
Load-Balancing Routing for Wireless Access Networks
Pai-Hsiang Hsiao, Adon Hwang, H. T. Kung, and Dario Vlah

Division of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138, U.S.A.
{shawn, adon, htk, dario}@eecs.harvard.edu
Abstract -- Widespread use of wireless devices presents
new challenges for network operators, who need to provide
service to ever larger numbers of mobile end users, while
ensuring Quality-of-Service guarantees. In this paper we
describe a new distributed routing algorithm that performs
dynamic load-balancing for wireless access networks. The
algorithm constructs a load-balanced backbone tree, which
simplifies routing and avoids per-destination state for rout-
ing and per-flow state for QoS reservations. We evaluate
the performance of the algorithm using several metrics
including adaptation to mobility, degree of load-balance,
bandwidth blocking rate, and convergence speed. We find
that the algorithm achieves better network utilization by
lowering bandwidth blocking rates than other methods.

I. INTRODUCTION

Internet appliances equipped with low-cost and short-range
radios such as Bluetooth [2] and HomeRF [8] are expected to
be widespread. Using these devices, mobile wireless users can
access application servers from anywhere. Given the quality of
service demands from the users all clamoring for access to the
wired network infrastructure, a properly designed routing algo-
rithm can maximize network efficiency and improve perfor-
mance perceived by end users.

For a wireless network, a routing system can be used for any
of the following purposes:

1. The wireless network is deployed for temporary use, or
acts as an alternative infrastructure to the conventional
wired network. Furthermore, the network is stationary in
the sense that network nodes have fixed locations. Such a
network can be a sensor network [3, 6, 11] or a rooftop
network [1, 18]. In this case, the routing system will con-
figure routes automatically and quickly based on current
radio links without necessarily requiring a trusted author-
ity.

2. The wireless network is mobile. Because nodes may
move, existing links can be broken and new ones can be
created dynamically. The routing system will configure
routes to reflect changing network topology.

3. The wireless network is required to provide QoS routes.
For a given QoS demand, the routing system will attempt
to find a satisfying route.

4. Suppose that traffic over the wireless network changes
over time. The routing system will configure routes so that
links evenly share current loads to minimize the band-

width blocking rate resulting in better network utilization.
Past research in routing for wireless networks, such as ad

hoc networking [9], has mainly been for purposes 1 and 2.
Some work has been for purpose 3, such as [4, 19]. In this
paper, we address a new routing problem: finding routes for
wireless networks that will satisfy all the four purposes: 1, 2, 3
and 4. In particular, our routing algorithm will perform
dynamic load-balancing to achieve 4.

We focus on a special class of wireless networks, namely,
“wireless access networks.” Via such a network, an “end
node,” such as an information appliance, can send packets to
and receive packets from an “egress node” that connects to the
external networking infrastructure. (We say two nodes are
“connected” when the radio link between them is up.) Thus, a
wireless access network is for carrying traffic between end
nodes and gateway egress nodes in wireless stub networks.

We describe routing methods for wireless access networks
that will route packets over a “backbone tree” rooted at the
egress node. As to be shown, this tree-based approach will
greatly simplify routing by avoiding per-flow state, and will
support dynamic load-balancing.

This paper makes several contributions. We define the load-
balancing routing problem for wireless access networks (Sec-
tion II). We present a distributed algorithm for load-balancing
in Section III. To evaluate performance, we show simulation
results in Section IV. We find that our algorithm performs well
in a variety of network sizes and mobility conditions. In com-
parison to existing QoS methods, we find that our algorithm
achieves better load-balance, and a lower bandwidth blocking
rate in Section V. We conclude the paper in Section VI.

II. LOAD-BALANCING ROUTING PROBLEM

We give a formulation for the load-balancing routing prob-
lem addressed in this paper.

II. A. Definitions and Assumptions

A “topology graph” as depicted in Fig. 1 is the unit graph

This research was partially supported by the Air Force Office of Sci-
entific Research Multidisciplinary University Research Initiative
Grant F49620-97-1-0382 and AAsert Grant F49620-98-1-0428, as
well as Microsoft Research, Nortel, and Sprint.

E

v
z

E: egress node

z: end node

Figure 1: A topology graph. Graph nodes are equipped with 4 unit-range
radio interfaces. There is no backbone tree, yet.

D

C

B

A

A, B, C, D, v: graph nodes

administrator
反白

administrator
反白

administrator
反白

administrator
反白

administrator
反白

corresponding to a wireless access network. We assume that
the graph has N nodes, which we call “graph nodes.” Every
graph node has one or more radio interfaces, each capable of
connecting to another graph node, an end node (defined
below), or an external node outside the wireless access net-
work. “Neighbors” of a node are other nodes that are in radio
range.

In this paper we make the following simplifying assump-
tions. In order to model wireless connections between neigh-
bors as isolated point-to-point links, we assume that graph
nodes have separate interfaces connecting to each neighbor.
Such assumptions are not unreasonable [12] and may become
increasingly popular as low-cost radios such as Bluetooth
emerge. We use regular graphs in which each graph node has 4
or 6 interfaces connecting to other graph nodes when the topol-
ogy graph is a square or hexagonal mesh, respectively. In addi-
tion, each graph node has an additional interface for connecting
to an end node.

An “egress node” is a graph node that has connections to
external networks. We assume that the graph has only a single
egress node, which we denote as E in the figures.

An “end node” is an application host or appliance connecting
to a graph node. We assume that there are X end nodes where

. Each graph node can connect to at most one end node.
There are three kinds of links. These are graph-node, exter-

nal-node and end-node links each connecting a graph node to
another graph node, an external node, or an end node, respec-
tively. Note that the topology graph (Fig. 1 for example) is
composed of graph nodes and graph-node links. External-node
and end-node links are outside the topology graph.

We assume that graph-node and end-node links have the
same bandwidth capacities GC and EC, respectively. External-
node links have sufficient capacity XC such that
where k is the maximum degree of a graph node. (For example,
k = 4 in Fig. 2.) A link is either up achieving its full link band-
width GC or EC, or down achieving zero bandwidth.

