A multi-layer Criticality Assessment methodology based on interdependencies

- Authors:
 - Marianthi Theoharidou, Panayiotis Kotzanikolaou, and Dimitris Gritzalis
- Journal:
 - Computers & Security
- Article history:
 - Received 10 January 2010
 - Received in revised form 18 February 2010
 - Accepted 28 February 2010

Outline

- Introduction
- A multi-layer design
- A Multi-layer Criticality Assessment methodology: modeling interdependencies and calculating risk
- Conclusions

Introduction

- Business, industry, government and society in general rely on critical information infrastructures in order to function.
- Such infrastructures (Critical Infrastructure, CI) are vital for several sectors, like banking, finance, government services, information and communication technologies (ICT), energy, health, food, water, transportation.

• Criticality

- Contribution level of the infrastructure to the society in maintaining a minimum quality level of vital societal functions, health, *safety*, *security*, economic or social wellbeing of people.
- Impact level to the society from the disruption or destruction of the CI.

Introduction (cont'd)

- This paper proposes a holistic Criticality Assessment methodology.
- The proposed methodology aims to integrate existing security plans and risk assessments performed in organizations (Critical Infrastructure Operators, CIOs).
- This paper defines three different layers of security assessments with different requirements and goals; the *operator layer*, the *sector layer* and the *intra-sector* or *national layer*.

Introduction (cont'd)

- A key element is the formal definition of *interdependencies* between different infrastructures and their respective sectors.
- Interdependencies between infrastructures belonging to the same or to a different sector, as well as interdependencies between different sectors, act as interfaces through which threats and their impacts occurring on different layers or different sectors, are conveyed to others.
- Current risk assessment methodologies fail to address effectively this issue.

Interdependency

- The interdependency between CIOs can be categorized as *physical*, *cyber*, *geographic*, or *logical*.
- *Physical* interdependencies arise from physical linkages or connections among elements of the infrastructures.
- A CIO has *cyber* interdependency with another CIO if its state depends on information transmitted through the information infrastructure of the second CIO.

Introductory taxonomy for interdependency analysis

Requirements for criticality assessment: a multi-layer design

- In order to develop a holistic Criticality Assessment methodology that takes into consideration existing security plans and risk assessments of CIOs.
- This paper proposes a structured approach which takes into consideration three layers of entities with different security need.
- This idea of interdependency layers is also supported by Haimes et al. (2007).

Layers of interdependencies

(Haimes et al., 2007)

Requirements for criticality assessment: a multi-layer design (cont'd)

- In order to model the needs and requirements for criticality assessment, this study adopt the layered approach and we examine risk and criticality in three respective layers, namely the *Operator layer*, the *Sector layer* and the *Intra-Sector/National layer*.
- This is a *bottom-up approach* during which the output of the analysis of a layer provides input to the layer above it.

A three-layer criticality analysis approach

Layer 1: operator risk assessment

- **Scope**: The basic concern of any CIO (private company, public body or any other entity) is to protect its own business operations, ICT assets and systems, from security threats.
- Impact type and scale: service loss, legal etc.
- **Dependencies**: During a risk assessment a CIO may consider both inside and outside threats.

Layer 2: sector risk assessment

- **Scope**: The scope of a sector-wide criticality analysis involves all the organizations that are members of the sector.
- Impact type and scale: societal impact.
 - A risk assessment for the banking sector may need to estimate the possible *social impacts* from an incident that affects the sector as a whole.
- **Dependencies**: During a sector-wide criticality analysis, dependencies with other sectors are examined.

Layer 3: intra-sector/national criticality assessment

- Scope: A national body (e.g. a government) is interested in protecting all the infrastructures.
- Impact type and scale: A national-wide criticality assessment needs to analyze security threats that are outside the scope of a single sector, but which pose an impact to the *whole society*.
- **Dependencies**: During this layer of analysis needs to examine how the realization of a threat in one sector may affect another sector.

