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中文摘要
近幾年來，行動通訊的市場需求快速地成長，在有限頻譜的資源限制下，整個行動通訊網路的建置及事前的規劃遂成為一個重要的課題。業者為了提供更多更好的服務，必須能夠有效地提升頻譜的使用率。而方向性的應該是其中一個常見的技術。

然則，在過去方向性天線的應用及研究中，多是將基地台以正六角型的形狀表示，並且規定每個基地台都採用的同一種類的方向性天線（例如：三個120度、四個90度、三個60度及四個60度等等的分割方式），這樣的假設其實並不符合真實的情況。因此，在本論文中，我們提出了多型態的方向性天線，基地台可以選擇採用全方向性天線、二組、三組甚至是N組方向性天線，假設每隔30度為分界，將使得二組方向性天線有六十六種選擇，而三組方向性天線有二百二十種選擇，再加上全方向性天線，總共二百八十七種的組態，若是使基地台採用N組方向性天線，或是將分界的角度縮小，則有更多的組態可供選擇，因此，對於基地台天線的規劃將更多具樣性及彈性。

　　此外，我們也考慮到地形凸起及大型建築物的影響。此類的屏蔽物的好處是可以降低基地台之間的相互干擾，因此在計算基地台的CIR時有其正面的意義；而壞處則是某些使用者可能因屏蔽物的阻隔無法接受原來基地台的服務，反而需要比較遠端的基地台來服務。上述的影響將會在整個無線網路的規劃佔一個重要的角色。
最後在我們的實驗中，我們提出以拉格蘭氏鬆弛法為參考的演算法和一般簡單的演算法來作比較，得到相當不錯的結果。
關鍵詞：無線通訊網路、網路規劃、拉格蘭氏鬆弛法、多組態型方向性天線、遮蔽物效應。
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Wireless Communications Network Design and

Management Considering the Effect of Obstacles

and Multi-configuration Sectorization
In the last few years, the demand for mobile communication services has increased tremendously. However, there is no proportionate increase in the spectrum allocated. As a result, there is an urgent need for new techniques to improve spectrum utilization by maximizing the number of uses with the same available spectrum. One promising technique is the use sectorization antennas to improve the system capacity.

Today’s cellular systems usually use 120˚ sectorization at each base station. That is, each base station uses three separate sets of antennas for each 120˚ sector, with dual receive diversity in each sector. But this way does not fit the real world. In this thesis, we consider non-uniform cell sizes, non-uniform traffic demand, and multi-configuration antennas. Each base station can uses N separate sets of antennas (ex. 1, 2, 3, …, n). And the sector size can be adjusted as needed. Therefore, the configuration of sector for each base station is more varied and flexible.

We also consider the pros and cons of obstacles. The obstacles located between two base stations can decrease the interference of them. But the obstacles located between base station and mobile terminals could decrease the effect on communication.

Keywords: Wireless Communication Network, Network Planning, Lagrange Relaxation Method, Multi-configuration Sectorization Antennas, Obstacle Effect.
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1　Introduction

1.1 Overview

In the last few years, the demand for mobile communication services has increased tremendously. However, there is no proportionate increase in the spectrum allocated. As a result, there is an urgent need for new techniques to improve spectrum utilization by maximizing the number of users with the same available spectrum [1] [2]. Cellular radio systems are generally recognized as spectrum-efficient [3] [4]. These systems have been experiencing tremendous growth in many countries. In order to increase the system capacity, many cellular systems have undergone various methods of expansion such as increasing the spectrum allocation, splitting the cells, sectorizing the cells, etc.

In this paper, we will consider the multi-configuration sectorization antennas. Sectorization antennas cannot only improve the performance of FDMA/TDMA cellular systems, but also improve the performance of CDMA cellular systems and indoor wireless networks [5] [6]. In the different cells, we can use the same frequency channel to provide service. Efficient channel reuse is one of paramount importance in the design of high capacity cellular radio systems [7]. Co-channel interference caused by frequency reuse is the single most restraining factor on the system capacity. It means we should satisfy an engineering constraint that CIR (carrier-to-interference ratio) is under certain level of threshold. Focusing on high-capacity cellular systems, the purpose of the sectorization antennas is to reduce the CIR for a given channel allocation. Efficient interference management aims at achieving acceptable CIR in all active communication links in the system.

