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3. Tree-based Access Network Design
3.1 Overview
Access Network Design plays an important role in the total network design problem. Among different networking topologies, tree network topology is gaining more attention due to broadband transmission technologies and the economic-of-scale cost effect. In addition, some networking technologies, such as CATV networks, adopt tree structure as the default topology. In this chapter, for the first time, we consider the access network design problem with one shared spanning tree to minimize the operational cost and fixed installation cost. The problem is formulated as an integer multicommodity network flow problem. The Lagrangean Relaxation and a number of optimization-based heuristics are used to solve this problem. In the optimization-based solution approaches that we propose, we successfully develop the polynomial time algorithms, which avoid solving Steiner tree problem, to solve this problem. According to the computational results, the error gaps between the solutions to the dual problem and primal problem are all less than 4% under different configurations. By assessing the gap between heuristic upper bounds and the Lagrangean lower bounds, the proposed algorithms can efficiently and effectively provide a near optimal solution.
3.2 Literature Survey
Network design problem could be decomposed into two main parts—Access Network and Backbone Network Design problem. No doubt about it, the access network plays a major part in the total network design problem. In the access network topology, tree, mesh and star network topologies are always adopted in the access network planning. The advent of low cost, high bandwidth and more reliable transmission technologies, such as fiber optics, will change the access network topology. In addition to new transmission technologies, traffic aggregation makes economical sense since multiplexing/demultiplexing is cheap and the cost of leasing or buying bandwidth often reflects economies-of-scale [M. Andrews 98]. Hence, from the transmission technologies and the economic-of-scale cost effect have made tree topology more promising than the others.
In practices, some access networks choose tree topology as the default network topology. Take CATV networks for example. Cable networks have tree structure. With the head end located at the root of the tree, subscriber drops as the final branches in the tree, and terminal devices such as set-top boxes and cable modems are attached to the subscriber drops as the end nodes in the tree [Gingold 89]. Moreover, in the upstream channel (signals are carried from end node toward the head end) of the CATV network, the return signal will be corrupted if there are multiple paths from the end nodes to the head end. Obviously, star topology is not economical as compared to tree topology. As a result, tree structure is the only option for CATV network. Due to the wide installation of CATV network, designing an effective and efficient tree topology for the CATV network have a tremendous market value, which is the main application of this work.

Some researches have addressed the access network design problem. Lee presented algorithms that solve the fiber assignment problem in tree-structured cabling plant of communication devices. This work considers the fiber assignment cost but without considering operational (routing) cost [Lee 00]. Carlson presented the optical planning model for the access network. This model accepts uncertain costs and is solved with Fuzzy and Interval approach. However, in his work, the access network installation cost only considers equipment cost and without including the fiber cost. In addition, the topological constraints are not enforced [Carlson 98]. Gavish modeled the whole network design problem with rigorous mathematical formulation and solved with Lagrangean relaxation techniques. However, in the access network design of his work, each cluster of end users is connected to the network directly via a dedicated line in order to simplify the formulations [Gavish 92a]. Obviously, in his work, access network design could be further optimized.

[M. Andrews 98] proposed an integer program to solve the access network design, where the objective function is to minimize the access network cost subject to flow constraint, and solving with linear programming relaxation. M. Andrew provided performance guarantees independent of the network and the traffic volume under the weak assumption on the cost structure. [Routen 94] proposed the Genetic Algorithm and Neural Network approaches to solve the access network design problem. However, no simulation results are reported in [Routen 94] to justify the proposed approaches.

