

Pre-/Post-	R/C	Homo- /Hetero-	papers	goals	considerations
Pre-	R	Homo-	[AS03]	Min sensor density	Coverage
Pre-	R	Homo-	[LRS05]	Min sensor density	Coverage
Pre-	R	Hetero-	[MRK05]	Min cost	Two types of sensors, coverage and connectivity
Pre-	с	Homo-	[DC03] [DC102]	Min number of sensors	Coverage threshold, grid based method
Pre-	С	Homo-	[RST04]	Min number of sensors	Identifying cod, target location, robust
Pre-	С	Homo-	[[CCZ05]	Min number of sensors	Lifetime, cost
Pre-	С	Homo-	[BKX06]	Min number of sensors	Coverage, 2-connectivity
Pre-	С	Homo-	[GCB06]	Energy efficiency	Data distortion, connectivity
Pre-	С	Homo- Hetero-	[CIQ02]	Min number of sensors	Coverage, target location
Post-	R	Homo-	[SP01] [AGP04]	Energy-efficiency	K-cover
Post-	R	Hetero-	[CWL05] [DVZ06]	Max number of covers	Adjustable sensing radius, reduce radius
Post-	С	Homo-	[ZC03a]	coverage	Mobile sensors, target location
Post-	С	Hetero-	[XWH05]	Min cost	Add relay nodes, lifetime, connectivity, sensing/ relay node
Post	R/C	Homo-	[VVB04]	coverage	Incremental deployment
Post-	R/C	Homo-	[KGG06]	Min number of sensors	Coverage, communication efficiency
Post-	R/C	Hetero-	[IMP05]	Number of cluster	Lifetime, two-level

Problem Description	-
 Objective Complete discrimination/minimizing the maximum error distance Given Sensor field, set of service points, sensor cost, and detection range of sensor 	
 Constraints Complete coverage and budget Outcomes Sensors' location and power vectors Solution approaches Simulated annealing method 	
PLChiu 20)

Const	rain	ts		
$v_{ik}d_{ik}$	2	$y_k r_k$	$\forall k \in A, i \in B, i \neq k$	(3.1)
$\frac{d_{ik}}{r_k}$	>	$y_k - v_{ik}$	$\forall k \in A, i \in B, i \neq k$	(3.2)
v_{ik}	=	${\mathcal Y}_k$	$\forall k \in A, i \in B, i \neq k$	(3.3)
$\sum_{\forall k \in A} c_k y_k$	\leq	G		(3.4)
$\sum_{\forall k \in A} v_{ik}$	\geq	1	$\forall i \in B$	(3.5)
v_{ik}, y_k	=	0 or 1	$\forall k \in A, i \in B .$	(3.6)

Ехр	erim	en	t I				
1	able 3.1: (Compar	ison between exh	austive s	earch ar	nd the S	A algorithm.
	# of se	ensors	Sensor density	Area	# of sensors		a 1 1
Are	a Opt.	SA			Opt.	SA	Sensor density
3x3	4	4	44.44%	6x4	10	10	41.67%
4x3	6	6	50.00%	6x5	12	12	40.00%
4x4	1 7	7	43.75%	7x3	9	9	42.86%
5x3	6	6	40.00%	7x4	12	12	42.86%
5x4	8	8	40.00%	8x3	10	10	41.67%
5x.	5 10	10	40.00%	9x3	11	11	40.74%
6x.	8	8	44.44%	10x3	12	12	40.00%
·							•
PLChiu	5	Sensor Pla	cement Problem for Com	plete Cove	rage/Discrii	mination	

viathematical Model					
Constraints					
$v_{ik}d_{ik} \leq y_k r_k$	$\forall i \in A, k \in B, i \neq k$	(4.1)			
$\frac{d_{ik}}{r_{k}} > y_k - v_{ik}$	$\forall i \in A, k \in B, i \neq k$	(4.2)			
$v_{kk} = y_k$	$\forall k {\in} A {\cap} B$	(4.3)			
$\sum_{\forall k \in \mathcal{B}} c_k y_k \leq G$		(4.4)			
$\sum_{\forall k \in B} v_{ik} \ge 1$	$\forall i \in A$	(4.5)			
$\sum_{\forall k \in R} v_{ik} \le N$	$\forall i \in A$	(4.6)			
$r_k \in R$	$\forall k \in B$	(4.7)			
$v_{ik}=0 \text{ or } 1$	$\forall i \in A, k \in B$	(4.8)			
$v_k=0 \text{ or } 1$	$\forall i \in A, k \in B$.	(4.9)			

xpe	rimental	Results	S (LR)		
The du	plicated deployn	nent vs. the p	proposed ap	proach	
Deploy	ment cost vs. lif	etime extensi	on		
Radius	The duplicate of	leployment	The proposed approach		
	#Duplication	Increased cost	#Cover	Increased cost	
1	3	3	3	2.00	
2	6	6	6	2.71	
3	11	11	11	3.04	
4	17	17	17	4.16	
5	26	26	26	4.41	
6	34	34	34	3.88	
	43	43	43	3.88	

