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中文摘要

    近年來由於無線通訊科技的高度發展，透過寬頻高速無線網路技術來整合現存各類無線通訊技術的第三代 (third generation, 3G) 寬頻無線通訊技術儼然已成為未來無線通訊主軸。在無線介接方面所面臨的困擾來自於寬頻CDMA無線通訊技術特性，所有用戶在同一時間均使用同一個頻寬傳遞訊息，用戶間透過分碼多工的方式在無線介接環境中區隔彼此的訊號，然每個用戶的傳輸功率均成為其他用戶的干擾訊號，因此寬頻無線網路的容量可視為所能夠容忍的訊噪比 (signal-to-interference ratio, SIR)，允入控制的目的就在於確保新用戶的加入不會影響到舊有連線用戶的通訊品質，因此每當新用戶欲連接系統以及越區 (handover) 之現有連線用戶提出連線要求之時，允入控制必須在系統容量與通訊品質進行權衡決策，來評斷是否允許此新用戶之加入。    

「DS-CDMA網路之允入控制與基地台指派」，著重於整體無線通訊系統觀點之容量與收益之最佳化策略，提供3G營運服務階段之網路管理規畫，達到最佳化網路資源利用以及最大化網路服務收益之目的。

本論文包含下列研究主題：(1) 不考慮既存使用者重行基地台指派 (rehoming for existing users) 之CDMA無線網路允入控制、(2) 允許既存使用者重行基地台指派 (rehoming for existing users) 之CDMA無線網路允入控制、(3) 整體無線網路系統容量與收益最佳化等議題。
1、 考慮既存使用者重行基地台指派 (rehoming for existing users) 之CDMA無線網路允入控制

先不考慮既存使用者重行基地台指派之CDMA無線網路進行允入控制分析，在已知基地台位置以及不考慮既存使用者透過周遭基地台支援重行基地台指派之情況下，探討如何在不減損已連線用戶之通訊品質的前提下，允入最大量新通訊用戶獲取最大的系統效益。

2、 許既存使用者重行基地台指派之CDMA無線網路允入控制

此種環境下的允入控制不僅僅只考量到新用戶加入的收益，同時也必須考量原連線用戶重行基地台指派所需的移轉成本，如此一來不僅增加允入控制的機動性，也同時增加其困難性，所必須涵蓋的限制式包括：連線服務QoS限制、基地台容量限制、蜂巢基地台涵蓋範圍限制、行動台單一隸屬限制、以及基地台允入用戶數限制；而前提假設在完美功率控制以及不考慮fading情況下所進行的允入控制簡化機制。

3、 整體無線網路系統容量與收益最佳化
整體通訊阻塞率對於行動通訊業者而言是使用者觀點下的重要服務等級評價之一，針對整體無線網路系統來說，在給定基地台建製位置的情況下如何最小化長期整體阻率是一項重要的關鍵，因此本問題是透過適當調整基地台容量來求得系統之最佳狀態，希望針對長時期的整體規畫能夠針對整體系統提高系統使用率，以滿足通訊用戶的通訊需求達到收益最佳化的目標。

為求最佳化決策之時效與品質，我們建立數學模式化(mathematical formulation)，此種數學最佳化模式所發展之自動化決策支援系統相較於一般性之方法迭可獲致數倍之效能或成本改良。而拉格蘭日鬆弛法在解決複雜的最佳化數學模型上有非常不錯表現，故利用拉格蘭日鬆弛法作為我們的解題方略。

關鍵字：寬頻無線通訊系統 (Broadband Wireless Communication System)、容量管理 (Capacity Management)、服務品質 (QoS)、資源管理 (Resource Management)、數學最佳化 (Mathematical Optimization)、拉格蘭日鬆弛法 (Lagrangean Relaxation)。
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Admission Control and Homing in DS-CDMA 

Wireless Communications Networks

Recently, the technology of wireless communication has been highly improved. The third generation (3G) broadband wireless communication technique seems to be the most popular standard. All users use the same bandwidth to transfer messages in the same time slot. By using CDMA technique, messages for different users are identified. However, the transmission power of one user is the noise for any other user. Therefore, the capacity could be represented as the SIR (signal-to-interference ration). The objective of admission control is ensuring the QoS of existing users while admitting new mobile terminal users to enter the system. 

“Admission control and homing in DS-CDMA wireless communications networks” focuses on the viewpoint of the capacity and the maximum revenue of the whole system, to achieve the best network resource utility and the maximum total revenue for the subscribers. This thesis includes the following topics: (i) admission control without considering rehoming; (ii) admission control considering rehoming; (iii) minimization of long-term call blocking rate.

1. Admission control without considering rehoming:

Under the determinate condition of the locations of base stations and without considering rehoming for the existing users, we discuss how to admit more new mobile terminal users as possible while the QoS of existing users is ensured.

2. Admission control considering rehoming:

In this scenario, not only the maximum revenue of the admitted users but also the rehoming cost of the existing users should take into account. The QoS, capacity, and coverage of base stations etc. constraints should be satisfied.

3. Minimization of long-term call blocking rate
Total call blocking rate is one of the most important measurement of the user’s viewpoint to judge the subscriber. By adjusting the system parameters, we plan an integrated strategy to enhance the system usage for a long period. 

To fulfill the timing and the quality of the optimal decision, we construct a mathematical formulation that enhance twice or more times performance and cost improvement than general methods. Lagrangean relaxation has been proved that is good for solving the complicated mathematical mode, so we chose it as our tool for our problems.

Keywords: Broadband Wireless Communication System, Capacity Management, QoS, Resource Management, Mathematical Optimization, Lagrangean Relaxation Method.
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1. Introduction

1.1 Background
Emerging requirements for higher rate data services and better spectrum efficiency are the main drivers identified for the third generation mobile radio systems. Recently, extensive investigations have been carried out into the application of a code division multiple access (CDMA) system as an air interface multiple access scheme for IMT-2000/UMTS (International Mobile Telecommunications System 2000/Universal Mobile Telecommunications System). The main objectives for the IMT-2000 air interface can be summarized as: (i) full coverage and mobility for 144 Kbps, preferably 384 Kbps; (ii) limited coverage and mobility for 2 Mbps; (iii) high spectrum efficiency compared to existing systems; (iv) high flexibility to introduce new services. It appears that CDMA is the strongest candidate for the third generation wireless personal communication systems [34]. As claimed by many researchers [33], CDMA in cellular environments offers several advantages such as high spectral efficiency, soft capacity, soft handoff, and increased system capacity.

In CDMA each user is assigned a unique code sequence (spreading code) which uses to encode its information-bearing signal. The receiver, knowing the code sequences of the user, decodes a received signal after reception and recovers the original data. Since the bandwidth of the code signal is chosen to be much larger than the bandwidth of the information-bearing signal, the encoding process enlarges (spreads) the spectrum of the signal and is therefore also known as spread-spectrum modulation. If multiple users transmit a spread-spectrum signal at the same time, the receiver will still be able to distinguish between the users provided each user has a unique code that has a sufficiently low cross-correlation with other codes. Correlating the received signal with a code signal from a certain user will then only despread the signal of this user, while the other spread-spectrum signals will remain spread over a large bandwidth. Thus, within the information bandwidth the power of the desired user will be larger than the interfering power provided there are not too may interferers, and the desired signal can be extracted [28].


Third Generation (3G) CDMA system will allow subscribers to experience new and unique offerings that provide them with enhanced multimedia, customization, roaming, voice, location-enabled, and other capabilities to meet the ever increasing expectations of wireless communications. Key objectives of the development and deployment of 3G CDMA include: (i) high-speed transmission; (ii) high-quality services; (iii) unique and enhanced service capabilities; (iv) ease of operation and maintenance; (v) flexibility to add services [3].


CDMA capacity is limited only by the total level of interference form all connected users [13]. All users in a DS-CDMA system transmit the messages by using the same bandwidth at the same time and therefore users interfere with one another. However, there exists a tradeoff relationship between the system capacity and the level of communication quality. The number of simultaneous users occupying a base station (BS) therefore must be limited such that an appropriate level of communication quality can be maintained. The IMT-2000 network can accommodate multiple Quality of Service (QoS) in the coverage area. In order to maintain the QoS, call admission control thus plays a very important role in CDMA systems because it directly controls the number of users. The purpose of admission control is to ensure that there are free radio resources for the intended call with required signal-to-interference ratio (SIR) and bit rate. Admission control is always performed when a mobile station initiates communications in a new cell, either through a new call or handover. Furthermore, admission control is performed when a new service is added during an active call. In general, the admission control ensures that the interference created after adding a new call does not exceed a prespecified threshold. The negotiation of a service contract is performed at the beginning of the call. Admission control can be involved since the user might accept, for example, a lower bit rate if it can be accommodated by the network. Admission control needs to be done separately for uplink and downlink. Typical criteria for admission control are call blocking and call dropping. Blocking occurs when a new user is denied access to the system. Call dropping means that a call of an existing user is terminated. Call dropping is considered to be more annoying than blocking [34].

