Rzt FFRFEFLTRALGH?

AR T I | S O S

An Energy-efficient Routing Algorithm for
the Maximization of System Lifetime in
Wireless Sensor Networks






An Energy-efficient Routing Algorithm for
the Maximization of System Lifetime in
Wireless Sensor Networks

A BHRIR B F

PN L O S L=t

B g g2z - Wiy






;ﬁ

Fgitn EdRE 2 RERETL - B § ¢ XI5 A i s
BB o B R BRI AR MGR Y AEP S REE 2 e eh
REI|H2ER B R EA ARt A BHCER iERY
R AR BT B chk e s A A gL B & -
FEAES REE Y L o 0 B T RABARY 0 KF A UTIER

Bk FFHEFRETFIFE RS > I AZLELE LR

BARH AL g B BHE EEFRE SFB I -

RBE LIRS F E 2 RBFY AT T ey 7 ¥ L5 2R fe
Fero BAR Ul S R RG o RHEA - Ay S DR
BagE s TA P2 Gy BENHE S R AR RS ERY T
I AR IeR > FlS j PR B ana Y 2 A kT 7 R H o
EEAREE 3 s EE A Gl B S T R L I e e A
PEeni Ao F B R  BERG RP o KKK S EEiEdop g

oA e BTG FIet A R A XK Sl o

&%’i%$%%¢%$ﬂ&&§ﬁQ4iﬁf’iwﬁﬁQﬁﬁm
A4 zAmmp il fEdmpaka 2 D AN RE 4 BERY 0 A

%$%ﬂﬁ%ﬁiﬁ’%ﬂ@u&?ﬂ@ﬂ%&ﬁi%&%éa&ﬁjﬂ

7

A LA SRR

RN

.,

ﬁﬁ”\ 2 Ak
= ?‘F‘% Tg: T AT
%@{¢3ﬁ:8






R R R ATE Ay BTy AL o d TR BB HiE
oo BT AR RBRELEEHOTE c RRAR T BRET AR L

i i S zw%ﬁm@%J’wr:%4%% LR R YR

$RRKRNERBRBAARET G FEORY LR 00
5 ek B EHE IR A S L TR Gl A S FSE N LS R

(-

R AR E AR AR AR LA AR BB RERY > NG o

L

FUE R KRN R AR B R S R o

Mo AR - R REATHR T2 R 2 A g R e KR
HBEHGE S - R AP Rl BT R A

PERF o F b 20 RAOTREDRFIEMBRA L B ERFEBE ORI AP
&
kj

1

- hEiE RA KA FEROTE P AL E Fang i
XS VN é.}-%«dv‘ TR E R oo BRI ITIRNE (S Tk S d 3

FRsd AP e  RE L dapd FE 2o nd 3EF

dONE R AL A T - LA & AL 0 B F AR E i SRR o T
R o BT R - AR R AR Y NP R B AH D
Sk KA TG %R RAREE > @ EAP A s ook en @

GRRLfE o B PES fRA0 kSR d PR RE 0 18 5] - % it (energy-efficient)



o Bl FEE CBFRY AR R

LR

R B -~ F

2

W

Py
[

=
ok

v



THESIS ABSTRACT

GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY
NAME @ KENG-HUNG YEH MONTH/YEAR : JULY/2004

ADVISER : DR. YEONG-SUNG LIN

AN ENERGY-EFFICIENT ROUTING ALGORITHM FOR
THE MAXIMIZATION OF SYSTEM LIFETIME IN

WIRELESS SENSOR NETWORKS

The wireless sensor network has become a popular research topic in recent
years. Advances in sensor node technology have enabled the rapid development
of wireless sensor networks that can be used in various application areas, such
as healthcare, the military, and the environment. Although there are many
invaluable applications for wireless sensor networks, there are also a lot of
emerging problems and challenges that need to be solved, at the same time. The
biggest problem is how to efficiently use energy resources to prolong the
overall system lifetime of such highly energy-constrained wireless sensor

networks.

Our solution to this problem is to design an energy-efficient routing
algorithm. We use a mathematical programming technique to formulate the
issue as a combinatorial optimization problem, where the objective function is
to maximize the system lifetime. To make it more realistic, we modify the
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definition of the system lifetime by considering the coverage constraint and
time-critical demand of some applications. We can then derive a better routing
algorithm to obtain a maximal system lifetime of a sensor network that is much

closer to the real environment.

Because the optimization problem itself is highly complicated and difficult,
we use Lagrangean Relaxation method to solve it. Due to the method’s
remarkable properties, we are able to solve this complicated optimization
problem efficiently, and obtain an energy-efficient routing algorithm at the

same time.

Keywords: Wireless Sensor Network, Energy-efficient, Routing Algorithm,

Mathematical Programming, Optimization, Lagrangean Relaxation.
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Chapter 1 Introduction

1.1 Background

The wireless sensor network has become a popular research topic in recent
years. Advances in sensor node technology, such as wireless communications
and electronics, have enabled the development of extremely small, low cost,
and low powered sensing devices that are equipped with programmable
computing, multiple parameter sensing and wireless communication

capabilities.

A wireless sensor network is composed of a large number of wireless
sensor nodes that are densely scattered in a sensor field as shown in Figure 1-1.
Each of the scattered sensor nodes has the capability to collect and route data
back to the Sink via a multi-hop architecture. The Sink can communicate with
the task manager node via the Internet or satellite, while users can also make

inquiries and retrieve data of interest to them by this mechanism.
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Figure 1-1 A Wireless Sensor Network’s Communication Architecture [1]

The tiny wireless sensor nodes, which are the most significant elements of

a wireless sensor network, have four basic components, namely: a sensing unit,

a processing unit a communication unit (transceiver) and a power unit, as

shown in Figure 1-2.
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Figure 1-2 Components of A Wireless Sensor Node [1]




The sensing unit is usually composed of two subunits: sensors and
analog-to-digital converters (ADCs). The analog signals produced by the
sensors, based on the observed phenomenon or event, are converted into digital
signals by the ADC. The signals are then fed into a processing unit, which is
generally associated with a small storage unit that manages the sensor node as
it collaborates with other nodes to carry out the assigned sensing tasks. A
communication unit connects the node to the network. One of the most
important components of a sensor node is the power unit which provides
energy to other components. There are also other application-dependent
components, such as a location finding system, a mobilizer and a power
generator. Most of the wireless sensor network routing techniques and sensing
tasks require extremely accurate information about the location of each sensor
node. Thus, it is common that a sensor. node has a location finding system. A
mobilizer may sometimes be needed to move a sensor node when it is required
to carry out assigned tasks. A power generator is used to support power units

such as solar cells.

The protocol stack of the Sink and the sensor nodes is shown in Figurel-3.
The protocol stack combines power and routing awareness, integrates data with
networking protocols, communicates power efficiently through the wireless
medium, and promotes the cooperative efforts of sensor nodes. The protocol
stack consists of: a physical layer, data link layer, network layer, transport layer,
application layer, power management plane, mobility management plane, and

task management plane.



The physical layer addresses the needs of simple but robust modulation,
transmission, and receiving techniques. Since the environment is noisy and
sensor nodes can be mobile, the medium access control (MAC) protocol must
be power-aware and able to minimize collision with neighbors’ broadcasts. The
network layer takes care of routing the data supplied by the transport layer. The
transport layer helps to maintain the flow of data if the sensor networks
application requires it. Depending on the sensing tasks, different types of
application software can be built and used in the application layer. In addition,
the power, mobility, and task management planes monitor the power,
movement, and task distribution among the sensor nodes. These planes enable
the sensor nodes to coordinate the sensing task and lower overall power

consumption.

Application layer

Transport layer

aue|d uswabeuew yse |

Network layer

aue|d yusawiabeuew figopy

auejd uswsabeuew Jamoy

Data link layer

Physical layer

Figure 1-3 Wireless Sensor Network’s Protocol Stack [1]



The power management plane manages a sensor node’s use of its power.
For example, to avoid getting duplicated messages, a sensor node may turn off
its receiver after receiving a message from one of its neighbors. Also, when the
power level of the sensor node is low, the sensor node broadcasts the situation
to its neighbors that it cannot participate in routing messages. The remaining
power is reserved for sensing. The mobility management plane detects and
registers the movement of sensor nodes, so a route back to the user is always
maintained, and the sensor nodes can keep track of who their neighbor sensor
nodes are. By knowing who their neighbors are, the sensor nodes can balance
their power and task usage. The task management plane balances and schedules
the sensing tasks given to a specific region. Not all sensor nodes in that region
are required to perform the sensing task at the same time. As a result, some
sensor nodes perform the task more than others, depending on their power level.
These management planes are needed so that sensor nodes can work together in
a power-efficient way to route data in a mobile sensor network, and share

resources between sensor nodes.

Wireless sensor networks have a number of advantages over wired
networks, such as ease of deployment (reducing installation costs), extended
range (a network of tiny sensor nodes can be distributed over a wider region),
fault-tolerance (the failure of one node does not affect the network operation),
self-organization (the nodes can have the capability to reconfigure themselves),
mobility (since these wireless sensor nodes are equipped with batteries, they

can be mobile).



