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2. Lightpath Routing and Wavelength Assignment in Purely Optical WDM Networks
2.1 Overview
In this chapter, we propose the optimal design for the lightpath Routing and Wavelength Assignment (RWA) problem in WDM networks without wavelength conversion. We formulate RWA as a mixed Integer Linear Programming (ILP) problem where the objective is to minimize the cost of wavelength assignment to the fiber links in the network. The Lagrangean relaxation technique and the optimization-based heuristics are used to solve this problem. Two sets of computational experiments are performed to test the algorithms for the maximum carried traffic and minimum wavelength requirements in three different network topologies (GTE, ARPA, OCT network). Based on solution quality of the computational experiments, the error gaps between the upper bound and the lower bound have to be close enough in order for the near optimal solutions to be obtained. On the other hand, we also show that the solution quality degrades gracefully under more and more heavy traffic network environment. By assessing solution quality and the computational time, we propose efficient and effective optimization-based algorithms based on the Lagrangean relaxation method for RWA problem in the WDM networks without wavelength conversion.
2.2 Literature Survey
WDM is a promising technique that utilizes the enormous bandwidth of the optical fiber where multiple wavelength-division multiplexed channels can be operated on a single fiber simultaneously [Ramamurthy 98]. Most WDM systems in today’s commercial operation multiplex 40 or fewer channels on a single fiber. But 320-channles systems are almost ready to emerge from the laboratory [Dixit 01]. In addition, with WDM, each channel can run at a different rate and, indeed, in a different format. So WDM provides high capacity, and a great deal of flexibility too [Dixit 01]. It is predicted that WDM optical transport technology would play a major role in next-generation Internet. 

However, in order to exploit the capacity of WDM technology, careful channel assignment and lightpath routing are necessary. A lightpath is an all-optical transmission path between two network nodes, implemented by the allocation of the same wavelength throughout the path [Chlamtac 96]. However, how to route the wavelengths to a set of lightpaths is a challenging issue, which is proven to be a NP-Complete problem [Banerjee 96, Chlamtac 92, Raghavan 94].

A number of researchers have addressed this issue. [Chlamtac 96] and [Liang 98] have introduced the semilightpath technique to find the routing path. Both of the two works try to find the routing path by shortest path algorithm based on the arc weight of the auxiliary graph. The arc weight of the auxiliary graph is fixed in order to calculate the optimal routing path for the particular Origin-Destination (O-D) pair. In our observation, however, the arc weight should change dynamically in different lightpath routing assignments for each O-D pair. Furthermore, they did not address the issue of how to avoid the wavelength assignment collision between all O-D pairs.

[Kim 99] modeled the RWA problem in terms of the ILP formulation where the objective is to minimize the number of OXCs. Heuristic algorithm based on branch & bound technique is proposed. However, no solution quality data between the solutions from the heuristic algorithm and the optimal solutions are reported from the computational experiments in order to clarify the effectiveness of this heuristic algorithm. 
[C. Chen 96] proposed layer-graph model for solving the routing and wavelength assignment problem. Several heuristics based on shortest path algorithm and layer-graph approaches are proposed. However, no lower bound are reported in his work to verify the solution quality of the proposed heuristic algorithms.

[Banerjee 96] formulated a Linear Programming (LP) formulation with the objective to minimize the number of wavelengths, and solve by approximation algorithms in order to deal with large networks. However, in his work, only at most one lightpath is considered from a source to a destination. 

We try to optimize the cost of wavelength assignment on the fiber-optic links in the WDM networks such that wavelengths are routed to their destination without violating the wavelength continuity constraint. In addition, multiple lightpaths from a source to a destination is considered. The wavelength continuity constraint means that the same wavelength must be used on all the links along the selected path for the O-D pair [Banerjee 96, C. Chen96]. Moreover, the algorithms we propose, unlike previous researches, are based on both the lower bound and upper bound approaches at the same time.
This chapter is organized as follows. In Section 2.3, mathematical formulation of the RWA problem is proposed. In Section 2.4, the dual approach for the RWA problem based on the Lagrangean relaxation is presented. In Section 2.5, getting primal feasible heuristic is developed to get the primal feasible solution from the solutions of the dual problem. In Section 2.6, the computational results are reported. In Section 2.7, the concluding remarks are presented.