1.2 Motivation
In order to maintain the quality of the radio connections, an admission control is needed to prevent the system from getting overloaded. In this thesis the uplink part of the admission control is considered. The uplink admission control strategy can be based on the received wideband interference levels. If the interference level gets too high, no new users are admitted. The admission control allows a new user into the radio access network if the admission does not cause an excessive interference in the system. The target of the uplink admission control is to prevent the overload of the CDMA system and to guarantee the quality of the existing connections and to guarantee the planned coverage area of the system. Before a new user is admitted to the system, the admission control algorithm must calculate the increase in the total interference level due to a new user.

In subscribers’ viewpoint, how to maximize the system utility and benefit under an acceptable call blocking rate is one of the important issues. A good criterion of call admission control would bring a goodly sum of revenue for the company. Our work is supposed to be helpful for telecom industry. 


Figure 1-1: Operation Support and Capacity Management Model

This thesis will model the problem of the 3G wireless communications networks operational call admission control issues. We can descript the operational support and capacity management as: traffic analysis of mobile data, performance optimization, network monitoring, network capacity expansion, and network servicing. Figure 1-1 shows the relationship among these issues.

1.3 Proposed Approach
The objective of admission control is to maximize the system’s throughput (revenue) subject to the QoS constraint. We model the problems as nonlinear integer mathematical programming problems. This research work is extended from [24]. We will apply the Lagrangean relaxation method and the subgradient method to solve the problems [34].
1.4 Thesis Organization
The organization of this thesis is as following: Chapter 2 summarizes paper survey including the topics about CDMA technology, interference model, admission model and Lagrangian relaxation technique. Chapter 3 provides the admission control model (I) problem. The mathematical formulation and solution approach for this problem is discussed. In Chapter 4, the admission control model (II) problem and the mathematical formulation and solution approach is considered. The admission control model (III) problem is discussed in Chapter 5. Chapter 6 considers the long-term call blocking issue. Chapter 7 describes the extension model for the problems in this thesis. Finally, Chapter 8 is the summary of this thesis and also suggests some direction for the future work.

2. Literature Survey

2.1 CDMA Interference Model

To accommodate the continuous increment of the wireless users under a limited radio spectrum, Code Division Multiple Access (CDMA) has been shown to be a practical alternative multiple access to both the conventional Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA). Contrary to FDMA and TDMA, in CDMA there is no absolute number of maximum available channels that can be allocated to potential users. In a CDMA system, all the users share the same radio frequency at the same time, the system capacity is strictly interference limited. The limits in CDMA capacity are determined by the interference generated at the base station by all the active mobile terminals in the same and neighboring cells and by the propagation channel conditions in the coverage area. 

The user position within the cell affects the capacity of the home and neighboring cells. If the user is close to the home base station, then the transmitted power will be less than the power the same user should transmit from a position near the sector boundary. Therefore, as the user gets closer to the cell boundary, the probability of reaching the maximum allowable transmitted power increases, leading to an increased outage probability. One of the most effective methods for optimal resource management is call admission control. When a call is initiated in one cell, it will request a channel from its home cell. In CDMA systems, assigning a channel means allocating the appropriate power to a requesting mobile. Due to the sharing of spectrum, this induces interference to other users. This kind of situation requires that the interference must be below a certain level to maintain the appropriate level of communication quality [22].

There are a lot of technologies have been developed to improve the DS-CDMA radio capacity. “Multi-user Detection” and ”Smart Antenna” are the most famous technologies [5]
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[6]
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[16]. Multi-user detection is also called “Interference Cancellation”, and it can eliminate the interference from the intra-cell users [16]. Smart antenna causes an effect of sectorization to eliminate the interference from the inter-cell users [5]
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[16]. Hence, the total interference is mush decreased, and the capacity is mush improved.

2.2 CDMA Admission Control Model

The objective of schemes is to regulate the operation of a network in such a way that ensures the uninterrupted service provision to the existing connections and at the same time accommodates in an optimum way the new connection requests. This is done by managing the available network resources and allocating them in an optimum way among the system users. In the reverse link, the received SIR at the base station impacts the QoS of the connection. Suppose that cell A and cell B are in a common neighborhood. The traffic load in cell B has already reached is maximum, while the traffic load in cell A is quite light. All the new call arrivals in cell B will be denied because it has already reached its saturation point. If any new call arrivals will be accepted in cell A because it has not reached its maximum load yet. Since cell B has already reached its maximum load, accepting a new call in cell A could possibly deteriorate the quality of the traffic channels in cell B beyond tolerance and consequently causing dropped calls or outage. Hence, to maintain the overall QoS for the whole system, it is necessary to consider the interference impact on the neighboring cells when accepting a call in a cell. Figure 2-1 shows the model of admission control of CDMA system.

[image: image1.png]



Figure 2-1: CDMA Admission Control Model [8]
Our objective is to identify the criteria with which new mobile terminal requests will be blocked and to define the performance results, that will determine how optimal the resource, allocation is. These criteria affect the system capacity and the provided QoS. 

2.3 Admission Control Policy

Admission control policies for CDMA are based on two different approaches: (i) measuring the system load by the number of active users or the multi-user interference; (ii) multi-access strategies for packet data by using the number of users as a measure of loading. These methods do not regulate the multi-user interference by controlling the received power levels. The approach of power based admission policies has been determined if the new user and existing users have sufficient power budgets to allow the user to transmit at the requested data rate [2]. 

To meet QoS for each connection, a proposed approach is setting a threshold. The purpose of the threshold is to ensure that the users in the system enjoy their QoS. Therefore, the system will reject all requests when the system state exceeds the threshold. To lower the dropping probability of handoff call, we can give a priority to handoff calls by reserving part of network resources for handoff calls. This implies that the threshold should be set for new calls. When the system exceeds the new-call threshold, only handoff calls can be allowed to enter the system and new calls are rejected. Power control based admission control policy is also based on a threshold mechanism [18]. 

The admission control is performed for the uplink and downlink transmissions separately because the traffic load can be asymmetric. The radio access bearer is admitted into the system only if both uplink and downlink admission control requirements are fulfilled. According to the work of Shin [31], we know that the DS-CDMA link capacity is limited by the uplink. Therefore, we consider the uplink only in this thesis. The target of the uplink admission control is to prevent the overload of the system and to guarantee the quality of the existing connections and to guarantee the planned coverage area of the system. Before a new user is admitted to the system, the admission control estimates the increase in the total interference level due to a new user as shown in Figure 2-2.
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Figure 2-2: Uplink Admission Control [17]
Call admission control must be designed to guarantee both a grade of service (GoS), i.e., probability of blocking new call, probability of forced termination of calls already in progress due to handoffs, and a quality of service (QoS), i.e., signal-to-.interference ratio (SIR). Thus how to design appropriately call admission control policy is crucial in the envisioned personal communication networks [1]. Considering call admission control in CDMA cellular systems, there are two design problems: (i) setting an effective call admission control threshold in order to guarantee the GoS/QoS; (ii) the maximum erlang capacity of each cell [19].

Many publications have dealt with admission control policy. However, most of them have either focused on stationary, or not considered user mobility. In this thesis we consider not only user mobility but also the capacity of the systems.

2.4 Lagrangian Relaxation Method

In the 1970s [11], Lagrangian methods were used in scheduling and the general interger programming problems. Lagrangian relaxation can provide the proper solutions for those problems. In fact, it has become one of the best tools for optimization problems such as integer programming, linear programming combinatorial optimization, and non-linear programming. Lagrangian relaxation has several advantages, for example, Lagrangian relaxation could decompose mathematical models in many different ways, it is a flexible solution approach. Besides, Lagrangian relaxation solve the subproblems that we have decomposed as stand-alone problems. Form now on, we can optimally solve the subproblems using any proper algorithm [11]
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[12].

Lagrangian relaxation permits us to find out the boundary of our objective function, we can use it to implement heuristic solution for getting feasible solutions. Lagrangian relaxation is a flexible solution strategy that permits modelers to exploit the underlying structure in any optimization problem by relaxing complicating constraints. This method permits us to “pull apart” models by removing constraints and instead place them in the objective function with associated Lagrangian multipliers. The optimal value of the relaxed problem is always a lower bound (for minimization problems) on the objective function value of the problem. To obtain the best lower bound, we need to choose the for minimization multiplier so that the optimal value of the Lagrangian subproblem is as large as possible. We can solve the Lagrangian multiplier problem in a variety of ways. The subgradient optimization technique is possibly the most popular technique for solving the Lagrangian multipliers problem [11]

 REF _Ref520282827 \r \h 
[12].