The cost for access network design could be divided into two different parts—operational cost and fixed installation cost. We model the operational cost as the routing cost on the links. In the CATV networks, the upstream traffic is very small as compared to downstream traffic that could be neglected. Henceforth, only the downstream routing cost is considered in this work. In order to make the modeling of the downstream routing cost more general, multicasting traffic instead of broadcasting and unicasting traffic is considered in this work. As could be seen from the mathematical formulation, multicasting traffic is more challenging and more difficult than unicasting traffic.
In this chapter, for the first time, we try to find a single minimum cost spanning tree to carry all the traffic for different multicast groups rooted at the same source node (e.g. head end for CATV network). The solution approaches are simultaneously from the lower bound and upper bound approaches. However, the least cost multicast tree optimization routing is required to solve the Steiner tree problem, which is shown to the NP-Complete problem [S. Chen 98]. The common approach taken by previous researches to avoid solving Steiner tree problem is to pre-selected several candidate multicast trees in advance [Yap 99]. However, the optimality may be sacrificed in this approach. Instead of using the approach of pre-selecting candidate multicast trees for each group, we tackle this problem by the optimization-based approach. We have successfully developed efficient polynomial time algorithm to tackle this problem instead of solving the Steiner tree problem, which is the main contribution of this chapter.
This chapter is organized as follows. In Section 3.3, mathematical formulation of the Access Network Design problem is proposed. In Section 3.4, the revised mathematical formulation of the Access Network Design problem that avoids solving the Steiner tree problem is proposed. In Section 3.5, the dual approach for the revised Access Network Design problem based on the Lagrangean relaxation is presented. In Section 3.6, getting primal heuristics are developed to get the primal feasible solutions from the solutions to the dual problem. In Section 3.7, the computational results are reported. In Section 3.8, the concluding remarks are presented.

3.3 Problem Formulation
The access network is modeled as the graph where the processors are depicted as nodes and the communication channels are depicted as arcs. We show the definition of the following notation. 
T
the set of all spanning trees rooted at the source node

Tg
the set of all spanning trees of multicast group g may use, rooted at the source node

G
the set of all multicast groups rooted at the common source node

L
the set of all links

(tl
the indicator function which is 1 if link l is on tree t and 0 otherwise

(gtl
the indicator function which is 1 if link l is on tree t of multicast group g and 0 otherwise

rg
traffic requirement of multicast group g

al
unit transmission cost associated with link l

bl
fixed installation cost associated with link l

M
an arbitrage large number

The decision variables for the Access Network Design problem are denoted as follows.
ygt
1 if tree t is adopted by multicast group g, and 0 otherwise

zt
1 if tree t is selected to be shared by all the multicast groups

The access network design problem is formulated as an integer programming optimization problem, as shown below.
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The first term in the objective function of (IP3.1) is the operational cost for the access network, which is equal to the total multicast routing cost from the source node. The second term in the objective function is the fixed installation link cost for the access network. Hence, the objective is to minimize the total operational and fixed cost for the access network. Constraints (3.1) and (3.2) require that multicast group g adopts only exactly one tree to carry multicast traffic. Constraints (3.3) and (3.4) require that exactly one single tree be shared by all the multicast groups. Constraint (3.5) requires that the tree selected by any multicast group g must be a subset of the shared tree. The above formulation is an integer multicommodity flow problem, since each multicast group transmits different type of traffic over the network. 

After performing Lagrangean relaxation by relaxing Constraint (3.5) in (IP3.1), we obtain the following formulation (LR3.1). 
min 
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From (LR3.1), it is clear to see that the problem can be divided into two independent subproblems. 
Subproblem 1: for zt 
min 
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(SUB3.1)

subject to (3.8) and (3.9).

Subproblem 2: for ygt 
min 
[image: image25.wmf]å

å

å

Î

Î

Î

+

L

l

G

g

T

t

gt

gtl

l

g

l

g

y

a

r

s

a

)

(


(SUB3.2)

subject to (3.6) and (3.7).
(SUB3.1) is a directed minimum cost spanning tree problem with arc weight 
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, which can be solved by the minimum weight arborescences algorithm as proposed in [Humblet 83, Tarjan 77, Y. J. Chu 65]. However, for (SUB3.2), it is a difficult problem. We need to search all the candidate trees for multicast group g to find the minimum cost tree, which is a Steiner tree problem. And there exists no polynomial time algorithm to solve the Steiner tree problem. As a result, we reformulate the Access Network Design problem to avoid solving the Steiner tree problem.

