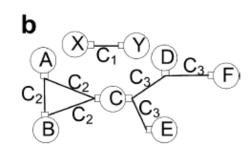
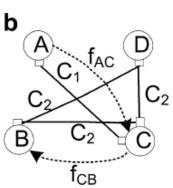


Research Direction Introduction

碩二 世昌


Outline


Background

- Channel Assignment Criteria
- ▶ IEEE 802.11s
- Related Works
- Problem Description
- Future Reading

- Background about WMNs and Channel assignment is told....
- Channel Assignment Classification[1]
 - Interference-aware
 - External and internal
 - Load-aware
 - Concurrent traffic loads
 - Link traffic loads
 - However, it is hard to synchronize....

Interference-aware **a** (A) (C_1) (C_1) (A) (C_1) (C_1) (C_1) (C_2) (C_2) (C_1) (C_2) (C_1) (C_1) (C_1) (C_1) (C_1) (C_1) (C_2) (C_2) (C_2) (C_1) (C_2) (C_2) (C_1) (C_2) (C_2) (C_2) (C_1) (C_2) (C_2) (C_2) (C_1) (C_2) (C_2) (C_2) (C_2) (C_1) (C_2) (C_2)

 \mathbb{C}_2

Load-aware

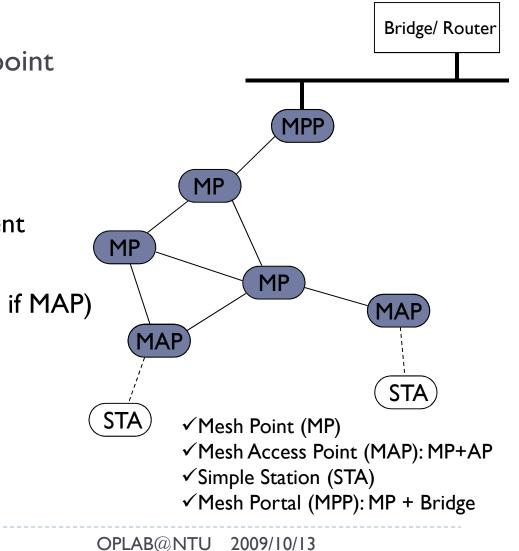
а

[1] J. Crichigno, M.-Y. Wu and W. Shu, "Protocol and architecture for channel assignment in wireless mesh networks", *Ad Hoc Networks Volume 6, Issue 7, Pages 1051-1077*, September 2008.

• 4

IEEE 802.11s (draft)

- Last version published on Mar 2009
- For mesh networking


Frame Formats				
Mesh Security				
Mesh Coordinated Channel Access (MCCA)				
Mesh Discovery and Peering Management				
Mesh Peering Management				
Mesh Channel Selection				
Mesh Path Selection, Forwarding, and Interworking				
Intra-Mesh Congestion Control				
Mesh Beaconing and Synchronization				
Power Management in a Mesh BSS				

Source: IEEE 802.11 Standard (http://ieeexplore.ieee.org/servlet/opac?punumber=5154155)

OPLAB@NTU 2009/10/13

IEEE 802.11s (draft)

- Boot Sequence of a mesh point
 - I)Neighbor discovery
 - 2) Channel selection
 - 3) Link establishment
 - 4) Local link state measurement
 - 5) Path selection initialization
 - 6) AP initialization (optional if MAP)

• Two directions after discovering background:

- IEEE 802.11 MAC protocol in WMNs
 - Proposed MAC protocols
- Channel Assignment in WMNs
 - Dynamic, Quasi or Static channel assignment
 - Multi-radio

Proposed MAC Protocol[7]

TABLE I. CHARACT

CHARACTERISTICS OF MULTI-CHANNEL MAC PROTOCOLS

Protocols	Medium Access	Transceiver	Dedicated Control Channel	Synchronous
SSCH	Channel Hopping	Single	No	Yes
MMAC	CSMA/CA	Single	Yes	Yes
Li et al	CSMA/CA	Single	Yes	No
DPC	CSMA/CA	Multiple	Yes	No
Jain et al	CSMA/CA	Multiple	Yes	No
DCA	CSMA/CA	Two	Yes	No
CHMA	Channel Hopping	Single	No	Yes
ODC	CSMA/CA	Single	No	No
McMAC	Channel Hopping	Single	No	Yes
CAM-MAC	CSMA/CA	Single	Yes	No
RICH-DP	Channel Hopping	Single	Yes	Yes
PSM-MMAC	CSMA/CA	Multiple	Yes	Yes
PCAM	CSMA/CA	Three	No	No
FMC-MAC	CSMA/CA	Single	Yes	Yes

[7] H.Wang, H. Zhou and H. Qin, "Overview of Multi-channel MAC Protocols in Wireless Networks", International Conference on Wireless Communications, Networking and Mobile Computing, October 2008.

