Introduction to Linear and Nonlinear Programming

Outline

\lrcorner Introduction

- types of problems
- size of problems
- iterative algorithms and convergence
- Basic properties of Linear Programs
- introduction
- examples of linear programming problems

- 「ypes of problems

」Three parts

- linear programming
- unconstrained problems
- constraíned problems
- The last two parts comprise the subject of nonlinear programming

Linear Programming

It is characterized by linear functions of the unknowns; the objective is linear in the unknowns, and the constraints are linear equalities or linear inequalities.

- Why are linear forms for objectives and constraints so popular in problem formulation?
- a great number of constraints and objectives that arise in practice are indisputably linear (ex: budget constraint)
- they are often the least difficult to define

Unconstrained Problems

」 Are unconstrained problems devoid of structural properties as to preclude their applicability as useful models of meaningful problems?

- if the scope of a problem is broadened to the consideration of all relevant decision variables, there may then be no constraints
- many constrained problems are sometimes easily converted to unconstrained problems

Constrained Problems

」 Many complex problems cannot be directly treated in its entirety accounting for all possible choices, but instead must be decomposed into separate subproblems

- "Continuous variable programming"

Sjze of Problems

」Three classes of problems

- snall scale: five or fewer unknowns and constraints
- intermediate scale: firom five to a hundred variables
- large scale: from a hundred to thousands variables

I terative Algorithms and Convergence

د Most algorithms designed to solve large optimization problems are iterative.

- For LP problems, the generated sequence is of finite length, reaching the solution point exactly after a finite number of steps.
- For non-LP problems, the sequence generally does not ever exactly reach the solution point, but converges toward it.

Jteraive Algorithms Gind Conyergence (cont' d)

」 I terative algorithims

1. the creation of the algorithms themselves
2. the verification that a given algorithm will in fact generate a sequence that converges to a solution
3. the rate at which the generated sequence of points converges to the solution

- Convergence rate theory

1. the theory is, for the most part, extremely simple in nature
2. a large class of seemingly distinct algorithms turns out to have a common convergence rate

Lp problenns standard Form

minimize $\mathrm{c}_{1} x_{1}+\mathrm{c}_{2} x_{2}+\ldots \ldots \ldots . \mathrm{c}_{\mathrm{n}} x_{n}$
subject to $\quad a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots . . a_{1 n} x_{n}=b_{1}$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots . . . a_{2 n} x_{n}=b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots . . a_{m n} x_{n}=b_{m}
$$

and $\quad x_{1} \geq 0, x_{2} \geq 0, \ldots \ldots \ldots \ldots x_{n} \geq 0$

Lp problens standard Forn (conted)

$$
\begin{array}{ll}
\min \text { imize } & c^{T} x \\
\text { subject to } & A x=b \quad \text { and } x \geq 0
\end{array}
$$

$>$ Here x is an n-dimensional column vector, c^{T} is an n-dimensional row vector, A is an $m \times n$ matrix, and b is an m-dimensional column vector.

Exajojle 1 (Slack Variables)

minimize $\mathrm{c}_{1} x_{1}+\mathrm{C}_{2} x_{2}+\ldots \ldots \ldots \mathrm{c}_{\mathrm{n}} x_{n}$
subject to $a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots . a_{1 n} x_{n} \leq b_{1}$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots . a_{2 n} x_{n} \leq b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots . a_{m n} x_{n} \leq b_{m}
$$

and $x_{1} \geq 0, x_{2} \geq 0, \ldots \ldots \ldots . x_{n} \geq 0$

Exanple 1 (Sjack Variables) (cont d)

minimize $\mathrm{C}_{1} x_{1}+\mathrm{C}_{2} x_{2}+\ldots \ldots \ldots . \mathrm{C}_{\mathrm{n}} x_{n}$
subject to $a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots . . a_{1 n} x_{n}+y_{1}=b_{1}$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots \ldots a_{2 n} x_{n}+y_{2}=b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots a_{m n} x_{n}+y_{m}=b_{m}
$$

and $\mathrm{y}_{1} \geq 0, y_{2} \geq 0, \ldots \ldots \ldots . y_{m} \geq 0$
and $x_{1} \geq 0, x_{2} \geq 0, \ldots \ldots \ldots . x_{n} \geq 0$

它迎过 2 （Free Variables）

X_{1} is free to take on either positive or negative values．
－We then write $X_{1}=U_{1}-V_{1}$ ，where $U_{1} \geqq 0$ and $V_{1} \geqq 0$ ．
－Substitute $U_{1}-V_{1}$ for X_{1} ，then the linearity of the constraints is preserved and all variables are now required to be nonnegative．

The Djet problem

> We assume that there are available at the market n dififerent foods and that the ith food sells at a price C_{i} per unit. In addition there are m basic nutritional ingredients and, to achieve a balanced diet, each individual must receive at least b_{j} units of the j th nutrient per day. Finally, we assume that each unit of food i contains $a_{j i}$ units of the jth nutrient.

The Djet Problem (cont d)

minimize $\mathrm{C}_{1} x_{1}+\mathrm{C}_{2} x_{2}+\ldots \ldots \ldots . \mathrm{C}_{\mathrm{n}} x_{n}$

subject to $\quad a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots . . a_{1 n} x_{n} \geq b_{1}$ $a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots . . a_{2 n} x_{n} \geq b_{2}$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots . . a_{m n} x_{n} \geq b_{m}
$$

and $\quad x_{1} \geq 0, x_{2} \geq 0, \ldots \ldots \ldots \ldots x_{n} \geq 0$

The Transportation Problem

Quantities $a_{I}, a_{2}, \ldots, a_{m,}$ respectively, of a certain product are to be shipped from each of mlocations and received in amounts $b_{11}, b_{2}, \ldots, b_{y}$, respectively, at each of n destinations. Associated with the shipping of a unit of product from origin ito destination j is a unit shipping cost c_{j}. It is desired to determine the amounts $x y$ to be shipped between each origin-destination pair ($\mu=1,2, \ldots, \mathrm{~m} ; j=1,2, \ldots, n$)

The Transportation Problem (cont d)

minimize $\sum_{i j} c_{i j} x_{i j}$
subject to $\sum_{\mathrm{j}=1}^{\mathrm{n}} x_{i j}=a_{i}$ for $\mathrm{i}=1,2, \ldots \ldots, \mathrm{~m}$

$$
\begin{array}{rr}
\sum_{\mathrm{i}=1}^{\mathrm{m}} x_{i j}=b_{j} & \text { for } \mathrm{j}=1,2, \ldots \ldots, \mathrm{n} \\
x_{i j} \geq 0 & \text { for } \mathrm{i}=1,2, \ldots \ldots . \mathrm{m} \\
\mathrm{j}=1,2, \ldots \ldots . \mathrm{n}
\end{array}
$$