In earlier research, cellular systems usually use 120˚ antenna at each base station [8]. That is, each base station uses three separate sets of antennas for each 120˚ sector, with dual receive diversity in each sector. WBTC (wide-beam tri-sector cell) is the example of this kind (see Figure 1-1). But this design can not present the real world well. In facts, base stations can use omni-directional, 2-sector, 3-sector, even n-sector antennas as they need. The angle of each sector can be different from each other, too.
[image: image1.jpg]



Figure 1-1: A WBTC system with reuse cluster size N = 2.
We will consider the obstacles (ex. large buildings, mountains, etc.) in the design and placement of base stations. A new building might make some mobile terminals cannot communicate their original base station. But, it might make the co-channel interference between two base stations reduced. In our mathematical model, the pros and cons of obstacles will be included.

1.2 Background

Our wireless communication network model includes the following components, such as Mobile Telephone Switching Offices (MTSOs), base stations (BSs), clusters of mobile terminals (MTs), the links of wired backbone network topology [9] and obstacles.
The MTSO is the central switch, which monitors all cellular calls, assigns frequency channels, and performs administrative function such as billing and arranging handoffs. We should build a wired circuit-switching network to connect each MTSO.
A cluster of mobile terminals refers to lots phones carried by many subscribers. The traffic includes three types: intra-net call, inter-net call and Internet-access call. Every mobile terminal has to request a channel to connect with antenna of base station. A channel in our model means a pair of frequencies, including a down-link (base station to mobile terminal) frequency and an up-link (mobile terminal to base station) frequency. The QoS (Quality of Service) requirement is the call-blocking rate. A base station refers to a tower that serves the mobile terminals in its vicinity. A cell denotes an area covered by base station. The coverage of each base station depends on the strength of its signal. In our model, each base station can choose omni-directional antenna, 2-sector antenna, 3-sector antenna, and n-sector antenna. And the size of each sector can adjust. The antenna has its capacity constraint that each type of antenna has limited number of channels assigned to.
Obstacles may be mountains, large buildings in real world. In mathematical, we use triangle to present.
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Figure 1-2: Wireless Communication Network System Architecture.

1.3 Literature Survey

Power Control

Besides channels assignment algorithms, power control schemes also can achieve the required CIR level [10]. There are a lot of papers studying the capacity of cellular mobile radio with perfect power control or imperfect power control. Figure 1-3 is an example of sectorization with perfect or imperfect power control [11]. But in this thesis, we drop these assumptions. We intend to consider a complexly combined configuration of each component in wireless communication network. This makes our thesis is more generic. In [12] [13], there are a lot of heuristic algorithms for channels assignment problem have been proposed.
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(a) Ideal 120˚ antenna patterns　　　(b) Realistic 120˚ antenna patterns.
Figure 1-3: Antenna patterns assumed for 120˚ sectors.
Channels Assignment

Spectrum is a limited natural resource. Channel assignment problem is a traditional problem. In channels assignment problem, there are several approaches, such as static channels assignment (SCA), dynamic channels assignment (DCA) [14], hybrid channel allocation (HCA), and quasi-static channels assignment (QCA) [15]. The purpose of all channels assignment algorithms is to assign radio channels to wireless users so that a certain level of CIR is maintained at every wireless terminal [10]. In this thesis, we focus on the initial design of wireless communications network. So we adopt SCA as our channels assignment algorithm. It has been shown that the SCA problem is a generalized graph-coloring problem and is a NP-hard problem [16]. 
It is well known that cellular system capacity can be increased by reducing the cell cluster size N. But reducing the cluster size increases co-channel interference. Frequency reuse is the critical means of increasing a cellular system's capacity, yet it also has an inherent interference problem. One important way to avoid interference is to assign the frequencies more efficiently [13]. Under the assumptions of uniform hexagonal cell, uniform traffic pattern, and same signal power of each base station, we can get some crude solutions. We can divide our total frequency channels into several groups of equal size. Figure 1-4 is the example. The cells that have the same number should be assigned to the same group channels [17]. 
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(a) Reuse Factor = 7.　　　　　　　　　(b) Reuse Factor = 3.
Figure 1-4: Feasible Solutions to Static Channels Assignment.
Cell Sectorization Techniques

