Deadline: 2009/11/17

Note: Please hand in <u>this homework and 10/27 speech reflection</u> to OPLab 503D by deadline

Homework: 9.2, 9.4, 10.1, 10.13, 10.16

Reference solutions:

9.3 5

10.2 a.
$$\phi(11) = 10$$

If you check 2n for n < 10, you will find that none of the values is $1 \mod 11$.

- b. 6, because 26 mod 11 = 9
- c. $K = 36 \mod 11 = 3$
- 10.11 a. First we calculate R = P + Q, using Equations (10.3).

$$\Delta = (8.5 - 9.5)/(-2.5 + 3.5) = -1$$

$$xR = 1 + 3.5 + 2.5 = 7$$

$$yR = -8.5 - (-3.5 - 7) = 2$$

$$R = (7, 2)$$

b. For R = 2P, we use Equations (10.4), with a = -36

$$xr = [(36.75 - 36)/19]2 + 7 \approx 7$$

$$yR = [(36.75 - 36)/19](-3.5 - 7) - 9.5 \approx 9.9$$

- 10.15 We follow the rules of addition described in Section 10.4. To compute 2G = (2,
 - 7) + (2, 7), we first compute

$$\lambda = (3 \times 2^2 + 1)/(2 \times 7) \mod 11$$

= 13/14 mod 11 = 2/3 mod 11 = 8

Then we have

$$x_3 = 8^2 - 2 - 2 \mod 11 = 5$$

$$y_3 = 8(2-5) - 7 \mod 11 = 2$$

$$2G = (5, 2)$$

Similarly, 3G = 2G + G, and so on. The result:

2G = (5, 2)	3G = (8, 3)	4G = (10, 2)	5G = (3, 6)
6G = (7, 9)	7G = (7, 2)	8G = (3, 5)	9G = (10, 9)
10G = (8, 8)	11G = (5, 9)	12G = (2, 4)	13G = (2, 7)