tion tree for the sensors, we refer to each such tree

as an aggregation super-tree (or simply an AS-

tree).

Next, we use the BUILD-TREEBUILD-TREE procedure (in Fig.

4) to construct an aggregation tree A for the sensors

from an AS-tree Tk. Observe that A is a directed

tree rooted at t that is used to aggregate one data
packet from each sensor. We denote Er½i to be the

residual energy at sensor i. Initially, Er½i ¼ E for

each sensor i in the network. Our objective is to

construct (one or more) aggregation trees such that

the minimum residual energy among the n sensors is
maximized, thereby maximizing the lifetime of the

corresponding data gathering schedule.

Initially, aggregation tree A contains only the
base station t. We perform a (pre-order) traversal
for the sensors from an AS-tree T.
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of the AS-tree Tk. For each visited super-sensor /,
we add the sensors in / to the current aggregation

tree A. Let / � A denote the set of sensors in / that

are not included in A. We define the residual energy

of a pair ði; jÞ as minfEr½i � TXi;j;E
r½j � RXjg,

where i 2 / � A and j 2 A. Intuitively, on adding a
directed edge ði; jÞ to A, the residual energy at

sensor i is reduced by the energy consumed in

transmitting a data packet from i to j. Moreover, if

j is not the base station, its residual energy is re-

duced by the energy consumed in receiving a data

packet. Among all pairs ði; jÞ, such that i 2 / � A
and j 2 A, the BUILD-TREEBUILD-TREE procedure chooses one

with the maximum residual energy and includes
the edge ði; jÞ in A. The process is repeated until all

sensors in / are included in A, upon which it

continues with the next super-sensor in Tk. Fig. 5

gives an illustration of the BUILD-TREEBUILD-TREE procedure.

The running time of the procedure is polynomial

in the number of sensors. Finally, observe that a

maximum lifetime schedule for the super-sensors

could possibly consist of one or more AS-trees. In
this case, we choose (in step 9 of Fig. 6) the AS-
Fig. 5. Illustration of the BUILD-TREEBUILD-TREE procedure for an AS-tree Tk .

and Q3. Super-sensor Q4 contains the base station 10. The aggregatio

and transmitting to the base station. (a) AS-tree Tk for super-sen

TREETREEðTk ;Q1;A; 10Þ, (c) BUILD-TREEBUILD-TREEðTk ;Q2;A; 10Þ and (d) BUILD-TBUILD-T
trees in decreasing order of their respective life-

times; while constructing no more than fk aggre-

gation trees from a particular AS-tree Tk, where fk
is the lifetime of the AS-tree Tk.

Worst-case running time of GREEDY CMLDAREEDY CMLDA.

Consider the GREEDY CMLDAREEDY CMLDA heuristic in Fig. 6.
Steps 1 and 2 (of Phase I) use a greedy proximity-

based algorithm to cluster the n sensors into mþ 1

super-sensors, which can be done in Oðn2Þ time. In

steps 3 and 4, we initialize the energies of and

distances between the super-sensors in Oðn2Þ time.

Then, we compute an admissible flow network and

a schedule for the super-sensors in Oðm15 logmÞ
worst-case running time, by solving the linear
program (4) with Oðm3Þ variables (see also Lemma

1 and Theorem 3).

In Phase II of the heuristic, we use this flow

network to construct aggregation trees for the

sensors. In steps 6 and 7, we initialize the lifetime

and the residual energy of each sensor in OðnÞ
time. The while loop in step 8 is executed at most

T ¼ Oð1Þ times, where T is the lifetime found in
Phase I. The time for each iteration of this while
Sensors 1; 2; . . . ; 9 are partitioned among super-sensors Q1, Q2,

n tree A is used for collecting one data packet from each sensor

sors Q1, Q2 and Q3 with base station 10 in Q4, (b) BUILD-BUILD-

REEREEðTk ;Q3;A; 10Þ.



Fig. 6. A high level description of the GREEDY CMLDAREEDY CMLDA heuristic.

3 For brevity, we refer to both t and /mþ1 as the base station.
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loop is dominated by the running time of the

BUILD-TREEBUILD-TREE routine. Observe that, the worst-case

running time of the BUILD-TREEBUILD-TREE routine is Oðn3Þ.
Thus, the worst-case running time of Phase II
is Oðn3Þ, and consequently the worst-case run-

ning time of the GREEDY CMLDAREEDY CMLDA heuristic is

Oðm15 logmþ n3Þ.
As discussed in Section 5, by appropriately

choosing the number of super-sensors m, we can

achieve a significant reduction in the actual run-

ning time of GREEDY CMLDAREEDY CMLDA with respect to

MLDAMLDA. For example, for m ¼ n3=16, the worst-case
running time of GREEDY CMLDAREEDY CMLDA is Oðn3Þ.