OPLAB@NTU 2009/10/13

• Two directions after discovering background:

- IEEE 802.11 MAC protocol in WMNs
 - Proposed MAC protocols
- Channel Assignment in WMNs
 - Dynamic, Quasi or Static channel assignment
 - Multi-radio

[2]Wireless mesh networks: a survey

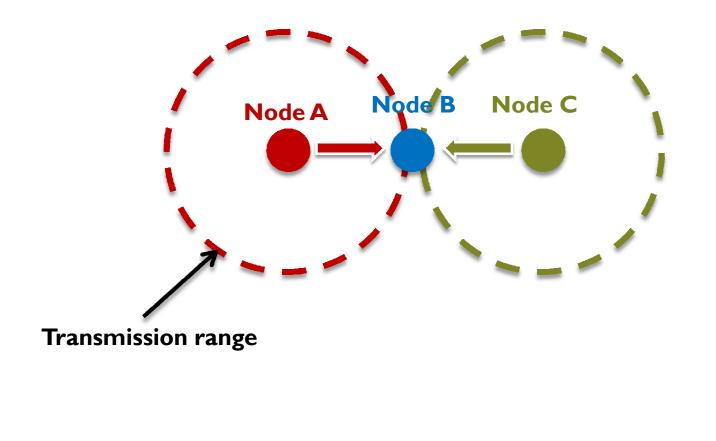
- Ian F.Akyildiz, Xudong Wang, Weilin Wang
- Computer Networks, Volume 47, Issue 4, Pages 445-487
- March, 2005
- A detailed study on advances and open research issues in WMNs in 2005.

Critical factors influencing network performance for WMNs:

- Radio techniques
 - □ Reconfigurable radios, software radios
- Scalability
 - $\hfill\square$ The end-to-end reliability sharply drops
 - $\hfill\square$ Distributed architecture is hard to be synchronized
- Broadband and QoS
 - Delay, fairness, aggregate and per node throughput, packet loss ratio

- Introduction in each OSI-layer
 - MAC layer's design issue for WMNs
 - □ Multi-hop communication
 - Distributed and multi-point to multi-point
 - Self-organization: the knowledge of the network topology
 - Mobility
- open research issue:
 - Multi-channel Multi-radio MAC
 - H. Yu, P. Mohapatra and X. Liu, "Channel assignment and link scheduling in multi-radio multi-channel wireless mesh networks", *Mobile Network and Applications, Volume I 3, issue 1-2, Apr. 2008.*
 - A. P. Subramanian, H. Gupta and S. R. Das, "Minimum Interference Channel Assignment in Multi-radio WMNs", IEEE transactions on mobile computing, Dec. 2008.
 - more QoS metrics

- What's in it for me?
 - Understanding the concept about WMNs
 - Multi-channel Multi-radio MAC
 - QoS metrics, such as delay/ throughput, fairness

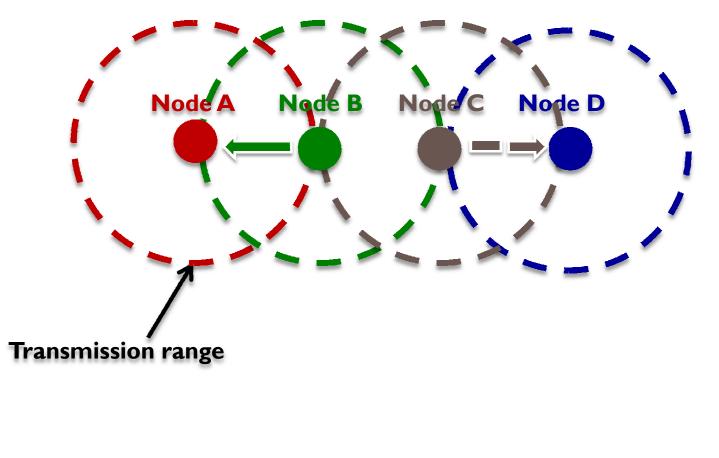

[3]IEEE 802.11 MAC protocol over wireless mesh networks: problems and perspectives

- Tzu-Jane Tsai and Ju-Wei Chen
- International conference on Advanced Information Networking and Applications
- March, 2005
- The related key technologies of WMNs, including the problem and challenge of the enhanced MAC protocol.