3. Admission Control Model (I)

3.1 Problem Description 

In Admission Control Model (I), we establish a model to discuss admission control. We just consider the new mobile terminals in this problem despite the existing mobile terminals. The new mobile terminals in this model can either homed to the controlling base station or blocked. We do not regard the mobility of the existing mobile terminals now, but our model could be extended for considering mobility of mobile terminals. If we take mobility into account, the new terminals could be divided into handoff calls and real new calls. Since the model is non-preemptive, continuous-time and call arrival is poisson distribution, we can assign the handoff calls higher priority than the real new calls that the new calls arrive at the same time. After handling the handoff calls, the real new calls will be processed. Table 3-1 summarizes the problem description. Shown as follow:

Given:
· Candidate base station (BS) location
· Radius of each base station (BS)
· The distribution of users
· Users’ homing status
Objective:

· To maximize the total revenue of admittance of new mobile terminals into the system
Subject to:

· QoS constraint

· Homing constraint
· Capacity constraint

Assumption:

· Perfect power control is assumed.

· The reverse link is perfectly separated from the forward link.

· Fading is not considered.

· Forward link is not considered.

Table 3-1: Admission Control Model (I) problem Description
3.2 Notation

	
	Given Parameters

	
	Notation
	Descriptions
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	The set of candidate locations for base stations
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	The power that a base station received from a mobile terminal that is homed to the base station with perfect power control
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	The set of mobile terminals
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	The set of total bandwidth
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	The energy that BS received
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	Total noise
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	Voice activity
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	Upper bound on the number of users that can active at the same time at base station j
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	The number of users who can be active at the same time in the base station j
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	Attenuation factor
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	Distance between base station j and mobile terminal t
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	Distance between base stations j and j’
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	The background noise
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	Data bit rate

	
	
[image: image17.wmf]j

I


	The intracell interference
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	The interference from base station j’ to j
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	Indicator function which is 1 if mobile terminal t can be served by base station j and 0 otherwise
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	Upper bound of radius of base station j
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	The processing gain
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	The revenue from admitting mobile terminal 
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 into to the system
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	The set of existing mobile terminals
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	The set of new mobile terminals whose admittance into the cell is to be determined
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	The artificial base station to carry the rejected call when admission control function decides to reject the call
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	The set of transmission radius of base station j
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	The controlling base station of mobile terminal t
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	Indicator function which is 1 if mobile terminal t is homed to base station j and 0 otherwise
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	Transmission radius of base station j

	Table 3-2: Notation of Given Parameters for Admission Control Model (I)


	
	Decision Variables

	
	Notation
	Descriptions
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	Decision variable which is 1 if mobile terminal t is serviced by base station j and 0 otherwise

	Table 3-3: Notation of Decision Variables


3.3 Problem Formulation

Optimization problem:

Objective function:
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The objective function is to maximize the total revenue of admittance of new mobile terminals into the system. at is the average revenue of each new mobile terminal. In terms of convenience, we can translate the problem into an equivalent description that is to minimize the negative total revenue. Constraint (1) is to ensure that each mobile terminal is served with its base station with required QoS. The left hand side of this inequality is the minimal SIR (Signal-to-Interference Ratio) which each connection should be hold. The right hand side means the real SIR. The denominator of the right hand side is the total interference value, including white noise, the intra-cell interference, and inter-cell interference. To be more generic, we do not consider the multi-user detection in our model. However, we will discuss this issue in Chapter 8. Constraint (2) is to ensure that the number of users who can be active at the same time in a base station would not exceed the base station’s upper bound. Constraint (3) is to ensure that each mobile terminal can be homed to only one physical base station or rejected. Constraint (4) is to enforce the integer property of the decision variables. Constraint (5) is to enforce the integer property of the indicator function.

3.4 Lagrangean Relaxation
3.4.1 Solution Approach

The basic approach to the development of the solution procedure to Formulation (IP1) is Lagrangean relaxation. Lagrangean relaxation is a method for obtaining lower bounds for minimization problems as well as good primal solutions in integer programming problems. The main steps of Lagrangean relaxation method are as following: relax complicating constraints, multiple the constraints relaxed with corresponded Lagrangean multipliers, and add them to the primal objective function. Decompose the problem into several independent subproblems that could be optimally solved. Then solve them optimally and get Lagrangean dual problem solution. By using the Lagrangean relaxation method, we can transform the primal problem (IP1) into the following Lagrangean relaxation problem (LR1) where Constraints (1), and (2) are relaxed:

3.4.2 Lagrangean Relaxation

For a vector of non-negative Lagrangean multipliers, a Lagrangean relaxation problem of IP1 is given by

Optimization problem (LR1):
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where 
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. To solve (LR1), we can decompose (LR1) into the following independent and easily solvable optimization sub-problems.

Subproblem 3.1 (related to decision variable 
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To rewrite SUB 3.1, we can get
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Due to existing terminals could not be blocked and rehoming does not consider in this problem, we use 
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 to record the homing status of existing mobile terminals. Therefore 
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 is a constant. We can decompose this into |T| sub-problems for new mobile terminals which want to be active. If 
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 is less than 0, we assign these 
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 to 0. Because of constraint (3), only the controlling base station of mobile terminal would make 
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3.4.3 The Dual Problem and the Subgradient Method

According to the weak Lagrangean duality theorem [12], for any 
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. The following dual problem (D1) is then constructed to calculate the tightest lower bound.
Dual Problem (D1):
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The most popular method to solve the dual problem is the subgradient method [15]. Let g be a subgradient of 
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. Then, in iteration k of the subgradient optimization procedure, the multiplier vector 
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 is the primal objective function value for a heuristic solution.

3.5 Getting Primal Feasible Solutions

To deal with our problem, we choose Lagrangean relaxation and subgradient method as our tools. Thus, we can get not only a theoretical lower bound of primal feasible solution, but also some hints to help us to get our primal feasible solution under each solving dual problem iteration [23]

 REF _Ref520282976 \r \h 
[25]

 REF _Ref520282986 \r \h 
[37]. 

After an iteration solving dual problem, we will get a set of decision variable. However, it may not be feasible in dealing with our problems, for example, it may violate the constraints that we relaxed before. In order to ensure the decision variable is feasible, check or modification is needed, such as drop-and-add heuristics. Then we will get feasible primal solutions to our problems.

When solving primal problem, we intend to find out some heuristics not only to get but also to improve our feasible solution. In this problem, mobile terminal just can be served by the controlling base station which broadcasts power higher than others that can serve the mobile terminal. So, checking the constraints relaxed before would be the objective during getting feasible solution. 
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 is the only decision variable of this problem. First, we check the capacity constraint for each base station. If any base station violates the capacity constraint, and if the mobile terminal homes to this base station whose distance is bigger than other mobile terminal in the same cell. Should be dropped, then set 
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 to 0. If the capacity constraint is still violated, dropping other mobile terminals for this base station will be going on until capacity constraint is satisfied.

After checking capacity constraint, we must consider the QoS constraint. The same, QoS constraint should be hold by all base stations. If QoS constraint is not satisfied, mobile terminals should be blocked according to the criterion mentioned before. Then, we can get the feasible solutions.

3.6 Computational Experiments

In order to review our results, we develop a simple algorithm1 (S1) to test our work. In simple algorithm1, we just assign each mobile terminal to be serviced by the base station that has the shortest distance between them. We refer it as S1 to compare the experimental results of LR1. 

3.6.1 Lagrangean Relaxation Based Algorithm

We provide an algorithm related to Lagrangean relaxation based heuristics for each problem. The algorithm is used to solve the “Admission Control Model (I)” problem, called LR1. Following is the algorithm:

Step1. Read configuration file to construct BSs and MTs.

Step2. Calculate constant parameters, such as δjt, Djt  and assign Lagrangean relaxation improve counter to equal 20.

Step3. Initialize multipliers.

Step4. According to given multipliers, optimally solve these problems of SUB3.1 to get the value of Zdual.

Step5. According to heuristics of Chapter 4, get the total revenue, the value of ZIP..
Step6. If ZIP is smaller than ZIP*, we assign ZIP* to equal ZIP. Otherwise, we minus 1 from the improve counter.

Step7. Calculate step size and adjust Lagrangean relaxation multipliers.

Step8. Iteration counter increases 1. If interaction counter is over threshold of system, stop this program. And, ZIP* is our best solution. Otherwise, repeat Step4.