4.2. The incremental CMLDACMLDA heuristic

In this section, we describe an improved heu-

ristic for the MLDAMLDA problem in large-scale sensor

networks. Recall that, in solving the MLDAMLDA prob-

lem, we are essentially interested in provisioning the
(edge) capacities of an admissible flow network

G––such that the s� t flow from each sensor s to
the base station t in G is maximized. The proposed

heuristic builds such a flow network by incre-

mentally provisioning capacities on its edges.

Consider the set of n sensor nodes and a base

station node t. Let the initial energy of each sensor

be E. Let the sensors be partitioned into m super-
sensors /1; . . . ;/m, each having at most c sensors

for some constant c. Let super-sensor /mþ1 consist

only of the base station t. The linear relaxation of

the integer program in Table 1 can be used to find
an optimal admissible flow network G for the

super-sensors. Our basic approach is to use flow

network G in order to construct an admissible flow

network for the sensors. The INCREMENTALNCREMENTAL

MLDAMLDA heuristic consists of four phases and works

as follows.

Phase I. In the first phase, we assign the initial

energy of each super-sensor /i ði ¼ 1; 2; . . . ;mÞ to
be the sum of the initial energies of the sensors

within it, i.e. E/i
¼ Ej/ij. The distance between

two super-sensors /i and /j is assigned to be the

maximum distance between any two nodes (sensor

or base station) u and v, such that u 2 /i and

v 2 /j. Having set up the initial energies and the

distances between the super-sensors, we compute

an optimal admissible flow network G of maxi-
mum lifetime T for the super-sensors /1; . . . ;/m

(with the base station /mþ1),
3 using the linear re-

laxation of the integer program in Table 1. Spe-

cifically, we provision the capacity f/i;/j
between
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every pair of super-sensors /i and /j, such that the

system of super-sensors has a lifetime T .
Phase II. Given the flow network G for the su-

per-sensors and the target lifetime T computed in

Phase I, we next determine the capacity provisions

that are required for each of the sensors within
every super-sensor.

Consider a super-sensor /i. In order to live for T
rounds, each sensor s in /i needs to transmit T
packets to the base station t ð/mþ1Þ. Observe that,

each super-sensor /i has a maximum flow of size

PT to /mþ1 in G. Stated otherwise, each super-

sensor /i has a minimum /i � /mþ1 cut of size

PT in G. Therefore, for each sensor s in /i, we
need to determine the capacity provisions between

s and the remaining sensors in /i, as well as be-

tween s and each of the super-sensors /1; . . . ;/i�1,

/iþ1; . . . ;/mþ1, such that

(i) the sum of the provisioned capacities from (to)

all the sensors in /i to (from) each super-
Table 2

Linear program for Phase II of INCREMENTAL CMLDANCREMENTAL CMLDA

Objective :

minimize Emax

Energy and capacity constraints :X
j2/i

fs;jTXs;j þ
X
j2/i

fj;sRXs þ
X
j6¼i

fs;/j
TXs;j þ

X
j6¼i

f/j ;sRXs 6Emax; 8s

X
s2/i

fs;/j
¼ f/i ;/j

; 8j 6¼ i;

X
s2/i

f/j ;s ¼ f/j ;/i
; 8j 6¼ i:

Flow constraints :X
j2/i

pðsÞ
j;k ¼

X
j2/i

pðsÞ
k;j þ

X
j6¼i

pðsÞ
k;/j

; 8k 2 /i and k 6¼ s;

X
j2/i

pðsÞ
j;s þ T ¼

X
j2/i

pðsÞ
s;j þ

X
j 6¼i

pðsÞ
s;/j

;

06pðsÞ
k;j 6 fk;j; 8j 2 /i and 8k 2 /i;

06pðsÞ
k;/j

6 fk;/j
; 8j 6¼ i;X

j6¼i;k2/i

pðsÞ
k;/j

¼ T ;

where s 2 /i and all variables are required to be non-negative:
sensor /j equals the provisioning f/i ;/j
ðf/j;/i

Þ
obtained from Phase I, and

(ii) each sensor s in /i can push T packets (flow) to

the remaining super-sensors. Note that this

guarantees that each s� /mþ1ðs� tÞ minimum
cut in the resulting flow network has

capacityP T , since each minimum /i � /mþ1

cut in G has capacityP T .

In doing so, our objective is to minimize the

maximum energy consumed by any sensor within

the super-sensor /i, thereby extending the lifetime

of the sensors. The necessary provisions can be
computed in polynomial-time using the linear

program in Table 2.

