64
Backbone Network Design with QoS Requirements Chap.4

65
Network Planning and Capacity Management for Computer and Logistic Networks

4. Backbone Network Design with QoS Requirements

4.1 Overview
In this chapter, we consider the backbone network design problem with a full set of QoS requirements and take the approach of rigorous mathematical programming to solve the problem. Unlike previous work, we consider both transmission line cost and switch cost with sophisticated cost structures. The QoS requirements that we consider include the average packet delay, end-to-end packet delay and network survivability constraints specified by end-to-end node disjoint connectivity requirements. We formulate the problem as a combinatorial optimization problem where the objective function is to minimize the total network deployment cost subject to the aforementioned QoS constraints. Besides the integrality constraints, the nonlinear and the nonconvex properties associated with the problem formulation make it difficult to develop efficient and effective solution procedures. Lagrangean relaxation in conjunction with a number of optimization-based heuristics are proposed to solve this problem. From the computational experiments, the proposed algorithms calculate credible solutions in minutes of CPU time for moderate problem sizes. We also develop user-friendly GUI to make these algorithms easy to use.

4.2 Literature Survey
Computer network has become a strategic necessity to companies and even to countries. But how to design a usually sophisticated backbone network with minimum deployment and operation cost subject to various and often stringent QoS requirements is a common challenge faced by network designers and managers. Intensive research has been conducted to address this issue. However, most research tackles this backbone network design problem without considering a full set of QoS requirements, including average delay, end-to-end delay and network survivability constraints.

Gavish modeled the network topological design problem as a nonlinear combinatorial optimization problem. The objective is to minimize the network installation cost and the queueing cost imposed on the network users. However, network installation cost and the queueing cost are two different concepts such that it is not appropriate to put them together in the objective function. Hence, it is more reasonable to place the queueing cost or delay in the constraint set rather than in the objective function. In addition, end-to-end QoS constraints are not considered in [Gavish 92a]. Jiang proposed an integrated mathematical formulation and optimization-based techniques to jointly solve the problems of routing assignment, capacity assignment, and network component location selection considering the end-to-end QoS (delay and lose) and failure scenarios to compose a survivable network with minimum cost [Jiang 00]. However, the system level delay (average cross network delay) is not considered in his work.

Chattopadhyay proposed the algorithm which combined a branch and bound method with the Ford-Fulkerson algorithm to solve the minimum cost backbone network design problem. The objective function is to minimize the fixed cost and the variable cost for setting up the communication lines in order to satisfy the end-to-end delay constraints. Hence, the cost for network access point (e.g. switch) is not considered in his work. Furthermore, system performance constraint (e.g. average delay constraint) and survivability constraint (e.g. node disjoint path constraint) are not considered in [Chattopadhyay 89].

A bunch of heuristics based on AI techniques, such as Genetic Algorithms (GA), Tabu-search algorithms and Evolutionary Programming (EP), are proposed to tackle the backbone network design problem [S. T. Cheng 98, Pierre 97, Ceciliano 99, Konak 99, Ombuki 99, Chamberland 00]. Cheng proposed GA to find a network topology for a set of nodes where total link cost is minimized, subject to the condition that the backbone network can accommodate 1 link failure [S.T. Cheng 98]. Pierre proposed heuristic algorithm based on Tabu-search algorithm to minimize the computer topological network cost with considering average delay and reliability constraint [Pierre 97]. Ceciliano presented EP approach to transmission network planning in electric power systems [Ceciliano 99]. Ombuki proposed the GA to minimize the total link connection cost in backbone network design with the 3-connectivity constraints [Ombuki 99]. In a similar study, Konak proposed GA to minimize the backbone link installation cost with end-to-end delay and reliability (K node connectivity) constraints [Konak 99]. However, in these researches, the cost for network access point is not considered in the network installation cost. Chamberland also proposed Tabu-search algorithm to solve the IP network design with bandwidth performance guarantees. The objective function of his work is composed of three terms: the access network, the core network and the switch cost. However, his work did not consider the additive QoS performance metrics (such as delay constraint) [Chamberland 00]. In above previous researches, average and end-to-end delay constraints and reliability constraints are not jointly considered at the same time.

Song formulated the link capacity assignment problem considering end-to-end delay and cell loss rate constraints, then solving by heuristic algorithm. This heuristic algorithm first determined the network topology based on the end-to-end delay requirement and then assigned the link capacity and network flow to limit the link utilization. However, a more rigorous approach should be taken to deal with this complex problem. The network access point cost is also not considered in [K.S. Song 94]. Randhawa proposed more dynamic bandwidth allocation scheme, based on multidimensional Markov chain analysis, by tracking dynamical load variations in broadband networks to maximize network revenue and ensuring QoS (call blocking probability). However, in these works, more additive QoS performance metrics, such as delay performance, should be considered in order to facilitate most users’ perceived QoS [Randhawa 00a, Randhawa 00b].
As a matter of fact, to ensure QoS requirement is the most important task in modern network service, and it requires sophisticated design of the routing and capacity management. The delay QoS requirement is crucial to modern application services (e.g. VOD, video-conferencing). In particular, backbone network usually requires high availability, that is, redundant links and switching nodes are needed in case of failure. As a result, unlike most of previous researches, the QoS requirement considered in this chapter can be classified into two parts. The first part is the delay QoS (including the average end-to-end delay and end-to-end delay for each O-D pair) and the second part is the survivability and availability of services. On the other hand, the network construction cost includes both the switch and link installation cost to reflect the cost structure of real network. This problem is a well-known difficult NP-hard problem.