Algorithm 3.1

3.6.2 Assumptions, Parameters and Cases

Assumptions
The mobility of mobile terminals is not our concern.

Parameters
S/N0 = 7db

Eb/Ntotal = 6.58db

Voice communication bit rate = 9.6 Kbps

Voice activity = 0.5

Signal attenuation = 4
Maximum number of users who can be active at the same time to a base station = 120.
Average revenue cost of a new mobile terminal user = 10 units.
Fixed cost of rehoming an existing mobile terminal user = 5 units.
The parameters are as follows [4]

 REF _Ref520282471 \r \h 
[16]

 REF _Ref520282599 \r \h 
[18]

 REF _Ref520283055 \r \h 
[26]

 REF _Ref520283057 \r \h 
[27]

 REF _Ref520282986 \r \h 
[37]:

Table 3-4: The Parameters of the System for Admission Control Model (I)
Following are the testing cases, Case1, Case2 and Case3 are used by the “Admission Control Model (I);” we call it P1.

Case1
This case refers to [26]

 REF _Ref520283057 \r \h 
[27]. In this case, we have 8 BSs, 50 existing mobile terminals and 50 new mobile terminals.

Case2

The difference between Case1 and Case2 is that the new mobile terminals are 100.

Case3

New mobile terminals are 200 in Case3.

3.6.3 Experiment Result
3.6.3.1 Experiment Result of Case1

	Unit: Total Revenue (NTD.)

	
	Revenue

	S1
	500

	LR1
	500


Table 3-5: The Result of Case1 for Admission Control Model (I)
[image: image91.jpg]



Figure 3-1: Solution for Case1 in Admission Control Model (I)
3.6.3.2 Experiment Result of Case2

	Unit: Total Revenue (NTD.)


		1

	2

	3

	4

	5

	6

	7

	8

	9

	10


	S1

	920

	870

	860

	880

	880

	860

	970

	930

	910

	820


	LR1

	920

	870

	860

	880

	880

	860

	970

	930

	910

	820


	Improvement to S1 (%)

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0



	


Table 3-6: The Result of Case2 for Admission Control Model (I)
[image: image92.jpg]



Figure 3-2: Solution for Case2 in Admission Control Model (I)
3.6.3.3 Experiment Result of Case3

	Unit: Total Revenue (NTD.)


		1

	2

	3

	4

	5

	6

	7

	8

	9

	10


	S1

	1640

	1730

	1660

	1640

	1660

	1660

	1450

	1680

	1590

	1570


	LR1

	1640

	1730

	1680

	1640

	1680

	1720

	1580

	1680

	1590

	1570


	Improvement to S1 (%)

	0

	0

	1.19

	0

	1.19

	3.49

	8.23

	0

	0

	0



	


Table 3-7: The Result of Case3 for Admission Control Model (I)
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Figure 3-3: Solution for Case3 in Admission Control Model (I)
4. Admission Control Model (II)

4.1 Problem Description 

In Admission Control Model (II), we also just consider the new mobile terminals in this problem despite the existing mobile terminals. The new mobile terminal in this model can be homed to one of the base station that could provide service to it or be blocked. Also, we do not regard the mobility of the existing mobile terminals, but our model could be extended for considering mobility of mobile terminals. If we take mobility into account, the new terminals could be divided into handoff calls and real new calls. Since the model is non-preemptive, continuous-time and call arrival is poisson distribution, we can assign the handoff calls higher priority than the real new calls when the new calls arrive at the same time. After handling the handoff calls, the real new calls will be processed. Table 4-1 summarizes the problem description. Shown as follow:

Given:
· Candidate base station (BS) location
· Radius of each base station (BS)
· The distribution of users
· Users’ homing status
Objective:

· To maximize the total revenue of admittance of new mobile terminals into the system
Subject to:

· QoS constraint

· Homing constraint
· Capacity constraint

Assumption:

· Perfect power control is assumed.

· The reverse link is perfectly separated from the forward link.

· Fading is not considered.

· Forward link is not considered.

Table 4-1: Admission Control Model (II) problem Description

4.2 Notation

	
	Given Parameters

	
	Notation
	Descriptions
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	The set of candidate locations for base stations
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	The power that a base station received from a mobile terminal that is homed to the base station with perfect power control
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	The set of mobile terminals
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	The set of total bandwidth
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	The energy that BS received
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	Total noise
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	Voice activity
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	Upper bound on the number of users that can active at the same time at base station j
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	The number of users who can be active at the same time in the base station j
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	Attenuation factor
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	Distance between base station j and mobile terminal t
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	Distance between base stations j and j’
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	The background noise
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	Data bit rate
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	The intracell interference
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	The interference from base station j’ to j

	
	
[image: image110.wmf]jt

m


	Indicator function which is 1 if mobile terminal t can be served by base station j and 0 otherwise
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	Upper bound of radius of base station j

	
	
[image: image112.wmf]G


	The processing gain
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	The revenue from admitting mobile terminal 
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 into to the system
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	The set of existing mobile terminals
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	The set of new mobile terminals whose admittance into the cell is to be determined
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	The artificial base station to carry the rejected call when admission control function decides to reject the call
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	The set of 
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	The set of transmission radius of base station j
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	The controlling base station of mobile terminal t
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	Indicator function which is 1 if mobile terminal t is homed to base station j and 0 otherwise
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	Transmission radius of base station j

	Table 4-2: Notation of Given Parameters for Admission Control Model (II)


	
	Decision Variables

	
	Notation
	Descriptions
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	Decision variable which is 1 if mobile terminal t is serviced by base station j and 0 otherwise

	Table 4-3: Notation of Decision Variables


4.3 Problem Formulation

Optimization problem:

Objective function:
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The objective function is to maximize the total revenue of admittance of new mobile terminals into the system. at is the average revenue of each new mobile terminal. In terms of convenience, we can translate the problem into an equivalent description that is to minimize the negative total revenue. Constraint (6) is to ensure that each mobile terminal is served with its base station with required QoS. The left hand side of this inequality is the minimal SIR (Signal-to-Interference Ratio) which each connection should be hold. The right hand side means the real SIR. The denominator of the right hand side is the total interference value, including white noise, the intra-cell interference, and inter-cell interference. To be more generic, we do not consider the multi-user detection in our model. However, we will discuss this issue in Chapter 8. Constraint (7) is to ensure that the number of users who can be active at the same time in a base station would not exceed the base station’s upper bound. Constraint (8) is to ensure that a base station can only serve the mobile terminals inside its coverage area of effective radius. Constraint (9) is to ensure that if a base station does not provide service to a mobile terminal, then the decision variable zjt must equal to 0. Constraint (10) is to ensure that each mobile terminal can be homed to only one base station. Constraint (11) is to enforce the integer property of the decision variables. Constraint (12) is to enforce the integer property of the indicator function.

4.4 Lagrangean Relaxation
4.4.1 Solution Approach

The basic approach to the development of the solution procedure to Formulation (IP2) is Lagrangean relaxation. Lagrangean relaxation is a method for obtaining lower bounds for minimization problems as well as good primal solutions in integer programming problems. The main steps of Lagrangean relaxation method are as following: relax complicating constraints, multiple the constraints relaxed with corresponded Lagrangean multipliers, and add them to the primal objective function. Decompose the problem into several independent subproblems that could be optimally solved. Then solve them optimally and get Lagrangean dual problem solution. By using the Lagrangean relaxation method, we can transform the primal problem (IP2) into the following Lagrangean relaxation problem (LR2) where Constraints (6), (7), and (8) are relaxed:

4.4.2 Lagrangean Relaxation

For a vector of non-negative Lagrangean multipliers, a Lagrangean relaxation problem of IP2 is given by

Optimization problem (LR2):
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. To solve (LR2), we can decompose (LR2) into the following independent and easily solvable optimization sub-problems.

Subproblem 4.1 (related to decision variable 
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To rewrite SUB 4.1, we can get 
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 is also a constant. We can decompose this into |T| sub-problems for new mobile terminals which want to be active. If
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 is equal or less than 0, we can assign these 
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 to 0. Again, we must consider the constraints of (9) and (10).

4.4.3 The Dual Problem and the Subgradient Method

According to the weak Lagrangean duality theorem [12], for any 
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. The following dual problem (D2) is then constructed to calculate the tightest lower bound.
Dual Problem (D2):
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The most popular method to solve the dual problem is the subgradient method [15]. Let g be a subgradient of 
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 is the primal objective function value for a heuristic solution.