For each super-sensor /1; . . . ;/m, the linear

program minimizes the maximum energy con-

sumed by any sensor within the super-sensor,

subject to the energy constraint (16), the capacity

constraints (17) and (18), and the flow constraints

(19)–(23). For each sensor s 2 /i, constraint (16)
ð15Þ

2 /i; ð16Þ

ð17Þ

ð18Þ

ð19Þ

ð20Þ

ð21Þ

ð22Þ

ð23Þ
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gives the energy consumed at the sensor. Con-

straints (17) and (18) ensure that the sum of the

provisioned capacities from (to) all the sensors in

/i to (from) each super-sensor /j equals the pro-

visioning f/i;/j
ðf/j;/i

Þ. Constraints (19) and (20)

enforce the flow conservation principle at a sensor;
constraints (21) and (22) ensure that the capacity

constraints on the edges of the flow network are

respected; and constraint (23) ensures that each

sensor s 2 /i has a minimum cut of size T to the

remaining super-sensors.

Phase III. From Phase II, we obtain the capacity

provisions between any sensor s and all other

sensors in the same super-sensor. In addition, we
know the provisions that are required between s
and each of the remaining super-sensors. However,

in order to construct the admissible flow network

for the sensors, we need to determine the capacities

that need to be provisioned between individual

sensors in different super-sensors.

In particular, consider any two distinct super-

sensors /l and /r ðl; r ¼ 1; 2; . . . ;mþ 1Þ. 4 For
each sensor i in /l, we know the capacity fi;/r

ðf/r ;iÞ
provisioned from (to) sensor i to (from) super-

sensor /r. Similarly, for each sensor j in /r, we

know the capacity fj;/l
ðf/l;jÞ provisioned from (to)

sensor j to (from) /l. To complete the construc-

tion, we provision capacities between pairs of

sensors from /l and /r, while ensuring that

(i) the total capacity provisioned from (to) each

sensor i 2 /l to (from) all the sensors in /r

equals the provisioning fi;/r
ðf/r ;iÞ obtained

from Phase II, and

(ii) the total capacity provisioned from (to) each

sensor j 2 /r to (from) all the sensors in /l

equals the provisioning fj;/l
ðf/l;jÞ.

In doing so, we again maintain the objective of

minimizing the maximum energy consumed by

each sensor in any of the super-sensors. This is a

matching problem which can be solved in polyno-

mial-time using the linear program in Table 3.
4 We do not provision capacities from the base station t to
any sensor.
For each pair of super-sensors /l and /r, the

linear program minimizes the maximum energy

consumed by any sensor within the super-sensors,

subject to the constraints (25)–(30). For each sen-

sor i 2 /l and each sensor j 2 /r, constraints (25)

and (28) give the energy consumed at the respec-
tive sensors. Constraints (26) and (27) guarantee

that the total capacity provisioned from (to) each

sensor i 2 /l to (from) all the sensors in /r equals

the provisioning fi;/r
ðf/r ;iÞ. Similarly, constraints

(29) and (30) ensure that the total capacity provi-

sioned from (to) each sensor j 2 /r to (from) all

the sensors in /l equals the provisioning fj;/l

ðf/l;jÞ.
Phase IV. At the end of Phase III, we obtain an

admissible flow network with lifetime T for all n
sensors and the base station t with capacities

provisioned between them. Note that, these ca-

pacities are fractional non-negative numbers. In

order to obtain a data gathering schedule for the

sensors, we first compute the the maximum energy

Emax consumed by any sensor. Then, using Lemma
4 below, we scale the provisioned capacities by a

factor of a ¼ E=Emax, and thus obtain an admis-

sible flow network G0 with lifetime T0 ¼ aT that

respects the initial energy of the sensors.

Lemma 4. Given the location of n sensors and a
base station t, the lifetime of an admissible flow
network scales linearly with the energy of the sen-

sors.

Proof. Follows directly from the energy constraint

(5) for the sensors in the formulation of the MLDAMLDA

problem in Table 1. �

Next, we floor all the capacities of G0 to obtain

an admissible flow network with integer capacities
(flows). We call this flow network the INCRE-NCRE-

MENTAL CMLDAMENTAL CMLDA flow network. Using this flow

network, we finally compute the integral system

lifetime (as in the MLDAMLDA algorithm), and a data

gathering schedule S using the GETETSCHEDULECHEDULE

algorithm from Section 3.

