CHAPTER 9

PUBLIC-KEY CRYPTOGRAPHY AND RSA

9.3 5

9.4 By trail and error, we determine that p = 59 and q = 61. Hence $\phi(n) = 58 \ge 60 = 3480$. Then, using the extended Euclidean algorithm, we find that the multiplicative inverse of 31 modulu $\phi(n)$ is 3031.

CHAPTER 10 Key Management; Other Public-Key Cryptosystems

10.2 a. $\phi(11) = 10$

 $2^{10} = 1024 = 1 \mod 11$

If you check 2^n for n < 10, you will find that none of the values is 1 mod 11.

- **b.** 6, because $2^6 \mod 11 = 9$
- **c.** $K = 3^6 \mod 11 = 3$

1	Λ	1	2
T	U	1	3

Х	$(x^3 + x + 6) \mod 11$	square roots mod p?	у
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2, 9
6	8	no	
7	4	yes	2, 9
8	9	yes	3, 8
9	7	no	
10	4	yes	2, 9

10.15 We follow the rules of addition described in Section 10.4. To compute 2G = (2, 7) + (2, 7), we first compute

 $\lambda = (3 \times 2^2 + 1)/(2 \times 7) \mod 11$ = 13/14 mod 11 = 2/3 mod 11 = 8

Then we have

$$x_3 = 8^2 - 2 - 2 \mod 11 = 5$$

 $y_3 = 8(2 - 5) - 7 \mod 11 = 2$

$$2G = (5, 2)$$

Similarly, 3G = 2G + G, and so on. The result:

2G = (5, 2)	3G = (8, 3)	4G = (10, 2)	5G = (3, 6)
6G = (7, 9)	7G = (7, 2)	8G = (3, 5)	9G = (10, 9)
10G = (8, 8)	11G = (5, 9)	12G = (2, 4)	13G = (2, 7)