Telecom Italia, 2004

- The failure of a service plant for an important Telecom Italia node in Rome shut down fixed and mobile telecommunications services for several hours.
- The outage affected the financial infrastructure and air transportation.
 - 5,000 bank branches and 3,000 post offices lost connectivity
 - 70% of the check-in desks at Rome's Fiumicino airport were forced to use manual procedures, resulting in numerous flight delays.

A Multi-layer Criticality Assessment methodology: modeling interdependencies and calculating risk

- With the proposed multi-layer criticality analysis methodology, the output of the lower layers is provided as input to the higher layers.
- For each sector, the body assigned as the sector coordinator, will perform the initial identification of the candidate CIOs.

Sector	Abbreviation
Banking & Finance	Finance
Central Government/Government Services	Gov.
(Tele-)Communication/Information	ICT
& Communication Technologies	
Emergency/Rescue Services	Emergency
Energy/electricity	Energy
Health Services	Health
Food	Food
Transportation/logistics/distribution	Transport
Water (supply)	Water

A Multi-layer Criticality Assessment methodology: modeling interdependencies and calculating risk (cont'd)

- This study assume that every CIO has already conducted an organization-wide risk assessment and has designed and adopted a security plan.
- This implies that the operator has documented all its *important assets*, the *possible impacts*, the *internal and external security threats* and has evaluated the security risks against its assets.

Layer 1: operator layer

- In order to assess all the organization-wide security risks and also provide input to the next layer (sector-wide criticality analysis), each CIO needs to document its dependencies to third parties, by applying a unified method.
- The method should be simple and close enough to common practice, so that the information is extracted by existing risk analyses with minimum effort.
- In order to model the interdependencies between CIOs, each CIO formulates a *dependency tree*.

Unav

Unav

Discl

Legal

Consea

Modeling the dependencies of CIOs in a tree-based approach

Example: the dependencies of CIO_A

Dependency Type:

- Physical
- •Cyber (informational)
- •Geographic
- •Logical
- Social

Impacts:

- Confidentiality
- Integrity
- Availability

Examples of examined impact types and scales for incoming impacts

Incoming Impact Type: economic losses, safety, competitive disadvantage, service loss, legal consequences, etc.

Impact type	Impact scale
Violation of legislation and/or regulation Impairment of business performance Loss of goodwill/negative effect on reputation Breach associated with personal information Endangerment of personal safety Adverse effects on law enforcement Breach of confidentiality Breach of public order Financial loss	(VL) Very Low (L)ow (M)edium (H)igh (VH) Very High
Disruption to business activities Endangerment of environmental safety	

A risk matrix for the calculation of incoming risks

			Likelihood						
		Very low (very unlikely)	Low (unlikely)	Medium (possible)	High (likely)	Very high (frequent)			
Impact	Very low	1	2	3	4	5			
	Low	2	3	4	5	6			
	Medium	3	4	5	6	7			
	High	4	5	6	7	8			
	Very high	5	6	7	8	9			

Incoming risks of the operator CIO_A deriving from other CIOs

Requisite	CIO _A (finance)								
CIOs	Dependency type	Description	Source impact	Incoming impact	Impact type	Impact scale	Likelihood	Incomi risk	
CIO _D (ICT)	Cyber	Depends for VPN services	Unavailability	Disclosure	Legal/regulatory Consequence	High	Low	5	4
	Physical	Depends for network connectivity	Unavailability	Unavailability	Service Loss	High	Medium	6	5
CIO _B (finance)	Geographic	Co-location of disaster recovery sites	Unavailability	Unavailability	Service loss	Very high	Low	5	6

Layer 2: sector layer

- The operator layer analysis is performed in a microscopic level, the CIO may fail to identify all the risks.
- Indeed, each CIO will ONLY examine the incoming risks deriving from its dependencies and it will NOT examine impacts on other CIOs or possible sector impacts and societal impacts and risks.
- In order to model the societal impacts that may derive from each CIO, the *sector coordinator* will formulate for each examined CIO a *social impact dependency tree*.