Fig. 7 provides an illustration of the INCRE-NCRE-

MENTAL CMLDAMENTAL CMLDA heuristic. We consider a set of 4
sensors and a base station labeled 5, clustered into

super-sensors Q1, Q2 and Q3. Fig. 7(a) shows an



Table 3

Linear program for Phase III of INCREMENTAL CMLDANCREMENTAL CMLDA

Objective :

minimize Emax ð24Þ

Energy and capacity constraints for /l :X
j2/r

fi;jTXi;j þ
X
j2/r

fj;iRXi 6Emax; 8i 2 /l; ð25Þ

X
j2/r

fi;j ¼ fi;/r
; 8i 2 /l; ð26Þ

X
j2/r

fj;i ¼ f/r ;i; 8i 2 /l: ð27Þ

Energy and capacity constraints for /r :X
j2/l

fi;jTXi;j þ
X
j2/l

fj;iRXi 6Emax; 8i 2 /r; ð28Þ

X
j2/l

fi;j ¼ fi;/l
; 8i 2 /r; ð29Þ

X
j2/l

fj;i ¼ f/l ;i; 8i 2 /r; ð30Þ

where all variables are required to be non-negative integers:
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optimal admissible flow network for the super-
sensors with lifetime 100. We use this flow network

to provision capacities for the sensors within each

super-sensor, during Phase II of the heuristic. The

resulting network is shown in Fig. 7(b). Observe

that, sensors 1 and 2 in Q1, each have a min-cut of

size 100 to super-sensors Q2 and Q3. Similarly,

sensors 3 and 4 in Q2, each have a min-cut of size

100 to super-sensors Q1 and Q3. Finally, we solve
the matching problem in Phase III of the heuris-

tics, to determine the capacity provisioning

between pairs of sensors from Q1 and Q2. The

INCREMENTAL CMLDANCREMENTAL CMLDA flow network for the

sensors with lifetime of 100 rounds is shown in Fig.

7(c). Note that each sensor has a min-cut of size

100 to the base station 5.

Worst-case running time of INCREMENTALNCREMENTAL

CMLDACMLDA . The INCREMENTAL CMLDANCREMENTAL CMLDA heuristic

consists of four phases. Phase I involves solving

the linear program (4), which has Oðm3Þ variables,
and thus the worst-case running time of Phase I is

Oðm15 logmÞ (see Lemma 1 and Theorem 3). In

Phase II, we solve m instances of the linear

program (4), each with Oðcm2Þ variables. Each
instance of the linear program (4) can be solved in
worst-case running time Oðc5m10 logðcmÞÞ, using

Lemma 1. Hence, the worst-case running time of

Phase II is Oðc5m11 logðcmÞÞ. In Phase III, we solve

the linear program (4) with Oðc2Þ variables in

worst-case running time Oðc10 log cÞ. Finally,

Phase IV has worst-case running time Oðn2Þ, since
we need to find the maximum energy consumed

by any sensor.
Therefore, the total worst-case running time of

INCREMENTAL CMLDANCREMENTAL CMLDA is

Oðm15 logmÞ þOðc5m11 logðcmÞÞ
þOðc10 log cÞ þOðn2Þ: ð31Þ

As discussed in Section 5, by appropriately

choosing the number of super-sensors m and the

maximum number c of sensors within any super-

sensor, we can achieve a significant reduction in

the actual running time of INCREMENTAL CMLDANCREMENTAL CMLDA

with respect to the MLDAMLDA. For example, for

m ¼ n5=11, the worst-case running time of the

INCREMENTAL CMLDANCREMENTAL CMLDA is Oðn75=11 log nÞ ¼
Oðn6:8 log nÞ.



Fig. 7. Illustrative example of the INCREMENTAL CMLDANCREMENTAL CMLDA

heuristic: (a) an admissible flow network from Phase I for

super-sensors Q1 and Q2 with base station in Q3, (b) capacity

provisioning from Phase II for sensors 1, 2 in super-sensor Q1

and sensors 3, 4 in super-sensor Q2 and (c) the INCREMENTALNCREMENTAL

CMLDACMLDA flow network for the sensors with lifetime of 100

rounds.
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5. Experiments

In this section, we compare the data gathering

schedule given by the near-optimal MLDAMLDA algo-

rithm, the GREEDY CMLDAREEDY CMLDA heuristic and the

INCREMENTAL CMLDANCREMENTAL CMLDA heuristic, with that ob-

tained from a chain-based 3-level hierarchical

protocol proposed by Lindsey, Raghavendra and
Sivalingam [15]. For brevity, we refer to this pro-

tocol as the LRSLRS protocol. We choose this protocol
since it outperforms other competitive protocols

(e.g. LEACHLEACH [8]) in terms of system lifetime.