II. B. Load and Load-balancing

A “load” is a flow from an end node to an egress node, or
vice versa. We assume that each load has an upper bound band-
width specification at the time of the request. The size of a load
is the bandwidth of the associated request. We denote total
bandwidth flowing through node X as fX.

For a given a set of loads, a “backbone tree” is a tree sub-
graph rooted at an egress node, in the topology graph, such that
for each load, its end node is connected to a tree node. We say
that an end node “connects to a tree node” to denote an end
node establishing a connection between itself and the tree
node.

A “fully load-balanced tree” is a backbone tree for a set of
loads such that, for each tree node with multiple branches, all
the branches carry the same total amount of loads.

A “top load-balanced tree” is a backbone tree for a set of
loads such that, for the tree node that has multiple branches and
is closest to the root, all the branches carry the same total
amount of loads.

A “top subtree” is a branch of the highest-level tree node
with multiple branches. We denote a top subtree rooted at node
X by tX.

“Adjacent top subtrees” are pairs of top subtrees that have
some nodes that are neighbors of nodes in the other top sub-
tree.

For a given topology graph and set of loads, “load-balancing
routing” is to find a fully load-balanced or top load-balanced
tree for the set of loads. We focus on top load-balanced trees
because for many situations, the egress node is the primary
bottleneck. Given a backbone tree and a new set of loads,
“rebalancing” is to add or delete connections in the tree to
derive a load-balanced or top load-balanced tree for the new
load distribution.

This paper addresses top load-balanced trees only, except in
Section II. C. 1 which illustrates a fully load-balanced tree.

II. C. Load-Balancing Tree Routing Examples

We illustrate the concept of load-balancing tree routing and
the associated terminology.

II. C. 1. Fully load-balanced H-tree for a square mesh

Consider the case when the topology graph is an
square mesh, where n is an odd integer. Fig. 1

depicts such a mesh with n = 7. Suppose that there are [(n+1)/
2]2 loads, where each load is a unit flow with its end node in
one of [(n+1)/2]2 2x2 squares. Thus, for the 7x7 mesh of Fig.
2, there are 16 loads, each with its end node in one of the 16
2x2 squares.

Assume that each end node is connected to the tree leaf at the
center of the associated 2x2 square. From Fig. 2, it is easy to
see that the H-tree provides fully load-balanced routing for
these loads. (An H-tree is a layout known in VLSI chip design
[15].)

II. C. 2. Top load-balanced tree for a square mesh

Fig. 3 shows a top load-balanced tree for a square mesh,
where each graph node covers a 1x1 square centered at the
node, and there is a unit flow originating from each 1x1 square.
Using algorithms from Section III, this tree is obtained by a
breadth-first backbone tree construction algorithm followed by
a best-first rebalancing algorithm. Unlike the H-tree case, this
tree construction does not require a priori knowledge about
locations of graph nodes. For example, as depicted in Fig. 3,
the construction can start from a root node which is not in the

X N≤

XC k GC⋅≥

N n n×=

2x2 square

E: egress node
v: graph node
z: end node

E
v

z

Figure 2: Fully load-balanced H-tree routing for a 7x7 mesh. Load is divided
equally at each branch point of the tree. Each tree leaf node “covers” a 2x2
square in the grid. The bold line indicates a load from end node Z.

administrator
反白

administrator
反白

center of the layout. In addition, unlike the H-tree case, end
nodes may connect to any tree node, not just tree leaf nodes.

III. LOAD-BALANCING ALGORITHM

III. A. Use of Backbone Tree

We use a tree topology because it easily allows aggregation
and can avoid per-flow state and per-destination state in the
routers. The routers do not maintain state information other
than about their immediate neighbors. As noted earlier, our
traffic model assumes that the primary mode of communica-
tion from wireless access networks will be access to the wired
Internet.

Conventional per-destination routing information is not nec-
essary. Outgoing packets from the nodes simply follow the tree
toward the root, the egress node. Incoming packets follow
explicit source-routed paths given by the egress nodes, or they
follow hierarchical addresses [16].

The intermediate routers aggregate load amounts toward the
root of the tree such that they do not maintain per-flow routing
and reservation state. Once flows join, they never fork to dif-
ferent paths. Thus, per-flow state required to maintain such res-
ervations in conventional networks can be discarded in a
backbone tree network.

One additional benefit of using a backbone tree is elimina-
tion of routing loops.

III. B. Underlying Concepts of the Load-balancing Algorithm

For a given set of loads, our load-balancing routing algo-
rithm will attempt to construct a top load-balanced tree. This is
illustrated by the example in Fig. 4. Here, we describe the non-
distributed algorithms. In Section III. C, we will describe their

distributed implementations.

III. B. 1. Balance Index

For our evaluation of the degree of load balance, we define
the “balance index” to be a fairness index among loads in the
top subtrees [5]:

(1)

where are roots of top subtrees, is the aggregate load of
to the egress E, and k is the number of top subtrees. The

balance index has the desired property that it tends to 1 when
top subtree loads are more equal while it approaches 1/n when
the imbalance is large.

The balance index of Eq. (1) satisfies a monotonic property,
on which our greedy load-balancing heuristics described below
depend. That is, for any pair of and of different values, if
another pair with a smaller difference in their values replaces
the pair, then the balance index will improve. More precisely,
suppose that δ is any value with 0 < δ < . Then, it follows
from the definition of β(E) by Eq. (1) that if and are
replaced with and respectively, then β(E) will be
increased.

III. B. 2. Basic Mechanisms

Suppose the backbone tree starts with similar numbers of
nodes in the top subtrees. As soon as flows enter the network,
the backbone tree is certain to become unbalanced. During sub-
sequent rebalancing, edges of the backbone tree are altered
until the tree is top load-balanced.

More specifically, nodes in the top subtrees with higher load
attach to nodes of other top subtrees (they “defect”). We call
“relaxation” the process of a node examining its neighbors and
evaluating whether or not to defect to an adjacent top subtree.
For example, in Fig. 4 (a), node X may defect to either node W
or Z.