4.5 Getting Primal Feasible Solutions

To deal with our problem, we choose Lagrangean relaxation and subgradient method as our tools. Thus, we can get not only a theoretical lower bound of primal feasible solution, but also some hints to help us to get our primal feasible solution under each solving dual problem iteration [23]

 REF _Ref520282976 \r \h 
[25]

 REF _Ref520282986 \r \h 
[37]. 

After an iteration solving dual problem, we will get a set of decision variable. However, it may not be feasible in dealing with our problems, for example, it may violate the constraints that we relaxed before. In order to ensure the decision variable is feasible, check or modification is needed, such as drop-and-add heuristics. Then we will get feasible primal solutions to our problems.

In this problem, we also have to check the capacity and QoS constraints for each base station. There is something different from former Admission Control without Considering Rehoming problem (I). Now, we take account of the mobile terminal whose position is in the area of the intersection of two or more base stations. The mobile terminals in the intersection area can home to either one base station or another. Comparing to previous problem, we have more freedom to get the primal feasible solution, a criterion of homing to the controlling base station or not. The former criterion is supposed to be rough for the operator or the whole system. The same, 
[image: image189.wmf]jt
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 is the only decision variable of this problem, to get the feasible sets of solutions, drop-and-add heuristic is used. The heuristic is described in the following algorithm4.1.

Step1. For each base station j, we check the capacity constraint. If the constraint is not satisfied, we go to Step2; otherwise go to Step4.

Step2. For each base station j that violates the capacity constraint, arrange the distance from each new mobile terminal that wants to be active in the coverage of base station j.

Step3. For each base station j that violates the capacity constraint, mobile terminal is dropping until the capacity constraint is hold.

Step4. Now, we take up the QoS constraint for each base station j. If the constraint is violated, we go to Step5; otherwise go to Step6.

Step5. For each base station j that violates the QoS constraint, mobile terminal is dropping according to the criterion in Step2 until the QoS constraint is hold.

Step6. Now, we should reconsider the mobile terminals that were blocked in previous steps. When the mobile terminal is in the intersection area, we should recheck if it can served by any base station under the capacity and QoS constraints is hold or not. If yes, set this zjt to 1; otherwise retain zjt in 0.

Step7. According to the set of zjt we process in previous steps, we can calculate the feasible revenue.

Algorithm 4.1

4.6 Computational Experiments

4.6.1 Lagrangean Relaxation Based Algorithm

This algorithm is used to solve the “Admission Control Model (II)” problem, called LR2. Following is the algorithm:

Step1. Read configuration file to construct BSs and MTs.

Step2. Calculate constant parameters, such as δjt, Djt  and assign Lagrangean relaxation improve counter to equal 20.

Step3. Initialize multipliers.

Step4. According to given multipliers, optimally solve these problems of SUB3.2 to get the value of Zdual.

Step5. According to heuristics of Chapter 4, get the total revenue, the value of ZIP..
Step6. If ZIP is smaller than ZIP*, we assign ZIP* to equal ZIP. Otherwise, we minus 1 from the improve counter.

Step7. Calculate step size and adjust Lagrangean relaxation multipliers.

Step8. Iteration counter increases 1. If interaction counter is over threshold of system, stop this program. And, ZIP* is our best solution. Otherwise, repeat Step4.

Algorithm 4.2

4.6.2 Assumptions, Parameters and Cases

Assumptions
The mobility of mobile terminals is not our concern.

Parameters

S/N0 = 7db

Eb/Ntotal = 6.58db

Voice communication bit rate = 9.6 Kbps

Voice activity = 0.5

Signal attenuation = 4
Maximum number of users who can be active at the same time to a base station = 120.
Average revenue cost of a new mobile terminal user = 10 units.
Fixed cost of rehoming an existing mobile terminal user  = 5 units.
The parameters are as follows [4]

 REF _Ref520282471 \r \h 
[16]

 REF _Ref520282599 \r \h 
[18]

 REF _Ref520283055 \r \h 
[26]

 REF _Ref520283057 \r \h 
[27]

 REF _Ref520282986 \r \h 
[37]:

Table 4-4: The Parameters of the System for Admission Control Model (II)
Following are the testing cases, Case1, Case2 and Case3 are used by the “Admission Control Model (II);” we call it P2.

Case1
This case refers to [26]

 REF _Ref520283057 \r \h 
[27]. In this case, we have 8 BSs, 50 existing mobile terminals and 50 new mobile terminals.

Case2

The difference between Case1 and Case2 is that the new mobile terminals are 100.

Case3

New mobile terminals are 200 in Case3. 

4.6.3 Experiment Result
4.6.3.1 Experiment Result of Case1

	Unit: Total Revenue (NTD.)

	
	Revenue

	S1
	500

	LR2
	500


Table 4-5: The Result of Case1 for Admission Control Model (II)
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Figure 4-1: Solution for Case1 in Admission Control Model (II)
4.6.3.2 Experiment Result of Case2
	Unit: Total Revenue (NTD.)


		1

	2

	3

	4

	5

	6

	7

	8

	9

	10


	S1

	920

	870

	860

	880

	880

	860

	970

	930

	910

	820


	LR2

	940

	880

	870

	890

	880

	860

	970

	930

	910

	830


	Improvement to S1 (%)

	2.13

	1.14

	1.15

	1.12

	0

	0

	0

	0

	0

	1.20


	Table 4-6: The Result of Case2 for Admission Control Model (II)
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Figure 4-2: Solution for Case2 in Admission Control Model (II)
4.6.3.3 Experiment Result of Case3
	Unit: Total Revenue (NTD.)


		1

	2

	3

	4

	5

	6

	7

	8

	9

	10


	S1

	1640

	1730

	1660

	1640

	1660

	1660

	1450

	1680

	1590

	1570


	LR2

	1650

	1740

	1680

	1650

	1680

	1730

	1590

	1690

	1600

	1590


	Improvement to S1 (%)

	0.61

	0.58

	1.20

	0.61

	1.19

	4.05

	8.81

	0.59

	0.63

	1.26


	Table 4-7: The Result of Case3 for Admission Control Model (II)
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Figure 4-3: Solution for Case3 in Admission Control Model (II)
5. Admission Control Model (III)

5.1 Problem Description 

We consider not only the new mobile terminals in this problem but also the existing mobile terminals in Admission Control Model (III). The new mobile terminal in this model can be homed to one of the base station that could provide service to it or be blocked. The existing mobile terminals in this model could be rehomed to the base stations that can serve it. To ensure the QoS of the existing mobile terminals, they could be blocked. We might admit more new calls while rehome the existing mobile terminals to another service base station. However, we should take both the rehoming cost and admittable revenue into account. The ratio of the handoff cost of existing mobile terminals from currently assigned base station to another base station and the total revenue of admittance of new mobile terminals into the system not exceed a given bound U.

We also do not concern the mobility of the existing mobile terminals in our formulation, but our model could be extended for considering mobility of mobile terminals. If we take mobility into account, the new terminals could be divided into handoff calls and real new calls. Since the model is non-preemptive, continuous-time and call arrival is poisson distribution, we can assign the handoff calls higher priority than the real new calls when the new calls arrive at the same time. After handling the handoff calls, the real new calls will be processed. Table 5-1 summarizes the problem description. Shown as follow:

Given:
· Candidate base station (BS) location
· Radius of each base station (BS)
· The distribution of users
· Users’ homing status
· The ratio upper bound of handoff cost and revenue
Objective:

· To maximize the total revenue of admittance of new mobile terminals into the system
Subject to:

· QoS constraint

· Homing constraint
· Capacity constraint

· The ratio of the handoff cost of existing mobile terminals from currently assigned base station to another base station and the total revenue of admittance of new mobile terminals into the system not exceed a given bound U.

Assumption:

· Perfect power control is assumed.

· The reverse link is perfectly separated from the forward link.

· Fading is not considered.

· Forward link is not considered.