LRS protocol for constructing a data gathering

schedule. In this protocol, sensor nodes are initially

grouped into clusters based on their distances from

the base station. A chain is formed among the
sensor nodes in a cluster at the lowest level of the

hierarchy. Gathered data, moves from node to

node, gets aggregated, and reaches a designated

leader in the chain i.e. the cluster head. At the next

level of the hierarchy, the leaders from the previ-

ous level are clustered into one or more chains,

and the data is collected and aggregated in each

chain in a similar manner. Thus, for gathering data
in each round, each sensor transmits to a close

neighbor in a given level of the hierarchy. This

occurs at every level, the only difference being that

nodes that are receiving at each level are the only

nodes that rise to the next level in the hierarchy.

Finally at the top level, there is a single leader node

transmitting to the base station. To increase the

lifetime of the system, the leader in each chain is
chosen in a round-robin manner in each round.

Observe that, the manner in which chain leaders

are selected in each level of the hierarchy, naturally

defines an aggregation tree, for each round of data

gathering.

For the initial set of experimental results, we

consider a network of sensors randomly distrib-

uted in a 50 m� 50 m field. The number of sensors
in the network, i.e. the network size n, is varied to

be 40, 50, 60, 80 and 100 respectively. Each sensor

has an initial energy of 1 J and the base station is

located at (25 and 150 m). Each sensor generates

packets of size 1000 bits. The energy model for the

sensors is based on the first order radio model

described in Section 2.

Each experiment corresponds to a random
placement of the sensors, for a particular network

size. In each experiment, we measure the lifetime

T , i.e. the number of rounds before the first sensor

is drained of its energy, for the data gathering

schedule given by the LRSLRS protocol. For the same

placement of sensors, we measure the lifetime of

the data gathering schedules obtained from MLDAMLDA,

GREEDY CMLDAREEDY CMLDA (G-CMLDACMLDA) and INCREMENTALNCREMENTAL

CMLDACMLDA (I-CMLDACMLDA). We define the performance

ratio RM as the ratio of the system lifetime
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achieved using MLDAMLDA to the lifetime given by

the LRSLRS protocol. Similarly, we define RGðRIÞ to be

the ratio of the system lifetime achieved using the

GREEDY CMLDAREEDY CMLDA (INCREMENTAL MLDANCREMENTAL MLDA) heuris-

tic to the lifetime given by the LRSLRS protocol. Recall

that, the (integral) solution given by MLDAMLDA is an
approximation of the optimal fractional solution.

We denote OPT to be the optimal system lifetime

for any particular experiment.

For a data gathering schedule S, we define the

depth of a sensor v to be its average number of

hops from the base station in the schedule, i.e. the

average of its depths in each of the aggregation

trees in S. The depth of the schedule is defined as
maxfdepthðiÞg, among all sensors i in the network.

We measure the depth D of a schedule constructed

using each of the MLDAMLDA, GREEDYREEDY (INCREMEN-NCREMEN-

TALTAL) CMLDACMLDA and LRSLRS algorithms. Note that, the

depth of a data gathering schedule is an interesting

metric since it gives an estimate of the (maximum)

average delay 5 that is incurred in sending data

packets from any sensor to the base station.
Finally, for the GREEDYREEDY (INCREMENTALNCREMENTAL)

CMLDACMLDA heuristics, we denote c to be the number of

sensors in a cluster (super-sensor). Given the lo-

cation of the sensors and the base station, we

employ a greedy clustering algorithm similar to the

the chain-forming algorithm used by the LRSLRS

protocol [15]––pick a sensor i farthest from the

base station and form a cluster that includes i and
its c� 1 nearest neighbors; continue the process

with the remaining sensors until all sensors have

been included in some cluster. For a particular

network size, we assign the size of a cluster in

GREEDYREEDY (INCREMENTALNCREMENTAL) CMLDACMLDA to be identical

to the size of a chain in the LRSLRS protocol. By

clustering the sensors in the above manner, we can

efficiently compute maximum lifetime schedules
for the super-sensors in large networks. Further,

with a proper choice of the number of super-sen-

sors and the size of each super-sensor, we can solve

the linear programs in Phases II and III of the

INCREMENTAL CMLDANCREMENTAL CMLDA heuristic in a fast and ef-

ficient manner. Observe that, the MLDAMLDA algorithm
5 On a 1 Mbps link, a 1000 bit message can incur a delay of

1 ms on each hop to the base station.
and the GREEDYREEDY (INCREMENTALNCREMENTAL) CMLDACMLDA heu-

ristics presented in this paper are essentially cen-

tralized in nature. This implies that the clustering

of the sensors need to be pre-computed at the base

station. Similarly, an appropriate data gathering

schedule is pre-computed at the base station
(which is less likely to be resource-constrained)

and transmitted to the individual sensors. We take

advantage of the fact that the base-station is aware

of the locations of the sensors and have sufficient

processing capabilities to compute efficient data-

gathering schedule(s) for the sensors.