Most current cellular architectures use sectorization techniques to reduce co-channel interference, thereby increasing utilization of spectrum [18]. Two important factors influence the effectiveness of sectorization. One is the number of sectors per cell, and the other is the beamwidth of the directional antenna. Intuitively, The more sectors in a cell, the less interference in the system. However, too many sectors at a cell can cause excessive handoffs and increase equipment and operational cost. Therefore, base stations in current cellular systems typically have two to six sectors per cell. Traditional cell architectures usually have antenna beamwidth of D degrees equal to the radio of 360˚ over the number of sectors per cell S, that is 
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For example, the wide-beam tri-sector cell (WBTC) in the first generation cellular mobile system employs three 120˚ antennas to cover one cell (see Figure 1-1). A six-sector cellular system [19] [20] [21] using six 60˚ antennas at a cell is also proposed to improve the capacity of the global system for mobile communication (GSM).
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Figure 1-5: A NBTC system with reuse cluster size N = 2.
Instead of using 
[image: image9.wmf]S
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, subsequent cellular architectures determine the cell contour based on antenna radiation patterns, from which antenna beamwidth is then defined. The narrow-beam tri-sector cell (NBTC) in the second generation cellular systems with three 60˚ directional antennas. The configuration is shown in Figure 1-5. The narrow-beam quad-sector cell (NBQC) for cellular networks, in which each cell is divided into four sectors and each sector is covered by a 60˚ antenna [22], is proposed to improve sectorization. The configuration is shown in Figure 1-6.
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Figure 1-6: A NBQC system with reuse cluster size N = 2.
Spectrum efficiency
Spectrum efficiency is an important parameter in the design of cellular systems [4]. It gives a measure of how much traffic a system can carry per unit frequency per unit area. The definition gives a more complete picture of spectrum efficiency by expressing it in terms of Erlang, bandwidth, and area:
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where Erlang is the total amount of traffic carried in the cellular system, BW is the actual amount of bandwidth required to support the given traffic, and the area is the total service area of the system.

Rayleigh Fading

Wireless communication systems are limited in performance and capacity by several impairments. Multipath fading, which caused by the multiple paths that the transmitted signal can take to the receive antenna, is one of these [23] [24]. The signals from these paths add with different phase, resulting in a received signal amplitude and phase that vary with antenna location, direction, and polarization, as well as with time. In this thesis, we consider two-dimensional space and ignore the effect.
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Figure 1-7: Rayleigh fading.

MTSO and Base Station Allocation

Most papers are based on regular cell system (hexagon). In our model, we intend to build a generic model to fulfill real-world situation (circle and sector).

1.4 Proposed Approach
We model the wireless communications networks design problem as an optimization problem. The mathematical programming problem is a nonlinear nonconvex mixed integer-programming problem. As we expected, the problem is by nature highly complicated and difficult. To the best of our knowledge, the proposed approach is the first attempt to consider the whole design factors jointly and formulate it rigorously. We then apply the Lagrange relaxation method [25] [26] [27] [28] and the subgradient method [29] [30] [31] to solve the problem.
1.5 Thesis Organization

The organization of this thesis is as following: Chapter 2 provides our problem and the mathematical formulations: the effects of obstacles and multi-configuration sectorization. Chapter 3 provides Lagrange relaxation process including problem decomposition and subproblem solutions. Chapter 4 describes how to get primal feasible solutions and its heuristics of each problem. Chapter 5 is the computational experiments. Finally, Chapter 6 is the summary of this thesis and also suggests some direction for the future works.
2　Considering the Effect of Obstacles and Multi-configuration Sectorization
2.1 Problem Description
In this chapter, we intend to establish a model to show that how the multi-configuration sectorization antennas to improve the performance of cellular system. And we also consider the pros and cons of block area from the obstacles that located between base stations and mobile terminals. This model is based on the architecture of wireless communication networks mentioned in Chapter 1. In order to satisfy the QoS level of requirement for each user in the network, we can adjust the configuration/sectorization of each base station, channel assignment policy, and the power radius for each sector to increase channel efficiency.
	Given:

1. Limited number of available channels.

2. Candidate base station (BS) location.

3. Traffic demand of each OD pair.
4. Obstacle location.

5. System parameter, such as CIR (Carrier-to-Interference Ratio) and call blocking rate.

Objective:

· Minimize the total number of channels required.