Table 5-1: Admission Control Model (III) problem Description

5.2 Notation

	
	Given Parameters

	
	Notation
	Descriptions
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	The set of candidate locations for base stations
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	The power that a base station received from a mobile terminal that is homed to the base station with perfect power control
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	The set of mobile terminals
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	The set of total bandwidth

	
	
[image: image197.wmf]b

E


	The energy that BS received
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	Total noise
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	Voice activity
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	Upper bound on the number of users that can active at the same time at base station j 
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	The number of users who can be active at the same time in the base station j
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	Distance between base station j and mobile terminal t
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	Distance between base station j and j’
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	The intracell interference
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	The interference from base station j’ to j
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	Indicator function which is 1 if mobile terminal t can be served by base station j and 0 otherwise
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	Upper bound of radius of base station j
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	The processing gain
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	The revenue from admitting mobile terminal 
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	The set of existing mobile terminals
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	The set of new mobile terminals whose admittance into the cell is to be determined
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	The artificial base station to carry the rejected call when admission control function decides to reject the call
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	The set of transmission radius of base station j
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	The cost of handoff from currently assigned base station to base station t
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	Transmission radius of base station j
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	The prespecified threshold of the ratio of the handoff cost of existing mobile terminals from currently assigned base station to another base station and the total revenue of admittance of new mobile terminals

	Table 5-2: Notation of Given Parameters for Admission Control Model (III)


	
	Decision Variables

	
	Notation
	Descriptions
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	Decision variable which is 1 if mobile terminal t is serviced by base station j and 0 otherwise

	Table 5-3: Notation of Decision Variables


5.3 Problem Formulation

Optimization problem:

Objective function:
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The objective function is to maximize the total revenue of admittance of new mobile terminals into the system. at is the average revenue of each new mobile terminal and at is the average rehoming cost of each existing mobile terminal. In terms of convenience, we can translate the problem into an equivalent description that is to minimize the negative total revenue. Constraint (13) is to ensure that each mobile terminal is served with its base station with required QoS. The left hand side of this inequality is the minimal SIR (Signal-to-Interference Ratio) which each connection should be hold. The right hand side means the real SIR. The denominator of the right hand side is the total interference value, including white noise, the intra-cell interference, and inter-cell interference. To be more generic, we do not consider the multi-user detection in our model. However, we will discuss this issue in Chapter 8. Constraint (14) is to ensure that the number of users who can be active at the same time in a base station would not exceed the base station’s upper bound. Constraint (15) is to ensure that a base station can only serve the mobile terminals inside its coverage area of effective radius. Constraint (16) is to ensure that if a base station does not provide service to a mobile terminal, then the decision variable zjt must equal to 0. Constraint (17) is to ensure that each new mobile terminal who wants to be active can be homed to only one physical base station or be rejected. Constraint (18) is to ensure that each existing mobile terminal should be homed to only one physical base station. Constraint (19) is to ensure that the ratio of the handoff cost of existing mobile terminals from currently assigned base station to another base station and the total revenue of admittance of new mobile terminals into the system do not exceed a given bound U. Constraint (20) is to enforce the integer property of the decision variables.

5.4 Lagrangean Relaxation
5.4.1 Solution Approach

The basic approach to the development of the solution procedure to Formulation (IP3) is Lagrangean relaxation. Lagrangean relaxation is a method for obtaining lower bounds for minimization problems as well as good primal solutions in integer programming problems. The main steps of Lagrangean relaxation method are as following: relax complicating constraints, multiple the constraints relaxed with corresponded Lagrangean multipliers, and add them to the primal objective function. Decompose the problem into several independent subproblems that could be optimally solved. Then solve them optimally and get Lagrangean dual problem solution. By using the Lagrangean relaxation method, we can transform the primal problem (IP3) into the following Lagrangean relaxation problem (LR3) where Constraints (13), (14), (15), and (19) are relaxed:

5.4.2 Lagrangean Relaxation

For a vector of non-negative Lagrangean multipliers, a Lagrangean relaxation problem of IP3 is given by

Optimization problem (LR3):
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. To solve (LR3), we can decompose (LR3) into the following independent and easily solvable optimization sub-problems.
Subproblem 5.1 (related to decision variable 
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To rewrite SUB 5.1, we can get
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In the model the existing mobile terminals could be rehomed to another base station that can serve it. Therefore, new mobile terminals may be admitted to enter the system even if it was originally blocked by the system. Although the existing mobile terminals could be rehomed to another base stations they can not be blocked by the system. So, we can decompose this into |T| sub-problems for new mobile terminals which want to be active and existing mobile terminals. First, if
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 is equal or less than 0, we can assign these 
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 is equal or less than 0, we can rehome these 
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5.4.3 The Dual Problem and the Subgradient Method

According to the weak Lagrangean duality theorem [12], for any 
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. The following dual problem (D3) is then constructed to calculate the tightest lower bound.
Dual Problem (D3):


[image: image291.wmf](

)

4

3

2

1

3

3

max

v

 

,

v

 

,

v

 

,

v

 

Z

Z

jt

j

j

D

D

=


subject to:    
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The most popular method to solve the dual problem is the subgradient method [15]. Let g be a subgradient of 
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. Then, in iteration k of the subgradient optimization procedure, the multiplier vector 
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 is the primal objective function value for a heuristic solution.

5.5 Getting Primal Feasible Solutions

To deal with our problem, we choose Lagrangean relaxation and subgradient method as our tools. Thus, we can get not only a theoretical lower bound of primal feasible solution, but also some hints to help us to get our primal feasible solution under each solving dual problem iteration [23]

 REF _Ref520282976 \r \h 
[25]

 REF _Ref520282986 \r \h 
[37]. 

After an iteration solving dual problem, we will get a set of decision variable. However, it may not be feasible in dealing with our problems, for example, it may violate the constraints that we relaxed before. In order to ensure the decision variable is feasible, check or modification is needed, such as drop-and-add heuristics. Then we will get feasible primal solutions to our problems.

Not only the constraints mentioned before but also a new constraint must be considered. Besides, obeying the constraints we have considered previously, the ratio of rehoming cost for existing mobile terminals and new mobile terminals should be considered. It means that in this problem we take rehoming existing mobile terminals into account. Although we can rehome existing mobile terminals to another base station, the value of each 
[image: image300.wmf]jt

z

 for any pair of existing mobile terminal and controlling base station must be 1. Under the premise, we can get feasible solution reasonably. We may run Algorithm 4.1 first, then reconsider to rehom existing mobile terminal in order to admit the remaind new mobile terminals to enter the system. The same, 
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 is the only decision variable of this problem, to get the feasible sets of solutions, drop-and-add heuristic is used. The heuristic is described in the following Algorithm 5.1.

Step1. For each base station j, we check the capacity constraint. If the constraint is not satisfied, we go to Step2; otherwise go to Step4.

Step2. For each base station j that violates the capacity constraint, arrange the distance from each new mobile terminal that wants to be active in the coverage of base station j.

Step3. For each base station j that violates the capacity constraint, mobile terminal is dropping until the capacity constraint is hold.

Step4. Now, we take up the QoS constraint for each base station j. If the constraint is violated, we go to Step5; otherwise go to Step6.

Step5. For each base station j that violates the QoS constraint, mobile terminal is dropping according to the criterion in Step2 until the QoS constraint is hold.

Step6. In this step, we should reconsider the mobile terminals that were blocked in previous steps. First, we should recheck if it can served by any base station under the capacity and QoS constraints is hold or not. If yes, set this zjt to 1; otherwise retain zjt in 0. But, we do not rehome the existing mobile terminals in this step.

Step7. Then, we can take both existing mobile terminals and the new mobile terminals that still be blocked into account. If we rehome existing mobile terminals that can be provided service by any other base station in the system will permit previous blocked mobile terminals in, and we do this. Also, the capacity and QoS constraints should be satisfied.
Step8. However, there is one more constraint should be followed. That’s the ratio of rehoming cost and total revenue. It must under certain level, say 0.5 or whatever. We must check the ratio not exceeding the threshold after Step7. 

Algorithm 5.1

5.6 Computational Experiments

5.6.1 Lagrangean Relaxation Based Algorithm

The third algorithm is used to deal with the “Admission Control Model (III)” problem. We call it LR3. Shown as follow:

Step1. Read configuration file to construct BSs and MTs.

Step2. Calculate constant parameters, such as δjt, Djt  and assign Lagrangean relaxation improve counter to equal 20.

Step3. Initialize multipliers.

Step4. According to given multipliers, optimally solve these problems of SUB3.3 to get the value of Zdual.

Step5. According to heuristics of Chapter 4, get the total revenue, the value of ZIP..
Step6. If ZIP is smaller than ZIP*, we assign ZIP* to equal ZIP. Otherwise, we minus 1 from the improve counter.

Step7. Calculate step size and adjust Lagrangean relaxation multipliers.

Step8. Iteration counter increases 1. If interaction counter is over threshold of system, stop this program. And, ZIP* is our best solution. Otherwise, repeat Step4.

Algorithm 5.2

5.6.2 Assumptions, Parameters and Cases

Assumptions
The mobility of mobile terminals is not our concern.

Parameters

S/N0 = 7db

Eb/Ntotal = 6.58db

Voice communication bit rate = 9.6 Kbps

Voice activity = 0.5

Signal attenuation = 4
Maximum number of users who can be active at the same time to a base station = 120.
Average revenue cost of a new mobile terminal user = 10 units.
Fixed cost of rehoming an existing mobile terminal user  = 5 units.
The parameters are as follows [4]

 REF _Ref520282471 \r \h 
[16]

 REF _Ref520282599 \r \h 
[18]

 REF _Ref520283055 \r \h 
[26]

 REF _Ref520283057 \r \h 
[27]

 REF _Ref520282986 \r \h 
[37]:

Table 5-4: The Parameters of the System for Admission Control Model (III)
Following are the testing cases, Case1, Case2 and Case3 are used by the “Admission Control Model (III);” we call it P3.