Tables 4 and 5 summarize our main results.

Note that the presented values for lifetime and
depth are averaged across 20 different experiments

for each network size. Further, the MINMIN and MAXMAX

columns for RM, RG and RI indicate the corres-

ponding minimum and maximum performance

ratios observed from those experiments. We make

the following key observations for the smaller

sensor networks:

• The lifetime of a schedule obtained using the

INCREMENTAL CMLDANCREMENTAL CMLDA heuristic is always

within 3% of the optimal fractional solution,

while the lifetime of a schedule given by the

GREEDY CMLDAREEDY CMLDA heuristic is always within 9%

of the optimal solution.

• The lifetime of a schedule given by the MLDAMLDA

algorithm is near-optimal. In fact, the approxi-
mation scheme in Section 3 leads to a reduction

in the (integral) system lifetime by no more than

three rounds, when compared to the optimal

solution.

• The MLDAMLDA algorithm significantly outperforms

the LRSLRS protocol in terms of system lifetime.

Further, the GREEDY CMLDAREEDY CMLDA heuristic per-

forms 1.10–2.16 times better than LRSLRS, while
the INCREMENTAL CMLDANCREMENTAL CMLDA heuristic performs

1.15–2.24 times better than LRSLRS.

• The average depth of a data gathering schedule

attained by the GREEDYREEDY (INCREMENTALNCREMENTAL)

CMLDACMLDA heuristic is slightly higher than that of

the LRSLRS protocol. Note that the three level pro-

tocol in LRSLRS is specifically devised to reduce the

average depth of each sensor [15]. To this end,
the GREEDYREEDY (INCREMENTALNCREMENTAL) CMLDACMLDA heuris-

tic does quite well in attaining comparable



Table 6

Comparison of CPU times (in min) for MLDAMLDA, GREEDYREEDY

CMLDACMLDA and INCREMENTAL CMLDANCREMENTAL CMLDA

INPUTNPUT MLDAMLDA G-CMLDACMLDA I-CMLDACMLDA

40 6.52 11.8 12.5

50 48.0 16.8 22.9

60 108.5 17.2 48.1

80 252.6 24.1 80.8

100 335.6 29.2 106.5

Table 4

Experimental results for 50 m� 50 m sensor network

INPUTNPUT MLDAMLDA G-CMLDACMLDA I-CMLDACMLDA LRSLRS

n c OPT T D T D T D T D

40 5 6611.8 6610 4.9 6442 4.6 6512 4.8 5592 4.4

50 5 6809.0 6808 5.8 6747 5.6 6786 5.5 5466 5.1

60 5 7176.2 7174 6.2 6896 6.0 7084 6.3 5872 5.2

80 10 7946.9 7945 7.5 7509 6.6 7809 6.9 6002 6.1

100 10 8292.6 8290 8.2 8011 7.2 8121 7.8 5526 6.6

Table 5

Performance ratios for 50 m� 50 m sensor network

INPUTNPUT RM RG RI

n c MINMIN MAXMAX MINMIN MAXMAX MINMIN MAXMAX

40 5 1.15 1.48 1.10 1.42 1.15 1.45

50 5 1.20 1.90 1.20 1.65 1.20 1.72

60 5 1.18 1.66 1.18 1.62 1.16 1.64

80 10 1.27 2.05 1.21 2.01 1.27 1.96

100 10 1.42 2.32 1.33 2.16 1.38 2.24
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sensor depths, while delivering significant im-

provements in system lifetime.

For each of the above experiments, we also

measured its total running time (in terms of CPU

time) when using MLDAMLDA, GREEDY CMLDAREEDY CMLDA and

INCREMENTAL CMLDANCREMENTAL CMLDA respectively. Table 6
shows the average CPU times for different network

sizes. Observe that, each of these experiments were

conducted using MATLABATLAB implementations of the

algorithms on typical machine configurations of

866 MHz (Intel) processor/1GB physical memory.

As shown in Table 6, the INCREMENTAL CMLDANCREMENTAL CMLDA

heuristic has an average running time that is ap-

proximately 33% of that for MLDAMLDA, while the
GREEDY CMLDAREEDY CMLDA heuristic has an average running

time that is about 10% of that for MLDAMLDA.