Subject to:

1. Capacity constraints of each component in the wireless network.

2. QoS constraints.

To determine:

1. Total number of channels required.

2. Configuration/sectorization of each base station.
3. Transmission power control and channel assignment for each sector.


Table 2-1: Problem Description.
2.2 Notation
	Given Parameter

	Notation
	Descriptions

	B
	The set of locations for candidate base stations.

	F
	The set of available channels.

	S
	The set of type of antenna. smn means mth configuration and nth sector.

	T
	The set of mobile terminals.

	W
	The set of OD pairs.

	K
	The set of configuration of base stations. (In our simulation, the configuration of each base station including omni-directional antenna, two-sector antenna, and three-sector antenna.)

	Djt
	Distance between base station j and mobile terminal t.

	M
	Upper bound on total number of channels.
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	Upper bound on number of channels that can be assigned to antenna skn in base station j.
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	Upper bound of radius of antenna skn in base station j.

	kw
	User demand of OD pair w (in Erlangs).
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	Call blocking probability of antenna skn in base station j by user required.
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	Minimum number of channels required for traffic demand 
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 such that the call blocking probability shall not exceed 
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	The function which is 0 if antenna sk’n’ of base station j’ never effect antenna skn of base station j and 
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 otherwise (the detail of this function is introduced in next section).
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	An arbitrarily large number.

	Djj’
	Distance between base station j and j’.

	δwt
	Indicator function which is 1 if mobile terminal t belongs to OD pair w and 0 otherwise.
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	Indicator function which is 1 if mobile terminal t can be served by antenna skn in base station j and 0 otherwise.

	α
	Attenuation factor (2<α<6).

	ρjt
	Indicator function which is 1 if there is no obstacle between base station j and mobile terminal t and 0 otherwise.
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	Indicator function which is 1 if there is no obstacle between base station j and j’ and 0 otherwise.


Table 2-2: Notation of Given Parameters.

	Decision Parameter

	Notation
	Descriptions

	hi
	Decision variable which is 1 if channel i is installed and 0 otherwise.
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	Decision variable which is 1 if channel i is assigned to antenna skn in base station j and 0 otherwise.
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	Transmission radius of antenna skn in base station j.
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	Aggregate flow on antenna skn in base station j (in Erlangs).
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	Decision variable which is 1 if mobile terminal t is served by antennas skn of base station j and 0 otherwise.

	ajk
	Decision variable which is 1 if base station j uses kth configuration.


Table 2-3: Notation of Decision Parameters.

2.3 Co-Channel Interference Model

In this thesis, we formulate two mathematical expressions to represent co-channel interferences under considering obstacles and sectorization.
First, we introduce a stricter model to over-estimate the CIR. When we calculate 
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, we take the maximum degree of radius of base station as our last solution. So we can pre-calculate 
[image: image29.wmf]'

'

'

n

k

kn

s

j

js

F

 and ignore the un-determined radius of each base station.
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Figure 2-1: Antenna Interference Model.
Now, we shall introduce whether this antenna of base station interferes with another antennas. When base station uses omni-directional antenna, it interfered with other base stations that surround it. How about base station uses n-sector antenna？ In Figure 2-1, we assume base station j uses three-sector antenna. Whether base station j' uses which kind of configuration (omni-directional antenna or n-sector antenna), sector s1 and sector s2 of base station j interfered with all sector(s) of base station j’. And sector s0 of base station j will not interfere with the sector(s) of base station j’. 