Case1
This case refers to [26]

 REF _Ref520283057 \r \h 
[27]. In this case, we have 8 BSs, 50 existing mobile terminals and 50 new mobile terminals.

Case2

The difference between Case1 and Case2 is that the new mobile terminals are 100.

Case3

New mobile terminals are 200 in Case3.

5.6.3 Experiment Result
5.6.3.1 Experiment Result of Case1

	Unit: Total Revenue (NTD.)

	
	Revenue

	S1
	500

	LR3
	500


Table 5-5: The Result of Case1 for Admission Control Model (III)
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Figure 5-1: Solution for Case1 in Admission Control Model (III)
5.6.3.2 Experiment Result of Case2
	Unit: Total Revenue (NTD.)

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	S1
	920
	870
	860
	880
	880
	860
	970
	930
	910
	820

	LR3
	970
	905
	895
	915
	905
	885
	980
	955
	935
	855

	Improvement to S1 (%)
	5.15
	3.87
	3.91
	3.83
	2.76
	2.82
	1.02
	2.62
	2.67
	4.09

	Table 5-6: The Result of Case2 for Admission Control Model (III)
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Figure 5-2: Solution for Case 2 in Admission Control Model (III)

5.6.3.3 Experiment Result of Case3

	Unit: Total Revenue (NTD.)

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	S1
	1640
	1730
	1660
	1640
	1660
	1660
	1450
	1680
	1590
	1570

	LR3
	1665
	1765
	1700
	1665
	1700
	1765
	1600
	1715
	1630
	1630

	Improvement to S1 (%)
	1.50
	1.98
	2.35
	1.50
	2.35
	5.95
	9.38
	2.04
	2.45
	3.68

	Table 5-7: The Result of Case3 for Admission Control Model (III)
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Figure 5-3: Solution for Case3 in Admission Control Model (III)

6. Long-term Call Blocking Model

6.1 Problem Description 

Total call blocking rate is one of the most important measurement of the user’s viewpoint to judge the subscriber. By adjusting the system parameters, we plan an integrated strategy to enhance the system usage for a long period. In this long-term model, our objective is to minimize call blocking rate. In other words, the objective of this long-term model is how to minimize total blocked traffic. Table 6-1 summarizes the problem description. Shown as follow:
Given:
· Candidate base station (BS) location
· Radius of each base station (BS)
· The distribution of users
· Users’ homing status
· Traffic demand of each mobile terminal
Objective:

· To minimize the total blocked traffic
Subject to:

· QoS constraint

· Homing constraint
· Capacity constraint

Assumption:

· Perfect power control is assumed.

· The reverse link is perfectly separated from the forward link.

· Fading is not considered.

· Forward link is not considered.

Table 6-1: Long-term Call Blocking Model problem Description

6.2 Notation

	
	Given Parameters

	
	Notation
	Descriptions
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	The set of candidate locations for base stations
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	The power that a base station received from a mobile terminal that is homed to the base station with perfect power control
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	The set of mobile terminals
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	The set of total bandwidth
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	The energy that BS received
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	Total noise
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	Voice activity
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	Upper bound on the number of users that can active at the same time at base station j
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	Attenuation factor
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	Distance between base station j and mobile terminal t

	
	
[image: image315.wmf]'

jj

D


	Distance between base station j and j’
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	The background noise
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	Data bit rate
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	Call blocking probability of base station j
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	Minimum number of channels required for traffic demand 
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 such that the call blocking probability shall not exceed 
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	The intracell interference
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	The interference from base station j’ to j
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	Indicator function which is 1 if mobile terminal t can be served by base station j and 0 otherwise
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	Upper bound of radius of base station j

	
	
[image: image326.wmf]v


	A small number
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	The processing gain
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	The traffic requirement of mobile terminal t (in Erlangs)
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	The set of transmission radius of base station j

	Table 6-2: Notation of Given Parameters for Long-term Call Blocking Model


	
	Decision Variables

	
	Notation
	Descriptions
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	Decision variable which is 1 if mobile terminal t is serviced by base station j and 0 otherwise

	Table 6-3: Notation of Decision Variables


6.3 Problem Formulation

Optimization problem:

Objective function:
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The objective function is to minimize the long-term total blocked traffic of the system after it has been operated. Constraint (13) is to ensure that each traffic source is served with its base station with required QoS. The left hand side of this inequality is the minimal SIR (Signal-to-Interference Ratio) which each connection should be hold. The right hand side means the real SIR. The denominator of the right hand side is the total interference value, including white noise, the intra-cell interference, and inter-cell interference. To be more generic, we do not consider the multi-user detection in our model. However, we will discuss this issue in Chapter 8. Constraint (22) is to ensure that a base station can only serve the mobile terminals that are inside its coverage area of effective radius. Constraint (23) is to ensure that if a base station does not provide service to a mobile terminal, then the decision variable zjt must equal to 0. Constraint (24) is to ensure that each mobile terminal can be homed to only one base station. Constraint (25) is to ensure that the transmission radius of each base station ranges between 0 and Rj. Constraint (26) is to ensure that the number of users who can be active at the same time in a base station would not exceed the base station’s upper bound. Constraints (27)-(28) are to ensure that any base station can serve its slave mobile terminal under certain call blocking rate. Constraint (29) is to enforce the integer property of the decision variables.

6.4 Other Interference Models

The interference model we present above in Constraint (21) is an average case. We assume that all active users are located at the half power radius of the base station that they are served, and concentrate into the point that closest to other base stations.

According to [36], we can develop an inter-cell interference model that users’ distribution is uniform and attenuation factor equals to 4 (Different attenuation factors must be recalculated, we only present the formulation when it is 4. Other attenuation factor values show in Appendix). Following is the mathematical formulation: 
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It is very complicated officially, but it does not cause the difficulty increasing in mathematical structure.
6.5 Lagrangean Relaxation
6.5.1 Solution Approach

The basic approach to the development of the solution procedure to Formulation (IP4) is Lagrangean relaxation. Lagrangean relaxation is a method for obtaining lower bounds for minimization problems as well as good primal solutions in integer programming problems. The main steps of Lagrangean relaxation method are as following: relax complicating constraints, multiple the constraints relaxed with corresponded Lagrangean multipliers, and add them to the primal objective function. Decompose the problem into several independent subproblems that could be optimally solved. Then solve them optimally and get Lagrangean dual problem solution. By using the Lagrangean relaxation method, we can transform the primal problem (IP4) into the following Lagrangean relaxation problem (LR4) where Constraints (21), (22), and (27) are relaxed:

6.5.2 Lagrangean Relaxation

For a vector of non-negative Lagrangean multipliers, a Lagrangean relaxation problem of IP4 is given by

Optimization problem (LR4):
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. To solve (LR4), we can decompose (LR4) into the following independent and easily solvable optimization sub-problems.
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To rewrite SUB 6.1, we can get
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We can decompose this into |T|(|B| subproblems. If 
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6.5.3 The Dual Problem and the Subgradient Method

According to the weak Lagrangean duality theorem [12], for any 
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Dual Problem (D4):
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The most popular method to solve the dual problem is the subgradient method [15]. Let a g be subgradient of 
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 is the primal objective function value for a heuristic solution.

6.6 Getting Primal Feasible Solutions

To deal with our problem, we choose Lagrangean relaxation and subgradient method as our tools. Thus, we can get not only a theoretical lower bound of primal feasible solution, but also some hints to help us to get our primal feasible solution under each solving dual problem iteration [23]

 REF _Ref520282976 \r \h 
[25]

 REF _Ref520282986 \r \h 
[37]. 

After an iteration solving dual problem, we will get a set of decision variable. However, it may not be feasible in dealing with our problems, for example, it may violate the constraints that we relaxed before. In order to ensure the decision variable is feasible, check or modification is needed, such as drop-and-add heuristics. Then we will get feasible primal solutions to our problems.

Because of the complexity of coupling of decision variables in this problem, we have to exhaustively search all the possible solution sets of decision variables. Fortunately, the value of the radius power, 
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, defined in this problem are discrete and limited. So we can begin with dealing the radius power in each get primal feasible solution iteration. Since the radius power was determined, we can calculate the aggregate traffic, 
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 of every base station under its radius power currently. Of course, the capacity and QoS constraints described in previous section must be held. And under a pair of (
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), the call blocking probability has to be lower than a desired level, say, 5% or lower. The heuristic used in this problem is described in the following Algorithm 6.1.