A weight function w defined for top subtrees assists load bal-
ancing. A node will defect from top subtree tX to tY if the defec-
tion will reduce the difference between w(tX) and w(tY). The
weight function is so defined that reducing the difference
between w(tX) and w(tY) will lead to reducing the difference
between the load on tX and that on tY . This in turn implies an
increase of the balance index of Eq. (1) due to the monotonic

E

v
z

Figure 3: Top load-balanced tree for a square mesh. In this particular exam-
ple, each top subtree of the egress node covers 20 graph nodes.

E: egress node
v: graph node
z: end node

Figure 4: Running example for top load-balancing on a hexagonal mesh topology graph. Edges of the current backbone tree are denoted by solid lines. Flows are
indicated by bold solid lines. (a) An unbalanced tree. There are two top subtrees, one carrying two flows and the other zero. The arrow indicates node X’s defec-
tion to connect to node W. This results in the next diagram (b) showing a top load-balanced tree, where both top subtrees carry the same amount of flow. (c) The
loads change. The top subtrees are no longer balanced. (d) After two rebalancing steps indicated by the arrows in (c), top subtrees are balanced again.

E

X

Y

E

X

Y

W

Z

W

Z

E

X

Y

W

Z

(a) (b) (c) (d)

U U U

E

X

Y

W

Z

U

β E()
fXi∑

 2

k fXi

2∑
-----------------------=

Xi fXi

Xi

fX fY

fX fY–
fX fY

fX δ– fY δ+

property described earlier.
Rebalancing occurs in iterations. Each iteration is an attempt

to find a node to defect. A set of iterations continues until a
“stopping criterion” where no such node is found. A new set of
iterations may begin again after changes in load.

Nodes that do not border other top subtrees (nodes internal to
the subtree) do not defect, as their decisions to alter the tree
topology do not have any bearing on the load balance of the top
subtrees. Thus, only border nodes can defect to adjacent top
subtrees.

For example, in Fig. 4 (a), the backbone tree selects node X
to relax. Node X examines whether or not to defect to an adja-
cent top subtree (change edge X-U to X-W or X-Z). Using the
total load in the top subtree as the weight function, the current
weight for tU (top subtree rooted at U) is 2, and the weight for
tW is 0. The difference between the two weights is 2. If X con-
nects to W or Z, the weights for both tU and tW become 1. The
new weight difference between the adjacent top subtrees thus
becomes 0. By X defecting, the difference of weights
decreases, making the balance index 1. Thus, in Fig. 4 (b), X
defects and connects to tW (shorter the path to the root the bet-
ter).

Rebalancing adapts to changes in load. Between Fig. 4 (b)
and (c), the loads in the tree have changed. How should the tree
rebalance? There is not an immediate solution from one node
defecting. We use a different weight function

+ # nodes in tA, where fA is the amount of
aggregate flows passing through tA, and m is a constant larger
than the maximum possible number of nodes in the network.
Using w’(tU) and w’(tW), when node X relaxes, it can compute
the outcome of defecting to tU as seen in Table 1. Thus, X
defects to U even though it carries no load (change in differ-
ence of w’ is -4). Next, Z attaches to X (change in difference of
w’ is -10), making the backbone tree of Fig. 4 (d) balanced
with respect to the balance index of Eq. (1).

In order to minimize the path lengths in the backbone tree, in
addition to rebalancing, graph nodes connect to neighbors with
shorter hop-distance to the root than their current parent node,
only if the neighbor belongs to the same top subtree.

As far as load-balancing is concerned, we expect a top load-
balanced tree to be better than conventional QoS mechanisms
that first find shortest paths between end points and then per-
form resource reservation. However, since our algorithm
focuses primarily on the load balance of the top subtrees,
resulting paths to the egress node may be longer than the short-
est paths.

III. B. 3. Heuristics

There are many possibilities for the heuristic in selecting
nodes for relaxation. We have considered three heuristics: best-
first, random, and weighted.

The best-first is a greedy heuristic which selects the node
whose defection can improve the balance index the most. This
requires global knowledge. In random, among the potential
nodes, one is selected at random for relaxation. In weighted, a
candidate node is selected at random and relaxes with probabil-
ity increasing with its subtree size. This is more likely to relax
a node with a larger subtree in hopes that its defection may lead
to a larger improvement of the balance index. The random and
weighted heuristics use only local information.

There are times when the algorithm stops in a local maxi-
mum of the balance index due to the greedy nature of node
relaxation. For example, the balance index for Fig. 5 (a) is
clearly not at its maximum. To obtain the top load-balanced
tree of Fig. 5 (b), a sequence of events that violate the greedy
heuristic must occur, such as X defecting to tU and Z defecting
to tW . The weight function + # nodes in tA

disallows this, since X’s defection to tU will not reduce as
shown in Table 2.

To solve this problem, we use principles from simulated
annealing [13] to occasionally violate the greedy heuristic and
perturb the tree in hopes that a global optimum is reached.
With a small probability, nodes that carry a load may defect to
adjacent top subtrees even though they deem that the balance
index does not improve. Section IV. D contains simulation
results for simulated annealing.

III. C. Distributed Implementation

The distributed algorithm is a straightforward implementa-
tion of the static algorithm. We cite the differences here.

In a distributed system, each node joins the egress-rooted
tree by attaching to a neighbor whose hop-distance to the root
is the minimum. Once flows emerge, the rebalancing algorithm
will alter this topology as mentioned above.

w′ tA() m f⋅ A=

TABLE 1 : Defection outcome evaluation in Fig. 4 (c) and (d)

Tree (c)

Tree (c)
with X

defecting
to tU

Tree (d)
with Z

defecting
to tU

load in tU 0 0 1

nodes in tU 4 6 7

w’(tU) = + # nodes 4 6 17

load in tW 2 2 1

nodes in tW 4 2 1

w’(tW) = + # nodes 24 22 11

= w’(tW) - w’(tU) 20 16 6

1/2 1/2 1

change in -4 -10

10 load⋅

10 load⋅

∆w′
β E()

∆w ′

WU

Z

E

X Y

WU

Z

E

X Y

Figure 5: (a) Local optimum of backbone tree. If node X defects to tU, then Z
can defect to tW resulting in (b) where top load-balance is achieved. However,
the weight function w’ prevents this from happening, since X’s defection to tU
will not reduce as shown in Table 2.∆w′

(a) (b)

VV

w′ tA() m f⋅ A=
∆w′

Each node X in the distributed computation collects informa-
tion necessary for making defecting decisions. This informa-
tion is the number of nodes and total load of all top subtrees,
and the number and total load of X’s descendants. Information
about the top subtrees is flooded to the nodes by the egress
node. Information about X’s descendants is reported by X’s
children. X sums these reports and sends the totals to its parent.