To show the advantage of obstacles, 
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 is considered. We also take the maximum degree of radius of base station as our last solution to pre-calculate it. In Figure 2-2, obstacle M is located between base station j and base station j’. Obstacle N is located between base station j and base station j’’. The cell of base station j’ is separated into two parts. One of the parts is in the block area of obstacle M and the other is not. In this situation, we defined that base station j interfered with base station j’. Base station j’’ is totally in the block area of obstacle N. So base station j will not interfere with base station j’’.
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Figure 2-2: Blocking Area in Antenna Interference Model.

2.4 Problem Formulation

Optimization problem:

Objective function:
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The objective function is to minimize the total number of channels required. The following is an interpretation of constraints in our model：
· Constraints (1)-(2): to ensure that the number of channels assigned to each antenna in the base station is large enough to serve its slave mobile terminals under certain call blocking rate.

· Constraint (3): to ensure that the number of channels assigned to each antenna in the base station is under its capacity.
· Constraint (4): to ensure that for each channel, the sum of interference introduced by other co-channel users is less than the threshold.

· Constraint (5): to ensure that an antenna in the base station can only serve those mobile terminals that are in its coverage area of effective radius.
· Constraint (6): to ensure that the transmission radius of each antenna in the base station ranges between 0 and 
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· Constraint (7): to ensure that if an antenna is not assigned any channel, it can’t provide any service.
· Constraint (8): to ensure that if an antenna does not provide service to a mobile terminal, then the decision variable 
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 must equal to 0.

· Constraint (9): to ensure that each mobile terminal must be served by one antenna.
· Constraint (10): to ensure that we must have a channel installed before we can assign the channel to a base station.

· Constraint (11): to enforce that each base station uses different kinds of antennas according to their configuration.

· Constraint (12): to ensure that each base station chooses one configuration.

· Constraint (13): to ensure that the antennas in the same base station cannot be assigned the same channel.
· Constraint (14): to enforce the total number of total channels required is less than the number of available channels.
· Constraints (15)-(18): to enforce the integer property of the decision variables.
3　Solution Procedure

3.1 Solution Approach

The basic approach to development of the solution procedure to primal problem (IP) is Lagrange relaxation. Lagrange relaxation is a method for obtaining lower bounds (for minimization problems) as well as good primal solutions in integer programming problems. And it is an important computational technique in the management scientist’s arsenal.
3.2 Lagrange Relaxation

We can transform the primal problem (IP) into the following Lagrange relaxation problem (LR) where constraints (1), (2), (4), (5), (7), (10), (11), (12) and (13) are relaxed. For a vector of non-negative Lagrange multipliers, Lagrange relaxation problem (LR) is given by:
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 are Lagrange multipliers and they are nonnegative. To solve Lagrange relaxation problem (LR), we can decompose (LR) into the following five independent and easily solvable optimization sub-problems.

Subproblem 3.1 (related with decision variable
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According to past experience, we intend to find the lower bound and upper bound of 
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 to improve efficiency of subproblem solution and gap between dual solution and primal feasible solution. So, we get the constraint (19). But, we cannot find tighter lower bound in this subproblem. UB is provided by a simple algorithm, which is described on Chapter 5. But, we can't find a tighter LB. To rewrite SUB 3.1, we get 
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. First we can decompose this into |F| independent subproblems again. So, the algorithm for solving this subproblem for each base station j is:
Step 1. Arrange the channels in ascending order of 
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Step 2. According to the rank, if the number of selected channels is smaller than LB, we assign 1 to hi. If the number of selected channels is larger than UB, we assign 0 to hi.

Step 3. Then, if the number of selected channels is between LB and UB, we must consider the value of 
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 is smaller than 0, we assign 1 to hi; otherwise, we assign 0 to hi.
Algorithm 3.1
Subproblem 3.2 (related with decision variable 
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To rewrite SUB 3.2 , we can get:
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We can decompose this into |F| subproblems. Let
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So, the algorithm for solving each subproblem is:
Step 1. Initial minValue = MAX_VALUE; indexR = 0.

