Homework 2

Deadline: 2010/11/23
Note: Please hand in this homework to OPLab 503D by deadline. Or hand to TA before class.
Homework: 8.2, 8.10, 8.20, 9.2, 10.1, 10.15
Reference solutions:

8.4

Fermat's theorem states that if p is prime and a is a positive integer not divisible by p, then $a^{p-1} \quad 1(\bmod p)$. Therefore $5^{10} \quad 1(\bmod 11)$. So we get $5^{301}=\left(5^{10}\right)^{30} \cdot 5 \quad 5(\bmod 11)$.
8.21
a. $x=2,27(\bmod 29)$
b. $x=9,24(\bmod 29)$
c. $x=8,10,12,15,18,26,27(\bmod 29)$

9.3

$M=2$.
To show this, note that we know that $n=33$, which has only two prime dividers. Therefore, $p=3$ and $q=11 . \varphi(n)=2 \times 10=20$. Using the Extended Euclidean Algorithm, d, the multiplicative inverse of $e \bmod \varphi(n)=11 \bmod 20$, is found to be 17. Therefore, we can determine M to be
$M=C^{d} \bmod n=8{ }^{17} \bmod 33=2$.
10.2
a. By reviewing, for all $i=1, \ldots, 12$, the value $7^{\mathrm{i}} \mathrm{mod} 13$, we see that all the values $1, \ldots, 12$ are generated by this sequence, and $7^{12} \bmod 13=1 \bmod$ 13 , so 7 is a primitive root of 13 .
b. By experimenting with different values for i, we get that $7^{3} \bmod 13=5$, so Alice's secret key is $X_{A}=3$.
c. Using the private secret key used by Alice in the previous section, we can determine that the shared secret key is $K=\left(Y_{B}\right)^{Y_{A}} \bmod 13=12^{3} \bmod 13=12$
10.14

We follow the rules of addition described in Section 10.3. To compute 2G $=(2,7)+(2,7)$, we first compute $=\left(3 \cdot 2^{2}+1\right) /(2 \cdot 7) \bmod 11=13 / 14 \bmod 11=2 / 3 \bmod 11=8$
Then we have

$$
\begin{aligned}
& x_{3}=8^{2}-2-2 \bmod 11=5 \\
& y_{3}=8(2-5)-7 \bmod 11=2 \\
& 2 G=(5,2)
\end{aligned}
$$

Similarly, $3 G=2 G+G$, and so on. The result:

2 G	$=(5,2)$	$3 \mathrm{G}=(8,3)$	$4 \mathrm{G}=(10,2)$
6 G	$=(7,9)$	$7 \mathrm{G}=(7,2)$	$8 \mathrm{G}=(3,5)$
10 G	$=(8,8)$	$11 \mathrm{G}=(5,9)$	$12 \mathrm{G}=(2,4)$