This chapter is organized as follows. In Section 4.3, mathematical formulation of the backbone network design problem is proposed. In Section 4.4, the dual approach for the backbone network design problem based on the Lagrangean relaxation is presented. In Section 4.5, the getting primal heuristics are developed to get primal feasible solutions from the solutions to the dual problem. In Section 4.6, the computational results and the integrated backbone network design package are reported. In Section 4.7, the concluding remarks are presented.
4.3 Problem Formulation
This QoS based backbone network design problem is modeled as the graph where the users and switches are depicted as nodes and the communication channels are depicted as arcs. And the additive (delay) QoS model is based on the following three viable assumptions.

(1) The average delay on each link could be fully characterized by two parameters: aggregate flow and link capacity.

(2) Average delay on each link is a monotonically increasing function with respect to the aggregate flow.

(3) The delay function on each link is a convex function with respect to aggregate flow or link capacity. But aggregate flow and link capacity jointly may not be a convex function.

Next, we show the definition of the following notation.
L
the set of candidate local loop links and backbone links in the communication network.

W
the set of origin-destination (O-D) pairs in the network.

[image: image182.png]
the traffic requirement for each O-D pair w
[image: image2.wmf]Î

W.

[image: image3.wmf]l

C

a capacity upper bound in the candidate capacity configurations for link l
[image: image4.wmf]Î

L.

Pw
a given set of simple directed paths from the origin to the destination of O-D pair w.

Uk
a set of potential incoming links to switch k.

[image: image5.wmf]pl

d

the indicator function which is one if link l is on path p and zero otherwise.

[image: image6.wmf]pk

e

the indicator function which is one if switch k is on path p and zero otherwise.

gl
the aggregate flow over link l
[image: image7.wmf]Î

L, which is
[image: image8.wmf]å

å

Î

Î

w

P

p

W

w

pl

w

p

x

d

l

.

Dw
the maximum allowable end-to-end delay requirement for O-D pair w.

K
the maximum allowable average cross network delay requirement.

Tw
the minimum number of node disjoint paths required for O-D pair w.

O
the set of candidate locations for switches.

H
the set of link pairs that are with the same end points but in opposite directions.

Al
the set of candidate capacity configurations for link l.

Rk
the set of admissible switching fabric configurations for switch at location k.

Ek
the set of candidate port configurations for switch at location k.

[image: image9.wmf])

(

l

l

C

j

the cost for installing capacity Cl on link l, including the fixed and variable cost.

[image: image10.wmf]l

x

the fixed link installation cost for link l.

Qk(Jk, Sk)
the cost for installing a switch at location k with switching fabric capacity Jk and number of ports Sk.

[image: image11.wmf])

,

(

l

l

l

C

f

F

the average delay on link l
[image: image12.wmf]Î

L, which is a function of fl and Cl.

[image: image13.wmf])

,

(

l

l

l

C

f

B

the average number of packets on link l
[image: image14.wmf]Î

L, which is a function of fl and Cl, and by the Little’s results, which is equal to
[image: image15.wmf])

,

(

*

l

l

l

w

C

f

F

l

.

Decision variables are depicted as follows.
xp
1 when path p
[image: image16.wmf]Î

 Pw is used to transmit the packets for O-D pair w
[image: image17.wmf]Î

W and 0 otherwise.

zp
1 when path p
[image: image18.wmf]Î

 Pw is the node disjoint path for O-D pair w
[image: image19.wmf]Î

W and 0 otherwise

ywl
1 when link
[image: image20.wmf]L

l

Î

 is on the path chosen for O-D pair w
[image: image21.wmf]Î

W and 0 otherwise.

fl
the estimated aggregate flow on link
[image: image22.wmf]L

l

Î

.

Ml
1 when a link is installed at location
[image: image23.wmf]L

l

Î

and 0 otherwise.

Cl
the capacity assignment for link
[image: image24.wmf]L

l

Î

.

Jk
the switching fabric capacity assignment for switch at location k.

Sk
the number of ports for switch at location k.

To determine the optimal network topology with consideration of the users’ end-to-end QoS requirement and system QoS requirement, which is a NP-hard problem, is formulated as a nonlinear and nonconvex combinatorial optimization problem, as shown below.

[image: image25.wmf]=

4

IP

Z

 min
[image: image26.wmf]å

å

å

Î

Î

Î

-

+

H

l

l

l

l

l

k

k

O

k

k

l

L

l

l

M

M

S

J

Q

C

)

,

(

)

,

(

)

(

x

j

(IP4)

subject to:

[image: image27.wmf]å

å

Î

Î

L

l

l

l

l

W

w

w

C

f

B

)

,

(

1

l

 EMBED Equation.3 [image: image28.wmf]£

K
(4.1)

[image: image29.wmf]å

Î

£

L

l

w

l

l

l

wl

D

C

f

F

y

)

,

(

[image: image30.wmf]W

w

Î

"

(4.2)

[image: image31.wmf]å

Î

=

w

P

p

p

x

1

[image: image32.wmf]W

w

Î

"

(4.3)

xp= 0 or 1

[image: image33.wmf]W

w

P

p

w

Î

Î

"

,

(4.4)

[image: image34.wmf]å

Î

w

P

p

pl

p

x

d

 EMBED Equation.3 [image: image35.wmf]£

 EMBED Equation.3 [image: image36.wmf]wl

y

[image: image37.wmf]L

l

W

w

Î

Î

"

,

(4.5)

[image: image38.wmf]wl

y

= 0 or 1

[image: image39.wmf]L

l

W

w

Î

Î

"

,

(4.6)