The above advantages ensure a wide range of applications for wireless
sensor networks. In the military, for example, the rapid deployment,
self-organization, and fault tolerance characteristics of wireless sensor networks
make them a very promising sensing technique for military command, control,
communications, computing, intelligence, surveillance, reconnaissance, and
targeting systems. Meanwhile, in healthcare, sensor nodes can also be deployed
to monitor patients and assist disabled patients, and in industry, sensor nodes
can be used for factory instrumentation. In a large metropolis, sensor nodes can
be deployed to monitor traffic density and road conditions. In engineering,
sensor nodes can be used to monitor building structures. In the environment,
sensor nodes can be used to monitor changes in forests and oceans, and can
also make agricultural techniques more precise. Some other commercial
applications include managing inventories, monitoring product quality, and

assisting rescue efforts in disasters.

Realizing these and other wireless sensor network applications, requires ad
hoc wireless networking techniques. Though many protocols and algorithms
have been proposed, most are not well suited to the unique features and
application requirements of wireless sensor networks. We illustrate the
distinctions between wireless sensor networks and ad hoc networks as follows.
® The number of sensor nodes in a sensor network can be many times higher

than the nodes in an ad hoc network.
® Sensor nodes are densely deployed and prone to failure.
® The topology of a sensor network changes very frequently.
® Sensor nodes mainly use a broadcast communication paradigm, whereas

most ad hoc networks are based on point-to-point communications.
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® Sensor nodes are limited in power, computational capacities, and memory.

® Sensor nodes may not have global identification (ID) because of the large
amount of overhead and the large number of sensors.

® Adjacent nodes may have similar data. Therefore, rather than sending data
separately from each node to the requesting node, it is desirable to

aggregate similar data and send it.

Many researchers are actively engaged in developing schemes that fulfill
these requirements to enable a variety of applications. This is also the goal of

this paper.

1.2 Motivation

The advances in sensor node technology have enabled the rapid
development of wireless sensor networks. As described in the previous section,
there are many invaluable applications for wireless sensor networks. At the
same time, there are also a lot of emerging problems and challenges which need
to be solved. The biggest problem is how to efficiently use energy resources in

this kind of highly energy-constrained wireless sensor networks.

Energy optimization in wireless sensor networks is very complex because
it not only involves reducing the energy consumption of a single sensor node,
but also requires maximizing the system lifetime of an entire network. Many
papers have already been published on this problem. Some of them focus on an

individual sensor node to develop new technology to decrease the energy
7



consumption of each of its operations [13][14][16]. Others, design an
energy-efficient routing protocol from the perspective of an entire network
[3][15][18], and still others calculate the system lifetime by given

environmental conditions and system parameters [2][4][17].

Although there are many energy-efficient routing algorithms, formulating
the problem as a combinatorial optimization problem, where the objective
function is to maximize system lifetime, is relatively rare. This motivates us to
apply Lagrangean Relaxation, combined with the subgradient method, to solve
this optimization problem. To the best of our knowledge, no previous research
has adopted this approach. Due to the remarkable properties of Largrangean
Relaxation, we are able to solve this complicated optimization problem

efficiently, and obtain an energy-efficient routing algorithm.

In addition, system lifetime in most of the above papers is defined as the
time interval from the point that a sensor network starts its operation until the
point the first sensor node fails. This kind of definition is not rational in

practice and can be improved.

To make the definition more realistic, we modify it by considering the
coverage constraint and time-critical demand for some applications of wireless
sensor networks. By using this modified definition, we can derive a better
routing algorithm to obtain the maximal system lifetime of wireless sensor

networks, which is much closer to the real environment.



1.3 Literature Survey

1.3.1 Routing in Wireless Sensor Networks

Wireless sensor networks can be classified on the basis of their mode of
operation and functionality, and the type of target applications. Accordingly,
wireless sensor networks are classified into two types:
® Proactive networks: The sensor nodes in this network periodically sense

the environment and transmit the data of interest. Thus, they provide a

snapshot of the relevant parameters at regular intervals. They are

well-suited to applications that require periodic data monitoring.
® Reactive networks: In this scheme the sensor nodes react immediately to
sudden and drastic changes in the value of a sensed attribute. As such, they

are well- suited to time critical applications.

Because wireless sensor networks are highly application dependent, once
the type of network is decided, an adaptive routing protocol has to be designed.
And based on the topology of wireless sensor networks, there are two
alternative approaches have been considered: flat routing and hierarchical

routing. We discuss them separately below.

1.3.1.1 Flat Routing

In [10], the authors describe the directed diffusion paradigm for designing
wireless sensor networks. A wireless sensor network is data-centric, and its
application to query dissemination and processing has been demonstrated as

follows. The query is disseminated (flooded) throughout the network and then
9



the gradients are set up. The gradients indicate the ‘goodness’ of the different
possible next hops and are used to forward sensor node data to users. They are
used to direct data satisfying the query toward the requesting node. Data starts
flowing toward the requesting nodes from multiple nodes from multiple paths.
A small number of paths can be reinforced to prevent further flooding. This
type of information retrieval is only well-suited to persistent queries, where
requesting nodes are expecting data that satisfies a query for an interval of time.
This makes it unsuitable for historical or one-time queries as it is not worth
setting up gradients for queries that employ the path only once. Also, this type
of data collection doesn’t fully exploit the feature of wireless sensor networks

that adjacent nodes have similar data.

In [8], the authors present a family of adaptive protocols called SPIN
(Sensor Protocol for Information via Negotiation) that efficiently disseminates
information among sensor nodes in an energy-constrained wireless sensor
network. Nodes running a SPIN communication protocol name their data using
high-level data descriptors, called meta-data. They use meta-data negotiations
to eliminate the transmission of redundant data throughout the network. SPIN
enables a user to query any node and get the required information immediately.
These protocols make use of the property that nearby nodes have similar data
and thus distribute only the data that other nodes don’t have. These protocols
work proactively and distribute the information all over the network, even

when a user does not request any data.

In [14], the authors propose a practical guideline that advocates a uniform

resource utilization to prolong system lifetime. The authors also propose a
10



number of practical gradient-based routing algorithms that are inspired by the
concept of gradients. The gradients indicate the ‘goodness’ of the different
possible next hops and are used to forward sensor data to users. For example,
when a sensor node detects that its energy reserve has dropped below a certain
threshold, it discourages other sensor nodes from sending data to it by
decreasing its gradient. This achieves the goal of utilizing resources uniformly

and prolongs system lifetime effectively.

In [3], the authors formulate the routing problem with the objective
function of maximizing system lifetime given the sets of origin and destination
nodes and the information generation rates at the origin nodes. They propose an
algorithm to select the routes and the corresponding power levels such that the
time until the batteries of the nades runs out is maximized. In [18], the authors
extend the energy conserving routing model presented by [3] to a network
where some of the sensor nodes have a very low data rate, as well as limited
battery capacity. Both of these papers define the system lifetime as the length of

time until the first battery drains out.

1.3.1.2 Hierarchical Routing

Before discussing hierarchical routing, we first consider the partial
network structure shown in Figure 1-4. Each cluster has a cluster head which
collects data from its cluster members, aggregates it and sends it to the Sink, or
an upper level cluster head. For example, nodes 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5
and 1.1 form a cluster with node 1.1 as the cluster head. Accordingly, there
exist other cluster heads such as 1.2, 1 etc. These cluster heads, in turn, form a

cluster with node 1 as their cluster head. This pattern is repeated to form a
11



hierarchy of clusters with the uppermost cluster nodes reporting directly to the

Sink, which forms the root of this hierarchy and supervises the entire network.
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Figure 1-4 Hierarchical Clustering [11]

The main features of this architecture are as follows:

® All the sensor nodes need to transmit only to their immediate cluster head,
thus saving energy.

® Only the cluster head needs to perform additional computations on the
data. So, energy is again conserved.

® The cluster members are mostly adjacent to each other and have similar
data. Since the cluster heads aggregate similar data, aggregation is said to

be more effective.

12



® Cluster heads at higher levels in the hierarchy need to transmit data over
correspondingly larger distances. Combined with the extra computations
they perform, they end up consuming energy faster than the other nodes.
In order to evenly distribute this consumption, all the nodes take turns as
the cluster head.

® Since only the cluster heads need to know how to route the data toward
their own cluster head or the Sink, the complexity of data routing is

reduced.

In [7], the authors propose LEACH (Low-Energy Adaptive Clustering
Hierarchy), a clustering-based protocol that minimizes energy dissipation in
wireless sensor networks. LEACH is a good approximation of a proactive
network protocol. Its key features are: 1) localized coordination and control for
cluster set-up and operation; 2) randomized rotation of the cluster heads and the
corresponding clusters; and 3) local compression to reduce global
communication. LEACH outperforms classical clustering algorithms by using
adaptive clusters and rotating cluster-heads, which allow the energy
requirements of the system to be distributed among all the sensor nodes. In
addition, LEACH is able to perform local computation in each cluster to reduce
the amount of data that must be transmitted to the Sink. This achieves a large
reduction in the energy dissipation, because computation is much cheaper than

communication.