Step1. For each base station j, we check the QoS constraint for each base station j. If the constraint is violated, we go to step; otherwise go to step.

Step2. For each base station j that violates the QoS constraint, we try to decrease down the radius power until the QoS constraint is hold.

Step3. Since the radius power rj of each base station was determined. We can calculate the aggregate traffic of each base station.

Step4. Then, we check the call blocking probability constraint. If it is originally satisfied, going to step5; otherwise we increase the decision variable cj until the call blocking rate is under a desired level.

Step5. For each base station j, we find out the largest distance between any traffic source and base station. Try to narrow the radius power down.
Step6. If base station still can provide service to the largest traffic source, we just set the new value to rj; otherwise retain the original status of rj.

Step7. Finally, according to the set of decision variables we process in previous steps, we can calculate the actual traffic that is blocked by the system.

Algorithm 6.1

6.7 Computational Experiments

We also implement a simple algorithm2 (S2) to be a benchmark of LR4. S2 is adjusting the radius of each base station to cover all the traffic sources in an area. The radius of a base station could be rearranged under the information of long-term traffic source distribution. The channels that assigned to certain base station are stratifying the minimal call blocking rate, not just setting it to the system maximal value.

6.7.1 Lagrangean Relaxation Based Algorithm

The algorithm is used to deal with the “Long-term Call Blocking Model” We call it LR4. Shown as follow:

Step1. Read configuration file to construct BSs and traffic source.

Step2. Calculate constant parameters, such as ( jt, Djt and assign Lagrangean relaxation improve counter to equal 20.

Step3. Initialize multipliers.

Step4. According to given multipliers, optimally solve these problems of SUB3.4 and SUB3.5to get the value of Zdual.

Step5. According to heuristics of Chapter 4, get the total revenue, the value of ZIP..
Step6. If ZIP is smaller than ZIP*, we assign ZIP* to equal ZIP. Otherwise, we minus 1 from the improve counter.

Step7. Calculate step size and adjust Lagrangean relaxation multipliers.

Step8. Iteration counter increases 1. If interaction counter is over threshold of system, stop this program. And, ZIP* is our best solution. Otherwise, repeat Step4.
Algorithm 6.2

6.7.2 Assumptions, Parameters and Cases

Assumptions
The mobility of mobile terminals is not our concern.

Parameters

S/N0 = 7db

Eb/Ntotal = 6.58db

Call blocking probability = 3%.
Voice communication bit rate = 9.6 Kbps

Voice activity = 0.5

Signal attenuation = 4
Maximum number of users who can be active at the same time to a base station = 120.
The parameters are as follows [4]

 REF _Ref520282471 \r \h 
[16]

 REF _Ref520282599 \r \h 
[18]

 REF _Ref520283055 \r \h 
[26]

 REF _Ref520283057 \r \h 
[27]

 REF _Ref520282986 \r \h 
[37]:

Table 6-4: The Parameters of the System for Long-term Call Blocking Model

Following are the testing cases, Case4 and Case5 are used by the “Long-term Call Blocking Model;” we call it P4.

Case4
This case refers to [26]

 REF _Ref520283057 \r \h 
[27]. In this case, we also have 8 BSs, and 100 traffic sources. The traffic demand for each traffic source is 0.11 Erlangs. The degrees of radius are 0.5 km, 1.5 km, 2 km, 3 km, 3.5 km and 4 km.

Case5
In this case, we also have 8 BSs, and 100 traffic sources. The traffic demand for each traffic source is 0.22 Erlangs. The degrees of radius are 0.5 km, 1.5 km, 2 km, 3 km, 3.5 km and 4 km.

6.7.3 Experiment Result
	Unit: Total Blocked Traffic (Erlang)

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	S2
	0.1755
	0.2114
	0.2327
	0.1967
	0.2396
	0.1496
	0.1671
	0.2618
	0.1905
	0.1847

	LR4
	0.0054
	0.0142
	0.0062
	0.0023
	0.0031
	0.0059
	0.0047
	0.0054
	0.0037
	0.0027

	Improvement to S2 
	31.32
	13.91
	36.27
	86.02
	77.06
	24.38
	34.50
	47.46
	50.19
	66.83


6.7.3.1 Experiment Result of Case4

[image: image427.jpg]



 Table 6-5: The Result of Case4 for Long-term Call Blocking Model

Figure 6-1: Solution for Case4 in Long-term Call Blocking Model

6.7.3.2 Experiment Result of Case5

	Unit: Total Blocked Traffic (Erlang)

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	S2
	0.4319
	0.4259
	0.4752
	0.5035
	0.4151
	0.4622
	0.4335
	0.4364
	0.3916
	0.5329

	LR4
	0.0030
	0.0100
	0.0038
	0.0016
	0.0014
	0.0027
	0.0034
	0.0041
	0.0047
	0.0008

	Improvement to S2 
	141.44
	41.73
	124.48
	314.64
	293.93
	168.61
	125.65
	104.31
	82.99
	697.78


Table 6-6: The Result of Case5 for Long-term Call Blocking Model

[image: image428.jpg]



Figure 6-2: Solution for Case5 in Long-term Call Blocking Model

7. Extension Models

We want to establish a generic model to describe the problem in this thesis, and that’s why we need a lot of assumptions. Here, we will modify our model for some particular purposes. In this chapter, we just discuss the Long-term Call Blocking Model that we have mentioned in chapter 6. The extension model is similar for admission control models in previous chapter. For convenience, we consider the long term case for example.
7.1 Multi-user Detection

Under the system with multi-user detection, the intra-cell interference will be ignored [16]. Therefore, we can rewrite the QoS Constraint as following inequation. So, the total interference is decreased and the capacity will be improved.
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7.2 Data Traffic

In this model, we just consider voice traffic. We can reform our some constraints to fit data traffic with the following description:
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. The Constraints (35) and (36) ensure that every connection in any base station is serviced with the required QoS no matter what traffic type. Constraints (37) and (38) ensure that any base station can serve its slave mobile terminal under certain call blocking rate. The Constraint (39) ensures that the number of total users who can be active at the same time in a base station would not exceed the base station’s upper bound.

If there are several classes of data traffic, we can extend the model more as follow:
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Constraints (37), (38) and (39) can be rewritten to a proper form for any kind of extension model in a similar way. We can add the terms about “d2”, “d3”, “d4”,…. to fit the requirements.
8. Conclusion

8.1 Summary
In this thesis we present an approach to manage and support a DS-CDMA wireless communication networks. We can express our achievements in terms of formulation and performance. In terms of formulation, we model a mathematical expression to describe the admission control and homing in DS-CDMA wireless communication networks problem. The outcome of this thesis will be helpful for system subscribers to make integrated decision and maintain the system. Owing to the experience, we use Lagrangean relaxation and subgradient method as our main methodology. When using these mathematical tools, we can be provided with some hints to improve our heuristics. In terms of performance, our Lagrangean relaxation based solution has more significant improvement than other intentional algorithm.

8.2 Future Work

In the near feature, interactive, multimedia, and mass data transfer will become the most important and essential application. In this thesis, we only consider the voice traffic of mobile terminals. However, the data traffic will become definitely popular. Discussing voice and data traffic concurrently would make this thesis more complete.

Second, in this thesis we do not take downlink into account. To take uplink and downlink into account is another interesting problem.
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Appendix

In Chapter 6, we demonstrated an inter-cell interference model that users’ distribution is uniform and attenuation factor equals to 4. Actually, we often assign this parameter to an integer from 2 to 6. Hence, we demonstrate all of them below:

Attenuation factor = 2:


[image: image461.wmf]å

¹

Î

-

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

+

-

+

+

+

-

-

-

-

-

+

-

-

+

-

j

j

B

j

e

j

e

j

j

N

S

G

a

c

r

r

D

r

D

r

D

r

D

r

D

r

D

D

r

D

r

D

D

D

r

D

D

r

r

D

r

D

r

D

j

jj

j

jj

j

jj

j

jj

j

jj

j

jj

jj

j

jj

j

jj

jj

jj

j

jj

jj

j

j

jj

j

jj

j

jj

i

'

'

'

'

6

'

2

2

2

4

4

2

6

8

2

2

2

4

2

2

2

4

8

6

2

4

4

2

6

1

ˆ

)

(

2

)

ln(

18

)

ln(

36

)

ln(

18

)

ln(

)

(

18

ln

)

(

36

6

27

18

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

0

a


Attenuation factor = 3:
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Attenuation factor = 4:
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Attenuation factor = 5:
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Attenuation factor = 6:
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