Each node could relax and defect independently of other
nodes in the network. However, since information that relax-
ation is based on can be stale, we use a synchronization mecha-
nism to avoid loop formation and backbone tree destruction.

The egress node floods a “relaxation notification” to a single
top subtree at a time. Upon receiving the notification each node
relaxes and sends a reply if by defecting, it can improve the
load balance. Finally, the egress node selects one of the reply-
ing nodes and signals it to defect. This mechanism ensures that
at most one node defects per rebalancing iteration.

IV. SIMULATION RESULTS

We have built a simulator incorporating our topology graph
and load models, the distributed and non-distributed load-bal-
ancing algorithms as well as end node mobility.

IV. A. Performance Evaluation Criteria

Several criteria are used to evaluate the performance of the
load-balancing routing algorithm. First, the rebalancing algo-
rithm should converge such that a stopping criterion will be
reached. Second, convergence should occur quickly. That is,
the number of rebalancing iterations should be small. Third,
the algorithm should be able to adapt to load migration, even
when the load change is large. Here we evaluate our load-bal-
ancing routing algorithm against these criteria, based on simu-
lation results.

IV. B. Rebalancing with Load Mobility

With mobility in the end nodes, loads will migrate. To evalu-
ate the success of adaptation, we focus only on mobility not on
load arrivals and departures.

We use the balance index and bandwidth blocking rate to
evaluate the performance of our algorithm. Balance index is

defined in Section III. B. 1., and bandwidth blocking rate is the
fraction of bandwidth demand rejected.

IV. B. 1. Mobility Model

Our mobility model has two parameters: speed and instabil-
ity. Speed is how far an end node can move in a unit time,
whereas instability is how frequently an end node can move to
different graph nodes. In our simulation, we start one iteration
every time unit (e.g., 1 second). We assume an iteration com-
pletes within this time unit. We define speed n such that in one
time unit, a load’s end node can move from its current position
to another position at most n graph node-hops away, similar to
Brownian motion of particles. The loads in the network move
with end nodes, independent of graph nodes. We define insta-
bility x, or probability of movement, such that a load’s end
node will move with its pre-determined speed to another posi-
tion with probability x between iterations. The instability is
analogous to the pause time parameter of the random waypoint
model [10]. Instead of end nodes pausing for a fixed duration,
they are stationary with a certain probability, namely 1-x.

In our simulations, the topology graph has 81 nodes in a
square 9x9 grid where each graph node has 4 radios, with one
for each of their neighbors. The egress node is at the center of
the topology graph. The initial tree graph is balanced (Section
III. B. 2). We place 40 end nodes with unit loads randomly in
the graph.

The end nodes move according to the mobility model above.
Rebalancing uses w’(t) as defined in Section III. B. 2. for the
weight function and the weighted heuristic of Section III. B. 3
for node relaxation.

IV. B. 2. Rebalancing Keeps the Balance Index High

The first set of experiments in Fig. 6 shows that rebalancing
can keep the balance index as defined in Section III. B. 1. at 1
under moderate mobility. The figure shows two experiments
with the same mobility pattern. To remove the effects of band-
width blocking, the capacity of each radio is 40, each enough
to accommodate all the 40 loads in the network. Each run lasts
for 500 iterations. The runs use mobility parameters of speed 1
and instability 0.1. If an iteration lasts one second, and the

TABLE 2 : Defection outcome evaluation for node X in Fig. 5 (a)

Tree (a)
Tree (a) with X
defecting to tU

load in tU 0 1

nodes in tU 2 3

w’(tU) = + # nodes 2 13

load in tW 1 0

nodes in tW 3 2

w’(tW) 13 2

= w’(tW) - w’(tU) 11 11

9/15 9/15

change in 0

10 load⋅

∆w′
β E()

∆w′

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

B
al

an
ce

 in
de

x

Rebalancing iteration

mobility with rebalancing
mobility without rebalancing

Figure 6: Change history of the balance index as rebalancing iterations
progress. End nodes move every rebalance iteration with speed 1 and insta-
bility 0.1. Rebalancing improves the balance index.

radio range is 250 meters, then the average velocity of an end
node is 25 meters per second. An average of 4 end nodes move
every second (instability 0.1).

Mobility alone changes the balance index as indicated in the
run without rebalancing of Fig. 6. The index does not decrease
without bounds because movement of nodes shifts the loads
rather randomly according to the mobility model. However,
with rebalancing at each iteration, the balance index remains
within a much smaller range.

IV. B. 3. Rebalancing Keeps the Bandwidth Blocking Rate Low

In the second set of mobility experiments the bandwidth
blocking rate is lowered with rebalancing. This is the motiva-
tion of our work. Here, the capacity of each radio is 10 load
units. There is no bandwidth blocking except at the egress node
links.

Not all of the 40 end nodes can have their required band-
width satisfied in the beginning because some top subtrees
have more than 10 end nodes—more load than the radio capac-
ity. We show the bandwidth blocking rate of this initial place-
ment as the line “initial” in Fig. 7. End nodes that do not have
their load accepted will retry after each iteration.

Rebalancing significantly improves the bandwidth blocking
rate. When the speed parameter is 1, the difference in band-
width blocking rate to no rebalancing is large even under rela-
tively low instability (Fig. 7). Higher speed parameters will
lead to larger bandwidth blocking rates. When end nodes
migrate to different top subtrees due to high speeds, it is not
likely that the top subtrees can accommodate the loads without
rebalancing. The maximum speed we show in Fig. 7 is 5.
Because the network diameter is 9, a larger speed will make the
placement of end nodes between iterations look completely
random, and the bandwidth blocking rate will have similar
results to the “initial” placement in the figure. As indicated in
the left side of the figure, if the end node instability is lower
than 0.06, rebalancing can maintain a lower bandwidth block-
ing rate than the initial placement, even with a speed of 5.