In [11], the authors introduce a new energy efficient protocol, TEEN
(Threshold sensitive Energy Efficient sensor Network protocol) for reactive

networks. It means time critical data can reach the user almost instantaneously.
13



It also provides some parameters for users to control the trade-off between
energy efficiency and accuracy, based on their needs. The main drawback of
this protocol is that it is not well suited for applications where the user needs to
get data on a regular basis. In [12], the same authors of [11] further propose a
hybrid protocol, APTEEN (Adaptive Periodic Threshold-sensitive Energy
Efficient Sensor Network Protocol) which is both well suited for proactive and

reactive networks.

1.3.2 Bounding System Lifetime

In [2], the authors propose an optimal role assignment approach, which, in
principle, permits derivation of bounds for networks with arbitrarily complex
capabilities. However, the computational costs of such derivations may be
prohibitive. This paper shows that for several practically useful scenarios,
including wireless sensor networks with a specified topology that allows

aggregation, this approach in fact leads to polynomial time bound derivation.

In [17], the authors propose an analytical model to estimate and evaluate
the network lifetime in a randomly deployed multi-hop wireless sensor network.
In this paper the network lifetime is defined as the time interval from the point
that a sensor network starts its operation until the point that loss of
communication to the Sink by all sensor nodes occurs. In most cases, the
operation of the wireless sensor networks is completely disrupted if and only if
all of the nodes that can directly communicate with the Sink expire.
Consequently, the lifetime of these nodes is more critical to the network

lifetime. Thus, we can derive the network lifetime by calculating the lifetime of
14



these critical sensor nodes.

In [4], the authors propose a model to estimate a clustering-based
proactive heterogeneous wireless sensor network with two types of sensors
equipped with different battery power. In addition, in [18] the authors also

derives a bound on the network lifetime.

15
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Chapter 2 Problem Formulation

The goal of this paper is to derive an energy efficient routing algorithm to
maximize the system lifetime of wireless sensor networks. We define the
system lifetime as the time interval from the point that a sensor network starts
its operation until the point that the information about the occurrence of any of
events can not be delivered to the Sink. This is the coverage constraint in this
paper. With regard to some time-critical applications, if the information aobut
the occurrence of any of events cannot be delivered to the Sink within a

predefined time interval, namely the hop constraint, the system isn’t alive.
At first, the sensor nodes are densely scattered in a sensor field. From the

radius of sensing and communication of individual sensor nodes, the topology

of wireless sensor networks can be depicted as shown in Figure 2-1.

17
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Figure 2-1 Topology of Wireless Sensor Networks

Problem assumption:

® Once an event occurs, the sensor nodes sense this event and deliver this
information to the Sink instantly.

® In the beginning, the system is alive.

® All sensor nodes and the Sink are fixed.

® Asensor node dies when it runs out its energy.

Table 2-1 Problem Assumptions

18



2.1 Model 1

Although this model only describes the time interval from the point that a

sensor network starts its operation until the point that the first sensor node runs

out its energy, we can still use this model iteratively to obtain the system

lifetime and satisfy our modified definition of system lifetime.

2.1.1 Problem Descriptions

Given:

® Asetof events.

® Aset of nodes including sensor nodes and the Sink.

® Aset of links in the nodes.

® Aset of out-links and in-links of each sensor node.

® A set of sensor nodes for each event, so that each of the sensor nodes not only
senses the event, but also has at least one path to the Sink.

® A et of events for each sensor node, so that the node not only senses each of the
events, but also delivers information about the occurrence of these events to the
Sink.

® Aset of sensor nodes which are one hop away from the Sink.

® Number of flows per unit time caused by each event.

® Aset of candidate paths from each sensor node to the Sink.

® Link capacity on each link and nodal capacity on each sensor node.

® Hop constraint for each event.

® Initial energy of each sensor node.

19




® Energy needed for each sensor node to execute its routine operations, as well as

sending and receiving a unit of flow.

Objective:

To maximize the system lifetime of wireless sensor networks.

Subiject to:

® Coverage constraint — the information about the occurrence of any of events can
be delivered to the Sink by sensor nodes.

® Routing constraint — for each sensor node, once it senses the occurrence of an
event, it only selects one path to send data back to the Sink.

® Hop constraint — for each event, paths which are selected to deliver the
information about the occurrence of that event are limited by a predefined hop
constraint to satisfy the time-critical demand of some applications.

® Link capacity constraint — the total flow on each link can’t exceed its capacity.

® Nodal capacity constraint — the total flow passed through a sensor node can’t

exceed its capacity.

To determine:
1. Routing of wireless sensor networks
2. Total flow on each link which is caused by events.

3. Maximal system lifetime of wireless sensor networks.

Table 2-2 Problem Description for Model 1
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2.1.2 Notations

Given Parameters

Notation

Description

E

The set of events.

N The set of sensor nodes and the Sink.
L The set of links in N.
L The set of out-links of sensor node n. ( Vne N —{Sink} )
L The set of in-links of sensor node n. ( Vne N —{Sink} )
A The set of sensor nodes that any one of them not only senses event e, but has at
least one path to the Sink. ( VeeE )
B, The set of events that can be sensed and the information about the occurrence
of each of them that can be delivered to the Sink by sensor node n.
(Vne N —{Sink})
D The set of sensor nodes which are one hop away from the Sink.
f, Number of flows per unit time caused by occurrence of evente. ( VeeE )
P, The set of paths which are from sensor node n to the Sink. ( Vne N —{Sink} )
S, 1 if path p uses link I; otherwise 0.6, ={1,0} (VpeP,, Vlel )
C flow capacity on link I, the upper bound of flow per unit time on link 1.
(VlelL)
U, flow capacity on sensor node n, the upper bound of flow per unit time on
sensor node n. ( Vne N —{Sink} )
H, Hop constraint for evente. ( VeeE )
E Initial energy of sensor node n. ( vne N —{Sink} ) (E, >0)
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Eent Energy consumption of a sensor node when sending a unit of flow.

Erecr Energy consumption of a sensor node when receiving a unit of flow.

€ Energy consumption per unit time of a sensor node when operating some

routine operations, such as sensing. ( &>0 )

Table 2-3 Notation of Given Parameters for Model 1

Decision Variables

Notation | Description

X 1 if path p is selected from event e through sensor node n to the Sink; otherwise

enp

0. (VeeE,vneA,KvpeP )

M, The total flow per unit time on link | caused by the occurrence of event e.
(VeeE,Vlel)

T System lifetime.
Table 2-4 Notation of Decision Variables for Model 1

Formulation

Objective function:
Zo, =maxT (IP1)
For the convenience of later problem solving, we transform the original

problem (IP1) into another equivalent minimization problem as follows.

ZIP2 =min-T (IP2)
subject to:
Xen :1
;Pn P VeeE,Vne A Q)
xenp:OOrl vVeekE,Vne A ,VpeP, (2)

22



DD X O <H,

min

by vVeeE,Vne A (3)
szenp'é‘pl'feSMel VeeE,Vlel 4
neA, peh,

ZE:MG'SC' Vlel (5)
ZZMeI+zzMeISUn VnEN—{Sink} (6)
eeE lely, ecE el

0< M, <|A]f, VecE,vlel (7
E .
ZzMel'Esent+zzMel'Erecv+gS_ VnEN—{Slnk} (8)
ecE lel}, ecE lel, T
E max E,
neN—{Sink} 1 1“ <T=< f 1 neD f (9)
—. . = - . e 7" ( Ecent T Ereoy +min e Eeent ¥
2 [Un +eezsn fe Esem + 2 [Un eng" fej Ereu:v +é ﬂEN{Sin}*DEEZB;\ ‘D‘ ( ) neD g;: €

Explanation of Constraints
These three constraints, which includes the hop constraint, means that a sensor
D@)B) | _
node n in A, only selects one path to the Sink.
This constraint describes how {M_} are calculated. Once the routing,
(4) i.e.{X,,}, of the entire network is determined, the flow caused by events will
move along the selected paths, so that {M_,} can be obtained.
(5) This constraint is the link capacity constraint on each link |.
(6) This constraint is the nodal capacity constraint on each sensor node n.
This constraint describes {M}’s bounds. Where the {M_}’s lower bounds
7 are straightforward, while their upper bounds are limited by |A§| and f,,
because link | is at most shared by |A3| different paths from event e.
This constraint describes that the system lifetime T is less or equal to the all
©) lifetime of sensor node n.
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(9)

This constraint describes T ’s bounds. Due to the nodal capacity constraint we
can calculate each sensor node’s minimal lifetime and the T ’s lower bound
equals the lifetime of the sensor node which has the minimal minimal-lifetime
among all sensor nodes. In addition, due to the sensor nodes which are one hop
away from the Sink are much more critical than other sensor nodes to the
system lifetime, they are in chare of relaying almost all flows on the entire
network to the Sink, so we can obtain the T ’s upper bound by finding the

sensor node in D has the maximal lifetime.

Table 2-5 Explanation of Constraints for Model 1
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2.2 Model 2

This model describes the time interval from the point that a sensor

network starts its operation until the point that the information about the

occurrence of any of events can not be delivered to the Sink, and it satisfies our

modified definition. We can use this model to obtain the system lifetime and

satisfy our modified definition of system lifetime.

2.2.1 Problem Descriptions

Given:

A set of events.

A set of nodes including sensor nodes and the Sink.

A set of links in the nodes.

A set of out-links and in-links of each sensor node.

