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5. Delay Constrained Routing and Link Capacity Assignment in Virtual Circuit Network 
5.1 Overview

In this chapter, we focus on the network servicing of virtual circuit network. After access network and backbone network is planned and installed for a certain time, the user traffic requirement and the QoS constraints might change. As a result, some network servicing approaches, such as rerouting and sizing (as shown in Figure 1.2), are proposed in this chapter to address these issues.
An essential issue in designing, operating and managing a modern network is to assure end-to-end QoS from users’ perspective, and in the meantime to optimize a certain “average” performance objective from the system’s perspective. So in the first part of this chapter, we address this issue by using the rerouting approach, the objective is to minimize the average cross-network packet delay in virtual circuit networks with considering an end-to-end delay constraint (DCR) for each O-D pair. The problem is formulated as a multicommodity network flow problem with integer routing decision variables, where additional end-to-end delay constraints are considered. 

As the traffic demands are increasing over time, the rerouting approach may not be applicable, which results in the necessity of capacity augmentation. Henceforth, the second part of this chapter is to jointly consider the link capacity assignment and the routing problem (JCR) where the objective is to minimize the total link installation cost with considering the average and end-to-end delay constraints.
The difficulties of DCR result from the integrality nature and particularly the nonconvexity associated with the end-to-end delay constraints. The basic approach to the algorithm development is Lagrangean relaxation in conjunction with a number of optimization-based heuristics. In the computational experiments, it is shown that the proposed algorithm calculates solutions which are within 1% and 3% of optimal solutions under lightly and heavily loaded conditions, respectively, in minutes of CPU time for networks with up to 26 nodes.

Besides the difficulties mentioned in DCR, the concavity associated with the capacity cost function makes JCR more complicated than DCR. The basic approach to the algorithm development is Lagrangean relaxation in conjunction with optimization-based add-drop heuristics. In the computational experiments, it is shown that the proposed algorithm calculates solutions that are reasonably good in an hour of CPU time for networks with up to 26 nodes. And the solution quality is better in small network size and loose delay constraints.

5.2. Literature Survey
To ensure user-perceived end-to-end QoS requirement is one of the most important issues in providing modern network services, which typically requires sophisticated design of routing and capacity management policies. User-perceived end-to-end QoS measures include, for example, mean packet delay, packet delay jitter and packet lost probability. Besides users’ perspective of QoS, from the service providers’ perspective (which is a traditional view of network performance management), optimizing a certain system-level performance measure, e.g. overall network utilization or average cross-network delay among all users, is another major concern. Unfortunately, these two perspectives/objectives may not be entirely agreeable with each other. This then places a major challenge to network managers and therefore calls for an integrated methodology to consider these two perspectives in a joint fashion. In this chapter, the first optimization models based on routing assignment to address this issue, where the objective is to minimize the average cross network design to ensure the end-to-end delay requirement for each O-D pair.
Most of existing networks face a common challenge, to satisfy more and more new traffic demand and QoS requirements. However, the existing link capacity may not be sufficient. As a result, the network operators have to make a link capacity augmentation plan in order to satisfy the traffic requirements. As a result, in the second part of this chapter, the link capacity is also a decision variable. Hence, we jointly consider link capacity assignment and routing problem at the same time.
However, for most of the network operators, it is not easy to have a good routing and capacity augmentation plan due to the complicated QoS requirements. In addition, the routing also requires sophisticated design to of routing and capacity management policies. They often take the approaches of buying the equipment vendors solutions, which is mostly over-engineering. By using this rigorous mathematical optimization technique, we could provide alternative cost-efficient solutions to the network operators. In addition, in order to make the mathematical formulation more generic, the objective is to minimize the total link capacity installation cost instead of link capacity augmentation. The QoS requirements considered could be classified into two categories, operator perceived QoS and user perceived QoS. For network operators, optimizing a system level performance measure, e.g. average cross network delay among all users is the major concern. For individual user, individual QoS measure, e.g. end-to-end delay, is the important issue. To conclude, the objective is to minimize the link installation cost with assuring the average cross network delay and end-to-end delay for each O-D pair.
Routing is the most common technique for service provider to achieve this goal. Routing problem could be classified into two main domains in two different networks, datagram service network and virtual circuit network. In datagram service network, the traffic for O-D pair could be decomposed into different flows in different paths. However, in virtual circuit network, the traffic for O-D pair should follow the same path. From the mathematical structure, the routing problem in virtual circuit networks is more complicated than in datagram service networks due to the integer constraints associated with the routing decision variables.

