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6. Service Network Design with Time and Capacity Requirements
6.1 Overview
Good service network design is important to service providers in modern business environment. It will improve customer satisfaction by quick customer response, and in the same time to minimize the total service center installation cost. In this chapter, we consider the service network design problem where the objective is to minimize the total facility cost of service centers and service cost in order to satisfy the service time requirement and the commodity requirement of each customer. The total facility cost includes the installation cost for sales and commodity. This service network design problem is the facility location problem, however by including the QoS constraints of service time and commodity flow requirement, this problem is more difficult than traditional facility location problem. We take the approach of mathematical programming in conjunction with optimization-based algorithms to solve the problem. We formulate the problem as a combinatorial optimization problem where the objective function is to minimize the total network deployment cost subject to the aforementioned QoS constraints. The integrality constraints associated with the problem formulation make it difficult to develop efficient and effective solution procedures. Lagrangean relaxation in conjunction with a number of optimization-based heuristics are proposed to solve this problem. From the computational experiments, the error gap between the lower bound and the upper bound are all within 38% in minutes of CPU time for network size up to 350 nodes.

6.2 Literature Survey
In service industry, Quick Response/Efficient Consumer Response (QR/ECR) to customer has become a strategic necessity to companies and industry. But how to design a sophisticated service network, consisting of the planning of sales force and commodity, with the minimum deployment and operation cost subject to stringent servicing time constraints is a common challenge faced by service network designers and managers. This kind of service network design problem could be classified as the well-known facility location problem. 
Location problem could be classified into two categories, uncapacitated location problem and capacitated location problem. When the admission facility locations are finite and known in advance, this is a discrete location problem. Krarup showed that even the discrete uncapacitated location problem is a NP-hard problem [Krarup 83]. A number of researches have addressed the facility location problem [Hinojosa 00, Carreras 99, Mazzola 99, Krarup 83, Wendell 77, Wesolowsky 72]. However, most of these researches only consider the travel distance as the only performance criteria between the service center and the customer. Carreras [Carreras 99] modeled the P-median problem with the minimum catchment area concept and propose the tabu search algorithm to solve this problem. However, capacity constraint is not considered in [Carreras 99]. Mazzola [Mazzola 99] modeled the multiproduct capacitated facility location problem in which the demand for a number of different product families must be supplied from a set of facility sites, and each site offers a choice of facility types exhibiting different capacities. Mazzola propose the Lagrangean relaxation based solution procedures to solve this problem. Hinojosa [Hinojosa 00] modeled the multi-period two-echelon multicommodity capacitated plant location problem and solved with the Lagrangean relaxation technique. However, the service time constraint is not modeled in [Carreras 99, Hinojosa 00].

Facility location problem is so generic that a lot of real world applications could be classified as the facility location problem. Intensive research has been conducted to address the facility location problem with different solution techniques in different application. Matsutomi [Matsutomi 92] dealt with the location problem of emergency service facility for a dispersed population in public service planning. Solution procedures based on the fuzzy decision problems. However, the response time requirement is not enforced in the constraint such that its application is limited. Weinmann [Weinmann 95] modeled the circuit design problem as the facility location problem. M. J. Kim [Kim 97] developed mathematical models for planning the fixed part of PCS network considering the hard handoff and solving with simulated annealing. Tutschku [Tutschku 98] modeled the transmitter location problem in the cellular mobile communication systems with the Maximal Coverage Location Problem, which is well-known in modeling and solving facility location problems. Al-Fawzan [Al 00] modeled the Internet server location problem and presented the tabu search algorithm to solve this problem. 

In this chapter, for the first time, we model the service network problem as the facility location problem where the objective is to minimize the service center installation cost and the servicing cost in order to meet the service time requirement for the customer. The service center installation cost includes sales force and warehouse installation cost. 
This chapter is organized as follows. In Section 6.3, mathematical formulation of the service network design is proposed. In Section 6.4, the dual approach for the service network design based on the Lagrangean relaxation is presented. In Section 6.5, the primal heuristics are developed to get the primal feasible solutions from the Lagrangean relaxation problem. In Section 6.6, the computational results are reported. In Section 6.7, the concluding remarks are presented.
6.3 Problem Formulation
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And the decision variables are depicted as follows. 
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The objective function is to minimize the total installation cost of service center and the total servicing cost. The first term and the third term of the objective function are the sales forces and warehouse installation cost for the service centers. Constraint (6.1) enforces the service time constraint for each customer. Constraint (6.2) and (6.3) enforce that each customer could only be serviced by one service center. Constraint (6.4) is the sales capacity constraint for each service center. Constraint (6.5) specifies the candidate sales capacity set for each service center. Constraint (6.6) specifies the candidate goods capacity set for each service center. Constraint (6.7) is the goods capacity constraint for each service center.

6.4 Lagrangean Relaxation
Constraints (6.4) and (6.7) of (IP6) are dualized to obtain the (LR6).
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After proper rearrangement, we can decompose (LR6) into three independent subproblems.
Subproblem 1: for 
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(SUB6.1)

subject to: (6.8), (6.9) and (6.10).
Subproblem 2: for 
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subject to: (6.11).

Subproblem 3 : for 
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subject to: (6.12).

