Flow Allocation in Multi-hop Wireless Networks: A Cross-Layer Approach

Kun-Da Wu and Wanjiun Liao

accepted by IEEE Transactions on Wireless Communications. 2007

student: Shi-Sheng Sun Nov. 27, 2007

Outline

- Introduction
- Problem Description
- System Model
- Numerical Studies
- Conclusion

Introduction

- Multi-hop wireless network
 - Pkts are forwards hop-by-hop
- Each flow contending for
 - local resource at each intermediate node in its routing path: local interference
 - the shared wireless medium with those flows located within its interference range: location-dependent interference:
- Due to resource contention from different layers
 - traditional single layer design disciplines lead to inefficient performance
 - → calls for cross-layer design manner, to coordinate among the transport, MAC, and physical layer

two model to describe the locationdependent interference:

- Protocol Model
- Physical Model

Protocol Model

- G=(V,E)
- r_i : transmission radius of node i
- r_i : interference range of node i, r_i :=(1+ \triangle) r_i , \triangle :non-negative number

$$\rightarrow$$
 d_{ii} $\leq r_i$

- → for any node $k \in V$, $k \neq i, j$, that is simultaneously transmitting, $d_{k,j} \ge r'_j$
 - conflict graph -> clique -> NP-complete
 - insufficient to guarantee the optimality of link utilization

- Physical Model
 - α :pass loss exponent
 - σ :thermal backgroud noise

$$\frac{P_t(i)/d_{_{i,j}}^{\alpha}}{\sum_{k\in K} P_t(k)/d_{_{k,j}}^{\alpha}+\sigma} > \beta$$

- Optimize the network capacity while satisfying the power constraint of each node
- Requires selecting the sets of concurrently active communication links
 - Time consuming each link in a set will interference with the other link

- All existing works not explicitly addressed in
 - Relationship between the interference caused by wireless communications
 - supportable data rate of a node
 - end-to-end flow rate control problem
 - MAC issues caused by the interference due to simultaneous transmissions.

- Motivations:
 - avoiding the enumeration of MAX clique, or the sets of concurrently active links
 - providing a general approach which accounts for the interference constraints in MAC protocol designs in arbitrary network topologies
- Objective:
 - Optimize global resource allocation
 - by maximizing the aggregate utilization of wireless resource with coordination between the transport, MAC, and physical layer

- New interference model: Node-based Interference Model
 - account for MAC protocols
 - captures the behavior of local interference and locationdependent interference
 - each node locally identify the interference at the physical layer and contentions at the MAC layer only through signal power measurement
- The optimal flow allocation problem
 - jointly consider physical layer, medium contention at the MAC layer, and end-to-end flow issues at the transport layer
 - eliminate the clique or the independent set computation

Problem Description

Fig. 1. Node-based interference model. (a) Location-dependent interference; (b) Local interference.

Problem Notation(1)

Notation	Description				
G=(V, E)	G: multihop wireless network				
	<i>V</i> : the set of nodes				
	E: the set of links				
$P_t(i)$	The transmission power of node <i>i</i>				
$d_{i,j}$	The distance between node <i>i</i> and node <i>j</i>				
RxT	The threshold of received signal power. The minimum power				
	level to correctly receive and decode the date from transmitter				
L(.)	The path gain function				
$P_r(j)$	The received power at node j , $P_r(j) = P_t(j)L(d_{i,j})$, must exceed				
	RxT				
r _i	The transmission range of transmitter <i>i</i> , the largest distance				
	from <i>i</i> that <i>i</i> 's node can be correctly decoded				

Problem Notation(2)

	1		
Notation	Description		
σ	The thermal background noise		
θ	The SNR threshold for a node to correctly decode the signal		
$(heta_i)$			
SNR _{ij}	SNR(Signal to Noise Ratio) of link (i,j),		
	$SNR_{ij} = P_t(j)L(d_{i,j}) / \sigma.$ $SNR_{ij} \ge \theta$		
K	The set of concurrent transmitters		
SIR _{i,j}	$SIR(\text{Signal to Interference Ratio}) \text{ of link } (i,j),$ $SIR_{i, j} = \frac{P_t(i)L(d_{i, j})}{\sum_{k \in K} P_t(k)L(d_{k, j}) + \sigma}$		
β	The SIR threshold determined by the setting of wireless PHY.		
(β_i)	For node j to receive data from node i correctly, the $SIR_{i,j}$ of		
	link (i,j) must exceed β		

Problem Notation(3)

Notation	Description			
W	The frequency bandwidth of the communication channel			
R_i	The supportable data rate of any communication link incident			
	to node <i>i</i> is at least $R_i = W \times log_2(1 + \beta_i)$			
$P_{max}(i)$	The max transmission power of node <i>i</i> . Adjust $0 \leq P_t(i) \leq$			
	$P_{max}(i)$ such that the signal power of the receiver node j is			
	slightly larger than $ heta_i \! imes \! \sigma$			
R _{j,max}	Max supportable data rate of a wireless link connecting node j ,			
	$R_{j,max} = W \times log_2(1 + \theta_i)$			
Г	A set of end-to-end flows			
$f = \{s, d\}$	End-to-end flow traverses the system from source node s to			
	destination node d			
$t_{i,j}^f$	The portion of time shared by flow f transmitted from node i to			
~	node j			
Т	Each fixed time period			
C _i	$C_i = T \times Ri$, the total capacity of node $i \in V$,			