There are a lot of researches focusing on datagram service networks because of Internet Protocol (IP). Previous research [Bertsekas 92] focused on optimal routing based on complete status information while latter research [Nelakuditi 00] focused on near optimal routing based on local information. On the other hand, routing problem in virtual circuit networks has attracted even more attention since the emergence of the ATM technology. However, most previous research on virtual circuit routing considers the objective function of minimizing the average end-to-end packet delay [Gavish 83, F.Y.S. Lin 92b, Courtois 81], which addressed a system-optimization perspective without taking individual users into account.
In [F.Y.S. Lin 95], Cheng and Lin took a user-optimization approach and considered a fairness issue by minimizing the maximum individual end-to-end packet delay in virtual circuit networks. Lorenz also presented efficient approximation schemes for general integer cost function and end-to-end delay requirements [Lorenz 00]. In a similar study [Ergun 00], F. Ergun proposed approximation algorithms for assuring the delay constraint while minimizing certain delay cost measure using the network resource pricing concept. [Ergun 00] could also be classified as user-optimization QoS routing. However, several problems exist in this [Ergun 00]. First, only one O-D pair routing is considered at one time that could not handle the delay constrained routing for all O-D pairs. Second, how to assign the delay cost on each link such that to reflect the real prices paid in return for delay guarantees is not addressed in [Ergun 00]. In these above researches, they only consider the user-optimization approach, end-to-end delay, and without considering the system delay optimization.
Based on these researches, we attempt to consider both system and user perspectives typically in virtual circuit networks. More precisely, we consider the virtual circuit routing problem of minimizing the average packet delay subject to end-to-end packet delay constraints for users. This problem is a difficult NP-complete problem as indicated in [S. Chen 98]. In the second part of this chapter, besides routing assignment, we include another dimension, the link capacity assignment. More precisely, we consider the virtual circuit network design problem of minimizing the total link installation cost subject to average and end-to-end delay constraints. As could be anticipated, this model is more general but more difficult than the previous one. An optimization-based approach is then devised to solve these problems, where the problems are formulated as mathematical programming problems, followed by proposing algorithms based on Lagrangean relaxation. It is shown in the computational experiments that the proposed algorithm is both efficient and effective.

The remainder of this chapter is organized as follows. In Section 5.3, a mathematical formulation of the routing problem is proposed. In Section 5.4, a solution approach to the routing problem based on Lagrangean relaxation is presented. In Section 5.5, heuristics are developed to calculate good primal feasible solutions. In Section 5.6, computational results for routing problem are reported. In Section 5.7, mathematical formulation of joint capacity assignment and routing problem is proposed. In Section 5.8, solution approach to the joint capacity assignment and routing problem based on Lagrangean relaxation is presented. In Section 5.9, heuristics are developed to calculate good primal feasible solutions. In Section 5.10, computational results for joint capacity assignment and routing problem are reported. Finally, Section 5.11 concludes this chapter.
5.3. Problem Formulation of DCR
The virtual circuit network is modeled as graph where the processors are depicted as nodes and the communication channels are depicted as arcs. We show the definition of the following notation.
V
={1,2,…,N}, the set of nodes in the graph

L
the set of communication links in the communication network

W
the set of Origin-Destination (O-D) pairs in the network
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(packets/sec): the arrival rate of new traffic for each O-D pair w
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the indicator function which is 1 if link l is on path p and 0 otherwise