IV. C. Local Convergence Speed for Rebalancing Heuristics

In this section we compare the speed of convergence for the
three rebalancing heuristics we mentioned in Section III. B. 3.
Suppose that we are given a square mesh and a set of loads.
Starting from an initial backbone tree, we measure how quickly
these heuristics will settle down on a new backbone tree which
will achieve some local maximum for the balance index.

Fig. 8 shows the number of iterations it takes to reach the
stopping criterion for the three rebalancing heuristics. Suppose
that randomly sized loads are randomly placed on the square
mesh. The capacity of each radio is scaled to remove the effect
of bandwidth blocking as in Section IV. B. 2. The simulation
starts from a backbone tree with its top subtrees having approx-
imately the same numbers of nodes. There is exactly one
defection per iteration till the stopping criterion is met.

In Fig. 8 (a), the topology graph is a square grid with increas-
ing number of graph nodes (5x5, 10x10, 15x15, etc.), and each
end node connects to one graph node. The egress is in the cen-
ter. The initial configuration is nearly load-balanced. All three
heuristics reach balance index 1 relatively quickly.

Best-first converges at a near-constant number of iterations
regardless of the size of the topology graph. However, the best-
first heuristic is impractical in a distributed implementation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 B

lo
ck

in
g

R
at

e

Instability

no rebalance, speed = 1
speed = 5
speed = 4
speed = 3
speed = 2
speed = 1

initial

Figure 7: Bandwidth blocking rate as the end nodes increase their mobility
with different speed parameters. With instability less than 0.06, rebalancing
lowers the bandwidth blocking rate below that of the initial placement.

Figure 8: Speed of convergence. (a) The number of iterations for conver-
gence as the number of nodes in the topology graph increases. Each graph
node connects to an end node. (b) The number of iterations for convergence
as the number of loads increases, for a 30x30 graph.

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 it

er
at

io
ns

 fo
r

st
op

pi
ng

 c
rit

er
io

n

Number of nodes in the topology graph

random
weighted
best-first

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 it

er
at

io
ns

 fo
r

st
op

pi
ng

 c
rit

er
io

n

Number of loads

random
weighted
best-first

(a)

(b)

because it requires global knowledge of the complete topology
graph. It is shown here as a best case, for the purpose of com-
parison. Fig. 8 (a) shows that the weighted heuristic performs
somewhat better than the random heuristic because its probabi-
listic defection makes it behave more similar to best-first.

In Fig. 8 (b), the topology graph has 900 nodes (30x30) with
random placement of random load sizes. The figure shows the
convergence speed as the number of loads in the network
increases. In this scenario, the capacity of the egress is set to
the total load in the network. The capacity of each radio inter-
face of the egress node is one quarter of this aggregate load.
Thus, as the number of loads increases, the size of each load
decreases in comparison to the egress capacity.

When the number of flows is small, chances are that the
paths of loads do not lie on borders between top subtrees.
Many graph nodes that do not carry loads have to defect to
adjacent top subtrees before a graph node that does carry a load
may get a chance to defect. This explains the peak in the num-
ber of convergence iterations when the number of loads is low
in Fig. 8 (b). As the number of loads increases, more and more
graph nodes carry a load, and more lie on the borders, so con-
vergence occurs more quickly than before.

IV. D. Stress Test: Rebalancing a Worst-case Tree

As shown in Fig. 9 (a), a spiral backbone tree is a particu-
larly unbalanced tree. Suppose the initial backbone tree starts
out as this 21x21 node tree with every graph node supporting a
load. The tree initially has 434, 3, 2 and 1 nodes in its four sub-
trees as indicated by the boxed magnification. The rest of the
figure shows snapshots of the rebalancing algorithm in effect.
Nodes relax using the random heuristic with simulated anneal-
ing. After 100 iterations, the tree is load-balanced but not par-
ticularly efficient in path lengths (Fig. 9 (b)). After 2000
iterations the spiral is unwound (Fig. 9 (d)). Fig. 10 shows the
balance index as the rebalancing iterations progress on the ini-
tial spiral backbone tree. The downward spikes in the balance
index indicate the simulated annealing perturbations. This
demonstrates that the load-balancing algorithm can cope with
such a worst-case tree.

V. COMPARISON WITH OTHER RESEARCH

In this section we compare our load balancing algorithm to
two common QoS path-finding algorithms: shortest-widest,
and widest-shortest path.

The shortest-widest path algorithm [21] is used in wireless
QoS routing networks such as Cedar [20] and ticket-based

(b)(a)

Loads:

434

3

2

1

(c) (d)

Loads:

110

111

110

109

Loads:

110

110

111

109

Loads:

109

111

111

109

3

1
434

2

Figure 9: Spiral backbone tree example. (a) the initial spiral backbone tree with 4 top subtrees. (b), (c), and (d) show the
backbone tree after 100, 500, and 2000 rebalancing iterations using random relaxation and simulated annealing.

probing [4]. It finds a set of paths with most available band-
width (the widest paths), and then selects the shortest one
among them. The widest-shortest path algorithm proceeds in
opposite order: it finds a set of shortest paths first, of which it
selects the widest one. A more complete discussion of the two
methods appears in [15].

We present two sets of simulation results in which we com-
pare our load balancing algorithm with the QoS path-finding
algorithms. In the first set, we study bandwidth blocking rates.
In the second set, we show load balancing performance by
comparing balance indices.

In both cases, we generate loads in a 9x9 grid for a desired
number of loads N and offered load ρ. First, sizes of the N
loads are chosen randomly from the range [0,1], and the loads
are placed at N random graph nodes. The capacity of the egress
node is set to the sum of load sizes divided by ρ. The capacity
of graph-node links is one quarter of the egress capacity, which
is the egress capacity divided by the degree of the egress node.
For , the total amount of load equals the total capacity of
wireless links at the egress.