3.4 Revised Problem Formulation
The definition of the notation for the revised Access Network Design problem is shown below.
al
transmission cost associated with link l

bl
fixed installation cost associated with link l

T
the set of all spanning trees rooted at the source node

rg
traffic requirement of multicast group g

Pgd
the set of paths that destination d of multicast group g may use

G
the set of all multicast groups rooted at the common source node

hg
the minimum number of hops to the farthest destination node in multicast group g

Dg
the set of destinations of multicast group g

(pl
the indicator function which is 1 if link l is on path p and 0 otherwise

(tl
the indicator function which is 1 if link l is on tree t and 0 otherwise

And the decision variables for the revised Access Network Design problem are denoted as follows.
ygl
1 if link l is on the subtree adopted by multicast group g and 0 otherwise

xgdp
1 if path p is selected for group g destined for destination d and 0 otherwise

zt
1 if spanning tree t is selected to be shared by all the multicast groups and 0 otherwise

The revised Access Network Design problem formulation is given below.
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The objective function in (IP3.2) is to minimize the total operational and fixed cost for the access network. Constraints (3.10) and (3.11) require that the number of links on the multicast subtree adopted by the multicast group g be at least the maximum of hg and the cardinality of Dg. The hg and the cardinality of Dg are the legitimate lower bounds of the number of links on the multicast subtree adopted by the multicast group g. Apparently, Constraint (3.11) is a redundant constraint. From the computational experiments, the error gaps between the upper bound and the lower bound could be tighter after introducing Constraint (3.11).
Constraints (3.12) and (3.13) require that exactly one single shared tree be adopted by all multicast groups. Constraint (3.14) requires that if one path is selected for group g destined for destination d, it must also be on the subtree adopted by multicast group g. Constraint (3.15) requires that the subtree adopted by any multicast group be a subset of the shared spanning tree. This shared spanning tree is selected to be shared by all the multicast groups. Constraints (3.16) and (3.17) require that exactly only one path be selected for any group g destined for its destination d. 

3.5 Lagrangean Relaxation for the Revised Access Network Design Problem
In (IP3.2), Constraints (3.14) and (3.15) are relaxed, which leads to the following formulation (LR3.2).
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We can decompose (LR3.2) into three independent subproblems. 
Subproblem 1: for zt
min 
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(SUB3.3)

subject to (3.20) and (3.21).

Subproblem 2: for ygl 
min 
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 (SUB3.4)
subject to (3.18) and (3.19).

Subproblem 3: for xgdp 
min 
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(SUB3.5)

subject to (3.22) and (3.23).

Again, (SUB3.3) can be solved by the minimum weight arborescences algorithm as proposed in [Humblet 83, Tarjan 77, Y. J. Chu 65]. (SUB3.4) can be decomposed into |G| independent subproblems. For each multicast group g, 
min 
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The algorithm to solve (SUB3.4.1) is stated as follows:

Step 1. Compute max{hg,|Dg|} for multicast group g.

Step 2. Compute the number of negative coefficient 
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 for all links on multicast group g.

Step 3. If the number of negative coefficient is greater than max{hg,|Dg|} for multicast group g, then assign the corresponding negative coefficient of ygl to 1 and 0 otherwise.

Step 4. If the number of negative coefficient is no greater than max{hg,|Dg|} for multicast group g, then assign the corresponding negative coefficient of ygl to 1. Then, assign [max{hg,|Dg|} ( the number of negative coefficient of ygl] numbers of smallest positive coefficient of ygl to 1 and 0 otherwise.

(SUB3.5) can be further decomposed into |G||Dg| independent shortest path problems with nonnegative arc weights. Each shortest path problem can be easily solved by the Dijkstra’s algorithm.