Dw
the maximum allowable end-to-end delay for O-D pair w

Decision variables are depicted as follows.
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Under the Kleinrock’s independence assumption [Kleinrock 75], the arrival of packets to each buffer is a Poisson process where the rate is the aggregate flow over the outbound link. Assume that the transmission time for each packet is exponentially distributed with mean C-1l. Hence, refer to previous research [Gavish 83, F.Y.S. Lin 92b, Courtois 81], each buffer is modeled as an M/M/1 queue.
It is remarkable to address that the formulation can be extended to any non M/M/1 model with monotonically increasing and convexity performance metrics. For the illustration purpose, the formulation will be based on the M/M/1 model. To determine a path for each O-D pair to minimize the average packet delay with maximum allowable end-to-end transmission delay is formulated as a nonlinear combinatorial optimization problem, as shown below.
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subject to:
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xp = 0 or 1
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Constraint (5.1) requires that the end-to-end packet delay should be no larger than Dw for each O-D pair. Constraint (5.2) requires that the aggregate flow on each link should not exceed the link capacity. Constraints (5.3) and (5.4) require that all the traffic demands for each O-D pair should be transmitted over exactly one path. The above formulation is a nonlinear multicommodity flow problem, since each O-D pair transmits different type of traffic over the network. It is easy to show that (IP5.1) is a nonconvex programming problem by verifying the Hessian of 
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 with respect to xp.
For the purpose of applying Lagrangean relaxation method, we transform the above problem formulation (IP5.1) into an equivalent formulation (IP5.2). In (IP5.2), two auxiliary variables are introduced: 
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 and fl denotes the estimate of the aggregate flow.
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xp= 0 or 1
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Constraints associated with these auxiliary variables from (5.8) to (5.11) are added. Note that Constraints (5.8) and (5.10) should be equalities, by changing equalities into smaller than or equals to is a relaxation, and we could prove that the equality should hold at the optimal point. Lemma 5.1 and Lemma 5.2 prove this argument.

Lemma 5.1: In Constraint (5.8), the equality should hold at the optimal point of (IP5.2).

Proof: Proof by contradiction. Assume the equality for Constraint (5.8) does not hold at the optimal point of (IP5.2), that is some 
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 are zero. Under the circumstances, examine Constraint (5.5). If these associated Constraints (5.5) are binding, that is equality for Constraint (5.5) holds, we could always decrease 
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 to zero to make Constraint (5.5) unbinding, that is less than holds at Constraint (5.5). When these associated Constraints (5.5) are becoming unbinding, the optimal value of (IP5.2) could be further reduced due to the decreasing number of binding constraints of Constraints (5.5), which violate the assumption of optimality. This proves that the equality for Constraint (5.8) should hold at the optimal point of (IP5.2).
  #

Lemma 5.2: In Constraint (5.10), the equality should hold at the optimal point of (IP5.2).

Proof: Proof by contradiction. Assume the equality for Constraint (5.10) does not hold at the optimal point of (IP5.2), that is some fl are greater than the its corresponding aggregate flow. By decreasing fl to the corresponding aggregate flow, the feasibility of Constraint (5.5) still holds. In addition, since the objective function of (IP5.2) is a monotonically increasing function with respect to fl. We could always decrease fl to the corresponding aggregate flow, which will lead to smaller objective value of (IP5.2), which contradicts the assumption of optimality. That proves that the equality for Constraint (5.10) should hold at the optimal point of (IP5.2). 
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After introducing these auxiliary variables, the Lagrangean relaxation problem can be decomposed into independent and easily solvable subproblems.
5.4 Lagrangean Relaxation of DCR
The algorithm development is based upon Lagrangean relaxation. We dualize Constraints (5.5), (5.8) and (5.10) to obtain the following Lagrangean relaxation problem (LR5.2).
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subject to:
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xp= 0 or 1
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We can decompose (LR5.2) into two independent subproblems.

Subproblem 1: for xp
min 
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(SUB5.1)

subject to (5.12) and (5.13).
Subproblem 2: for ywl and fl 
min
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subject to (5.14) and (5.15).
(SUB5.1) could be further decomposed into 
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 term in the objective function of (SUB5.2) can be dropped first and added back to the objective value since it will not affect the optimal solution of (SUB5.2). Then, (SUB5.2) can be decomposed into 
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(SUB5.2.1) is a complicated problem due to the coupling of ywl and fl. On the other hand, the 
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 term in the objective function of (SUB5.2.1) is a nonnegative and monotonically increasing function with respect to fl, and it will not affect the optimal value of the following terms in the (SUB5.2.1). Therefore, the algorithm developed in [F.Y.S. Lin 95] can be used to solve (SUB5.2.1). Hence, the algorithm to solve (SUB5.2.1) is as follows:
Step 1. Solve (
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Step 2. Sorting these break points and denoted as 
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Step 4. Within the interval, 
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Step 5. The global minimum point can be found by comparing these local minimum points.