2.3 Problem Formulation
The WDM network is modeled as the graph G(W, L) where W is the set of O-D pairs and L is the set of fiber links. Here we assume that each node has the switching capability to route the wavelength to proper links. We show the definition of the following notation.
L
the set of candidate fiber links in the WDM network

W
the set of O-D pairs in the WDM network

J
the set of admissible wavelengths in the WDM networks
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Figure 2.2. 12-node 50-link GTE network
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The RWA problem is formulated as a mixed ILP optimization problem, as shown below.
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(2.4)
The objective function of (IP2) is to minimize the total cost of wavelength assignments in the WDM networks. Constraints (2.1) and (2.2) require that the wavelength requirements for each O-D pair should be routed to its destination. Here distinct routing paths for the O-D pair with different wavelength requirements are allowed only if each wavelength is routed on one path. Hence, the wavelength continuity constraint is explicitly enforced in these two constraints.
Constraint (2.3) enforces that any wavelength should be installed on the link before assigned by the O-D pairs for routing on this link. Constraint (2.4) requires that the wavelength assignment on each link is a zero/one integer constraint, which means each wavelength could only be installed on each link for one time or none. From Constraints (2.3) and (2.4), each wavelength could only be assigned by no more than one O-D pair on every link is strictly enforced.

2.4 Lagrangean Relaxation
In order to solve the above formulation successfully, we relax (2.3) of (IP2) to obtain the following (LR2).
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xpj= 0 or 1
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We can decompose (LR2) into two independent subproblems. 
Subproblem 1: for xpj
min 
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(SUB2.1)

subject to (2.5) and (2.6).

Subproblem 2: for Clj 
min 
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subject to (2.7).
(SUB2.1) could be further decomposed into |W| independent subproblems. For each independent subproblem, it looks like a shortest path problem but the wavelength assignment makes this subproblem more complicated. We propose the Wavelength-Routing Algorithm (WR) to solve this subproblem.
Wavelength-Routing Algorithm (WR)
Step 1: For each O-D pair 
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, first finding the shortest path with respect to each wavelength. Since the multiplier is positive, so the Dijkstra’s Shortest Path Algorithm could be applied.

Step 2: There are total |J| shortest paths for this O-D pair. Then, the optimal solutions for O-D pair 
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 number of shortest paths with the lowest costs.
(SUB2.2) could also be further decomposed into |L||J| independent subproblems. Each independent subproblem could be solved by the Wavelength-Assignment Algorithm (WA).

Wavelength-Assignment Algorithm (WA)
Step 1: For each wavelength 
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Step 2: If this value is greater than zero, assign Clj to zero, else assign Clj to one.
According to the algorithms proposed above, we could successfully solve the Lagrangean relaxation problem optimally. By using the weak Lagrangean duality theorem, that is, the lower bound from the dual Lagrangean formulation is a legitimate lower bound to the corresponding original problem [Ahuja 93]. We construct the following dual problem to calculate the tightest lower bound and solve the dual problem by using the subgradient method.
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The step size 
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 is the best primal objective function value found at iteration x (an upper bound on optimal primal objective function value), and 
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2.5 Getting Primal Feasible Solutions
To obtain the primal feasible solutions to the RWA problem, solutions to the Lagrangean relaxation problems (LR2) are considered. In order to satisfy Constraint (2.3), the wavelength assignment for each link Clj should be determined from the wavelength-routing assignment xpj. The algorithm to get the primal feasible solution is proposed as follows.

Joint Wavelength-Routing and Wavelength-Assignment Algorithm (WR-WA)
Step 1: For each O-D pair, say wb, the wavelength routing assignment xpj from the solutions to the dual problem is used. If the wavelength j along the routing path xpj has not been used, assign the associated Clj along this routing path to be one and go to Step 4. If wavelength assignment violation occurs at any link, go to Step 2.