According to the algorithms proposed above, the Steiner tree problem no longer exists in this Lagrangean relaxation problem. We could successfully solve the Lagrangean relaxation problem optimally. By using the weak Lagrangean duality theorem, that is, the lower bound from the dual Lagrangean formulation is a legitimate lower bound to the corresponding original problem [Ahuja 93]. We construct the following dual problem to calculate the tightest lower bound and solve the dual problem by using the subgradient method.
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3.6 Getting Primal Feasible Solutions
To obtain the primal solutions to the Access Network Design problem, solutions to the Lagrangean relaxation problem (LR3.2) are considered. Three getting primal heuristics are developed. The first and second heuristic is to begin with xgdp and ygl by using the add and drop heuristic to construct a shared spanning tree for all the multicast groups. These two heuristics require a lot of link adding and dropping procedures since the links selected by these heuristics may not even be a tree.

The third heuristic is to begin with zt. It is the simplest way to get the primal feasible solution since it is a spanning tree already. The xgdp and ygl can be determined from zt naturally. Then, the primal objective value for (IP3.2) can be calculated directly. According to the computational experiments, the error gap is very small for the third heuristic solution. As a result, the third heuristic is the most efficient and effective heuristic approach for getting primal feasible solutions.

3.7 Computational Experiments
The computational experiments for the Access Network Design algorithms developed in Sections 3.5 and 3.6 are coded in C and performed at PC with INTELTM PIII-500 CPU. We tested the algorithm for 3 networks--ARPA, GTE, OCT with 21, 12 and 26 nodes. The network topologies are shown in Figures 2.1, 2.2 and 2.3. 
The maximum number of iterations for the proposed dual Lagrangean algorithm is 1500, and the improvement counter is 30. The step size for the dual Lagrangean algorithm is initialized to be 2 and will be halved when the objective function value of the dual problem does not improve for 30 iterations.

Three sets of computational experiments are performed. The source node of all multicast groups in these three sets of computational experiments is assumed to be node 0 in Figures 2.1, 2.2, and 2.3. In these three sets of computational experiments, each destination must belong to at least one multicast group to justify the assumption of spanning tree. The first set is to assume that the traffic demand of each multicast group is one packet per second, and the destinations of distinct multicast groups are mutually exclusive. The way to generate the destinations of each multicast group is to modulate each destination node number into number of groups to determine its multicast group.
The second set is to assign the traffic demand of each multicast group randomly from one packet per second to twenty packet per second, and the destinations of distinct multicast groups are generated in the same way as in the first set of computational experiments. The third set is to have randomly generated traffic for each multicast group, like in the second set. The destinations of different multicast groups are also randomly generated. As a result, the destinations of distinct multicast groups may not be mutually exclusive.
Both the link fixed cost and routing cost are randomly distributed between 1 and 2000 in these three sets of computational experiments. Ten different number of multicast groups, ranging from eleven to twenty multicast groups, are tested in these three experiments. 

Table 3.1 shows the results of the first computational experiment. As can be seen from the Table 3.1, the error gaps between the lower bound and the upper bound are all almost 0% for all different number of multicast groups in different network topologies. That means we can find the near optimal solutions in all different network topologies for constant traffic demand and mutually exclusive multicast group destinations. 

In Table 3.2, the randomly generated traffic for each multicast group is tested. As can be seen from Table 3.2, the error gaps are within 2% under randomly generated multicast group traffic. 

From Table 3.3, the error gaps are all within 4% for all network topologies and traffic demand configurations. Although this solution quality is not as good as the above two computational experiments, we can still claim the near optimal solutions can also be found in randomly generated traffic demand and the destinations of the multicast groups. In particular, all the computational time for these experiments are within one minute.
TABLE 3.1 – Computational results obtained by various networks for Experiment 1
Network topology
# of multicast groups
Lower bound
Upper bound
Error gap (%)