[image: image40.wmf]l

W

w

P

p

w

pl

p

l

f

x

g

w

£

=

å

å

Î

Î

l

d

[image: image41.wmf]L

l

Î

"

(4.7)

[image: image42.wmf]l

l

C

f

£

[image: image43.wmf]L

l

Î

"

(4.8)

[image: image44.wmf]l

l

A

C

Î

[image: image45.wmf]L

l

Î

"

(4.9)
Ml = 0 or 1

[image: image46.wmf]L

l

Î

"

(4.10)

[image: image47.wmf]l

l

l

M

C

C

£

[image: image48.wmf]L

l

Î

"

(4.11)

[image: image49.wmf]k

k

R

J

Î

[image: image50.wmf]O

k

Î

"

(4.12)

[image: image51.wmf]å

Î

£

k

U

l

k

l

S

M

[image: image52.wmf]O

k

Î

"

(4.13)

[image: image53.wmf]k

k

E

S

Î

[image: image54.wmf]O

k

Î

"

(4.14)

[image: image55.wmf]k

W

w

P

p

w

pk

p

J

x

w

£

å

å

Î

Î

l

e

[image: image56.wmf]O

k

Î

"

(4.15)

[image: image57.wmf]å

Î

=

w

P

p

w

p

T

z

[image: image58.wmf]W

w

Î

"

(4.16)

[image: image59.wmf]å

Î

£

w

P

p

l

pl

p

M

z

d

[image: image60.wmf]L

l

W

w

Î

Î

"

,

(4.17)
zp= 0 or 1

[image: image61.wmf]W

w

P

p

w

Î

Î

"

,

.
(4.18)
The objective is to minimize the link and switch installation cost. There are three terms in the objective function. The first term is to compute the total link installation cost, including the fixed cost and the variable cost. The second term is to compute the total switch installation cost. The third term is to compute one fixed cost for two links with opposite directions. The necessity of subtracting the third term is to ensure that only one rather than two fixed cost is calculated for two links with the same attached nodes but in opposite directions. Constraint (4.1) requires that the average end to end packet delay should be no larger than maximum allowable average end-to-end delay requirement for all users. Constraint (4.2) requires that the end-to-end packet delay should be no larger than predetermined end-to-end delay requirement for each O-D pair. Constraints (4.3) and (4.4) require that all the traffic demand for each O-D pair should be transmitted over exactly one path. The decision variable
[image: image62.wmf]wl

y

 in Constraint (4.6) is an auxiliary decision variable, which is equal to
[image: image63.wmf]å

Î

w

P

p

pl

p

x

d

. Hence, the equality in Constraint (4.5) is replaced by inequality due to the ease of use of the Lagrangean relaxation. Constraints (4.7) and (4.8) are the link capacity constraints, which means the aggregate flow on the link should not exceed the link capacity. Constraint (4.9) determines the possible capacity configurations of all links. Constraints (4.10) and (4.11) require that the link must first be installed before link capacity assignment. Constraints (4.12) and (4.14) determine the possible switching fabric and number of ports of all switches. Constraint (4.13) is the switch termination constraint, which means the number of incoming links to the switch must not exceed the number of ports on that switch. Constraint (4.15) is the switch capacity constraint, which means the total flow incoming to any switch cannot exceed its switching fabric. Constraints (4.16) and (4.18) are the path diversity (node disjoint) requirement for each O-D pair. In other words, Constraints (4.16) and (4.18) denote the node and link fault tolerance constraints. Constraint (4.17) guarantees that link must be installed first before it could be adopted on the node disjoint path for any O-D pair.
4.4 Lagrangean Relaxation
The algorithm development is based upon the Lagrangean relaxation. We dualize Constraints (4.1), (4.2), (4.5), (4.7), (4.8), (4.11), (4.13), (4.15) and (4.17) of Problem (IP4) to get the following Lagrangean relaxation problem (LR4).

ZD4(a, b, c, d, h, e, m, n, q) = min
[image: image64.wmf])

,

(

)

(

k

k

O

k

k

l

L

l

l

S

J

Q

C

å

å

Î

Î

+

j

 EMBED Equation.3 [image: image65.wmf]å

Î

-

H

l

l

l

l

l

M

M

)

,

(

x

 +a
[image: image66.wmf]+

-

å

å

Î

Î

]

)

,

(

1

[

K

C

f

B

L

l

l

l

l

W

w

w

l

[image: image67.wmf][

å

Î

W

w

w

b

 EMBED Equation.3 [image: image68.wmf]]

)

,

(

å

Î

-

L

l

w

l

l

l

wl

D

C

f

F

y

+
[image: image69.wmf][

å

å

Î

Î

W

w

wl

L

l

c

 EMBED Equation.3 [image: image70.wmf]-

å

Î

w

P

p

pl

p

x

d

 EMBED Equation.3 [image: image71.wmf]+

]

wl

y

 EMBED Equation.3 [image: image72.wmf]+

-

å

å

å

Î

Î

Î

]

[

l

W

w

P

p

w

pl

p

L

l

l

f

x

d

w

l

d

 EMBED Equation.3 [image: image73.wmf])

(

l

l

L

l

l

C

f

h

-

å

Î

+
[image: image74.wmf]]

[

l

l

l

L

l

l

M

C

C

e

-

å

Î

+

 EMBED Equation.3
+
[image: image77.wmf]]

[

k

W

w

P

p

w

pk

p

O

k

k

J

x

n

w

-

å

å

å

Î

Î

Î

l

e

+
[image: image78.wmf]]