A risk matrix for the calculation of societal risks

		Likelihood							
		Very low (very unlikely)	Low (unlikely)	Medium (possible)	High (likely)	Very high (frequent)			
Impact	Very low	2	3	4	5	6			
	Low	3	4	5	6	7			
	Medium	4	5	6	7	8			
	High	5	6	7	8	9			
	Very high	6	7	8	9	9			

Societal risks deriving from the operator CIO_A of the Finance Sector

Dependent CIOs		CIO _A (finance)									
ClOs	Туре	Description	Source effect	Incoming effect Outgoing	Impact type	Impact scale	Likelihood	Societal risk			
CIO _G (Gov.)	Social	Provides payment services for public insurance body	Unavailability	Unavailability	Economic impact	Medium	Medium	6			
CIO _H (Gov.)	Cyber	Supports supply management	Disclosure	Disclosure	Public confidence	High	Low	6			
CIO _D (ICT)											
Description			Effect	Impact typ	oe Impact sca	ile Like	lihood So	cietal risk			
Provides land telecommu the citizens	nication :	services to 60% of	Unavailability for	3 h Public confide	nce Medium	Very	low 4				

Layer 3: intra-sector/national layer

- The results need to be combined so as to create a complete view of the dependencies between the various CIOs.
- During this layer, the sector coordinators will reexamine all the results of the previous layers in order to identify and confirm the dependencies between CIOs and form a more macroscopic view in a sector level.

Global view of risks between CIOs

Sectors	Sectors		ce		ICT			Gov.		IDR
		CIO _A	CIOB	CIO _C	CIOD	CIOE	CIO _F	CIO _G	CIO _H	
Finance	CIO _A		6		5		2			0,206
	CIOB				4		2	1		0,111
	CIO _C	3								0,048
ICT	CIOD	2	9			8	6	4	8	0,587
	CIOE		,	6	7		8		6	0,429
	CIO _F		3	6				4		0,206
Gov.	CIO _G									0,000
	CIO _H	1		5		6	4			0,254
ODR		0,095	0,286	0,270	0,254	0,222	0,349	0,143	0,222	

Dependency Risk: $DR_{i,j}$ of CIO_i from CIO_j $DR_{i,j} = \max_{\forall (i,j)} \{r_{i,j}\}$

$$DR_{i,j} = \max_{\forall (i,j)} \left\{ r_{i,j} \right\}$$

Incoming Dependency Risk: *IDR*_i

$$IDR_{i} = \frac{1}{(n-1) \times r_{\max}} \sum_{\forall i \neq j}^{n} DR_{i,j}$$

Outgoing Dependency Risk: ODR_i

$$ODR_{j} = \frac{1}{(n-1) \times r_{\max}} \sum_{\forall j \neq i}^{n} DR_{i,j}$$

Global view of societal risks between CIOs

Sectors	Sectors		ce		ICT		Gov.		ISR	
		CIOA	CIOB	CIO _C	CIO _D	CIOE	CIO _F	CIO _G	CIO _H	
Finance	CIO _A		5					6	6	0,270
	CIOB	7		3		7		7		0,381
	CIO _C							8		0,127
ICT	CIO _D								5	0,079
	CIOE	5								0,079
	CIO _F				8					0,127
Gov.	CIO _G	1	3							0,063
	CIO _H			4			9			0,206
OSR		0,206	0,127	0,111	0,127	0,111	0,143	0,333	0,175	

Societal Risk: $SR_{i,j}$

$$SR_{i,j} = \max_{\forall (i,j)} \left\{ sr_{i,j} \right\}$$

Incoming Societal Risk: ISR_i

$$ISR_i = \frac{1}{(n-1) \times r_{max}} \sum_{\forall i \neq j}^{n} SR_{i,j}$$

Outgoing Societal Risk: OSR_i

$$OSR_{j} = \frac{1}{(n-1) \times r_{max}} \sum_{\forall j \neq i}^{n} SR_{i,j}$$