Step 2. For each degree of radius, we calculate 
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. According to the rank, if number of selected channel is smaller than 
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Step 3. Then, the sum 
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 equals tempMin. If tempMin is smaller than minValue, we assign indexR to equal current degree of radius, 
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Algorithm 3.2
Subproblem 3.5 (related with decision variable 
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Constraint (2) and (3) imply constraint (20). Because the value of 
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To rewrite SUB 3.4, we can get:
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. We can decompose this into |T| sub-problems. Let 
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Subproblem 3.5 (related with decision variable 
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To rewrite SUB 3.5, we can get:
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 is less than 0, we assign 1 to ajk; otherwise we assign 0 to ajk.

3.3 The Dual Problem and the Subgradient Method

	Dual Problem (D):
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According to the weak Lagrange duality theorem [32], for any 
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[image: image166.wmf]IP

Z

. The following dual problem (D) is then constructed to calculate the tightest lower bound.
There are several methods to solve the dual problem (D). One of the most popular method is the subgradient method which employed here [33]. Let a 
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. Then, in iteration k of the subgradient optimization procedure, the multiplier vector 
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4　Getting Primal Feasible Solutions

After solving the subproblems in Chapter 3, we can get the set of values of decision variables. But those values may not be feasible solutions to the primal problem (IP). When we use Lagrange relaxation and subgradient method as our tools to solve these problems, we not only get a theoretical lower bound of primal feasible solution, but also get some hints of the process under each solving dual problem iteration. [28] [34] [35] [36]. Owing to the complexity of the primal problem, a divide-and-conquer strategy is proposed to get the primal feasible solution.

We divide the problem into three parts. First, base station configuration subproblem, including antenna type and power control. Second, mobile terminals homing subproblem. Third, channel assignment subproblem. In each subproblem, we provide some heuristics to get primal feasible solution.

4.1 Heuristics for Base Station Configuration Subproblem

When solving primal problem, we intend to find out some heuristics to improve our feasible solution. In this section, we consider 
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 of each terminal, which is calculated during getting dual solution. We use these values to determine the base station allocation subproblem. If 
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 is equal to 0, we consider this base station does not need to be allocated. Otherwise, we calculate 
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 is the maximum, let this base station use kth configuration type (ajk = 1).

4.2 Heuristics for Homing Subproblem

After determining allocation of the base stations, we continue to determine mobile terminals homing subproblem. In this section, we additionally calculate two parameters, T1[j] and T2[j], for each base station. T1[j] means the number of mobile terminals served by this base station. T2[j] means the number of mobile terminals only served by this base station. We use these two parameters to calculate the rank of base station in homing process. The rank lists in descending order of T2[j]. When the base stations have the same T2[j], we take descending order of T1[j] as second matter. Then, we follow below algorithm 4.1 to decide new 
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, we can determine the radius of each base station.

Step 1. For each base station j, we calculate T2[j](Q + T1[j]. Q is a large number to help ordering T2[j] before T1[j].

Step 2. Arrange the base stations in descending order of the value T2[j](Q + T1[j].

Step 3. Now, we consider only first degree of radius of each base station. If the base station is used n-sector antenna, we will consider the degree of radius of each sector at the same time.
Step 4. According to the rank decided in Step 2 of base station, we assign all mobile terminals, which are under coverage of current base station with such degree of radius and are not assigned yet, to this base station.

Step 5. If any mobile terminal is not assigned, we consider next degree of radius of each base station. Repeat Step 4 until all mobile terminals are assigned.

Step 6. For each antenna in each base station, we find the maximum distance between this base station and its slave mobile terminals. Then, we take this value to fit the degree of radius.

Algorithm 4.1

4.3 Heuristics for Channel Assignment Subproblem

In [37], the author took “Difficulty Degree” as the heuristics. According to the past experiment, we know 
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are more suitable to simple algorithm 1 and simple algorithm 2. The detail of the two algorithms and each case are described in Chapter 5. And 
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 as our primal solution to experiment cases and compare the results of them. 
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 is defined as aggregate interference to other antennas (
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5　Computational Experiments

Owing to the complexity of this problem. We can't get tighter lower bound by solving dual problem. But, it still provides us many hints to get primal heuristics. In order to prove that our heuristics is good enough, we also implement two simple algorithms to compare with our heuristics.