[

å

å

å

Î

Î

Î

-

w

P

p

l

pl

p

L

l

wl

W

w

M

z

q

d

 (LR4)

subject to:

[image: image79.wmf]å

Î

=

w

P

p

p

x

1

[image: image80.wmf]W

w

Î

"

(4.19)
xp= 0 or 1

[image: image81.wmf]W

w

P

p

w

Î

Î

"

,

(4.20)

[image: image82.wmf]wl

y

= 0 or 1

[image: image83.wmf]L

l

W

w

Î

Î

"

,

(4.21)

[image: image84.wmf]l

l

A

C

Î

[image: image85.wmf]L

l

Î

"

(4.22)
Ml = 0 or 1

[image: image86.wmf]L

l

Î

"

(4.23)

[image: image87.wmf]k

k

R

J

Î

[image: image88.wmf]O

k

Î

"

(4.24)

[image: image89.wmf]k

k

E

S

Î

[image: image90.wmf]O

k

Î

"

(4.25)

[image: image91.wmf]å

Î

=

w

P

p

w

p

T

z

[image: image92.wmf]W

w

Î

"

(4.26)
zp= 0 or 1

[image: image93.wmf]W

w

P

p

w

Î

Î

"

,

.
(4.27)
We can decompose (LR4) into five independent subproblems.

Subproblem 1: for xp:

min
[image: image94.wmf]å

å

å

å

Î

Î

Î

Î

+

+

O

k

pk

p

w

k

W

w

P

p

pl

p

L

l

w

l

wl

x

n

x

d

c

w

]

)

(

[

e

l

d

l

(SUB4.1)

subject to: (4.19) and (4.20).

Subproblem 2 : for Cl, ywl and fl :

min
[image: image95.wmf])

(

l

L

l

l

C

å

Î

j

+ a
[image: image96.wmf]å

å

Î

Î

L

l

l

l

l

W

w

w

C

f

B

)

,

(

1

l

+
[image: image97.wmf]-

å

å

Î

Î

L

l

l

l

l

wl

W

w

w

C

f

F

y

b

)

,

(

 EMBED Equation.3 [image: image98.wmf]-

å

å

Î

Î

W

w

wl

wl

L

l

y

c

[image: image99.wmf]l

L

l

l

f

d

å

Î

+
[image: image100.wmf]l

L

l

l

C

e

å

Î

+
[image: image101.wmf]-

å

Î

l

L

l

l

f

h

 EMBED Equation.3 [image: image102.wmf]l

L

l

l

C

h

å

Î

(SUB4.2)

subject to: (4.21) and (4.22).

Subproblem 3: for Ml:

min
[image: image103.wmf]l

l

L

l

l

M

C

e

å

Î

-

+
[image: image104.wmf]å

å

Î

Î

k

U

l

l

k

O

k

M

m

 EMBED Equation.3 [image: image105.wmf]å

Î

-

H

l

l

l

l

l

M

M

)

,

(

x

 EMBED Equation.3 [image: image106.wmf]å

å

Î

Î

-

L

l

l

wl

W

w

M

q

(SUB4.3)

subject to: (4.23).

Subproblem 4: for Jk and Sk:

min
[image: image107.wmf]]

)

,

(

[

k

k

k

k

k

k

O

k

k

S

m

J

n

S

J

Q

-

-

å

Î

(SUB4.4)

subject to: (4.24) and (4.25).

Subproblem 5: for zp:

min
[image: image108.wmf]å

å

å

Î

Î

Î

L

l

P

p

pl

p

wl

W

w

w

z

q

d

(SUB4.5)

subject to: (4.26) and (4.27).

In order to deal with the nodal weight of (SUB4.1), the node spiltting technique [F.Y.S. Lin 93h] is used, as shown in Figure 7.1. As a result, (SUB4.1) could be further decomposed into
[image: image109.wmf]W

 independent shortest path problem with nonnegative arc weights. It can be easily solved by the Dijkstra’s algorithm. (SUB4.2) could also be decomposed into
[image: image110.wmf]L

 independent subproblems. For each link
[image: image111.wmf]L

l

Î

,

Subproblem 2.1: for Cl, ywl and fl :

min
[image: image112.wmf])

(

l

l

C

j

 +a
[image: image113.wmf])

,

(

1

l

l

l

W

w

w

C

f

B

å

Î

l

+
[image: image114.wmf])

,

(

l

l

l

wl

W

w

w

C

f

F

y

b

å

Î

 EMBED Equation.3 [image: image115.wmf]wl

wl

W

w

y

c

å

Î

-

 EMBED Equation.3 [image: image116.wmf]l

l

f

d

-

+
[image: image117.wmf]l

l

C

e

+
[image: image118.wmf]-

l

l

f

h

 EMBED Equation.3 [image: image119.wmf]l

l

C

h

(SUB4.2.1)

subject to:
[image: image120.wmf]wl

y

= 0 or 1
[image: image121.wmf]W

w

Î

"

 and
[image: image122.wmf]l

l

A

C

Î

.
(SUB4.2.1) is a complicated problem due to the coupling of three decision variables: Cl, ywl and fl . Since the possible capacity configurations of links are finite, such as 64kbps, 128kbps, 256kbps, 512kbps, T1 and T3 for example. We can exhaustively search all different possible link configuration by finding the best ywl and fl . In [H.H. Yen 01b], we proposed an efficient algorithm to solve ywl and fl at a given link capacity under M/M/1 queuing model. Therefore, the algorithm to solve (SUB4.2.1) under M/M/1 queuing model is proposed as below. The formulation could be extended to any non M/M/1 model with monotonically increasing and convexity performance metrics.
Step 1. For each possible link capacity configuration, applying the algorithm developed in [H.H. Yen 01b] to solve (SUB4.2.1) so as to find the optimal ywl and fl .