A set of sensor nodes for each event, so that each of the sensor nodes not only
senses the event, but also has at least one path to the Sink.

A set of events for each sensor node, so that the node not only senses each of the
events, but also delivers information about the occurrence of these events to the
Sink.

Number of flows per unit time caused by each event.

A set of predefined candidate paths from each sensor node to the Sink.

A set of sensor nodes on each path.

Link capacity on each link and nodal capacity on each sensor node.

Hop constraint for each event.
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® Initial energy of each sensor node.
® Energy needed for each sensor node to execute its routine operations, as well as

sending and receiving a unit of flow.

Objective:

To maximize the system lifetime of wireless sensor networks.

Subject to:

® Coverage constraint — information about the occurrence of any of the events can
be delivered to the Sink by sensor nodes.

® Routing constraint — for each sensor node, once it senses the occurrence of an
event, it only selects one path to send data back to the Sink.

® Hop constraint — for each event, paths which are selected to deliver the
information about the occurrence of that event are limited by a predefined hop
constraint to satisfy the time-critical demand of some applications.

® Link capacity constraint — the total flow on each link can’t exceed its capacity.

® Nodal capacity constraint — the total flow passed through a sensor node can’t

exceed its capacity.

To determine:
1. Routing of wireless sensor networks
2. Total flow on each link which is caused by events.

3. Maximal system lifetime of wireless sensor networks.

Table 2-6 Problem Description for Model 2
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2.2.2 Notations

Given Parameters

Notation | Description
E The set of events.
N The set of sensor nodes and the Sink.
L The set of links in N.
L The set of out-links of sensor nodev. ( Vve N —{Sink} )
L The set of in-links of sensor node v. ( Vv e N —{Sink} )
A The set of sensor nodes that any one of them not only senses event e, but has at
least one path to the Sink. ( VeeE )
B, The set of events that can be sensed and the information about the occurrence
of each of them, that can be delivered to the Sink by sensor node v.
( Vve N —{Sink})
f, Number of flows per unit time caused by the occurrence of evente. ( Vee E )
P, The set of W predefined paths from sensor node n to the Sink.
(Vne N —{Sink} )
S, 1 if path p uses link I; otherwise 0. &, ={L,0} (VpePR,, Vlel )
v, The set of sensor nodes on pathp. (VpeP,,Vne N —{Sink} )
C Flow capacity on link |, the upper bound of flow per unit time on link I.
(VlelL)
U, Flow capacity on sensor node v, the upper bound of flow per unit time on
sensor node v. ( Vv e N —{Sink} )
H Hop constraint for evente. ( Vee E )
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E, Initial energy of sensor node v. ( Vve N—{Sink} ) (E,>0)

Eeont Energy consumption of a sensor node when sending a unit of flow.

E .. Energy consumption of a sensor node when receiving a unit of flow.

€ Energy consumption per unit time of a sensor node when operating some

routine operations, such as sensing. ( &>0 )

Table 2-7 Notation of Given Parameters for Model 2

Decision Variables

Notation | Description
Xenp 1 if path p is selected from event e through sensor node n to the Sink, otherwise
0. (VeeE,vneA,vpeP)

M., The total flow per unit time on link I, caused by the occurrence of event e.
(VeeE,VlelL)

T, Lifetime of sensor node v. ' ( Vv e N —{Sink} )

T System lifetime.
Table 2-8 Notation of Decision Variables for Model 2

Formulation

Objective function:

subject to:

ZIP3 =maxT (IP3)
Xopp =1
F;Pn p vVeeE,Vne A (1)
Xenp =0 0r1 vVeeE,Vne A,VpeP (2
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zzxenp'5pISHe VeeE,VneA& (3)

peP, leL
zzxenp'é‘pl'fezMel VveeE,Vlel 4)
neA, pePR,

ZE'V'e'SCl Vel )
ZZMeI+ZzMeISUV VVEN—{Sink} (6)
eeE lel} ecE lel

0<M, <|A]-f, VecE,vlel (7
T, = S
' z Z Mel ’ Esent +z Z Mel ’ Erecv te& vweN _{Smk} (8)
ecE lel} eeE lel,
5, <T, << 5
. + _ H
E' Uv + z fe . Esent +1' Uv - z fe : Erecv +& eeB ) = ¢ VV © N {Slnk} (9)
2 eeB, 2 eeB, '
T< nerE%)e(Pn Xenp I;IT!\I/? Tv Yee E (10)

Explanation of Constraints

These three constraints, which includes the hop constraint, means that a sensor

MAE) _ _
node n in A, only selects one path to the Sink.
This constraint describes how {M,} are calculated. Once the routing,
(4) i.e.{X,,}, of the entire network is determined, the flow caused by events will

move along the selected paths, so that {M_} can be obtained.

(5) This constraint is the link capacity constraint on each link 1.

(6) This constraint is the nodal capacity constraint on each sensor node v.

This constraint describes {M}’s bounds. Where {M_}’s lower bounds are

0 straightforward, while their upper bounds are limited by |Aq| and f,, because

link | isat most shared by |A,| different paths from event e.
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(8)

This constraint describes how {T, } are calculated. For each sensor node v, its
lifetime T, equals its initial energy divided by its total energy consumption per

unit time.

©)

This constraint describes {T,} ’s bounds. Their upper bounds are

straightforward, and their lower bounds can be calculated by considering the

nodal capacity for each sensor node v.

(10)

This constraint describes the definition of the system lifetime. At first, we group

all sensor nodes into several groups by different event e. Further, we divide
each group into |AE| subgroups. The lifetime of each subgroup equals the
minimal lifetime of sensor node in each subgroup, and the lifetime of each group

equals the maximal lifetime among the subgroups that belong to it. Finally, the

system lifetime is the maximal lifetime among the groups.

Table 2-9 Explanation of Constraints for Model 2

For the convenience of later problem solving, the preceding formulation can be

reformulated as follows, where K and O are constants.

Let S,,=minT, ,VeeE, VneA, VpeP,

VeVp

Let R, = nErE%)E(Pn Xenp “Serp 1 VEEE
Formulation

Objective function:

Zp,=maxT =) K-R+> > > 0-S,, (IP4)

ecE ecE neA, pePR,

For the convenience of later problem solving, we further transform the

problem (IP4) into another equivalent minimization problem as follows.
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Z s =min-T +ZK-R6—ZZ ZO.Senp

ecE ecE neA, pePR,

subject to:

D Xy =1

peP,

Xenp =0 011

Z ernp '5pl < He

peP, leL

Z ernp'é‘pl ) 1te :Mel

neA, pehR,

>M, <C,

ecE

ZzMel +ZZMeI 2

ecE lel eeE leL;

0< M, <|A] f,

ZZMeI 'Esent+ZZMel 'Erecv+€_

eeEIeL\*/ EEEleL;
Ev
U * Z f sent U Z f recv
eeB, ecB,
Senp =T,
min E, <s

VeV enp VeV
[U + Z f J SEnt (U Z f J TGCV [
eeB, ecB,

X - Surp < R,

enp  “enp

max | min v <R < max

neA, peR, | vev, neA, peR, | vev,
;'[Uv+z feJ'Esent+;'[Uv_z fe]'Erecv+g [
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(IP5)

VeeE,VneA

vVeeE,Vnhe A,

VpeP,

VeeE,VneA

YeeE Vlel

VlelL

vv e N —-{Sink}

VeeE Vlel

vv e N —-{Sink}

vv e N —{Sink}

vVeeE,Vnhe A,

VpeP, VveV,

vVeeE,Vhe A,

VpeP,

VeeE,Vhe A,

VpeP,

YVee E

1)

()

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)



T<R, VeeE (14)

min{ max | min E, <T <min< max | min E, (15)

ecE | neA peR,| vev, ecE | neA peR,| vev,
;[Uv + Z fe]‘ Esent +;'(Uv - Z feJ' Erecv té [ fe + Z feJ' Esent +é

eeB, ecB, eeB,
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Chapter 3 Solution Approaches

3.1 Lagrangean Relaxation Method

In the 1970s [5], Lagrangean Relaxation method was used for scheduling
and solving general integer programming problems. It is a flexible approach
that can provide proper solutions for many problems, and has become one of
the best tools for solving optimization problems such as integer programming,
linear programming combinatorial optimization, and non-linear programming.
The method has several advantages. For example, it can decompose complex
mathematical models in many different ways into some stand-alone

subproblems, which can then be solved optimally, using any proper algorithm

[5].

In addition, Lagrangean Relaxation allows us to determine the boundary
of our objective function, thus we can use it to implement heuristic algorithms
to obtain feasible solutions. It is a flexible solution strategy that permits
modelers to exploit the underlying structure in any optimization problem by
relaxing complicating constraints. This method permits us to “pull apart”
models by removing constraints and place them in the objective function with
associated Lagrangean multipliers. The optimal value of the relaxed problem is
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always a lower bound (for minimization problems) on the objective function
value of the problem. To obtain the sharpest lower bound, we need to choose
the best multiplier (Lagrangean multiplier problem) so that the optimal value of
the Lagrangean subproblem is as large as possible. Although we can solve the
Lagrangean multiplier problem in a variety of ways, the subgradient

optimization technique is the most popular technique for dealing with the issue

[5116]

Figure 3-1 illustrates Lagrangean Relaxation, while Figure 3-2 gives a

detailed explanation of Lagrangean Relaxation procedures.