(SUB6.1) could be decomposed into |I| independent subproblems. For each independent subproblem,

Subproblem 1.1: for 
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(SUB6.1.1) could be optimally solved by the following algorithm,

(1) Identify the service centers that meet the service time constraints of 
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(2) Among these service centers, identify the lowest cost with respect to 
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Both (SUB6.2) and (SUB6.3) could be decomposed into |O| independent subproblems. For each independent subproblem, it could be optimally solved by exhaustively search since the candidate capacity configuration for each service center is limited. 
From the arguments above that the algorithms developed for each subproblem could all be optimally solved, the weak Lagrangean Duality Theorem could be applied. That is, the lower bound from the dual Lagrangean formulation is a legitimate lower bound to the corresponding original problem [Ahuja 93]. We construct the following dual problem to calculate the tightest lower bound and solve the dual problem by using the subgradient method.
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 is the best primal objective function value found at iteration x (an upper bound on optimal primal objective function value), and 
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6.5 Getting Primal Feasible Solutions

The solutions to the dual problem (LR6) are used to get the primal feasible solutions. There are three possible ways to get the primal feasible solution from solution to (LR6). First, we start from the solutions to (SUB6.1). From the servicing assignment 
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, we could determine minimum sales capacity configuration and goods capacity configuration for each service center. If the minimum capacity configuration is within the range of the capacity configurations in the candidate set, then we consider it as a feasible solution, otherwise it is not a feasible solution. The second and the third starts from the solutions to (SUB6.2) and (SUB6.3) respectively. However, it is not easy to determine the servicing assignment variable 
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 from the capacity assignment of (SUB6.2) and (SUB6.3).

6.6 Computational Experiments
The computational experiments for the service network design problem are performed. The algorithms developed in the above sections are coded in C++ and performed on a PC with INTELTM PIII-800 CPU. The tested network contains the 250 customers and 20 potential service center nodes. Since each customer could be potentially assigned to each potential service center node, the total number of links is 5000. The goods requirement for each customer is randomly generated between 2 to 15. And the locations (x-axis and y-axis) for the customers and potential service centers are also randomly generated. The computational time is about one to two minutes in this kind of the network size.

The servicing time function 
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 is assumed to be the linear function of Euclidean distance of the link. The maximum allowable time requirement for each customer is assumed to be a constant value, e.g. 1.0. The maximum number of iterations for the algorithms to solve (LR) is 1500, and the improvement counter is 30. The step size for the (LR) is initialized to be 2 and will be half when the objective function value of the dual problem does not improve for 30 iterations.
We perform two sets of computational experiments. In the first set of computational experiments, the choice of the 
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 value is fixed (set to 2) so as to examine the solution quality of the service network design problem in different sizes of the network. Table 6.1 summarizes the results. The first column is the number of customers. The second column reports the lower bound of the proposed dual Lagrangean problem. The third column reports the upper bound of the proposed algorithm. The fourth column reports the error gap between the lower bound and the upper bound. The fifth column reports the maximum servicing time among all customers. The sixth column is the service time requirement (
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). As can be seen in the fourth column, the error gaps between the lower bound and the upper bound are decreasing when the network size is growing. Hence, the algorithms proposed in Section 6.4 and 6.5 are even better when the network size is growing. In other words, the proposed algorithms have a good scalability. And the error gaps are reasonably tight when the value of 
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 is loose as compared to the maximum servicing time among all customers. On the other hand, the X symbol in the last row indicates that the primal feasible solution cannot be found.

TABLE 6.1 Solution quality for different network sizes

Number of customers
Lower bound
Upper bound
Error gap (%)
Maximum end-to-end delay
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100
1049.7
1374.7
30.9
0.357
2

150
1539.8
2122.1
37.8
0.539
2

200
2054.3
2617.8
27.4
0.301
2

250
2565.8
3275.9
27.6
0.318
2

300
3183.8
3651.6
14.6
0.436
2

325
3427.4
4048.5
18.1
0.428
2

350
3638.8
X
X
X
2

Since the value for the maximum allowable servicing time (
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) for each customer have a significant impact on the solution of the service network design problem. In the second set of computational experiments, we try to examine the impact of the 
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 value on the solution quality of service network design problem. Table 6.2 summarizes this result. In Table 6.2, the number of customers is constant (250) and the service time requirement (
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) is a variable to examine the impact of the 
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 value on the solution quality of service network design problem. As could be seen from Table 6.2, the error gap remains the same under more stringent service time requirements. From Table 6.2, we could say that we have the stable solution quality under more and more stringent servicing time requirements. 

TABLE 6.2 Solution quality for different 
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Number of customers
Lower bound 
Upper bound 
Error gap (%)
Maximum end-to-end delay

[image: image94.wmf]i

R



250
2565.8
3275.8
27.6
0.31
2

250
2565.8
3275.8
27.6
0.31
1.8

250
2565.8
3275.8
27.6
0.31
1.6

250
2565.8
3275.8
27.6
0.31
1.4

250
2565.8
3275.8
27.6
0.31
1.2

250
2565.8
3275.8
27.6
0.31
1.0

250
2565.8
3275.8
27.6
0.31
0.8

250
2565.6
3245.4
26.4
0.31
0.6

250
2565.8
3241.1
26.3
0.31
0.5

250
2565.9
3240.9
26.3
0.31
0.45

250
2565.9
3225.4
25.7
0.31
0.4

250
2565.9
3263.8
27.2
0.31
0.35

250
2565.9
X
X
X
0.3

6.7 Concluding Remarks

In this chapter, we consider the problem of service center site selection and sales and goods capacity assignment problem with maximum allowable servicing time and capacity requirements. We formulate this problem as an integer programming problem. The discrete (integer constraints) property makes the problem difficult. We take an optimization-based approach by applying the Lagrangean relaxation technique in the algorithm development. 
According to the first set of computational experiments, the error gaps becomes smaller as the network size grows. The error gaps are reasonably tight when the value of 
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 is loose as compared to the maximum servicing time among all customers. On the other hand, from the second set of computational experiments, the solution quality is the same under increasingly stringent servicing time requirements. Hence, the algorithms develop above are particularly suitable for solving the large network and stringent time requirements environment for service network design problem.
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