Step 2. Finding the minimum objective value of (SUB4.2.1) from the objective value associated with each possible link capacity configuration. Then ywl and fl can be determined from the optimal link capacity.

(SUB4.3) can be decomposed into
[image: image123.wmf]H

 independent subproblems. For each pair of bi-directional links
[image: image124.wmf]H

l

l

Î

)

,

(

,

Subproblem 3.1: for
[image: image125.wmf]l

M

and
[image: image126.wmf]l

M

:

min
[image: image127.wmf]l

l

l

M

C

e

-

 EMBED Equation.3 [image: image128.wmf]l

l

l

M

C

e

-

+
[image: image129.wmf]l

M

G

1

+
[image: image130.wmf]l

M

G

2

 EMBED Equation.3 [image: image131.wmf]l

l

l

M

M

x

-

 EMBED Equation.3 [image: image132.wmf]l

wl

W

w

M

q

å

Î

-

 EMBED Equation.3 [image: image133.wmf]l

l

w

W

w

M

q

å

Î

-

(SUB4.3.1)

subject to:
[image: image134.wmf]l

M

= 0 or 1 and
[image: image135.wmf]l

M

= 0 or 1.

In the above formulation, the G1 and G2 are calculated as follows.

1. If the link l is the incoming link to any potential switch, say k1, then assign G1 to
[image: image136.wmf]1

k

m

, else assign G1 to zero.

2. If the link
[image: image137.wmf]l

 is the incoming link to any potential switch, say k2, then assign G2 to
[image: image138.wmf]2

k

m

, else assign G2 to zero.

From the formulation of (SUB4.3.1), two opposite direction links are considered at the same time. As a result, the algorithm to optimally solve (SUB4.3.1) is proposed as follows.

Step 1. Let N1 = 0, N2 =
[image: image139.wmf]l

l

C

e

-

+
[image: image140.wmf]1

G

 EMBED Equation.3 [image: image141.wmf]wl

W

w

q

å

Î

-

, N3 =
[image: image142.wmf]l

l

C

e

-

+
[image: image143.wmf]2

G

 EMBED Equation.3 [image: image144.wmf]l

w

W

w

q

å

Î

-

, N4 =
[image: image145.wmf]l

l

C

e

-

+
[image: image146.wmf]1

G

 EMBED Equation.3 [image: image147.wmf]l

l

C

e

-

+
[image: image148.wmf]2

G

 EMBED Equation.3 [image: image149.wmf]l

x

-

 EMBED Equation.3 [image: image150.wmf]wl

W

w

q

å

Î

-

 EMBED Equation.3 [image: image151.wmf]l

w

W

w

q

å

Î

-

.

Step 2. Identify the Ni with the minimum value, where i = 1, 2, 3, 4.

Step 3. If i = 1, then assign
[image: image152.wmf]l

M

= 0 and
[image: image153.wmf]l

M

= 0, else if i = 2, then assign
[image: image154.wmf]l

M

= 1 and
[image: image155.wmf]l

M

= 0, else if i = 3, then assign
[image: image156.wmf]l

M

= 0 and
[image: image157.wmf]l

M

= 1, else if i = 4, then assign
[image: image158.wmf]l

M

= 1 and
[image: image159.wmf]l

M

= 1.

(SUB4.4) can be further decomposed into
[image: image160.wmf]O

 independent subproblems. For each independent subproblem, due to the number of possible switch configurations (including number of ports and switching fabric) is finite and manageable within computational time, we can exhaustively search all possible combination of switch configurations as to find the optimal Jk and Sk.

(SUB4.5) can be further decomposed into
[image: image161.wmf]W

 independent node disjoint shortest path problem with nonnegative arc weights. [Suurballe 84] proposed an efficient algorithm to optimally solve link disjoint path problem. Hence, (SUB4.5) could be optimally solved by the Suurballe’s algorithms in conjunction with the node splitting technique.

According to the algorithms developed above to solve each subproblem, we could successfully solve the Lagrangean relaxation problem optimally. By using the weak Lagrangean duality theorem, that is, the lower bound from the dual Lagrangean formulation is a legitimate lower bound to the corresponding original problem [Ahuja 93]. We construct the following dual problem to calculate the tightest lower bound and solve the dual problem by using the subgradient method.

[image: image162.wmf])

,

,

,

,

,

,

,

,

(

max

4

q

n

m

e

h

d

c

b

a

Z

Z

D

D

=

(D4)

subject to: a, b, c, d, h, e, m, n, q
[image: image163.wmf]³

0.

Let the vector S be a subgradient of
[image: image164.wmf])

,

,

,

,

,

,

,

,

(

4

q

n

m

e

h

d

c

b

a

Z

D

at (a, b, c, d, h, e, m, n, q). In iteration x of the subgradient optimization procedure, the multiplier vector mx=(ax,bx,cx,dx,hx,ex,mx,nx,qx) is updated by mx+1= mx+
[image: image165.wmf]x

x

S

a

, where
[image: image166.wmf])

,

,

,

,

,

,

,

,

(

q

n

m

e

h

d

c

b

a

S

x

=(
[image: image167.wmf]K

C

f

B

L

l

l

l

l

W

w

w

-

å

å

Î

Î

)

,

(

1

l

,
[image: image168.wmf]å

Î

-

L

l

w

l

l

l

wl

D

C

f

F

y

)

,

(

,
[image: image169.wmf]-

å

Î

w

P

p

pl

p

x

d

 EMBED Equation.3 [image: image170.wmf]wl

y

,
[image: image171.wmf]l

l

f

g

-

,
[image: image172.wmf]l

l

C

f

-

,
[image: image173.wmf]l

l

l

M

C

C

-

,
[image: image174.wmf]å

Î

-

k

U

l

k

l

S

M

,
[image: image175.wmf]k

W

w

P

p

w

pk

p

J

x

w

-

å

å

Î

Î

l

e

,
[image: image176.wmf]å

Î

-

w

P

p

l

pl

p

M

z

d

).