According to the algorithms proposed above, we could successfully solve the Lagrangean relaxation problem optimally. By using the weak Lagrangean duality theorem, that is, the lower bound from the dual Lagrangean formulation is a legitimate lower bound to the corresponding original problem [Ahuja 93]. We construct the following dual problem to calculate the tightest lower bound and solve the dual problem by using the subgradient method.
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at (t, u, v). In iteration x of the subgradient optimization procedure, the multiplier vector mx=(tx,ux,vx) is updated by mx+1= mx+
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5.5 Getting Primal Feasible Solutions of DCR
To obtain the primal solutions to the minimized average packet delay with maximum allowable end-to-end delay constraints problems, solutions to the Lagrangean relaxation problems (LR5.2) is considered. For example, if a solution to (LR5.2) is feasible to (IP5.2), i.e., satisfy the capacity constraints and end-to-end delay constraints, then it is considered as a primal feasible solution to (IP5.2); otherwise, it will be modified so that it may be feasible to (IP5.2).
Three getting primal heuristics are developed to improve the effectiveness of the algorithms. For example, when a solution to (LR5.2) is found, the routing assignments for the maximum end-to-end delay path is reassigned to another path to reduce the value of maximum end-to-end delay. For another case, consider that the end-to-end delay constraints, when the end-to-end delay constraints is violated, identify the paths that violate end-to-end delay constraints, the arc weights along these paths are increased, then the routing assignments are recalculated. On the other hand, consider the capacity constraints, when a solution to (LR5.2) is infeasible for capacity constraints, the arc weight for the overflow link is increased, and then the routing assignments are recalculated. According to the computational experiments, the second heuristic can get a better solution in many cases.
5.6 Computational Experiments of DCR
The computational experiments for the algorithms developed in Sections 5.4 and 5.5 are coded in C and performed on a PC with INTELTM PII-233 CPU. We tested the algorithm for 3 networks -- ARPA, GTE, OCT with 21, 12 and 26 nodes. The network topologies are shown in Figure 2.1, 2.2 and 2.3. The computational time for these three network topologies are all within fifteen minutes.

TABLE 5.1 – Solution quality for different networks at loose maximum allowable end-to-end delay requirements

Network topology
Link
capacity
Dw (msec)
Lower bound (msec)
Upper bound (msec)
Error gap (%)
Maximum end-to-end delay (msec)