‘ Primal Problem J

L [iF

‘ Lagrangian

Relaxation
Problem

. L] [ ] L] L] L] L [

Sub-Optimal Sub-Optimal

Figure 3-1 An Illustration of Lagrangean Relaxation
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1. Find Z’ (initial feasible solution), LB=  -=

Initialization K =5t -0k
3. Set IterationCount = 0, ImproveCounter = 0,

l MaxlIterationCount, MaxImproveCount

Solve Lagrangian 1. Optimally solve each subproblems
Dual Problem 2. Get decision variables

Get Primal 1. Get primal feasible solution (UB) if it does
not violate relaxed constraints

SOlLithn 2. tuning by proposed heuristic, otherwise
1. Check LB, If Z,(u*) > LB then LB = Z,(u¥)
Upcleli Eoummek {2. Check UB, If UB< Z' then Z' = UB

A djust . IF ((IterationCount > MaxIterationCount)
Multipli or uB-LB)/tB<s ) STOP
LRI ICR . IterationCount ++

1. IF ImproveCount
> MaxImproveCount
A=2%/2 ,ImproveCount =0
2. ImproveCount ++

3. Renew £, u, STOP

Figure 3-2 Lagrangean Relaxation Procedures
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3.2 Model 1

3.2.1 Solution Approach

By using Lagrangean Relaxation method, we can transform the primal
problem (IP2) into the following Lagrangean Relaxation problem (LR1) where

constraints (4), (6) and (8) are relaxed.

3.2.2 Lagrangean Relaxation

For a vector of non-negative Lagrangean multipliers, a Lagrangean
Relaxation problem of IP2 is given by optimization problem (LR1):

Zy(a, B,y)

=min-T+> Y a, (Z DT Xeg O Hif —Md]

ecE leL neA, pep,

+ > ﬂn-[zz Mg+ > My —Un]

neN—{Sink} ecE lel;, ecE el

t z 7H'LZZM9I'Esent+zzMel‘Erecv+g_%J (LRl)

neN—{Sink} eckE lel} ecE lel,

subject to:
pezpnxenfl VeeE,Vne A (1)
Xgp =0 0r1 VeeE,Vne A ,VpeP, (2)
F;Pngxenp‘é‘pISHe VeeE,Vne A 3)
2 M, <G Vel (5)

ecE
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0<M, <|A| f, VeeE,Vlel (7

E, max E,

neD
(9)
U + Z f j sem [U z f j Z Z f ‘D‘ Esem +Erecv +m|n Z f Esent

ecB, ecB, neN—{Sink}-D eeB,

IA
_|
IA

min
neN—{Sink} l [

Where o, B, y are the vectors of {«,}, {8.}, {r,} and o, B, y are
the Lagrangean multipliers and «, S, » >0. To solve LR1, we can

decompose it into the following three independent and easily solvable

optimization subproblems.

Subproblem 1-1 (related to decision variable T)

Zsubl—l (7)
. E
=min-T- > =
neN—{Sink} i
En
=maxT+ > ==
neN—{Sink} T
subject to:
E max E,
n mg k} 1 " <T=< ne (9)
o - f, - +m|n f,-E
[U +eng f ] sent [U eézB f ] recv neN{éﬁ} DeEZB: ‘D‘ Sem recv GEZB sem

The graph of this subproblem is a convex curve. The maximal value occurs at

an intersection point on either side of T ’s bound. Namely, either

T= min E, or

neN—{Sink} 1 (U N Z ¢ J . {U Z ¢ J -

eeB, eeB,
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max E,
T — neD
Z fe '||::L)|'(Esent + Erecv)+q]€i§ Z fe : Esent +é&
eeB,

neN—{Sink}-D eeB,

can obtain the maximal value.

Subproblem 1-2 (related to decision variable x,, )

Zsubl—z (0{)

=min) > > > oy X Sy -

ecE neA, peP, leL

=minY > > x> (- f,)-5,

ecE neA, peP, leL
subject to:
F;anenﬁl VeeE,Vne A (1)
Xep =0 0r1 VeeE,Vne A ,VpeP, (2
’;Pnéxenp'éplgHe VeeE,Vne A (3)

This subproblem is composed of |E| hop constrained shortest path

problems for each event e, where ¢, - f, is the link cost of link 1. By using

e

the Bellman-Ford algorithm, we can optimally solve these problems, and then

properly set {x, } tol,ifpath p isselected, otherwise setitto 0.

Subproblem 1-3 (related to decision variable M)

Zsub1—3 (0{, ﬂv }/)

=Y Y M+ Y A -[ZZ M, +ZZMe|]

ecE lel neN—{Sink} ecE lel} eek lel,
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+ > 7 -Lzz Mg Egu+ D M- Ej

neN—{Sink} eck lel} eckE lel
=min—z Z Zae|'Me|+Z Z Z(ﬂn—'_yn'Esent)'MEI
ecE neN—{Sink}IeL} ecE neN—{Sink} L}

+Z Z Z(ﬂn+7n'Erecv)'Mel

ecE neN—{Sink}IeL;

=minz Z Z(—ae|+ﬂn+7n'Esent)‘Mel+z Z Z(ﬂn—i_}/n'Erecv)'Mel

ecE neN—{Sink}leL} ecE neN—{Sink}IeL;
subject to:
ZEMG'SC' Vliel (5)
0<M, <|Alf, VeeE,Vlel (7)

To solve this subproblem we first need to determine all the coefficient
values of {M_}. For each event e, by putting the start point sensor node of
link | into the first term of this subproblem’s objective function and then
putting the end point sensor node of link 1 into the second term of this
subproblem’s objective function, we'can obtain the coefficient value of M,
on link |. Thus, we can calculate all the coefficient values of {M_}. We can
then determine {M,}’s values to obtain the optimal solution to this
subproblem. If a M, ’s coefficient value is positive, we set its value to O,
otherwise we sort the M, s by their coefficient values from small to large.
Later, we will determine these M, ’s values in this order, and to further satisfy

constraint (5), i.e. ZM <C, foreach link |, we determine the M, ’s value

el —
ecE

one by one. Before determining each of them, we should check the residual

capacity on link I. If it is greater than or equal to |Ae| f,, we set its value to

|A|- f,, then decrease the residual capacity on link I by |A|-f,, otherwise
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we set its value to the remaining residual capacity on link |, and decrease the

residual capacity on link | to 0.

3.2.3 The Dual Problem and the Subgradient Method

According to the weak Lagrangean duality theorem [6], for anya, £,
>0, Z,(a,pB,y) isalower bound onZ,. The following dual problem (D1)
is then constructed to calculate the tightest lower bound.

Dual Problem (D1):
Z., = max Z,,(a, B.,7) (D1)

subject to:

vV
o

a, By

The most popular method for solving the 'dual problem is the subgradient

method [9]. Let g be a subgradient of Z, (a, f,7). Then, at the kth
iteration of the subgradient optimization procedure, the multiplier vector
7=(a,B,y) is updated by 7" =7* +t“g*. The step size t* is determined

Zo,—24(1) .. ;
—'”Hgkﬁ; ¥~ . Z,, is the best upper bound on the primal

objective function value after the k th iteration obtained from heuristic

by t“=2

solutions. A, is a constant between 0 and 2.
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3.3 Model 2

3.3.1 Solution Approach

By using Lagrangean Relaxation method, we can transform the primal
problem (IP5) into the following Lagrangean Relaxation problem (LR2) where

constraints (4), (6), (8), (10), (12) and (14) are relaxed.

3.3.2 Lagrangean Relaxation

For a vector of non-negative Lagrangean multipliers, a Lagrangean
Relaxation problem of IP5 is given by optimization problem (LR2):

Zy,(a,B,7,0, 1, 0)

=min-T+>Y K-R->> >'0-S,,

ecE ecE neA, ‘peR,

+> > ay '(Z D Koy Oy £ —ME,J

ecE leL neA, pep,

> A{ZEmoEzm-u)

veN—{Sink} ecE lel ecE lel,

E,
SO b SUNCRES 3y CRRTR=Y

veN—{Sink} ecE lel ecE lely

+ZZZZ ean'( enp v)

ecE neA, pePR, vev,

+ZZ z'uenp ( enp en _Re)

ecE neA, pePR,

+> @,-(T-R,) (LR2)

ecE

subject to:
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D Xy =1

pehR,

Xenp =0 0r1

DD X O < H,

peP, leL

> M, <G,

ecE
0<M, <|A| f,

E

\

[ + z f J sent T {U Z f ] rev T
eeB, e<B,

E

min v <S_. <min

veV, ¥~ veV,
(U + z f J sent T [U z f J recv 7 [
eeB, e<B,

max | min v

neA, peR,| vev, 1
E' Uv+zfe 'Esem+§' Uv_zfe 'Erecv+g

min{ max | min Y

<R, £ max |min

neA peR, || vev,

ecE | neA peR, | veV, % (U + z f j sent [U Z f } reCV

eeB, eeB,

|

<T <min

f+> f,

eeB,

)

E. . +te&

sent

max | min
ecE [ neA peR,| vev, [

VeeE,Vne A

VeeE,Vne A,

VpeP,

VeeE,Vne A

Vlel

VeeE,VlelL

Vv e N —{Sink}

vVeeE,Vne A,

VpeP,

YVee E

E

fo+> f] E..t+é

eeB,

Where o, B, 7, 6, u and o are the vectors of {o,}, {6}, {»}.