The step size
[image: image177.wmf]x

a

 is determined by
[image: image178.wmf]2

4

4

)

(

x

x

D

h

IP

S

m

Z

Z

-

d

, where
[image: image179.wmf]h

IP

Z

4

 is the best primal objective function value found at iteration x (an upper bound on optimal primal objective function value), and
[image: image180.wmf]d

 is a constant (
[image: image181.wmf]2

0

£

£

d

).

4.5 Getting Primal Feasible Solutions
To obtain the primal solutions to the (IP4), solutions to the Lagrangean relaxation problem (LR4) are considered. We develop two sophisticated getting primal heuristics, maximum hop-count and add-drop, to getting the primal feasible solutions. According to the computational results, the second (add-drop) heuristic can get better primal feasible solution.

The basic idea of the first getting primal heuristic is maximum hop-count approach. It starts with the routing assignment obtained from the (SUB4.2.1). From the routing assignment in (SUB4.2.1), the aggregate flow on each link could be calculated. In order to satisfy the end-to-end delay requirement for each O-D pair, the tightest end-to-end delay for all O-D pairs is located by searching the minimum end-to-end delay requirement among all O-D pairs. From the tightest end-to-end delay, the tightest link delay can be calculated by dividing the tightest end-to-end delay to the maximum hop number in any routing path. The maximum hop number for any O-D pair is equal to the number of potential switches plus one, since the source node must home to the switch first, then route to the other switches, and finally route to the destination node. From the tightest link delay, we can determine the minimum link capacity in order to satisfy the tightest link delay requirement. From the above statement, we can see that the upper bound are overestimated, since the link delay occurs in any link must be at least the tightest link delay.

Instead of estimating the link capacity in terms of tightest link delay, the second heuristic is based on add-drop heuristics. It also starts with the routing assignment obtained from the (SUB4.2.1). From the routing assignment in (SUB4.2.1), the aggregate flow on each link could be calculated, under the link capacity constraints, the minimum link capacity could be determined. Next is the add heuristic in order to satisfy the average and end-to-end delay constraints.

Add heuristic:
Verify the average cross network delay. If the average cross network delay is violated, augment the link capacity on the most congested link to the next higher link capacity configuration, perform link capacity augmentation again until the average cross network delay is satisfied. Next, verify the end-to-end delay for each O-D pair. If the end-to-end delay is violated for any O-D pair, reroute the traffic to another shortest path based on the current routing assignment where the arc weight is calculated as 1.0/(link capacity – aggregate flow). After the rerouting, if the end-to-end delay is still violated for this O-D pair, augment the link capacity along this new routing path in order to satisfy the end-to-end delay constraint.

After the add heuristic, drop heuristic is proposed in order to obtain better primal feasible solutions.

Drop heuristic:
For all the links that have nonzero link capacity determined in add heuristic, examine the possibility of decreasing their capacity one by one without violating the delay QoS constraints. For the examined link, first decrease the link capacity to the next lower capacity in the capacity configuration. Verify the capacity constraint, average cross network delay constraint and end-to-end delay constraints for all O-D pairs. If these constraints are all satisfied, then this link capacity could be decreased successfully, else augment the link capacity back to its original capacity configuration.

After the link capacity and feasible routing assignment are determined, these two heuristics, maximum hop-count and add-drop, have a same approach to satisfy the node disjoint requirement for each O-D pair. The node disjoint path assignment from (SUB4.5) is used. If the associated link on any node disjoint path did not install at the above procedure, the minimum nonzero capacity is installed on that link. After the link capacity is determined, the number of links incoming to each potential switch can be determined. Also from the aggregate flow on each link, the total aggregate flow incoming to each potential switch could also be determined. As a result, the minimum cost switch configuration in order to satisfy the number of ports and switch fabric constraints can be determined as well.
4.6 Computational Experiments
In order to make the above algorithms easily used by telecommunication industry. We have developed the software package which bundles the network planning algorithms developed in Section 4.4 and 4.5 with the user-friendly graphical user interface (GUI). The network planning algorithms are coded in C++ and performed at PC with INTELTM PIII-800 CPU. The GUI, which is designed by Chih-Yang Tai, are written with Microsoft Visual Basic and the running platform is on the Microsoft NT or Window 2000. Figure 4.1 depicts the GUI for the backbone network design.

In this package, the input parameters include the locations for the users and the potential switches, admissible configurations and cost structures of potential switches and links, traffic requirements, average delay requirement, end-to-end delay requirements and survivability/connectivity requirements. The output parameters include the switch and link configuration assignment, routing assignment, node disjoint paths assignment, average delay and individual end-to-end delay for each O-D pair.

[image: image1.wmf]w

l

Figure 4.1 GUI for Backbone network design package (Designed by Chih-Yang Tai)

The maximum number of iterations for the proposed dual Lagrangean algorithm developed above is 1000, and the improvement counter is 30. The step size for the dual Lagrangean algorithm is initialized to be 2 and will be halved when the objective function value of the dual problem does not improve for 30 iterations.