ARPA
65

70

100

150

200
460

300

250

130

100
109

93.7

51.1

29.1

20.4
110.3

94.3

51.1

29.1

20.4
1.18

0.65

0

0

0
238.7

200.7

106.2

60.4

42.1

GTE
65

70

100

150

200
800

500

100

100

190
28.2

26.1

17.9

11.7

8.7
28.2

26.1

17.9

11.7

8.7
0

0

0

0

0
50.9

46.9

31.9

20.8

15.5

OCT
65

70

100

150

200
1400

1000

340

150

100
351.3

237.8

86.2

42.5

28.2
357.8

240.6

86.8

42.5

28.2
1.88

1.2

0.69

0

0
805

525.6

170.4

81.7

53.8

The maximum number of iterations for the proposed dual Lagrangean algorithm is 1000, and the improvement counter is 30. The step size for the dual Lagrangean algorithm is initialized to be 2 and will be halved when the objective function value of the dual problem does not improve for 30 iterations. It is assumed that the traffic demand of each O-D pair is one packet per second. Unlike in [F.Y.S. Lin 95], the candidate path set does not need to be prepared in advance and all possible candidate paths are considered for each O-D pair.
We perform two sets of computational experiments. In the first set of computational experiments, the choice of the Dw value is fixed as to examine the solution quality of the minimum average packet delay problem.
Table 5.1 summarizes the results. The first column is the type of the network topology. The second column is the link capacity. The third column is the maximum allowable end-to-end delay (Dw). The fourth column reports the lower bound of the proposed dual Lagrangean problem. The fifth column reports the upper bound of the proposed dual algorithm. The sixth column reports the error gap between the lower bound and the upper bound. The seventh column reports the maximum end-to-end delay among all O-D pairs. As can be seen in the sixth column, the gap between the lower bound and the upper bound are very tight for all different network topologies and link capacities when the value of Dw is loose as compared to the maximum end-to-end delay among all O-D pairs.
Since the value for the maximum allowable end-to-end delay (Dw) have a significant impact on the solution of the minimum average packet delay problem. In the second set of computational experiments, we try to examine the impact of the Dw value on the solution quality of minimum average delay. Figures 5.1, 5.2 and 5.3 show the results for the ARPA, GTE, OCT network. It is clear to see that the upper bound remains almost the same with different Dw value. When the Dw value below a certain threshold (as indicated in third column of Table 5.2), the primal solution could not be found.
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Figure 5.1. Upper bound for different Dw value in ARPA network
Figure 5.2 Upper bound for different Dw value in GTE network [image: image184.wmf]GTE network(upper bound vs. maximum allowable end-
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Figure 5.3 Upper bound for different Dw value in OCT network
Table 5.2 summarizes this result. The first column is the type of the network topology. The second column is the link capacity. The third column is the threshold of the maximum allowable end-to-end delay (Dw). The fourth column reports the lower bound of the proposed dual Lagrangean problem. The fifth column reports the upper bound of the proposed dual algorithm. The sixth column reports the error gap between the lower bound and the upper bound. The seventh column reports the maximum end-to-end delay among all O-D pairs. The eighth column reports the results from [F.Y.S. Lin 95].
The maximum end-to-end delay value in the seventh column implies the optimal value for the minimax end-to-end delay routing problem developed in [F.Y.S. Lin 95]. There is one thing that needs to be addressed: all possible candidate paths are considered for each O-D pair in this work but only three candidate paths are pre-chosen for each O-D pair in [F.Y.S. Lin 95]. Although we obtain a tighter upper bound than the minimax end-to-end delay routing problem developed in [F.Y.S. Lin 95], this comparison is not on the same basis. On the other hand, the gap between the lower bound and the upper bound of the minimum average delay problem is still very tight, which indicate that the algorithms that we developed can achieve good system objective (average packet delay) even in stringent end-to-end delay requirements.

TABLE 5.2 – Solution quality for different networks at the threshold of  maximum allowable end-to-end delay requirements
Network topology
Link
capacity
Threshold of Dw (msec)
Lower bound (msec)
Upper bound (msec)
Error gap (%)
Maximum end-to-end delay (msec)
Results from [F.Y.S. Lin 95]

ARPA
65

70

100

150

200
237.7

203

110

61

43
108.9

93.6

50.7

28.97

20.35
110.3

94.4

51.2

29.1

20.37
1.23

0.9

1.02

0.5

0.09
237.2

202.2

108

60.9

42.3
N/A(
N/A

N/A

N/A

N/A

GTE
65

70

100

150

200
50.88

47

32

21.5

15.5
28.17

26.026

17.82

11.68

8.6
28.23

26.046

17.83

11.689

8.7
0.2

0.08

0.08

0.07

0.8
50.876

46.9

31.9

20.8

15.49
N/A

N/A

N/A

N/A

N/A

OCT
65

70

100

150

200
727

470

166.8

81.2

54
351.3

237.9

86.24

42.4

28.04
364.2

240.8

86.9

42.5

28.16
3.67

1.21

0.8

0.2

0.4
722

469.8

166.7

81.1

53.9
860.3

514.6

168.4

81.7

54.1

(: The work in [F.Y.S. Lin 95] did not perform the computational experiments in these network settings.

An important observation could be found by examining the fifth and seventh column of Table 5.2. The maximum end-to-end delay is almost twice of average delay. Figures 5.1, 5.2 and 5.3 show that the average delay remains the same if the Dw is greater than the threshold. These results indicate that any end-to-end constraint with Dw greater than twice of average delay could be ignored to speed-up the searching.