Step 2: Find all the wavelengths on the links where Clj = 1 and add the associated arc weight alj with a very large number, say G1. Then identify the O-D pair, say wc, that use this conflict wavelength link. Go to Step 3. 

Step 3: There are two ways to resolve conflict. First, to release the associated Clj along the routing path selected by wc, and let the wb find the minimum shortest path; the associated alj is modified accordingly. Next, finding the minimum shortest path of wc. Compute the total cost, say t1, by adding the cost of the shortest paths for wb and wc. Second, to locate the minimum shortest path of wb with the shortest path of wc remaining unchanged. The total cost of wb and wc is also computed, say t2. If the lower cost of t1 and t2 is greater than G1, then it is an infeasible primal solution and stop the whole algorithm, else assign the associated Clj to be one and go to Step 4.

Step 4: Repeat the whole process until all O-D pairs are executed. When the primal feasible solutions are obtained, stop the whole algorithm.
2.6 Computational Experiments
[image: image1.wmf]w
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The computational experiments for the RWA algorithms developed in Sections 2.4 and 2.5 are coded in C and performed on a PC with INTELTM PIII-500 CPU. We tested the algorithm for 3 network topologies -- ARPA, GTE, OCT with 21, 12 and 26 nodes. The network topologies are shown in Figures 2.1, 2.2 and 2.3. 

[image: image54.wmf]0

1

5

2

3

4

7

6

8

11

12

9

10

13

14

15

16

18

17

19

20

Figure 2.1. 21-node 52-link ARPA network
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Figure 2.3. 26-node 60-link OCT network

The maximum number of iterations for the proposed dual Lagrangean algorithm are 1500, and the improvement counter is 30. The step size for the dual Lagrangean algorithm is initialized to be 2 and will be halved when the objective function value of the dual problem does not improve for 30 iterations.

Two sets of computational experiments are performed. The computational time for these two sets of computational experiments are all within fifteen minutes. In these computational experiments, the cost of installing each wavelength on each link is randomly generated from one to ten. In the first set of computational experiment, we try to explore the threshold of the traffic that the networks could afford in different network topologies under the given total number of available wavelengths. This is to maximize the carried traffic for the RWA problem, which is similar to the objectives in a number of related researches [C. Chen 96, Wauters 96]. In this experiment, the total number of wavelengths available for each link is 40. Table 2.1 summarizes the results.

Here the error gap is defined as the {(upper bound – lower bound)/lower bound} * 100%. Since the traffic requirement is randomly generated, in the second column of Table 2.1, it means the range of traffic requirements (in wavelengths) for each O-D pair. 
As could be seen from Table 2.1, the error gap is tighter (all below 3%) in lightly loaded (below 0~6) GTE network environment and become loser in highly loaded environment. And when the range of traffic requirement is above 12, no feasible solution could be found. On the other hand, in the ARPA and OCT network topologies, it is not easy to find the feasible solution, since the degree of the nodes is small as compared to the GTE network. Table 2.1 shows that no feasible solution could be found when the range of traffic requirements is above 3 in both of these two network topologies. In other words, no primal feasible solution could be obtained even in the lightly loaded environment when the degree of the nodes is small. Hence, the degree of the nodes affects the solution quality tremendously.
TABLE 2.1 – Computational results (threshold of the traffic requirements under different network topology)

Network topology
Traffic requirements
Lower bound
Upper bound
Error gap (%)

GTE
0~2

0~3

0~4

0~5

0~6

0~7

0~8

0~9

0~10

0~11

0~12
1.454951e+002
3.620000e+002
6.159618e+002
9.386195e+002
1.278489e+003
1.660505e+003
2.198478e+003
2.827843e+003
3.379600e+003
4.285055e+003
5.387118e+003
1.490000e+002
3.710000e+002
6.270000e+002
9.630000e+002
1.313000e+003
1.768000e+003
2.338000e+003
2.947000e+003
3.736000e+003
4.814000e+003
X#
2.408975
2.486190
1.792022
2.597483
2.699331
6.473647
6.346305
4.213689
10.545640
12.343940
X