Two sets of computational experiments are performed. The computational time for these two sets of computational experiments are all within fifteen minutes under the network size of 30 user/switch nodes. Hence, the proposed algorithms are efficient in time complexity.

In these computational experiments, the cost of the link assignment is divided into two parts, fixed cost and variable cost. The fixed cost is calculated from the Euclidean distance between two end points that the link connected, and the variable cost is based on the link capacity configuration. There are fifteen discrete potential link capacity configurations, from 0 to 500, for the computational experiments. The cost associated with these potential capacity configurations is a concave function to reflect the economy-of-scale effect. On the other hand, the switch installation cost is based upon two switch configurations, switching fabric and the number of ports on the switch. There are nineteen discrete potential switch configurations in the computational experiments. The cost associated with these potential switch configurations is also a concave function to reflect the economy-of-scale effect.

In the first set of computational experiment, we want to test the solution quality when the input delay requirements are loose as compared to the output of the delay requirement. Node disjoint path requirement is not considered. In the second set of computational experiment, we want to test the solution quality when the input delay requirements are tight as compared to the output of the delay requirement. The 2-connected node-disjoint-path requirement for each O-D pair is considered. In these two sets of computational experiments, the two getting primal feasible heuristics, maximum hop-count and add-drop, as mentioned in the previous section are all implemented.

Table 4.1 depicts the computational results for the various network sizes and traffic demand without node disjoint requirement and loose delay requirements. The first column is the network size. The location, x-axis and y-axis, of user nodes and potential switch nodes are randomly distributed between the 0 and 500. The second column is the traffic demand of the user nodes, are randomly distributed between 30 to 400. The third column reports the lower bound of the primal problem, which is the solution to the dual problem. The fourth column reports the upper bound of the primal problem, which is the feasible solution calculated by the algorithms developed in Section 4.5. The fifth column reports the error gap between the lower bound and upper bound, which is equal to ((upper bound – lower bound)/lower bound * 100%). The seventh column reports the average network delay requirement, and the sixth column reports the average network delay calculated by the proposed algorithms. Since two getting primal feasible heuristics are performed, at the upper row reports the results for maximum hop-count heuristic and the lower row reports the results for add-drop heuristic in different network size and traffic demands. As could be seen from the fourth column, the add-drop heuristic always performs better than maximum hop-count heuristic. Comparing the solution quality between different traffic demands under the same network size, it is interesting to see that the proposed algorithms performs better in heavy loaded traffic demands environment.

TABLE 4.1 Solution quality for different network sizes and traffic demand without node disjoint path requirement
Number of users/switches
Traffic demand
Lower bound
Upper bound
Error gap (%)
Average cross network delay
K

9
30~200
943.4
1639.9(
73.8
0.168
10

943.4
1455.0*
54.2
0.168

9
60~400
1852.4
2778.0
49.9
0.068
10

1852.4
2578.0
39.2
0.068

12
30~200
1639.8
2664.8
62.5
0.079
10

1639.8
2600.6
58.6
0.065

12
60~400
3048.0
4353.1
42.8
0.069
10

3048.0
4205.4
37.9
0.031

15
30~200
1895.1
2918.9
54.0
0.294
10

1895.1
2697.5
42.3
0.306

15
60~400
3695.3
5291.5
43.2
0.131
10

3695.3
4943.0
33.7
0.131

30
30~200
2496.9
6042.3
141.9
0.397
10

2497.6
5236.0
109.6
0.392

30
60~400
4442.8
7936.1
78.6
0.117
10

4442.8
7299.5
64.3
0.117

(: upper bound for maximum hop-count heuristic
*: upper bound for add-drop heuristic
TABLE 4.2 Solution quality for different network sizes and traffic demand with two node disjoint path requirement

Number of users/switches
Traffic demand
Lower bound
Upper bound
Error gap (%)
Average cross network delay
K

9
30~200
941.5
1980.3
110.3
0.195
1

941.5
1801.8
91.5
0.168

9
60~400
1852.6
2909.0
57.0
0.054
1

1852.6
2735.8
47.7
0.054

12
30~200
1636.2
3220.0
90.7
0.087
1

1636.1
2920.0
78.4
0.074

12
60~400
2122.8
3427.5
61.4
0.146
1

2122.8
3218.2
51.6
0.146

15
30~200
1887.3
3369.6
78.5
0.203
1

1887.5
3220.3
70.6
0.190

15
60~400
3694.9
5667.0
53.4
0.130
1

3694.9
5304.9
43.5
0.124

30
30~200
2472.0
7098.8
187.2
0.452
1

2472.0
6091.6
146.4
0.386

30
60~400
4388.6
8628.5
96.6
0.130
1

4388.5
8177.9
86.3
0.127

Table 4.2 depicts the computational results for the various network sizes and traffic demand with two node disjoint path requirement and tighter delay requirements. The network topology and traffic demand are all the same as in Table 4.1, but the average cross network delay and the end-to-end delay requirements are more stringent, delay = 1 instead of 10, than in Table 4.1. On the other hand, there are two node disjoint path requirement for each O-D pair. As could be seen from the fourth and fifth column of Table 4.2, the add-drop heuristic also performs better than the maximum hop-count heuristic in this network setting. In addition, from the sixth column of Table 4.1 and Table 4.2, the average cross network delay calculated by the add-drop heuristic is even better than maximum hop-count heuristic. On the other hand, from the fourth and fifth column of Table 4.1 and Table 4.2, we have a looser upper bound in Table 4.2, and the error gaps are looser as compared to Table 4.1.