5.7 Mathematical Formulation of JCR
By jointly consider the link capacity and routing assignment in virtual circuit network is to minimize the total network installation cost with the average and end-to-end delay constraints. Besides the notation definition in Section 5.3, new definition notation for JCR is depicted as follows. 
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As shown in (IP5.3), the objective of (JCR) is to minimize the total link installation cost in order to satisfy the average and end-to-end delay requirements.
5.8 Lagrangean Relaxation of JCR
The algorithm development is based upon Lagrangean relaxation. We dualize Constraints (5.16), (5.17), (5.20) and (5.22) to obtain the following Lagrangean relaxation problem (LR5.3).
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We can decompose (LR5.3) into two independent subproblems.

Subproblem 1: for xp
min 
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(SUB5.3)

subject to (5.25) and (5.26).

Subproblem 2: for Cl , ywl and fl 
min
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(SUB5.4)

subject to (5.27), (5.28) and (5.29). 

(SUB5.3) can be further decomposed into 
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(SUB5.4.1) is a complicated problem due to the coupling of three decision variables, ywl, fl and Cl. Due to the possible limited candidate set of each link capacity configuration, we could exhaustive search all possible link capacity to identify the optimal solution with respect to the corresponding ywl and fl. Then the question lies in how we could find the optimal solution of ywl and fl to (SUB5.4.1) when the link capacity is constant. It is still a very difficult problem due to the coupling of two decision variables, ywl and fl, at the third term, 
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 of the objective function (SUB5.4.1) is constant and could be dropped first and added back to the objective value since it will not affect the optimal solution of (SUB2.1). In [Yen 01b], we proposed the algorithm to locate the optimal ywl and fl when the link capacity is fixed. Therefore, the optimal solution procedure to solve (SUB5.4.1) is proposed as follows:

Step 1. Exhaustive search all link capacity configuration for link 
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Step 1.5. The minimum solution with respect to this link capacity configuration, Cl could be found by comparing these local minimum points.

Step 2. The global minimum solution could be found by comparing the minimum solution with respect to each link capacity configuration.

According to the algorithms proposed above, we could successfully solve the Lagrangean relaxation problem optimally. By using the weak Lagrangean duality theorem, that is, the lower bound from the dual Lagrangean formulation is a legitimate lower bound to the corresponding original problem [Ahuja 93]. We construct the following dual problem to calculate the tightest lower bound and solve the dual problem by using the subgradient method.
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at (a, b, c, d). In iteration x of the subgradient optimization procedure, the multiplier vector mx=(ax,bx,cx,dx) is updated by mx+1= mx+
[image: image171.wmf]x

x

S

a

, where 
[image: image172.wmf])

,

,

,

(

d

c

b

a

S

x

=(
[image: image173.wmf]å

å

Î

Î

-

-

L

l

l

l

l

W

w

w

K

f

C

f

g

1

 
[image: image174.wmf]å

Î

-

L

l

l

l

wl

f

C

y

,



 EMBED Equation.3  [image: image175.wmf]w

D

-

,
[image: image176.wmf]å

Î

w

P

p

pl

p

x

d



 EMBED Equation.3  [image: image177.wmf]wl

y

-

,
[image: image178.wmf]l

l

f

g

-

).

The step size 
[image: image179.wmf]x

a

 is determined by 
[image: image180.wmf]2

3

.

5

3

.

5

)

(

x

x

D

h

IP

S

m

Z

Z

-

d

, where 
[image: image181.wmf]h

IP

Z

3

.

5

 is the best primal objective function value found at iteration x (an upper bound on optimal primal objective function value), and 
[image: image182.wmf]d

 is a constant (
[image: image183.wmf]2

0

£

£

d

).
5.9 Getting Primal Feasible Solutions of JCR
To obtain the primal solutions to the minimum link capacity assignment with maximum allowable average and end-to-end delay constraints problems, solutions to the Lagrangean relaxation problems (LR5.3) is considered. First consider the routing assignment from (SUB5.3). When the routing assignment is given, the aggregate flow on each link is also determined. In order to satisfy the average and end-to-end delay constraints, the add and drop heuristic are proposed to calculate good primal feasible solutions from the aggregate flow determined in (LR5.3).
The whole process to obtain the good primal feasible solutions from the solutions to the routing assignment determined in (LR5.3) is as follows.