0.0} {#teny} and {@,}respectively; o,

Lagrangean multipliers; and g, 6, u,

B, 7, 0, u and o are the

w >0. To solve LR2, we can

decompose it into the following three independent and easily solvable

optimization subproblems.
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neA, pek,| vev,

Subproblem 2-1 (related to decision variable T, R))
Zsubzfl (,U, a))

=min-T+> K-R->> > u R+ 0 (T-R)

eckE ecE neA, pePR, ecE

= min(Za)e —1)-T +Y> R, -(K =D Heny —a)eJ
ecE ecE neA, pepk,

subject to:
. E . E
max | min ¥ <R, < max |min ¥ VYeec E (13)
1 1 neA, peP, | VeV,
[Uv + z fej' Esent +'[Uv - z fej' Erecv +& ( fe + z fej' Esem +&
2 ecB, 2 eeB, e<B,
. E . . E
max_| min v <T <min{ max_ | min v (15)
ecE | neA, peR,| veV, 1 1 ecE | neA peR,| vev,
'[Uv+ Z fe]' Esenl +'[Uv T Z fe]' Erecv +& (fe + Z fej' Esent +é&
L 2 eeB, 2 eeB, eeB,

This subproblem can be optimally solved by the following steps:

1. First, determine R,’s value for each event e. If its coefficient value

[K—Z D" ey — @ jzo , then we set R ’s value to
neA, peP,
: E, ; otherwise, we set its
max | min

neA, peR, | vev,
;[Uv + z feJ' Esent +;'[Uv - z fe]' Erecv te

eeB, eeB,

. E
valueto max | min

v
neA peR, | vev,
(fe +> fe}- E,.+¢

eeB,

2. To determine T ’s value. If its coefficient value (Zwe_ljzo, we set its

eckE

43



value to . . E,
min< max | min

ecE [ neA peR, | veV,
;(Uv + z fej. Esem +;'[Uv - Z feJ. Erecv +é

eeB, eeB,

otherwise, we set its value to E,

min{ max | min
ecE | neA peR, | vev,
fo+ D f, | Equte
eeB,

Subproblem 2-2 (related to decision variable x, , S,.)

Zsub2—2 (a1 9, /u)

=min=22, 2 08yt 2,2, 2 Koy 2 (e 1),

ecE neA, peP, ecE neA, peP, leL
IPIDIDI LD IDID Sy e L
ecE neA, peP, vev, ecE neA, pePR,

= mmzz Z[Xenp 'Z(ael : fe)'apl +{ﬂenp 'Xenp L zeenpv _O}'Senp]

ecE neA, pep, leL veV,

subject to:
Xen :1
gp:n P VeeE,VneA (1)
VeeE,Vne A
Xenp =0 011 (2)
VpeP,
Xep *O0p < H,
;; p ol VeeE,VheA (3)
E E vVeeE,Vne A,
m\i/n . <SS < m@n < (12)
" ;-(UVJrZfeJ-Eseer;(Uv—zfe}E,echrg p (fe+2fej-Esem+g VpeP,
eeB, eeB, eeB,

This subproblem can be optimally solved as follows:

First, we should determine {x,,}’s values. To solve {x,,}, we don’t have to
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try all combinations of {x, }. It is considerably costly. Thus, we further

decompose this searching problem into »'|A| easily solvable searching

ecE

subproblems, after which, due to the constraint (1) and the predefined W
candidate paths for each sensor node, we only need to try W combinations to
solve each searching subproblem. To determine the best combination to each

searching subproblem, we should choose the combination that makes

Z( enp Z(ael f) 5pl+(:uenp Xen +Z enpv 'Sean the smallest. With
peP leL VeV,

VeV,

regard to S, ’s value, if its coefficient value |z, X, + > G — ]

E

3

we set its value to min

i {u +ij j o Lu ij |

eeB eeB,

E

v

otherwise, we set its value to min

VeV,
(f + Z f J sent

eeB,

Subproblem 2-3 (related to decision variable M,)

Zsub2—3 (a’ ﬂ’ 7/)

T ﬁv.[zzMe.@zMe.]

ecE leL veN—{Sink} ecE lel} ecE leL;

+ > VV'(ZZ Mg Egu+ . D M, E]

veN —{Sink} ecE lel eck lel,
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=min—z Z Zae,-Me|+z Z Z(ﬂv+7v'Esem)'Mel

ecE VEN{Sink}leL:; ecE VeN—{Sink}IeL\*/

+Z Z Z(ﬂv+7/v'Erecv)'Mel

ecE veN—{Sink} leL,

=minz Z Z(—ae|+ﬁv+7v'Esent)'Mel+Z Z Z(ﬁv—i_yv'Erecv)'Mel

ecE VeN{Sink}IeLc ecE VeN—{Sink}IeL\’/
subject to:
2 My=C viel (5)
0<M, <|A|f, VeeE,VlelL (7)

To solve this subproblem we first need to determine all the coefficient
values of {M_}. For each event e, by putting the start point sensor node of
link | into the first term of this subproblem’s objective function and then
putting the end point sensor node of link I into the second term of this
subproblem’s objective function, we can obtain the coefficient value of M,
on link |. Thus, we can calculate all the coefficient values of {M_}. We can
then determine {M,} ’s values to obtain the optimal solution to this
subproblem. If a M, ’s coefficient value is positive, we set its value to O,
otherwise we sort the M, s by their coefficient values from small to large.
Later, we will determine these M, ’s values in this order, and to further satisfy

constraint (5), i.e. ZM <C, foreach link I, we determine the M., ’s value

el —
ecE

one by one. Before determining each of them, we should check the residual

capacity on link I. If it is greater than or equal to |Ae| f,, we set its value to

|A|- f,, then decrease the residual capacity on link I by |A|-f,, otherwise

we set its value to the remaining residual capacity on link 1, and decrease the

residual capacity on link | to 0.
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Subproblem 2-4 (related to decision variable T,)
Zsub274 (7/’ 0)

e S 5——2222 o

veN—{Sink} ecE neA, peP, veV,
E
_maxzzzz enpv Z 7v'.|._v
ecE neA, peR, veV, veN—{Sink} v
subject to:
. +¢ —{Si
;EUV + z feJ' Esent (U Z f ] recv eeZBV ) = veN {Slnk}
eeB, eeB,

To solve this subproblem, we need to obtain T,’s maximal value for each

sensor node v. This occurs at an intersection point on either side of T,’s

bound. Either 5, or
[U +; z f j sent (U Z f ) recv
eeB, eeB,
E, can obtain T, ’s maximal value for each sensor node v.
Z fe ' Esent +é&
eeB,
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3.3.3 The Dual Problem and the Subgradient Method

According to the weak Lagrangian duality theorem [6], for any g, @,
u, o 20, Z,,(a,p,7.0,u,0) is a lower bound onZ,,. The following
dual problem (D2) is then constructed to calculate the tightest lower bound.
Dual Problem (D2):
Zp, = maxZ,,(a, B.,7,0, 1, ®) (D2)
subject to:

B0, u,w

\%
o

The most popular method for solving the dual problem is the subgradient
method [9]. Let g be a subgradient of Z,,(a, f8.7,0, i, ®). Then, at the kth
iteration of the subgradient optimization procedure, the multiplier vector
7=(a,p,7,0, u,0) is updated by 7z*?=7z¥+t“g“. The step size t* is
Zps =24, (m)

K 2
|o*|

primal objective function value after the kth iteration obtained from heuristic

determined by t* =4, . Z, is the best upper bound on the

solutions. A, is a constant between 0 and 2.
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Chapter 4 Getting Primal Feasible

Solutions

By using Lagrangean Relaxation and the subgradient method as our tools
to solve these subproblems, we not only obtain a theoretical lower bound of
primal feasible solution, but also get some hints to help us find our primal

feasible solution in each iteration of solving the dual problem.

Since some constraints of the primal optimization problem are relaxed by
Lagrangean Relaxation, we cannot guarantee that the results of dual problems
will be a feasible solution to the primal problem. If the decision variables
calculated satisfy the relaxed constraints, then a primal feasible solution is
found. Otherwise, a modification to such infeasible primal solutions is

necessary to obtain primal feasible solutions.

Therefore, it is necessary to apply additional heuristics to obtain a primal

feasible solution. We now give the details of the heuristics..
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4.1 Heuristic for Model 1

To find primal feasible solutions for Model 1, solutions to the Lagrangean

Relaxation problems are considered.

4.1.1 Reroute Heuristic

{Xep}» Which describe the routing of the entire network, is the most important

factor in finding primal feasible solutions. Once {Xx,,} are determined, {M_}

enp

can be calculated, and T can also be obtained. The solution set of {x, }

obtained from Subproblem 1-2 may not be a feasible solution to the primal
problem. We can make this infeasible solution become feasible by designing a

reroute heuristic. The steps of the reroute heuristic are as follows:

1. Based on {x,,}, we can calculate {M_}, then, check whether there are

enp
existing links which violate the link capacity. If so, these links are sorted
according to the amount of “exceeding flow” (aggregate flow — link
capacity), to find the most congested link, i.e. the link with the largest
amount of “exceeding flow”. If not, go to 7.