4.7 Concluding Remarks
In this chapter, the novel mathematical formulation and algorithms for the backbone network design problem which considers the system and user specified QoS requirements are proposed. The objective of this backbone network design problem is to minimize the total installation cost of link and switch installation cost. The system QoS requirement considered here is the average cross network delay requirement. The user specified QoS requirements include the end-to-end delay requirement and node disjoint path requirements. In order to make the proposed algorithms easily used by the network service operators, the user friend GUI is also developed.

Besides integrality constraints, the non-convexity of the delay performance metric and concavity of the cost function make this problem difficult. By using the Lagrangean relaxation method and the subgradient method to construct the dual problem and calculate the tightest lower bound, we provide two getting primal feasible solution heuristics to obtain the primal feasible solution based on the solutions to the dual problem. From the computational experiments, it is shown that the second getting primal heuristic, add-drop heuristic, performs better than maximum hop-count heuristic. Based on the solution quality and the computational time, the efficient algorithm based on the mathematical formulation that we propose could provide credible solutions.

_1056788727.unknown

_1056789250.unknown

_1056789326.unknown

_1056789506.unknown

_1056789564.unknown

_1056789603.unknown

_1056789622.unknown

_1056789641.unknown

_1056789647.unknown

_1056789654.unknown

_1056789657.unknown

_1056789662.unknown

_1056789650.unknown

_1056789644.unknown

_1056789634.unknown

_1056789637.unknown

_1056789631.unknown

_1056789614.unknown

_1056789618.unknown

_1056789610.unknown

_1056789580.unknown

_1056789586.unknown

_1056789597.unknown

_1056789583.unknown

_1056789573.unknown

_1056789576.unknown

_1056789570.unknown

_1056789549.unknown

_1056789557.unknown

_1056789560.unknown

_1056789552.unknown

_1056789542.unknown

_1056789546.unknown

_1056789524.unknown

_1056789465.unknown

_1056789490.unknown

_1056789500.unknown

_1056789503.unknown

_1056789496.unknown

_1056789483.unknown

_1056789487.unknown

_1056789468.unknown

_1056789451.unknown

_1056789459.unknown

_1056789462.unknown

_1056789454.unknown

_1056789445.unknown

_1056789448.unknown

_1056789329.unknown

_1056789286.unknown

_1056789300.unknown

_1056789312.unknown

_1056789316.unknown

_1056789303.unknown

_1056789294.unknown

_1056789297.unknown

_1056789288.unknown

_1056789273.unknown

_1056789279.unknown

_1056789283.unknown

_1056789276.unknown

_1056789261.unknown

_1056789268.unknown

_1056789271.unknown

_1056789254.unknown

_1056788823.unknown

_1056789055.unknown

_1056789217.unknown

_1056789239.unknown

_1056789243.unknown

_1056789226.unknown

_1056789232.unknown

_1056789222.unknown

_1056789063.unknown

_1056789081.unknown

_1056789060.unknown

_1056789037.unknown

_1056789048.unknown

_1056789052.unknown

_1056789041.unknown

_1056788883.unknown

_1056788948.unknown

_1056788954.unknown

_1056788890.unknown

_1056788906.unknown

_1056788867.unknown

_1056788877.unknown

_1056788827.unknown

_1056788790.unknown

_1056788801.unknown

_1056788807.unknown

_1056788810.unknown

_1056788804.unknown

_1056788796.unknown

_1056788799.unknown

_1056788793.unknown

_1056788769.unknown

_1056788775.unknown

_1056788787.unknown

_1056788772.unknown

_1056788741.unknown

_1056788763.unknown

_1056788766.unknown

_1056788749.unknown

_1056788757.unknown

_1056788760.unknown

_1056788754.unknown

_1056788744.unknown

_1056788734.unknown

_1056788738.unknown

_1056788731.unknown

_1054668051.unknown

_1054668818.unknown

_1056788689.unknown

_1056788704.unknown

_1056788712.unknown

_1056788716.unknown

_1056788709.unknown

_1056788697.unknown

_1056788700.unknown

_1056788694.unknown

_1056788669.unknown

_1056788683.unknown

_1056788686.unknown

_1056788672.unknown

_1054669248.unknown

_1056788657.unknown

_1056788667.unknown

_1056401120.unknown

_1054669252.unknown

_1054668854.unknown

_1054669205.unknown

_1054668822.unknown

_1054668826.unknown

_1054668428.unknown

_1054668780.unknown

_1054668794.unknown

_1054668805.unknown

_1054668812.unknown

_1054668815.unknown

_1054668802.unknown

_1054668787.unknown

_1054668791.unknown

_1054668784.unknown

_1054668694.unknown

_1054668777.unknown

_1054668598.unknown

_1054668416.unknown

_1054668423.unknown

_1054668426.unknown

_1054668418.unknown

_1054668351.unknown

_1054668413.unknown

_1054668054.unknown

_1054667935.unknown

_1054667951.unknown

_1054667960.unknown

_1054668048.unknown

_1054667957.unknown

_1054667941.unknown

_1054667948.unknown

_1054667938.unknown

_1039644058.unknown

_1039644090.unknown

_1039669314.unknown

_1054667930.unknown

_1039669320.unknown

_1039644093.unknown

_1039644097.unknown

_1039644083.unknown

_1039641198.unknown

_1039644036.unknown

_1039644055.unknown

_1039644018.unknown

_997427095.unknown

_1039640017.unknown

_1039640755.unknown

_1037449125.unknown

_1039640013.unknown

_983192464.unknown

_983199007.unknown