ARPA
0~2

0~3
2.329307e+003
6.698546e+003
2.412000e+003
X
3.550106
X

OCT
0~2

0~3
5.146004e+003
1.205400e+004
5.471000e+003
X
6.315504
X

# means no feasible solution could be found.
In the second set of computational experiment, we try to explore the threshold of the number of available wavelengths under fixed traffic requirements. In this experiment, the GTE network topology is tested, and the traffic requirements (in wavelengths) are randomly generated from zero to four for each O-D pair. Table 2.2 summarizes the results.
TABLE 2.2 – Computational results (threshold of the number of available wavelengths)
Network topology
# of available wavelengths
Lower bound
Upper bound
Error gap (%)

GTE
20

19

18

17

16

15

14

13
1.491610e+003

1.426938e+003

1.401527e+003

1.389967e+003

1.700296e+003

2.052708e+003

1.883020e+003

2.204916e+003
1.529000e+003

1.456000e+003

1.441000e+003

1.411000e+003

1.776000e+003

X
2.024000e+003

X
2.506690
2.036654
2.816450
1.513170
4.452425
X
7.486924
X

As could be seen from Table 2.2, the solution quality is getting loser as the number of available wavelengths for each link is getting smaller. In addition, the case where the number of wavelengths no greater than 13, no feasible solution could be found. It is interesting to see that as the number of wavelength approaches the threshold, the solution quality becomes unstable. That is, when the number of available wavelengths is 15, no feasible solution could be obtained, but feasible solution could be found when the number of available wavelengths is 14. In addition, the error gap is only 7% at the threshold of the number of wavelengths. Some researchers try to minimize the number of available wavelengths [Banerjee 96], in the similar way, we have located the minimum number of wavelengths needed to support a given set of lightpaths on a GTE topology. In this set of computational experiments, the minimum number of wavelengths is 14. By assessing the error gap (7%) at this number of wavelengths, we also provide the effective algorithms to find the minimum number of wavelengths.

2.7 Concluding Remarks
In this chapter, we successfully solve the RWA problem in which wavelength conversion is not considered. We formulate RWA problem as a mixed ILP problem and solved by Lagrangean relaxation method. We introduce two algorithms to solve each independent dual subproblem successfully, and we also propose an optimization-based heuristic to get the primal feasible solution based on the solutions to the dual problem. 

Two sets of computational experiments are performed. In the first set of computational experiments, the threshold of the traffic requirements is explored in different network topologies under a given number of wavelengths. The solution quality is good (error gaps are below 3 percent) in lightly loaded network and reasonably good  (error gaps are below 13 percent) in more highly loaded network. On the other hand, we also show that the degree of the nodes is an important factor for the algorithms to find the feasible solutions. That is, in low degree network topology, it is difficult to find feasible solution even in the lightly loaded traffic environments. However, it is interesting and important to see that from the aggregation effect of large modularity and strong economy-of-scale on the capacity cost on the WDM network, relatively sparse topologies are favored [Doucette 00]. Hence, there is a tradeoff between the lightpath routing and the economy-of-scale cost effect. In other words, from the point of lightpath routing, dense topology is favored but from the point of economy-of-scale cost effect, sparse topology is favored. 

In the second set of computational experiments, we try to locate the minimum number of total wavelengths which is the objective function in the past researches. The approach to locate the number of total wavelengths is by iterative decreasing the number of total wavelengths when the feasible solution could be obtained. At the time when no primal feasible solution could be found, the minimum number of wavelengths is located. Based on the computational experiments, the solution quality is still good at the minimum number of wavelengths.

As recalled from the computational time and the solution quality of the computational experiments, we propose efficient and effective algorithms to solve the RWA problem.
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Figure 2.2. 12-node 50-link GTE network
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Figure 2.1. 21-node 52-link ARPA network
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Figure 2.3. 26-node 60-link OCT network
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