5.1 Simple Algorithm with Omni-directional Antenna

In Section 4.2, we use some heuristics to determine the mobile terminals homing subproblem. Now, we use an intuitive thought to determine it in these simple algorithms. We assume that the omni-directional antenna is our last solution. And we just assign each mobile terminal to be served by the base station that has the shortest distance between them. Surely, we consider the effect on the obstacles between base stations and mobile terminals. So, we can easily determine the 
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. According to the slave mobile terminals in each base station, we can determine the radius of each base station. Then, we apply corresponding 
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 to solve channel assignment subproblem. For convenience, we call this algorithm as SA1.

5.2 Simple Algorithm with 3-sector Antenna

This algorithm almost looks like SA1. Here, we assume that 120˚ 3-sector antenna is our last solution for Case 1 and Case 2. We also assume that 180˚ 2-sector antenna is our last solution for Case 3. The details of sectorization is shown in Table 5-1 (S5,0, S5,1, S5,2) and Table 5-2 (S13,0, S13,1). In other parts of decision variables, we apply the same process in the SA1. For convenience, we call this algorithm as SA2.

5.3 Lagrange Relaxation Based Algorithm

Step 1. Read configuration file to construct MTSOs, BSs, Obstacles and MTs.

Step 2. Calculate constant parameters, like 
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, and assign Lagrange relaxation improve counter to equal 20.

Step 3. Initialize multipliers.

Step 4. According to given multipliers, optimally solve these problems of SUB3.1, SUB3.2, SUB3.3, SUB3.4 and SUB3.5 to get the value of Zdual.

Step 5. According to heuristics of Chapter 4, get the number of total channel  required, the value of ZIP..

Step 6. If ZIP is smaller than ZIP*, we assign ZIP* to equal ZIP. Otherwise, we minus 1 from the improve counter.

Step 7. Calculate step size and adjust Lagrange relaxation multipliers.

Step 8. Iteration counter increases 1. If interaction counter is over threshold of system, stop this program. And, ZIP* is our best solution. Otherwise, Repeat step 4.

Algorithm 5.1

5.4 Cases
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Figure 5-1: Location of the MTSOs, BSs, Obstacles, and MTs.

Case 1

In this simulation, refers to [36], we have 10 base stations, 4 obstacles, 40 mobile terminals and 20 OD-pairs. Their distribution is shown in Figure 5-1. The traffic demand for each OD-pairs is 0.1 Erlangs. The degrees of radius are 0.5km, 1.5 km, 2.0 km, 3.0 km , 3.5 km, 4.0 km. And the mobility of mobile terminals is not our concern. We consider the configurations of antenna which shown in Table 5-1 which Sconfiguration_type,sector_no = (start angle, end angle).

	S0,0 = (0, 360)
	－
	－

	S1.0 = (0, 180)
	S1,1 = (180, 360)
	－

	S2.0 = (60, 240)
	S2,1 = (240, 420)
	－

	S3,0 = (120, 300)
	S3,1 = (300, 480)
	－

	S4,0 = (0, 120)
	S4,1 = (120, 240)
	S4,2 = (240, 360)

	S5,0 = (90, 210)
	S5,1 = (210, 330)
	S5,2 = (330, 450)


Table 5-1: The configurations of antennas I.

Case 2

The difference between Case 1 and Case 2 is only the traffic demand for each OD-pairs. In Case 2, the traffic demand of each OD-pair is 1.5 Erlangs.

5.5 Experiment Result

At the run 0, the distribution is shown in Figure 5-1. At other runs, we randomly generate a pair of coordinates to be the location of each mobile terminal. Each run is performed 100 iterations to get the best solution. S1 is the results of SA1 and S2 is the results of SA2. LR is the minimum value among the result of each iteration of LR algorithm. “Improve to S1” is a measuring indicator, used to evaluate the quality of our heuristic compared with SA1. The value is calculated to equal (S1-LR)/LR. “Improve to S2” is also a measuring indicator, used to evaluate the quality of our heuristic compared with SA2. The value is calculated to equal (S2-LR)/LR.
Experiment 1

In this experiment, we follow above steps for Case 1 and the channel assignment is decides by 
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. The result of run 0 is shown in Figure 5-2. And the comparison of each run is shown in Table 5-2. As the result, our model can get about 15 % to 25 % improvement.