2. We analyze the flow on the most congested link to find which events the

flow is coming from. Then sort these events by the values of «, - f, in
Subproblem 1-2 and find which event has the largest value of « - f,.

There are probably several selected paths from the event with the largest

value of ¢, - f, passing through the most congested link. We remove the

selected path which has the shortest lifetime sensor node on it, and decrease
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the flow from each link on that path by f,.

. We then reroute by using the Bellman-Ford algorithm. The link cost of the
congested link and the link which has the existing total flow on it, plus the
f,, are larger than its link capacity are set to infinite; other links’ costs
equal the existing total flow on them. By setting link cost in this manner,
we can guarantee that the rerouted path doesn’t make an additional link that
violates the link capacity, and thereby achieve the goal of effectively
balancing the flow on the entire network. Then check if the result of the

Bellman-Ford algorithm can successfully find a new path to replace the

removed path. If so, we update {x

enp

},and return to 1.

So far, {x,,} only satisfy the link capacity, but {x, } still have a

enp
probability to violate the nodal capacity. So we first check whether the

{X.p} can result in a node that violates its nodal capacity. If so, go to 5;

otherwise, we do find a feasible solution to the primal problem. Then we

can further calculate {M,} and obtain T by the feasible {x, }.

. We find the most congested node which has the largest amount of
“exceeding flow” (aggregate flow — nodal capacity) among all nodes.
And analyze the flow on the most congested node to find which events the
flow is coming from. Then find the event with the largest value of f,, and
randomly pick one selected path that passes through the congested node and
remove it.

. We then use the Bellman-Ford algorithm to reroute the removed path, in the
same way that the link cost is set in Step 5. Further, to avoid the rerouted

path causing another node to violate its nodal capacity, we check each node
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to see whether its existing flow on it, plus f, is larger than its nodal

capacity. If so, we set all its in-links’ costs to infinite. Then Check if the

result of the Bellman-Ford algorithm can successfully find a new path to

replace the removed path. If so, we update {x_._}, then return to 4.

enp

4.2 Heuristic for Model 2

To find primal feasible solutions for Model 2, solutions to the Lagrangean

Relaxation problems are considered.

4.2.1 Reroute Heuristic

The solution set of {x_} obtained from Subproblem 2-2 may not be a

enp

feasible solution to the primal problem. We can make this infeasible solution
become feasible by designing a reroute heuristic. The steps of the reroute

heuristic are as follows:

1. Based on {x

enp

}. we can calculate {M_}, then, check whether there are

existing links which violate the link capacity. If so, these links are sorted
according to the amount of “exceeding flow” (aggregate flow — link
capacity), to find the most congested link, i.e. the link with the largest
amount of “exceeding flow”. If not, go to 7.

2. We analyze the flow on the most congested link to find which events the
flow is coming from. Then sort these events by the values of «, - f, in

Subproblem 2-2 and find which event has the largest value of «, - f,.
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There are probably several selected paths from the event with the largest

value of ¢, - f, passing through the most congested link. We remove the
selected path which has the shortest lifetime sensor node on it, and decrease
the flow from each link on that path by f,.

. Then we check the remaining W —1 paths. If the path can satisfy the link
capacity constraint of each link on it after adding e f, to it, we put it into a

“feasible candidate paths” set; otherwise we omit it.

. We choose the path which has the largest value of S, in the “feasible

candidate paths” set to be the new selected path, then update {x,_} and

enp
return to 1.

. So far, {x,,} only satisfy the link capacity, but {x, } still have a

enp
probability to violate the nodal capacity, So we first check the {x,,}

whether can result in'a node that violates its nodal capacity. If so, go to 6,

otherwise, we do find a feasible solution to the primal problem. Then we

can further calculate {M,} and obtain T by the feasible {x, }.

. We find the most congested node which has the largest amount of
“exceeding flow” (aggregate flow — nodal capacity) among all nodes.
And analyze the flow on the most congested node to find which events the
flow is coming from. Then find the event with the largest value of f,, and
randomly pick one selected path that passes through the congested node and
remove it.

. Then we check remaining W —1 paths individually. If the path can satisfy
the link and the nodal capacity constraints of each link and sensor node on

it after adding f, to it, we put it into a “feasible candidate paths” set;
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otherwise we omit it.

. We choose the path that has the largest value of S, in the “feasible

candidate paths” to be the new selected path, then update {x,,} and return

to 5.
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Chapter 5 Computational Experiments

In order to prove that our heuristics are efficient, we implement two

simple algorithms to compare with our heuristics.

5.1 Simple Algorithm for Model 1 (SA 1)

We sort events from large to small according to their f, values. Then, in

this order, we select a path for each sensor node individually that can sense the

sorted event. We can select the paths, i.e. determine the values of {x, }, by

using the Bellman-Ford algorithm, where the link cost of each link 1 is the
inverse of its end point sensor node’s residual energy. Once we select a path for
a sensor node, we add flow on the selected path and update the relevant links’
costs. Before we select a path for another sensor node, however, we check if
each link | can satisfy the link capacity constraint after adding extra f, to it.
If not, we set its link cost to infinite. We further check if each sensor node can
satisfy the nodal capacity constraint after adding extra 2-f, to it (flow-in +

flow-out); otherwise, we set all its in-links’ costs to infinite.
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5.2 Simple Algorithm for Model 2 (SA 2)

We select a path for a sensor node by checking if path p has the largest

value of S, = within the predefined W candidate paths for the sensor node. If

so, we set its x,,, value to 1; otherwise we set it to 0. Once we select a path

for a sensor node, we add flow on the selected path and update the relevant

S, value. We then select a path for another sensor node.

enp

5.3 Parameters and Scenarios of the Experiment

To test the performance of these algorithms, we design three experimental
scenarios: (1) 25 events and 25 sensor nodes; (2) 25 events and 50 sensor nodes;
(3) 25 events and 100 sensor nodes. All events and sensor nodes are
randomized in a 50m x 50m sensor field, and the Sink is located 5m away
under the sensor field. The sensing radius and communication radius of an
individual sensor node are 10m and 20m respectively. These parameters and
scenarios for Model 1 and Model 2 used in our experiments are listed in Table

5-1 and Table 5-2 below respectively.

Parameters Values

Firs stage: 2000
Number Of Iterations
Other stages: 1000

Non-improvement Counter Scenario 1: 50
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Scenario 2: 70
Scenario 3: 90
Initial Upper Bound SA1l
Initial Scalar Step Size 2
Initial Multipliers 0
f, (kbit/sec) (0,2]
C, (kbit/sec) 20
U, (kbit/sec) 100
H, (hop) 5
E. ) 1
E... (J/kbit) 0.9x10™
E.. (J/kbit) 0.5x10™
& (Jlsec) : 0.1x10™

Table 5-1 Experimental Parameters for Model 1

Parameters Values
Number Of Iterations 1000
Non-improvement Counter 100
Initial Upper Bound SA2
Initial Scalar Step Size 2
Initial Multipliers 0
f, (kbit/sec) 0,2]
C, (kbit/sec) 20
U, (kbit/sec) 100
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H, (hop) 5

E, () 1
E.. (J/kbit) 0.9x10"
E., (I/kbit) 0.5x10™
& (J/sec) 0.1x10™
Scenario 1: 5
W  (path)
Scenario 2: 10
K 1
O 9

Table 5-2 Experimental Parameters for Model 2

The initial upper bounds for Models 1 and 2 are set according to the result
of each model’s respective simple algorithm. If the simple algorithm for Model
1 can not find a feasible solution to the primal problem, we set it to O.

Meanwhile, if the simple algorithm for Model 2 can not find a feasible solution

to the primal problem, we setitto —T+> K-R,=> > > 0-S,  where

ecE ecE neA, pePR,

. . E
T =min{ max | min &

ecE | neA peR,| vev, 1 1
2'(Uv+z fej'Esent—i_Z'[Uv_z fej'Erecv+g

eeB, eeB,

. E, foreach ecE and
R, = max | min

neA, peR, | vev,
fo+ > f, | Eqq+e

eeB,

S = min E, for all {S,}. The

enp VeV,
’ ;‘(Uv_l_zfeJ'Esem-{_;'{UV_zfej'Erecv'i—g

eeB, eeB,

multipliers are all set to 0 initially.
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The {f,} are randomized in (0,2] kbit/sec, then the {C}, {U }( or

{U,}) and {H_} are 20 kbit/sec, 100 kbit/sec and 5 hops respectively, where
the values of {C,} refer to the standard of IEEE802.15.4 (20, 40, 256 kbit/sec).

All sensor nodes start with an initial energy of 1J, then E E., and & are

sent ! recv

respectively set to 1.4x107*J/kbit, 0.5x10*J/kbit and 0.1x107*J/sec, where

values of E_. and E__ are calculated by adopting a simple model from [7]

sent recv

(see Figure 5-1 and Table 5-3). Thus, to transmit a k bit message a distance d

k+e -k-d?, and

elec amp

using this radio model, the radio expends: E, (k,d)=E

to receive this message, the radio expends: E,, (k) = E,.. -k . In Model 2, the

elec
W candidate paths from each sensor node are set to 5 and 10 in Scenario 2 and
Scenario 3 respectively, and the constants K and O in the objective function

are setto 1 and 9.