Problem Notation(4)

Notation	Description				
B_j	Max interference budget which node <i>j</i> can sustain to correctly				
	decode the signal from a transmitter, $B_j = (\theta_j \times \sigma / \beta_j) - \sigma$				
(c) i,k,j	For node k , the ratio of the interference contributed by the				
	concurrent transmission from node <i>i</i> to node <i>j</i> $\omega_{i,k,j} = \frac{P_t(i) \times L(d_{i,k})}{B_k} = \frac{L(d_{i,k})\theta_k\beta_k}{L(d_{i,j})(\theta_k - \beta_k)}$				
<i>ζi, k, j</i>	The interference indicator for the communications performed				
	at the set of contending nodes of node k. $\zeta_{i,k,j} = 1$ if node k				
	contends with the transmission from node <i>i</i> to node <i>j</i> ,				
	otherwise $\zeta_{i,k,j} = 0$				
$r_{i,j}^f$	Indicator, if link(<i>i</i> , <i>j</i>) carries the traffic of flow <i>f</i> , then $r_{i,j}^f = 1$,				
	otherwise $r_{i,i}^{f} = 0$				
$U_f(x_f)$	The utility function. Each end-to-end flow $f \in \Gamma$ is				
	associated with a utility function $U_f(x_f)$, which indicates the				
	degree of satisfaction of its end-user				

Fig. 1. Node-based interference model. (a) Location-dependent interference; (b) Local interference.

$$\sum_{f \in \Gamma} \sum_{j \in V} t_{j,i}^f + \sum_{f \in \Gamma} \sum_{j \in V} \sum_{k \in V(i,j)} \varsigma_{j,i,k} \times t_{j,k}^f \le T.$$
(3)

P: Maximize
$$f(x) = \sum_{f \in \Gamma} U_f(x_f),$$
 (6)

subject to

$$\sum_{f \in \Gamma} \sum_{j \in V} r_{j,i}^f x_f + \sum_{f \in \Gamma} \sum_{j \in V} r_{i,j}^f x_f \frac{R_i}{R_j} \le C_i, \tag{7}$$

$$\sum_{f \in \Gamma} \sum_{j \in V} r_{j,i}^f x_f + \sum_{f \in \Gamma} \sum_{j \in V} \sum_{k \in V(i,j)} \varsigma_{j,i,k} r_{j,k}^f x_f \frac{R_i}{R_j} \le C_i. \quad (8)$$

Flow Allocation in Multi-Hop Wireless Networks Duality

The Lagrangian form of the optimization problem \mathbf{P} can be expressed as follows.

$$L(x,\lambda,\mu) = \sum_{f=1}^{|\Gamma|} U(x_f) + \sum_{i=1}^{|V|} \lambda_i [C_i - \sum_{f=1}^{|\Gamma|} a_{if} x_f] + \sum_{i=1}^{|V|} \mu_i [C_i - \sum_{f=1}^{|\Gamma|} b_{if} x_f], \qquad (9)$$

$$\lambda_i, \text{ and } \mu_i, i \in V, \text{ are Lagrange multipliers}$$

$$a_{if} = \sum_{j=1}^{|V|} r_{j,i}^f + \sum_{j=1}^{|V|} r_{i,j}^f \frac{R_i}{R_j}$$

$$b_{if} = \sum_{j=1}^{|V|} r_{j,i}^{f} + \sum_{j=1}^{|V|} \sum_{k=1; k \neq i, j}^{|V|} \varsigma_{j,i,k} r_{j,k}^{f} \frac{R_{i}}{R_{k}}$$

Flow Allocation in Multi-Hop Wireless Networks Duality (cont.)

$$L(x,\lambda,\mu) = \sum_{f=1}^{|\Gamma|} L_f(x_f,\lambda^f,\mu^f) + \sum_{i=1}^{|V|} C_i(\lambda_i + \mu_i), \quad (10)$$

where $\lambda^f = \sum_{i=1}^{|V|} \lambda_i a_{if}$ and $\mu_f = \sum_{i=1}^{|V|} \mu_i b_{if}$. For each flow $f \in \Gamma$, $L_f(x_f, \lambda^f, \mu^f) = U_f(x_f) - (\lambda^f + \mu^f)x_f$ and its value is determined by x_f and flow prices λ^f and μ^f . Considering the expression $\lambda^f + \mu^f$, we obtain

$$\lambda^{f} + \mu^{f} = \sum_{i=1, i \neq j}^{|V|} \sum_{j=1}^{|V|} r_{j,i}^{f} (\lambda_{i} + \lambda_{j} \times \frac{R_{j}}{R_{i}} + \mu_{i} + \mu_{j} + \eta_{j,i}), \quad (11)$$

where $\eta_{j,i} = \sum_{k=1}^{|V|} \mu_k \varsigma_{j,k,i}$ represents the price of link (j,i) that is the aggregate interference price from the neighborhood of link (j,i).