Step 1: From the aggregate flow for each link determined from the routing assignment in (SUB5.3), under the link capacity constraints, the minimum link capacity could be determined. If no such link capacity in the candidate capacity configuration could satisfy the link capacity constraint, then no primal feasible solution exist, stop the whole getting primal feasible solution process.

Step 2: Verify the average cross network delay. If the average cross network delay is violated, enter the add heuristic. After the add heuristic, if the average cross network delay is still violated, then no primal feasible solution exist, stop the whole getting primal feasible solution process.

Step 3: Verify the end-to-end delay for each O-D pair. If the end-to-end delay is violated for any O-D pair, reroute the traffic to another shortest path based on the current routing assignment where the arc weight is calculated as 1.0/(link capacity – aggregate flow). After the rerouting, if the end-to-end delay is still violated for this O-D pair, augment the link capacity along this new routing path in order to satisfy the end-to-end delay constraint. If all the links along this new routing path have been augment to the largest candidate capacity and the end-to-end is still violated, then no primal feasible solution exist, stop the whole getting primal feasible solution process.

Step 4: Enter the drop heuristic in order to obtain better primal feasible solutions.

The add and drop heuristic are depicted as follows.

Add heuristic: 

a) Among all the links where their link capacity are not equal to the largest candidate link capacity, identify the most congested link. If all the links have the largest capacity configuration, stop the whole add heuristic process, else augment the link capacity on this link to the next higher link capacity configuration.

b) Verify the average cross network delay, if the average cross network delay is still violated, go to a) again.

Drop heuristic:

a) For a link, first decrease the link capacity to next lower capacity in the capacity configuration. Verify the capacity constraint, average cross network delay constraint and end-to-end delay constraints for all O-D pairs. If these constraints are all satisfied, then this link capacity could be decreased successfully, else augment the link capacity back to its original capacity configuration.
b) Repeat a) for all links in the network.
As could be shown in the computational experiments, after introducing the add and drop heuristic, better primal feasible solutions could be obtained. On the other hand, since good initial primal feasible solution will lead to better solution quality and good convergence property, we propose the hop-minimization QoS algorithm (HopQoS) to calculate the initial good primal feasible solutions.

A. Orda argues that for global network optimization, it often turns out that much can be achieved by employing the simple criterion of hop minimization. In other words, hop-minimization often leads to consuming fewer network resources, such as bandwidth [Orda 00]. Furthermore, the IP-oriented QoS routing protocols proposed by IETF are based on hop-constrained path optimization [IETF 98, IETF 99]. As a result, the HopQoS algorithm that we propose is to leverage on this argument. There are two steps in the HopQoS,

Step 1: The routing assignment for each O-D pair is determined by hop-minimization algorithm. The hop-minimization could be easily implemented by Dijkstra algorithm or Bellman-Ford algorithm under the assumption that the arc-weight of each link is one and infinite link capacity. After the routing assignment is fixed, the aggregate flow could be determined as well, then under the capacity constraint, the minimum capacity assignment could also be determined.

Step 2: Perform the add and drop heuristic to obtain good initial primal feasible solution and in the mean time to satisfy the average and end-to-end delay requirements.
5.10 Computational Experiments of JCR
The computational experiments for the algorithms developed in Sections 5.8 and 5.9 are coded in C++ and performed on a PC with INTELTM PIII-800 CPU. We tested the algorithm for 3 networks -- ARPA, GTE, OCT with 21, 12 and 26 nodes. The network topologies are shown in Figures 2.1, 2.2 and 2.3. And the computational time for these three network topologies are all within one hour.