Ep(d)

pacet] Tmusm_lt — Tx Amplifier [
Electronics
:E'el.c-:* k o En_'u;* k. ’ d_ d
k bit packet 3 |
— Receive i
i | Electronics
Ee]e:.-‘d k

Figure 5-1 First Order Radio Model [7]

| Operation | Energy Dissipated |
Transmitter Electronics (K7, _cer)
Receiver Electronics (Egy_efee) 50 nJ/bit
(ETf—é'fo‘ = ERJ:—&'IH(- E= Eﬁlé'r.')
Transmit Amplifier (€amp) 100 pJ/bit/m?

Table 5-3 Radio Characteristics [7]
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5.4 Experimental Results

5.4.1 Experimental Results for Model 1

The experimental results obtained from seven randomly generated cases
for each scenario for Model 1 are listed below. The SA; value means the system
lifetime obtained from the first stage of Model 1 using SA 1 and equals the
system lifetime of the original definition. The LR, value is the optimal system
lifetime obtained from the first stage of Model 1 using LR. The gap defined by
(UB-LB)x100% , where UB and LB is an optimal solution to the primal
problem (IP) and dual problem (D), respectively, in the LR process. Gaps is the
gap obtained from the first stage of Model 1. The improvement ratio of SA; is
calculated by (LR1- SA1)/ SA1. The LRy is the system lifetime of our modified
definition obtained by using LR, and the system lifetime improvement ratio is

calculated by (LRt - LR;)/ LR;.

Scenario 1:
Case | SA; LRy Gap; SA; Imp. ratio LRt T Imp. ratio
1 385.6 495.2 9.8% 28.4% 496.7 0.3%
2 765.2 1056 33.1% 38.0% 1188 12.5%
3 417.1 | 7027 | 30.5% 68.5% 785.2 11.7%
4 670.6 | 752.4 | 20.8% 12.2% 752.4 0.0%
) 408.5 480.9 12.0% 17.7% 491.5 2.2%
6 333.6 624.2 24.3% 87.1% 736 17.9%
7 357.7 501.7 15.49% 40.3% 522.5 4.1%

Table 5-4 Experimental Results of Scenario 1 for Model 1
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Scenario 2:

Case | SA; LR; Gap; | SAilmp.Ratio| LRy | T Imp.ratio
1 360.7 500.8 28.6% 38.8% 566.9 13.29%
2 364.1 487.5 28.6% 33.9% 572.1 17.3%
3 363.5 473.3 16.8% 30.2% 915.7 9.0%
4 327.4 413.4 26.3% 26.3% 444.9 7.6%
5 370.4 541.7 19.1% 46.2% 604.6 11.6%
6 378.7 426.6 26% 12.7% 474.9 11.3%
7 358.2 472.4 22.3% 31.9% 495.7 4.9%
Table 5-5 Experimental Results of Scenario 2 for Model 1
Scenario 3:
Case | SA; LRy Gap; . SA: Imp. Ratio | LRy Imp. ratio
1 3351 | 3885 | :30.2% 15.9% 476.4 22.6%
2 366.3 | 3979 | 36.0% 8.6% 444.6 11.7%
3 291.0 351.1 13.6% 20.6% 359.6 2.4%
4 355.2 386.8 30.2% 8.9% 461.2 19.2%
5 379.0 | 428.4 | 33.8% 13.0% 549.1 28.2%
6 3427 | 3873 | 31.7% 13.0% 406.9 51%
7 376.7 416.6 28.0% 10.6% 489.3 17.5%

Table 5-6 Experimental Results of Scenario 3 for Model 1
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5.4.2 Experimental Results for Model 2

The experimental results obtained from seven randomly generated cases

for each scenario for Model 2 are listed below. The SA value means the system

lifetime obtained from Model 2 by using SA 2, and the LR value is the optimal

system lifetime obtained from Model 2 using LR. The Gap defined by

(UB-LB)x100% , where UB and LB is an optimal solution to the primal

problem (IP) and dual problem (D), respectively, in the LR process. The

improvement ratio of SA is calculated by (LR- SA)/ SA.

Scenario 2:
Case SA LR Gap SA Imp. ratio
1 399.7 447.1 82.0% 11.9%
2 0 383.9 80.1% © %
3 528.8 528.8 78.2% 0.0%
4 625.1 670 76.4% 7.2%
5 401.6 474.4 73.4% 18.1%
6 397.2 461.7 82.2% 16.2%
7 392.7 464.7 83.0% 18.3%

Table 5-7 Experimental Results of Scenario 2 for Model 2

Scenario 3:
Case SA LR Gap SA Imp. ratio
1 3814 419.4 76.8% 10.0%
2 365.3 374.7 81.9% 2.5%
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3 0 426.3 82.7% 0 %
4 372 404.8 82.9% 8.8%
5 423.1 482.9 79.6% 14.1%
6 500.8 500.8 76.6% 0.0%
7 438.2 466.5 80.9% 6.5%

Table 5-8 Experimental Results of Scenario 3 for Model 2

The average system lifetimes of our modified definition obtained from

different scenarios for Models 1 and 2 are listed in Table 5-9 and depicted in

Figure 5-2.
Model 1 Model 2
LRy LRt LR
Scenario 2 473.7 525.0 490.1
Scenario 3 393.8 455.3 439.3

Table 5-9 Comparison of Average System Lifetimes of Different Models

Average System Lifetime

‘ —&— Scenario 2 —#— Scenario 3 ‘

600

500 |

400 |

Ms\o 490.1
M\- 4393
8

300

200

LR,

LRy

LR

Figure 5-2 Comparison of Average System Lifetimes of Different Scenarios
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5.4.3 Computation Time

Average Computation Time (sec)
Model
Scenario 1 Scenario 2 Scenario 3
Model 1 178.1 481.7 2388.6
Model 2 X 131.4 1580.1

Table 5-10 Computation Time of Different Models

According to Table 5-10, the computation times increase when the number
of sensor nodes scattered in a sensor field increase. Obviously, the computation
times in Scenario 3 are much higher than in Scenario 2. This is because, in
Model 1, we have to execute more stages when the number of sensor nodes
grows. In Model 2, however, we have to use an exhaustive search method to
solve Subproblem 2-2. As there are more candidate paths for each sensor node
to the Sink once the number of sensor nodes grows, the needed computation

time increases rapidly.
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5.5 Discussion of Results

According to our experimental results, it is clear that the results of LR are
much better than SA. This is because we do not use any informative parameters
in SA. In LR method, however, we fully use these informative parameters,
which are obtained from solving the subproblems of LR. We use multipliers as
the link cost when trying to reroute or find a better path to effectively achieve
the purpose of balancing the total flow on the entire network. The values of
multipliers are tuned by gradient method iteration by iteration and clearly
respond to the situation of an individual link. When a link is over- loaded, the
value of that link will increase iteration by iteration, so it will not be a good

choice for constructing a path.

In addition, the system lifetime obtained from our modified definition is
much longer than the original definition, which is rather underestimated, and

the result of Model 1 is better than Model 2.

Further, we can use linear programming relaxation to explain the gap.
Because of the integer constraint, there will be a bound between the lower
bound and the result of heuristic. We call this the duality gap. If we eliminate
the integer constraint, for example, a sensor node can select more than one path
to transmit the flow to the Sink, and the total flow on the entire network will be
more balanced. In addition, the corresponding calculated system lifetime, i.e.

the lower bound, will be higher.
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Chapter 6 Summary and Future Work

6.1 Summary

In this paper, our work emphasizes deriving an energy efficient routing
algorithm to maximize the system lifetime of wireless sensor networks. We
modify the original definition of system lifetime, and thereby obtain a system

lifetime that is much closer to the real environment.

We propose two models and formulate both as combinatorial optimization
problems where the objective function is to maximize the system lifetime. We
then use Lagrangean Relaxation, combined with the subgradient method, to
solve these problems. While applying this methodology, we relax some
complicated constraints in the primal problem, which makes it much easier to
solve. Then, we further decompose this problem (LR) into several independent
subproblems. We analyze these subproblems and optimally solve them, and

develop several heuristics to obtain the primal feasible solution.

We implement the algorithms in C code, and test them by using three
well-designed scenarios. Our experimental results are very satisfactory because,
by applying our algorithms, the system lifetime is greatly prolonged.
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6.2 Future Work

In this paper, we haven’t considered “data aggregation” behavior in our
models. To obtain a more precise system lifetime of wireless sensor networks,

data aggregation should be further considered.

In addition, because of the uncertainty of wireless communication
channels, we can further discuss the fault tolerance issue in wireless sensor
networks. For example, we can require sensor nodes to deliver one more copy
of a message along different paths to the Sink in order to increase the

probability of successful delivery.

Finally, we should focus on the distributed implementation of our
proposed algorithms and consider other ways to prolong system lifetime, such
as improving the sensor node so that it can adaptively change its sensing radius
and communication radius. Another improvement would be to make the sensor

node mobile.
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