Flow Allocation in Multi-Hop Wireless Networks Duality (cont.)

To determine the Lagrange multipliers, we introduce the dual problem \mathbf{g} of the optimization problem \mathbf{P} , which can be formulated as follows.

$$\mathbf{g:} \min_{\lambda \ge 0, \mu \ge 0} \quad g(\lambda, \mu), \tag{12}$$

where $g(\lambda,\mu) = \max_x L(x,\lambda,\mu) = \sum_{f=1}^{|\Gamma|} S_f(\lambda,\mu) + V(\lambda,\mu)$, and

$$S_{f} = \max_{x_{f}} (U_{f}(x_{f}) - \sum_{i=1, i \neq j}^{|V|} \sum_{j=1}^{|V|} r_{j,i}^{f} (\lambda_{i} + \frac{\lambda_{j}R_{j}}{R_{i}} + \mu_{i} + \mu_{j} + \kappa_{j,i}) x_{f}$$
$$V(\lambda, \mu) = max_{c} C_{i} (\sum_{i=1}^{|V|} (\lambda_{i} + \mu_{i})).$$

Gradient-based Flow Allocation Algorithm

GRADIENT-BASED FLOW ALLOCATION ALGORITHM

Input: A set of nodes V, a set of source-destination pairs Γ , and the routing path of each flow.

Output: Flow assignment x_f for each flow $f \in \Gamma$.

1: Initialize flow $x_f(0) \leftarrow 0, \forall f \in \Gamma$, and node prices $\lambda_i \leftarrow 0, \mu_i \leftarrow 0, \forall i \in V$.

2: Update the price at each node $i \in V$.

$$\begin{aligned} \lambda_i(t+1) &= [\lambda_i(t) - \alpha (C_i - \sum_{f=1}^{|\Gamma|} (\sum_{j=1}^{|V|} r_{j,i}^f + r_{i,j}^f \frac{R_i}{R_j}) x_f)]^+ \\ \mu_i(t+1) &= [\mu_i(t) - \alpha (C_i - \sum_{f=1}^{|\Gamma|} (\sum_{j=1}^{|V|} r_{j,i}^f + \sum_{j=1}^{|V|} \sum_{k=1}^{|V|} r_{j,k}^f \varsigma_{j,i,k} \frac{R_i}{R_k}) x_f)]^+. \end{aligned}$$

3: For each node $i \in V$, send the prices $\lambda_i(t+1)$ and $\mu_i(t+1)$ to the sender of the flow $f \in \Gamma$, for which $r_{i,j}^f = 1$ or $r_{j,i}^f = 1$ or $r_{j,i}^f = 1$.

4: For each flow originator, after receiving node prices $\lambda_i(t+1)$ and $\mu_i(t+1)$ from each node $i \in V$, calculate the gradient by

$$\zeta_f(t+1) = \sum_{i=1, i\neq j}^{|V|} \sum_{j=1}^{|V|} r_{j,i}^f [\lambda_i(t+1) + \mu_i(t+1) \frac{R_j}{R_i} + \lambda_j(t+1) + \mu_j(t+1) + \sum_{k=1}^{|V|} \mu_k(t+1)\varsigma_{j,k,i}].$$

5: The flow allocation is adjusted by

$$x_f(t+1) = x_f(\zeta_f(t+1))$$

Numerical Studies (1)

(a) 3- flow scenario

(c) Agreegate flow scenario

(c) Reverse flow scenario

Numerical Studies (2)

NUMBER OF ITERATIONS FOR CONVERGENCE

	3-flow	Mutual flow	Aggregate flow	Reverse flow
6-node	24	17	19	21
10-node	30	40	23	37
15-node	31	63	27	52
20-node	31	75	37	70

(c) Agreegate flow scenario

(c) Reverse flow scenario

Flow throughput comparison under the 3 flow scenario.

Numerical Studies (4)

(b) Throughput comparison for each flow under the mutual flow. scenario.

Numerical Studies (5)

(c) Throughput comparison for each flow under the aggregate flow scenario.

Numerical Studies (6)

(d) Throughput comparison for each flow under reverse flow scenario.

Flow4: 10->11 Flow5: 5->14 Flow3: 6->5 Flow1: 3->9 Flow6: 2->3 Flow2: 19->8

Fig. 6. Throughput trajectory of each flow when the network topology changed.

Conclusion

Node-based Interference Model

- Consider interference, data rate, signal reception power, contention behavior at MAC, and end-to-end flow at the transport layer
- Objective
 - Maximize network utilization
 - Maintain fairness among flows
- Numerical results
 - Achieve the optimum within a small number of iterations
 - Allocate resource to the end-to-end multi-hop flows
 - Maximize optimal network utilization
 - Maintaining fairness among flows
- The first work which formulate the interference constraints for the flow allocation problem without any global info in multi-hop wireless networks