- The performance of IEEE 802.11 MAC protocol isn't satisfactory due to:
 - Hidden terminal problem: multi-channel
 - Exposed terminal problem : multi-channel
- Conclusion
 - It is necessary to establish at least one path with enough bandwidth before the transmission is triggered
 - Multi-channel ?

Hidden Terminal Problem

Scenario:



- The performance of IEEE 802.11 MAC protocol isn't satisfactory due to:
 - Hidden terminal problem: multi-channel
 - Exposed terminal problem : multi-channel
- Conclusion
 - It is necessary to establish at least one path with enough bandwidth before the transmission is triggered
 - Multi-channel ?

Exposed Terminal Problem

Scenario:

- The performance of IEEE 802.11 MAC protocol isn't satisfactory due to:
 - Hidden terminal problem: multi-channel
 - Exposed terminal problem : multi-channel
- Conclusion
 - It is necessary to establish at least one path with enough bandwidth before the transmission is triggered
 - Multi-channel ?

• What's in it for me?

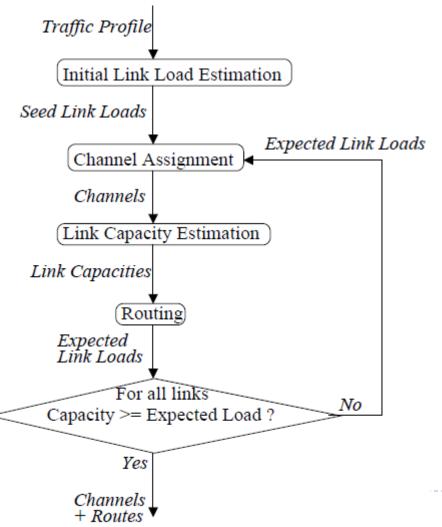
- By designing a multi-channel MAC protocol, it can solve "Hidden terminal problem" and "Exposed terminal problem".
- Divide channels to two difference kinds:
 - For control
 - For data transmission

- [4]Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks
 - K. N. Ramachandran, E. M. Belding, K. C. Almeroth and M. M. Buddhikot
 - INFOCOM
 - April, 2006
- An interference-aware channel assignment algorithm and protocol for multi-radio wireless mesh networks.

- Contributions
 - A multi-radio conflict graph to model the interference relationship
 - A novel interference estimation scheme for routers
 - Dynamic , interference-aware channel assignment algorithm (BFS-CA) that minimizes interference
 - A link redirection protocol to prevent the disruption of flows

- What's in it for me?
 - With interference-awareness to model a multi-channel multiradio WMNs
 - Multi-radio conflict graph
 - Local or global information to help estimate interference level on each router
 - The procedure to model dynamic channel assignment in interference-aware

- [5]A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel WMMs
 - ▶ 謝友仁
 - July, 2009
- With a simple channel assignment heuristic algorithm, the thesis propose a distributed QoS constrained routing algorithm to increase capacity both in system perspective and user perspective.


What's in it for me?

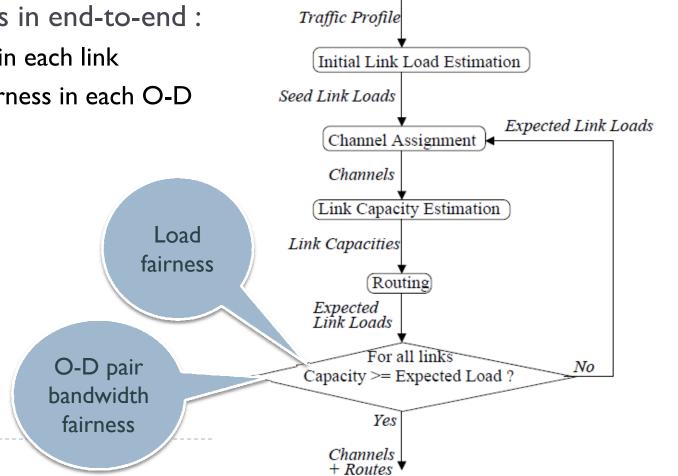
- Combine various MAC protocol with dynamic channel assignment to form a cross-layer scenario
- Topology control is formed by channel assignment
- Link capacity's formulation
- In the thesis, interference is given.
 - Dynamical interference, or
 - Avoid the interference

- [6]Centralized Channel Assignment and Routing Algorithms for Multi-Channel WMNs
 - A. Raniwala, K. Gopalan and T.-C. Chiueh
 - Mobile Computing and Communications Review, Vol. 8, NO. 2
 - April, 2004
- In load awareness, the paper develops a set of centralized channel assignment, bandwidth allocation , and routing algorithms for multi-channel WMNs.