V. A. Comparison of Bandwidth Blocking Rates

Similar to [15], we define the bandwidth blocking rate as the
fraction of load rejected by a path-finding algorithm. In Fig. 11
we plot the bandwidth blocking rate against the number of
loads N, for offered load .

If bandwidth blocking at intermediate links is neglected, the
problem reduces to bin-packing, where the egress links can be
viewed as bins and the loads as weights. The solution always
rejects fewer loads than other algorithms which take into
account intermediate links. Thus, we provide bin-packing
results (using the first-fit-decreasing (FFD) heuristic [7]) as a
lower bound on the blocking rate. It is not practical to use this
heuristic for path finding.

The top load-balancing algorithm achieves the next lowest
blocking rate, followed by the widest-shortest and the shortest-
widest path selection algorithms. This result is expected; the
load-balancing algorithm adjusts paths dynamically, while the
other two algorithms select the paths and terminate. To illumi-

nate this difference, in Fig. 12 we show a case where the short-
est-widest algorithm rejects a large fraction of loads, while
load-balancing satisfies all demands.

V. B. Comparison of Load-Balancing Performance

In Fig. 13, we evaluate load-balancing properties of shortest-

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

B
al

an
ce

 in
de

x

Rebalancing iteration

Spiral rebalancing

Figure 10: Change history of the balance index for a spiral backbone tree as
rebalancing iterations progress. The downward spikes are due to simulated
annealing perturbations. Note that the balance index converges quickly con-
sidering the number of edges that need adjustment.

ρ 1=

ρ 1=

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 b

lo
ck

in
g

ra
te

Number of loads

shortest-widest path
widest-shortest path

load-balanced tree
bin-packing using FFD

Figure 11: After bin-packing, the bandwidth blocking rate is lowest for the
load-balancing algorithm, followed by widest-shortest and shortest-widest
path selection. The bin-packing solution is presented as a lower bound only.
When the number of loads is small, their demands are coarse-grained. This
leads to an increased blocking rate, because any rejected load comprises a
large fraction of the total demand.

(b)(a)
Figure 12: Unit loads are placed at end nodes w, x, y and z, in a grid with unit
capacities. (a) shortest-widest path: suppose paths for w and z are reserved
first, indicated by emphasized lines. The loads at x and y cannot be satisfied,
resulting in a 50% blocking rate. (b) load-balancing: each load is satisfied,
without any blocking.

w x y z w x y z

E E

Figure 13: The best balance is achieved by the load-balancing and the short-
est-widest algorithms, followed by the widest-shortest path algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
al

an
ce

 in
de

x

Offered load

load-balanced tree
shortest-widest path
widest-shortest path

widest path, widest-shortest path, and our load-balancing algo-
rithm. In order to create an imbalance, the egress node is
placed in the top left region of the grid like in Fig. 1. The
offered load ρ varies from 0 to 1, with the number of loads
fixed at N = 80.

In widest-shortest, the majority of the loads such as load fv
from node v in Fig. 1 first follow shortest paths to E through
nodes A or B. Once A and B fill up, the loads go through C or
D. However, if the offered load ρ is less than 0.5, A and B
together never become fully utilized. Thus, those loads do not
detour to C or D making the balance index less than 1.

If the offered load ρ is greater than 0.5, A and B do become
fully utilized. Thus, those loads that would go through A or B
now detour through C or D. As the offered load increases, there
tend to be more such loads making the egress node more bal-
anced.

In shortest-widest, as the loads select paths to E, they fill up
A, B, C, and D evenly. For example, suppose that node A lies
on the “widest” paths to E at a given point in time. Once a load
goes through node A, the capacity of A decreases, and A will
likely no longer be along the “widest” paths. Instead, another
node, C for instance, will now lie along the “widest” paths to
E. Thus, in Fig. 13, the balance index of shortest-widest path
algorithm tends to be 1. Our load-balanced tree algorithm
achieves the same result.

V. C. Tree-restricted Comparison

The previous two subsections compared performance of the
top load-balancing algorithm to two general QoS path finding
algorithms. The former produces a set of paths which form a
tree, while the latter return a graph. In this section, we restrict
the two QoS algorithms to trees as well. We justify this with
our earlier reasoning about simplicity of routing in tree topolo-
gies.

We make a simple change to shortest-widest and widest-
shortest path algorithms. Instead of finding a path to the egress
node, we alter the algorithms to consider paths to the set of
nodes carrying non-zero flow. This prevents paths from cross-
ing, resulting in a tree topology.

In Fig. 14, we show the bandwidth blocking rates of the tree-

restricted QoS algorithms in comparison to load balancing.
Their performance is worse than the unrestricted versions.
Similarly, in Fig. 15 we compare the balance indices of the
three algorithms, showing that the topology restriction causes
the QoS algorithms to perform worse.

VI. CONCLUSION

Wireless data networks have been an active area of research.
With the expected high growth rate of wireless users, manag-
ing the load and utilization for egress links of wireless access
networks will be of great concern. In a multi-hop wireless
access network, major aggregation points such as the egress
gateways to the wired Internet are naturally the chief points of
bandwidth contention.

We define a model for a multi-hop wireless access network
and propose load-balancing routing for this network to allevi-
ate the egress node bottleneck. We show that it can lower the
bandwidth blocking rate compared to widest-shortest and
shortest-widest QoS routing algorithms. Our load-balancing
routing algorithm lowers the bandwidth blocking rate to maxi-
mize network utilization. We define the balance index metric to
analyze and assess the state of load balance in the network.

Using a backbone tree for an access network, the graph
nodes, or routers, do not maintain per-destination state such as
routing tables or per-flow state to support quality of service.
The egress node maintains much of the global state for load
balancing. It is more likely for a single robust egress node to
perform this duty instead of having powerful graph nodes
deployed everywhere.