	Run #
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	S1
	18
	18
	17
	20
	23
	19
	22
	18
	18
	17

	S2
	20
	20
	22
	22
	24
	17
	25
	18
	22
	19

	LR
	16
	17
	17
	16
	18
	16
	18
	16
	17
	15

	Improve to S1 (%)
	12.5
	5.88
	0
	25
	27.78
	18.75
	22.22
	1.25
	5.88
	13.33

	Improve to S2 (%)
	25
	17.65
	29.41
	37.5
	33.33
	6.25
	38.89
	1.25
	29.41
	26.67


Table 5-2: The Result of Case 1 (unit: Total Channels Required).

Experiment 2

In this experiment, we use Case 2 for simulation. And the channel assignment is also decides by 
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. The comparison of each run is shown in Table 5-3. As the result, our model can get about 13 % to 25 % improvement.

	Run #
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	S1
	78
	77
	73
	88
	93
	89
	97
	73
	77
	75

	S2
	65
	74
	74
	77
	70
	66
	81
	69
	68
	64

	LR
	58
	56
	61
	55
	68
	65
	67
	60
	64
	57

	Improve to S1 (%)
	34.48
	37.5
	19.67
	60
	36.76
	36.92
	44.78
	21.67
	20.31
	31.58

	Improve to S2 (%)
	12.07
	32.14
	21.31
	40
	2.94
	1.54
	17.39
	15
	6.25
	12.28


Table 5-3: The Result of Case 2 (unit: Total Channels Required).
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Figure 5-2: Result of Run 0 of Case 1.
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Figure 5-3: Result of Run 1 of Case 2.

5.6 Computational Time

All the experiments are performed on a Pentium 1GB PC running Microsoft Windows 2000 Server with 2 GB DRAM. The code is written in Java and is complied by Sun JDK 1.2.2. The computational time is about 90 seconds per iteration. The direct proportion between the computational time and the amount of configurations does not exist. So the computational time is the bounds of our experiments.

6　Conclusion

6.1 Summary

The conclusions in this thesis are presented in terms of formulation, sectorization and performance.

In terms of formulation, we model a mathematical expression to describe the multi-configuration sectorization problem. At the same time, we consider not only non-uniform size cell but also non-uniform traffic demand. We also consider the cons and pros of the obstacles. In this point, our model is more generic. Because of the complexity of this problem, we use Lagrange relaxation and subgradient method as our main methodology. When using these mathematical tools, they can provide us some hints to improve our heuristics.
In terms of sectorization, we find that sectorization is less useful when one base station needs fewer channels. By increasing the number of channels required by one base station, the advantage of sectorization is more evident. According to the experiments, in light load environment, we can say that the effect of spinning resource is more significant then the effect of reducing interference. So, sectorization needs to pay the penalty in reducing the number of total channels required. But, with the increasing of traffic, the number of channels required by SA1 is become bigger than SA2. We can say that sectorization is useful in the real world to improve the spectrum efficiency.
In terms of performance, our Lagrange relaxation based solution has more significant improvement than other intentional algorithms.

6.2 Future Work

First, in our model, we only focus on TDMA/FDMA systems. But, third generation mobile network will make extensive usage of hierarchical cell structure [38]. How to extend our model to fit other air interfaces is another study.
Second, when we consider the effect of obstacles between two base stations, we assume the mobile terminal can not be served by the base station when there are obstacles located between them. But in real world, the effect not only caused propagation decreased but also Rayleigh fading. And we also assume there is no interference between two base stations when there are obstacles located between them. 
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 is assigned by 0 or 1 in our model, and 
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 is, too. These terms can be redefined according to a reduction in receive signal power.

Third, in the design of wireless communication systems, there are usually multiple objectives such as low cost, small size, high reliability and large capacity. The system architect would need to study tradeoffs among different combinations of modulation, coding, multiple access and antenna techniques to determine the best design. In our model, we did not consider the cost of sectorization and the effect of hand-off between sectors in the same cell. But these objectives are important, too.

Fourth, if we can modify the antenna configurations which used by provider, then we can get more useful experiment result to fit real world cases.
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