For our next set of experiments, we consider

larger networks of sensors randomly distributed in

a 100 m� 100 m field. The number of sensors in

the network, i.e. the network size n, is varied to be

100, 200, 300 and 400 respectively. Each sensor has

an initial energy of 1 J and the base station is lo-
cated at (50 and 300 m). Once again, the presented

values for lifetime and depth are averaged across

20 different experiments for each network size.

Due to the high complexity of the algorithm, we
do not include any results regarding the perfor-

mance of MLDAMLDA for the large-scale networks. The

clustering in CMLDACMLDA (chain formation in LRSLRS) is

done in the manner described above. We summa-
rize our results in Tables 7 and 8.

We make the following observations:

• The GREEDY CMLDAREEDY CMLDA and INCREMENTALNCREMENTAL

CMLDACMLDA heuristics significantly outperform the

LRSLRS protocol in terms of system lifetime. In par-

ticular, the GREEDY CMLDAREEDY CMLDA heuristic delivers

system lifetimes that are 1.20–2.27 times larger
than LRSLRS; while the INCREMENTAL CMLDANCREMENTAL CMLDA

heuristic attains lifetimes that are 1.22–2.61

times larger than LRSLRS.

• The INCREMENTAL CMLDANCREMENTAL CMLDA heuristic obtains

systems lifetimes that are 10–20% larger than



Table 7

Experimental results for 100 m� 100 m sensor network

INPUTNPUT G-CMLDACMLDA I-CMLDACMLDA LRSLRS

n c T D T D T D

100 10 3200 7.5 3611 7.8 2458 6.9

200 10 4086 10.6 4512 10.6 2854 9.6

300 15 4858 13.2 5560 13.1 3212 12.1

400 20 5202 20.6 6142 19.8 3654 18.6

500 25 5533 26.1 6577 25.8 3596 24.8

Table 8

Performance ratios for 100 m� 100 m sensor network

INPUTNPUT RG RI

n c MINMIN MAXMAX MINMIN MAXMAX

100 10 1.32 1.91 1.22 2.61

200 10 1.20 2.27 1.30 2.43

300 15 1.29 2.13 1.50 2.41

400 20 1.31 1.88 1.40 2.02

500 25 1.33 2.09 1.36 2.33
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theGREEDY CMLDAREEDY CMLDA heuristic. Observe that, this

improvement comes at the cost of increased com-

plexity involved with INCREMENTAL CMLDANCREMENTAL CMLDA.

• The average depth of a data gathering schedule

attained by the GREEDYREEDY (INCREMENTALNCREMENTAL)

CMLDACMLDA heuristic is only slightly higher than

that of the LRSLRS protocol.

In conclusion, our experimental results demon-

strate that the clustering-based heuristics can

achieve as much as a factor of 2.61 increase in the

lifetime of large-scale sensor networks, when

compared to the LRSLRS protocol, and incurs a small

increase in the delay experienced by individual

sensors. Thus, while it is true that our algorithms

are centralized, the payback is significant in terms
of improvement in the system lifetime.
6. Conclusions

In this paper, we proposed a polynomial-time

near-optimal algorithm (MLDAMLDA) for solving the

maximum lifetime data gathering problem for
sensor networks, when the sensors are allowed to

perform in-network aggregation of data packets.

Given the complexity of the MLDAMLDA algorithm, we
next described efficient clustering-based heuristics
to solve the maximum lifetime data aggregation

problem in large sensor networks. Further, we

presented experimental results demonstrating that

the proposed methods attain significant improve-

ments in system lifetime, when compared to ex-

isting protocols.

There are a number of important issues related

to the maximum lifetime data gathering problem
that need to be investigated in the future. In the

work presented in this paper, we make the sim-

plistic assumption that a sensor can always ag-

gregate its own data packets with those of any

other sensor in the network. As part of our current

research, we are exploring a more complex sce-

nario where a sensor is permitted to aggregate its

own packets with only certain sensors, while acting
as a router for other incoming packets. In the fu-

ture, we plan to investigate modifications to the

MLDAMLDA algorithm that would allow sensors to be

added to (removed from) the network, without

having to re-compute the entire schedule. Further,

we plan to study the data gathering problem with

depth (delay) constraints for individual sensors, in

order to attain desired tradeoffs between the delay
experienced by the sensors and the lifetime

achieved by the system.
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Appendix A. Proof of Theorem 2

The proof is based on a powerful theorem in

graph theory [6,16].

Preliminaries. A multi-graph is a graph which
may have parallel edges, i.e. it may have multiple

edges with the same end-vertices. An arborescence

A rooted at a vertex t is a a directed graph such

that there is a unique directed path from t to each

vertex in A. A spanning arborescence of a multi-

graph is an arborescence that spans all its vertices.