We propose a simple method of balancing loads using a pro-
cess of node defection. The rebalancing algorithm shifts the
path of loads in the tree relatively quickly. The algorithm con-
verges given that the state of the network does not change too
rapidly. With mobility in the end nodes, rebalancing reduces
the bandwidth blocking rate for the loads. The algorithm can
even load-balance a poorly constructed backbone tree such as a
spiral.

In comparison to shortest-widest and widest-shortest QoS
routing algorithms, our load-balancing routing algorithm has
lower bandwidth blocking rates and can keep the egress node’s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 b

lo
ck

in
g

ra
te

Number of loads

restricted shortest-widest path
restricted widest-shortest path

load-balanced tree
bin-packing using FFD

restricted shortest-widest

restricted widest-shortest

load-balanced tree

Figure 14: The bandwidth blocking rate of the tree-restricted QoS routing
algorithms vs. load-balancing algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
al

an
ce

 in
de

x

Offered load

load-balanced tree
restricted shortest-widest path
restricted widest-shortest path

restricted shortest-widest

restricted widest-shortest

load-balanced tree

Figure 15: The balance index of the tree-restricted QoS routing algorithms
vs. load-balancing algorithm.

radio links load-balanced. Unlike the others, our algorithm
does not have per-destination or per-flow state. Improving
existing QoS routing algorithms to reduce the bandwidth
blocking rates entails modification of the online algorithms
that place loads on paths. Our solution utilizes a load-balanced
tree topology where it is easy to shift loads.

Hand-off is necessary to maintain load paths from the end
nodes. However, hand-off issues are not central to this paper;
thus, results from existing work (such as [17, 22]) easily apply
to this environment.

For future work, we would like to extend the algorithm to
work with multiple egress nodes. When many egress nodes
exist, multiple backbone trees will span from them. How will
the end nodes connect to the appropriate trees to balance the
loads in the overall network? Though we have focused on top
load-balanced trees, we would like to find and evaluate algo-
rithms for fully load-balanced trees as well. Also, we hope to
investigate the impact of stale information on the performance
of the routing algorithm. Currently, the distributed algorithm
relies on periodic flood updates from the egress node. There
has been research on the impact of triggered updates on the
correctness and overhead of QoS routing protocols [17]. Our
load-balancing routing algorithm may benefit from such exten-
sions as well.

REFERENCES

[1] Beyer, D., Vestrich, M., and Garcia-Luna-Aceves, J. J.
“The Rooftop community network: free, high-speed net-
work access for communities,” http://ksgwww.har-
vard.edu/iip/doeconf/beyer.html.

[2] The Bluetooth Special Interest Group. “Specification of
the Bluetooth system,” December 1999.

[3] Bult, K., Burstein, A., Chang, D., Dong, M., Kaiser, W.
J., et al. “Wireless integrated microsensors,” in Proc. of
Conference on Sensors and Systems (Sensors Expo), Apr.
1996.

[4] Chen, S. and Nahrstedt, K. “Distributed quality-of-ser-
vice routing in ad hoc networks,” IEEE JSAC, 17(8), Aug.
1999.

[5] Chiu, D., and Jain, R., “Analysis of the increase and de-
crease algorithm for congestion avoidance in computer
networks,” Journal of Computer Networks and ISDN,
17(1), June 1989, p. 1-14.

[6] Estrin, D., Govindan, R., Heidemann, J., and Kumar, S.
“Scalable coordination in sensor networks,” in Proc. Mo-
bicom ’99, Seattle, WA, pp. 263-270, Aug. 1999.

[7] Garey, M. R. and Johnson, D. S. Computers and intracta-
bility, San Francisco: W. H. Freeman, 1979.

[8] Home RF. “Technical summary of the SWAP specifica-
tion,” http://www.homerf.org/tech/index.html.

[9] Johnson, D. “Routing in ad hoc networks of mobile
hosts,” in Proc. of IEEE workshop on Mobile Computing
Systems and Applications, Dec. 1994.

[10] Johnson, D. and Maltz, D. A. “Dynamic source routing in
ad hoc wireless networks,” in Mobile Computing, ed. T.
Imielinski and H. Korth, Ch. 5, pp. 153-181, Kluwer Ac-
ademic Publishers, 1996.

[11] Kahn, J., Katz, R., and Pister, K. “Mobile networking for
smart dust,” in Proc. Mobicom ’99, Aug. 1999, pp. 271-
278.

[12] Katz, R. and Brewer, E. “The Case for Wireless Overlay
Networks,” in Proc. of SPIE Multimedia and Networking
Conference, San Jose, CA, January 1996.

[13] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimi-
zation by simulated annealing,” Science, 220(4598):671-
680, May 1983.

[14] Ma, Q. and Steenkiste, P. “On path selection for traffic
with bandwidth guarantees,” Fifth IEEE International
Conference on Network Protocols, Atlanta, Oct. 1997.

[15] Mead, C. and Conway, L. Introduction to VLSI systems,
Reading, MA: Addison-Wesley, 1980.

[16] Ramanathan, R. and Steenstrup, M. “Hierarchically-orga-
nized, multihop mobile wireless networks for quality-of-
service support,” Mobile Networks and Applications 3
(1998) 101-119.

[17] Shaikh, A., Rexford, J., and Shin, K. G. “Evaluating the
overheads of source-directed quality-of-service routing,”
in Proc. ICNP ’98, Oct. 1998.

[18] Shepard, T. J. “A channel access scheme for large dense
packet radio networks,” in Proc. of the SIGCOMM ’96
Conference on Communications Architectures, Protocols
and Applications, Aug. 1996.

[19] Sinha, P., Sivakumar, R., and Bharghavan, V. “CEDAR:
a core-extraction distributed ad hoc routing algorithm,”
IEEE JSAC, 17(8), Aug. 1999.

[20] Wang, Z. and Crowcroft, J. “Quality of service routing for
supporting multimedia applications,” IEEE JSAC, 14(7),
Sept. 1996.

[21] Zonoozi, M., Dassanayake, P., and Faulkner, M. “Opti-
mum Hysteresis, Signal Averaging Time and Handover
Delay,” IEEE Vehicular Technology Conference, March
1997, pp 310-313.

