Introduction to Linear and Nonlinear Programming

Outline

Introduction

- types of problems
- size of problems
- iterative algorithms and convergence
- Basic properties of Linear Programs
 - introduction
 - examples of linear programming problems

Types of Problems

Three parts
linear programming
unconstrained problems
constrained problems
The last two parts comprise the subject of nonlinear programming

Linear Programming

It is characterized by linear functions of the unknowns; the objective is linear in the unknowns, and the constraints are linear equalities or linear inequalities. Why are linear forms for objectives and constraints so popular in problem formulation? - a great number of constraints and objectives that arise in practice are indisputably linear (ex: budget constraint) - they are often the least difficult to define

Unconstrained Problems

- Are unconstrained problems devoid of structural properties as to preclude their applicability as useful models of meaningful problems?
 - if the scope of a problem is broadened to the consideration of all relevant decision variables, there may then be no constraints
 - many constrained problems are sometimes easily converted to unconstrained problems

Constrained Problems

Many complex problems cannot be directly treated in its entirety accounting for all possible choices, but instead must be decomposed into separate subproblems
 "Continuous variable programming"

Size of Problems

Three classes of problems
 small scale: five or fewer unknowns and constraints
 intermediate scale: from five to a hundred variables
 large scale: from a hundred to thousands variables

Iterative Algorithms and Convergence

- Most algorithms designed to solve large optimization problems are iterative.
- For LP problems, the generated sequence is of finite length, reaching the solution point exactly after a finite number of steps.
- For non-LP problems, the sequence generally does not ever exactly reach the solution point, but converges toward it.

Iterative Algorithms and Convergence (cont'd)

Iterative algorithms

- 1. the creation of the algorithms themselves
- 2. the verification that a given algorithm will in fact generate a sequence that converges to a solution
- 3. the rate at which the generated sequence of points converges to the solution
- Convergence rate theory
 - the theory is, for the most part, extremely simple in nature
 a large class of seemingly distinct algorithms turns out to have a common convergence rate

LP Problems' Standard Form

minimize $c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2$

and
$$x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$$

and $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$

10

LP Problems' Standard Form (cont'd)

 $\begin{array}{lll} \text{minimize} & c^{T}x \\ \text{subject to} & Ax=b & \text{and } x \ge 0 \end{array}$

Here x is an n-dimensional column vector, c^T is an n-dimensional row vector, A is an mxn matrix, and b is an m-dimensional column vector.

Example 1 (Slack Variables)

minimize $c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le b_2$

and
$$x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$$

Example 1 (Slack Variables) (cont'd)

minimize $c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + y_1 = b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + y_2 = b_2$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} + y_{m} = b_{m}$$

and $y_{1} \ge 0, y_{2} \ge 0, \dots + y_{m} \ge 0$
and $x_{1} \ge 0, x_{2} \ge 0, \dots + x_{n} \ge 0$

13

Example 2 (Free Variables)

- X1 is free to take on either positive or negative values.
- > We then write $X_1=U_1-V_1$, where $U_1 \ge 0$ and $V_1 \ge 0$.
- Substitute U1-V1 for X1, then the linearity of the constraints is preserved and all variables are now required to be nonnegative.

The Diet Problem

> We assume that there are available at the market n different foods and that the *i*th food sells at a price C; per unit. In addition there are m basic nutritional ingredients and, to achieve a balanced diet, each individual must receive at least b_i units of the *j*th nutrient per day. Finally, we assume that each unit of food *i* contains a_{ii} units of the *ith* nutrient.

The Diet Problem (cont'd)

minimize $c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \ge b_1$ $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \ge b_2$

> and $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$ and $x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$

The Transportation Problem

Quantities $a_1, a_2, ..., a_m$, respectively, of a certain product are to be shipped from each of *m* locations and received in amounts $b_1, b_2, ..., b_y$, respectively, at each of *n* destinations. Associated with the shipping of a unit of product from origin *i* to destination *j* is a unit shipping cost *cy*. It is desired to determine the amounts *xy* to be shipped between each origin-destination pair (*i*=1,2,...,m; *j*=1,2,...,*n*)

The Transportation Problem (cont'd)

minimize $\sum_{ij} c_{ij} x_{ij}$ subject to $\sum x_{ij} = a_i$ for i=1,2,...,m $\sum x_{ij} = b_j$ for j=1,2,....,n $x_{ii} \ge 0$ for i=1,2,....m j=1,2,....n