Measuring potential societal risk

CIO _D (ICT)					
Description	Effect	Impact type	Impact scale	Likelihood	Societal risk
Provides landline telecommunication services to 60% of the citizens in city X.	Unavailability for 3 h	Public confidence	Medium	Very low	4

Societal Risk:
$$SR_i$$
 for a CIO_i

$$SR_i = \frac{1}{r_{max}} max\{sr_i\}$$

Criticality levels for various CIOs

	Finance			ICT			Gov.	
	CIO _A	CIO _B	CIO _C	$\overline{\text{CIO}_{ ext{D}}}$	CIO _E	CIO _F	$\overline{\text{CIO}_{\text{G}}}$	CIO _H
ODR_i	0.095	0.286	0.270	0.254	0.222	0.349	0.143	0.222
OSR_i	0.206	0.127	0.111	0.127	0.111	0.143	0.333	0.175
SR_i	0.667	0.556	0.444	0.222	0.333	0.111	0.889	0.444
C_{i}	0.968	0.969	0.825	0.603	0.666	0.603	1.365	0.841

Criticality level C_i of an operator CIO_i $C_i = ODR_i + OSR_i + SR_i$

If n_i is the number of operators included in the sector S_i then, the criticality level of the sector S_i can be computed as the *average* of the criticality $C_{S_i} = \frac{1}{n_i} \sum_{\forall j \in S_i} C_j$ levels C_j of all its members j.

Global view of risks between sectors

	Finance	ICT	Gov.	IDR
	CIO _A , CIO _B , CIO _C	CIO_D , CIO_E , CIO_F	CIO _G , CIO _H	
Finance		5	1	0.222
CIO _A , CIO _B , CIO _C		3	1	0,333
ICT	9		0	0.044
CIO _D , CIO _E , CIO _F	9		8	0,944
Gov.	5	6		0.611
CIO _G , CIO _H	3	0		0,611
ODR	0,778	0,611	0,500	

$$DR_{S_i,S_j} = \underset{\forall k \in S_i, \forall l \in S_j, S_i \neq S_j}{max} \left\{ DR_{k,l} \right\}$$

$$IDR_{S_i} = \frac{1}{(m-1) \times r_{max}} \sum_{S_i \neq S_j} DR_{S_i, S_j}$$

$$ODR_{S_i} = \frac{1}{(m-1) \times r_{max}} \sum_{S_i \neq S_j} DR_{S_j, S_i}$$

Global view of societal risks between sectors

	Finance CIO _A , CIO _B , CIO _C	ICT CIO _D , CIO _E , CIO _F	Gov. CIO _G , CIO _H	ISR
Finance CIO _A , CIO _B , CIO _C		7	8	0,833
ICT CIO _D , CIO _E , CIO _F	5		5	0,556
Gov. CIO _G , CIO _H	4	9		0,722
OSR	0,500	0,889	0,722	

$$SR_{S_i,S_j} = \max_{\forall k \in S_i, \forall l \in S_j, S_i \neq S_j} \{SR_{k,l}\}$$

$$ISR_{S_i} = \frac{1}{(m-1) \times r_{max}} \sum_{S_i \neq S_j} SR_{S_i,S_j}$$

$$OSR_{S_i} = \frac{1}{(m-1) \times r_{max}} \sum_{S_i \neq S_j} SR_{S_j,S_i}$$

Conclusions

- This paper proposes a structured, multi-layer Criticality Assessment methodology that takes into consideration the operator, the sector and the intrasector layer.
- The proposed methodology builds upon well known risk analysis concepts, in order to assist operators and sector coordinators in the implementation of the methodology.