	I. Introduction
	1. The wireless network is deployed for temporary use, or acts as an alternative infrastructure t...
	2. The wireless network is mobile. Because nodes may move, existing links can be broken and new o...
	3. The wireless network is required to provide QoS routes. For a given QoS demand, the routing sy...
	4. Suppose that traffic over the wireless network changes over time. The routing system will conf...

	II. Load-Balancing Routing Problem
	Figure 1: A topology graph. Graph nodes are equipped with 4 unit-range radio interfaces. There is...
	II. A. Definitions and Assumptions
	II. B. Load and Load-balancing
	II. C. Load-Balancing Tree Routing Examples
	II. C. 1. Fully load-balanced H-tree for a square mesh
	Figure 2: Fully load-balanced H-tree routing for a 7x7 mesh. Load is divided equally at each bran...

	II. C. 2. Top load-balanced tree for a square mesh

	III. Load-balancing Algorithm
	Figure 3: Top load-balanced tree for a square mesh. In this particular example, each top subtree ...
	III. A. Use of Backbone Tree
	III. B. Underlying Concepts of the Load-balancing Algorithm
	Figure 4: Running example for top load-balancing on a hexagonal mesh topology graph. Edges of the...
	III. B. 1. Balance Index
	(1)

	III. B. 2. Basic Mechanisms
	TABLE 1 : Defection outcome evaluation in Fig. 4 (c) and (d)

	III. B. 3. Heuristics
	Figure 5: (a) Local optimum of backbone tree. If node X defects to tU, then Z can defect to tW re...
	TABLE 2 : Defection outcome evaluation for node X in Fig. 5 (a)

	III. C. Distributed Implementation

	IV. Simulation Results
	IV. A. Performance Evaluation Criteria
	IV. B. Rebalancing with Load Mobility
	IV. B. 1. Mobility Model
	IV. B. 2. Rebalancing Keeps the Balance Index High
	Figure 6: Change history of the balance index as rebalancing iterations progress. End nodes move ...

	IV. B. 3. Rebalancing Keeps the Bandwidth Blocking Rate Low
	Figure 7: Bandwidth blocking rate as the end nodes increase their mobility with different speed p...

	IV. C. Local Convergence Speed for Rebalancing Heuristics
	Figure 8: Speed of convergence. (a) The number of iterations for convergence as the number of nod...

	IV. D. Stress Test: Rebalancing a Worst-case Tree
	Figure 9: Spiral backbone tree example. (a) the initial spiral backbone tree with 4 top subtrees....
	Figure 10: Change history of the balance index for a spiral backbone tree as rebalancing iteratio...

	V. Comparison with Other Research
	V. A. Comparison of Bandwidth Blocking Rates
	Figure 11: After bin-packing, the bandwidth blocking rate is lowest for the load-balancing algori...
	Figure 12: Unit loads are placed at end nodes w, x, y and z, in a grid with unit capacities. (a) ...

	V. B. Comparison of Load-Balancing Performance
	Figure 13: The best balance is achieved by the load-balancing and the shortest-widest algorithms,...

	V. C. Tree-restricted Comparison
	Figure 14: The bandwidth blocking rate of the tree-restricted QoS routing algorithms vs. load-bal...
	Figure 15: The balance index of the tree-restricted QoS routing algorithms vs. load-balancing alg...

	VI. Conclusion
	References
	[1] Beyer, D., Vestrich, M., and Garcia-Luna-Aceves, J. J. “The Rooftop community network: free, ...
	[2] The Bluetooth Special Interest Group. “Specification of the Bluetooth system,” December 1999.
	[3] Bult, K., Burstein, A., Chang, D., Dong, M., Kaiser, W. J., et al. “Wireless integrated micro...
	[4] Chen, S. and Nahrstedt, K. “Distributed quality-of-service routing in ad hoc networks,” IEEE ...
	[5] Chiu, D., and Jain, R., “Analysis of the increase and decrease algorithm for congestion avoid...
	[6] Estrin, D., Govindan, R., Heidemann, J., and Kumar, S. “Scalable coordination in sensor netwo...
	[7] Garey, M. R. and Johnson, D. S. Computers and intractability, San Francisco: W. H. Freeman, 1...
	[8] Home RF. “Technical summary of the SWAP specification,” http://www.homerf.org/tech/index.html.
	[9] Johnson, D. “Routing in ad hoc networks of mobile hosts,” in Proc. of IEEE workshop on Mobile...
	[10] Johnson, D. and Maltz, D. A. “Dynamic source routing in ad hoc wireless networks,” in Mobile...
	[11] Kahn, J., Katz, R., and Pister, K. “Mobile networking for smart dust,” in Proc. Mobicom ’99,...
	[12] Katz, R. and Brewer, E. “The Case for Wireless Overlay Networks,” in Proc. of SPIE Multimedi...
	[13] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by simulated annealing,” Sci...
	[14] Ma, Q. and Steenkiste, P. “On path selection for traffic with bandwidth guarantees,” Fifth I...
	[15] Mead, C. and Conway, L. Introduction to VLSI systems, Reading, MA: Addison-Wesley, 1980.
	[16] Ramanathan, R. and Steenstrup, M. “Hierarchically-organized, multihop mobile wireless networ...
	[17] Shaikh, A., Rexford, J., and Shin, K. G. “Evaluating the overheads of source-directed qualit...
	[18] Shepard, T. J. “A channel access scheme for large dense packet radio networks,” in Proc. of ...
	[19] Sinha, P., Sivakumar, R., and Bharghavan, V. “CEDAR: a core-extraction distributed ad hoc ro...
	[20] Wang, Z. and Crowcroft, J. “Quality of service routing for supporting multimedia application...
	[21] Zonoozi, M., Dassanayake, P., and Faulkner, M. “Optimum Hysteresis, Signal Averaging Time an...
	Load-Balancing Routing for Wireless Access Networks
	Pai-Hsiang Hsiao, Adon Hwang, H. T. Kung, and Dario Vlah
	Division of Engineering and Applied Sciences
	Harvard University
	Cambridge, MA 02138, U.S.A.
	{shawn, adon, htk, dario}@eecs.harvard.edu