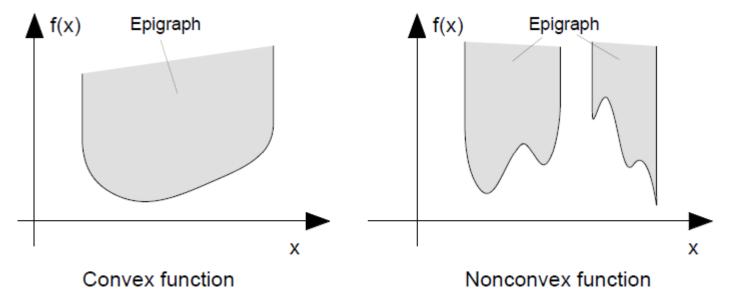
• A full multi-channel WMNs architecture requires:

- Topology Discovery
- Traffic Profiling
- Channel Assignment
- Routing
- Basic flowchart in the multi-channel MNWs.

Contributions:

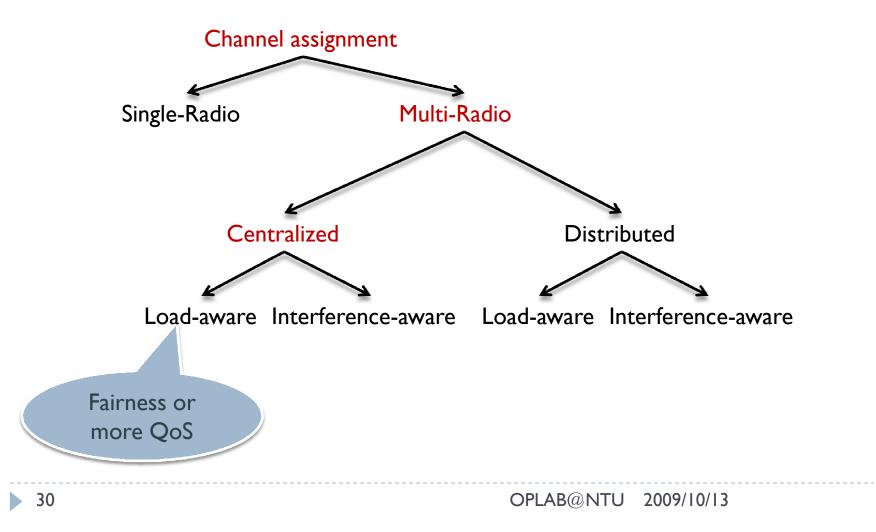

- 2 novel channel assignment and bandwidth allocation algorithms for the proposed multi-channel WMNs:
 - Neighbor Partitioning Scheme
 - Load-aware Channel Assignment
- The multi-channel architecture can accommodate occasional node failure/maintenance and joining.
- Assuming the traffic profile information can be obtained, then it can be used for modifying channel assignment and routing decisions on a periodic basis.

What's in it for me?


A load-aware full multi-channel WMNs architecture

- Load fairness in each link
- Bandwidth fairness in each O-D pair

 However, Combining "Capacity Assignment problem" and "Routing problem" is a non-convex problem:



- Non-convex problem has multiple feasible regions
- multiple locally optimal points within each region

From MITOpenCourseWare (http://www.myoops.org/twocw/mit/index.htm)

Problem Description

Problem taxonomy

Problem Description

Objective:

 Achieve both optimal channel assignment dynamically and load balancing fairly to increase performance in WMNs

• Given:

Number of radios in each node and Number of channels

More concerns:

- Traffic load fairness
- Link capacity
- Channel selection criteria
- Time (synchronization)

Assumptions:

- Unlimited buffer
- Fixed Mesh routers

Future Reading

- Reading I
 - J.Tang, G. Xue and W. Zhang
 - "Cross-Layer Design for End-to-End Throughput and Fairness Enhancement in Multi-Channel WMNs"
 - IEEE transactions on Wireless Communications, Vol. 6, NO. 10, Oct. 2007.

Reading 2

- A. H. M. Rad and V. W. S. Wong
- "Cross-Layer Fair Bandwidth Sharing for Multi-Channel WMNs"
- IEEE transactions on Wireless Communications, Vol. 7, NO. 9, Sep. 2008.

Future Reading

Reading 3

- M. Kodialam and T. Nandagopal
- "Charactering the Capacity Region in Multi-Radio Multi-Channel Wireless Mesh Networks"
- International Conference on Mobile computing and networking, Aug. 2005.

THANKS FOR YOUR LISTENING

OPLAB@NTU 2009/10/13