ARPA
11

12

13

14

15

16

17

18

19

20
96809

95972

98629

102476

106024

1.03964

110575

107980

113835

112434
96809

95972

98629

102476

106024

103964

110575

107980

113836

112434
0
0
0
0
0
0
0
0
0(
0

GTE
11

12

13

14

15

16

17

18

19

20
40114

43497

43497

43497

43497

43497

43497

43497

43497

43497
40114

43497

43497

43497

43497

43497

43497

43497

43497

43497
0
0
0
0
0
0
0
0
0
0

OCT
11

12

13

14

15

16

17

18

19

20
144360

137556
135222
129380
133767
142395
151322
161297
164900
173337
144362
137610
135370
129380
133767
142395
151322
161304
164911
173343
0
0.04

0.11

0
0
0
0
0
0
0

(: The correct error gap is 0.001%, but for simplicity of expression, only two decimal places is reported.

TABLE 3.2 – Computational results obtained by various networks for Experiment 2
Network topology
# of multicast groups
Lower bound
Upper bound
Error gap (%)

ARPA
11

12

13

14

15

16

17

18

19

20
897525

931764

908229

995773

946534

906811

824612

849876

826705

845210
897766

932224

908395

995878

946651

907209

833030

859086

835378

855018
0.03
0.05
0.02
0.01
0.01
0.04
1.02
1.08
1.05
1.16

GTE
11

12

13

14

15

16

17

18

19

20
403212

460723

460723

460723

460723

460723

460723

460723

460723

460723
403212

460723

460723

460723

460723

460723

460723

460723

460723

460723
0
0
0
0
0
0
0
0
0
0

OCT
11

12

13

14

15

16

17

18

19

20
1346297

1458753

1460953

1372628

1421285

1438466

1493311

1517921

1496299

1529243
1346319

1460947

1464893

1372628

1421285

1438471

1493312

1519941

1496357

1529274
0
0.15
0.27
0
0
0
0
0.13
0
0

TABLE 3.3 – Computational results obtained by various networks for Experiment 3
Network topology
# of multicast groups
Lower bound
Upper bound
Error gap (%)

ARPA
11

12

13

14

15

16

17

18

19

20
1687053

2011822

2269020

2051741

1728275

2110499

1480630

2341788

2693683

2386016
1705161

2031961

2302089

2072944

1760091

2125279

1490257

2365094

2715428

2420162
1.07

1.00

1.46

1.03

1.84
0.70
0.65
0.99
0.81
1.43

GTE
11

12

13

14

15

16

17

18

19

20
101877

582284

888953

1110137

1171455

1189363

1260059

1469297

1262947

1196573
1018821

589782

888953

1110137

1176496

1199090

1264811

1473999

1272030

1212394
0

1.29
0
0
0.43
0.82
0.38
0.32
0.72
1.32

OCT
11

12

13

14

15

16

17

18

19

20
2225798

2977833

2650468

3201981

3113354

3158896

3133284

2811159

3375415

3060634
2229021

2994648

2693397

3218372

3141470

3195048

3214536

2883546

3400754

3157325
0.14
0.56
1.62
0.51
0.90
1.14

2.59

2.57

0.75
3.16

3.8 Concluding Remarks
Access network design problem is crucial to the modern network design. The economic-of-scale cost effect and the rapid growth of more reliable and high bandwidth transmission technology have led to tree-like topology in the access network. In addition, some networking technologies, such as CATV networks, adopt tree structure as the default topology. In this chapter, we model the access network design problem with shared spanned tree in order to capture this new trend. We formulate this problem as an integer multicommodity flow problem. The inherent Steiner tree property makes this problem complicated. We take an optimization-based approach by applying the Lagrangean relaxation technique in the algorithm development. The formulation in (IP3.1) is sufficient to capture all the information for this problem, but it will lead to a Steiner tree subproblem in (LR3.1), which is not desired from the time complexity point-of-view. The reformulation in (IP3.2) successfully leads to a non-Steiner tree subproblem in (LR3.2), which can be solved in polynomial time. According to the computational experiments, the error gaps between the upper bound and the lower bound are all less than 4%. From this, we can claim that a near optimal solution is found. That is to say, from both sides of the solution quality and the algorithm complexity, we have solved this problem successfully.
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