The maximum number of iterations for the proposed dual Lagrangean algorithm is 1000, and the improvement counter is 30. The step size for the dual Lagrangean algorithm is initialized to be 2 and will be halved when the objective function value of the dual problem does not improve for 30 iterations. Like the computational experiments in DCR, the traffic demand of each O-D pair is assumed to be one packet per second and all possible candidate paths are considered for each O-D pair.
The number of candidate capacity configurations for each link is ten, ranging from 50 to 140, with step 10. The cost for each capacity configuration is a concave function with respect to the number of candidate capacity configurations, ranging from 50 to 86.
Tables 5.3, 5.4 and 5.5 summarize the results for ARPA, GTE and OCT network. The first column is the type of the network topology. The second column is the maximum allowable average cross network delay. The third column is the maximum allowable end-to-end delay (Dw). The reason that we choose Dw to be 2K is the insight from the computational experiment of (DCR), any Dw > 2K end-to-end delay constraint would be unbinding.

The fourth column reports the lower bound of the proposed dual Lagrangean problem. The fifth column reports the upper bound of the proposed dual algorithm. The sixth column reports the error gap between the lower bound and the upper bound. As can be seen in the sixth column, the gap between the lower bound and the upper bound are reasonably tight for all different network topologies. As shown in these three tables, the solution quality is better in smaller network. In addition, the solution quality is better in loose average and end-to-end delay requirements in three network topologies.

TABLE 5.3 – Solution quality for JCR at ARPA network topology
Network topology
K (msec)
Dw (msec)
Lower bound
Upper bound
Error gap (%)

ARPA
50
60
70
80
90

100

110

120
100

120

140

160

180

200

220

240
2627
2618
2612
2609
2606
2605
2603
2601
3814
3571
3431
3295
3177
3085
3010
2917
45
36
31
26
21
18
15
12

TABLE 5.4 – Solution quality for JCR at GTE network topology
Network topology
K (msec)
Dw (msec)
Lower bound
Upper bound
Error gap (%)

GTE


20
30
40
50
60
40

60

80

100

120
2501
2500
2500
2500
2500
3294
2799
2500
2500
2500
31
11
0

0

0

TABLE 5.5 – Solution quality for JCR at OCT network topology
Network topology
K (msec)
Dw (msec)
Lower bound
Upper bound
Error gap (%)

OCT
50
60
70
80
90

100

110

120
100

120

140

160

180

200

220

240
3383
3335
3333
3308
3298
3307
3274
3262
4998
4812
4650
4532
4401

4279
4213
4096
47
44
39
37
33
29
28
25

5.11 Concluding Remarks
As compared to the work in [F.Y.S. Lin 95], which tried to achieve better fairness among users by minimizing the maximum end-to-end delay for virtual circuit networks without considering the system perspective (minimize the average packet delay). In this chapter, for the first time, we considered the problem of minimizing the average packet delay with maximum allowable end-to-end delay requirements, which indicate that we try to obtain good system performance under user’s end-to-end delay requirements.
We formulate this problem as a nonconvex and nonlinear multicommodity integral flow problem. These nonconvex and discrete (integer constraints) properties make the problem very difficult. We take an optimization-based approach by applying the Lagrangean relaxation technique in the algorithm development. According to the computational experiments, the error gap between the upper bound and the lower bound is so tight that we can claim a near optimal solution is found. When the maximum end-to-end delay requirements are closer to the threshold, the upper bound (average packet delay) remains almost the same; this indicates that this solution approach can obtain good average packet delay solution under stringent end-to-end QoS requirements. 
Besides rerouting, capacity augmentation is also an important approach to address the increasing traffic demand and QoS requirements in network servicing. As a result, in the second part of this chapter, we jointly consider the capacity assignment and routing assignment in virtual circuit network. This work is more complicated than the first part of this chapter since the link capacity is also a decision variable. We formulate this problem as a nonconvex and nonlinear multicommodity integral flow problem, where the objective is to minimize the total network capacity installation cost subject to average and end-to-end delay constraints. Besides the nonconvexity associated with the end-to-end delay constraints, the concavity associated with the capacity cost in the objective function makes this problem more complicated than the first one. Lagrangean relaxation techniques in conjunction with the add-drop heuristics are proposed to tackle this problem. As shown in the computational experiments, we have successfully solved this problem.
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