The transpose GT of a directed graph G is the

graph that results from G by reversing the direc-
tions of all of its edges. Given a graph G ¼ ðV ;EÞ
and an edge e 2 V � V , let Gþ e denote the graph
resulting from G by adding e to it.

Consider a directed graph G ¼ ðV ;EÞ with pos-

itive integer capacities cðeÞ assigned to its edges

e 2 E. Let bGG be the graph that results from G
by replacing each one of its edges e ¼ ðu; vÞ with

cðeÞ parallel edges ðu; vÞ; for the multi-graph
cðeÞ ¼ cðu; vÞ will denote the number of parallel

edges ðu; vÞ.
For any subset S � V , let ðS; SÞ, called a cut,

denote the set of edges in G from S to S ¼ V � S.
The capacity (size) of a cut ðS; SÞ, denoted with

xGðSÞ, is sum of the capacities of the edges in

ðS; SÞ; the capacity xĜGðSÞ of the cut ðS; SÞ with

respect to bGG equals the total number of edges in
ðS; SÞ in bGG. A u� v cut is a cut ðS; SÞ such that

u 2 S and v 2 S. A u� v min-cut is a u� v cut with
minimum capacity.

For any subgraph H of G let G� H denote the

graph resulting from G by deleting the edges in H .

Similarly, let bGG � kH denote the graph resulting

from the multi-graph bGG by deleting k copies of H
from it, 06 k6 minfcðeÞ: e 2 Hg. Note that the
operation bGG � kH corresponds to a reduction of

the capacities of the edges of G, which are also in

H , by k; thus, for convenience, we also denotebGG � kH by G� kH .

Definition 3. Consider a multi-graph bGG ¼ ðV ; bEEÞ.
Let t be a vertex in V , and k a positive integer.

Suppose that, for all v 2 V , each t � v cut has size
Pk. An arborescence A ¼ ðVA;EAÞ of the multi-

graph bGG is called admissible if for every S � V ,
with t 2 S, xĜG�AS P k � 1.
Note that an arborescence with no edges is ad-

missible.

Lemma A.1. Consider a graph G ¼ ðV ;EÞ with

capacities associated with its edges. Let ðS; SÞ be
any cut in G. Then the capacity of ðS; SÞ in G is

equal to the capacity of ðS; SÞ in GT and vice-versa.

Proof. Follows directly from the definition of cut

capacities, and the definition of the transpose of a

graph. �

Theorem A.1 (Edmonds [6] and Lov�aasz [16]). LetbGG ¼ ðV ; bEEÞ be a multi-graph, t be a vertex in V , and
k be a positive integer. If, for all v 2 V , each t � v
cut has size Pk, then bGG has k edge-disjoint spanning
arborescences rooted at t.

Moreover, the following corollary follows from

the construction in the proof of Theorem A.1.

Corollary A.1. Let bGG ¼ ðV ; bEEÞ be a multi-graph, t
be a vertex in V , and k a positive integer. Suppose
that, for all v 2 V , each t � v cut has size Pk. Let
A ¼ ðVA;EAÞ be an admissible arborescence of bGG.
If A is not spanning V , there exists an edge

e 2 ðVA; VAÞ such that A together with e is also an
admissible arborescence.

Proof sketch. Follows directly from the construc-
tion in the proof of Theorem A.1. �

Proof of Theorem 2. Since G is admissible, each

sensor node v 2 V has a v� t cut of capacityP T
to the base station t.

Observe that, the transpose AT of a spanning

admissible arborescence A of the multi-graph that
corresponds to GT, provides us with an aggrega-

tion tree for G for aggregating 1 value from each

sensor. Moreover, from Corollary A.1 we know

that a spanning admissible arborescence for the

multi-graph bGGT can be constructed using a simple

greedy algorithm. Specifically, start with an arbo-

rescence A that contains just t, and while A is not

spanning V , add an edge e 2 ðVA; VAÞ such that
Aþ e is admissible for bGGT. Thereby, it is easy to

see that the GETETTREEREE algorithm can always find
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an aggregation tree A for collecting one data

packet from each sensor, such that the ðA; 1Þ-re-
duction of G is feasible. Further, if the ðA; f Þ-re-
duction of G is feasible for some f 1, we can use the

aggregation tree A to collect f data packets from

each sensor. This results in fewer aggregation trees
and hence an improvement in the running time of

our algorithm. Finally, we can iteratively invoke

the GETETTREEREE procedure to find a sequence of

aggregation trees for collecting T data packets

from each of the sensors. �
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