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論文摘要 

 

論文題目：無線感應器網路系統生存時間最大化之高效能路由演算法 

作    者：葉耿宏         九十三年七月 

指導教授：林永松  博士 

 

無線感應器網路是近年來相當熱門的研究主題。由於感應器技術的進

步，促成了無線感應器網路快速蓬勃的發展。無線感應器網路可以被廣泛

的使用在許多不同領域的應用上，例如：衛生醫療、軍事國防、環境偵測

等等。雖然無線感應器網路能夠提供許多有價值的應用，但同時，爲了能

夠有效達成這些應用，也出現了很多的問題和挑戰需要去解決。其中最大

的問題莫過於如何在能源資源極有限的無線感應器網路中，以有效率的方

式去使用系統能源以延長整個系統的生存時間。 

 

本論文針對此一問題所採行之解決方法是先利用數學規劃的方式將問

題數學模式化為一數學最佳化問題，其目標函數為最大化系統之整體生存

時間。另外，為了使所求得的問題解能夠更符合現實環境的狀況，我們進

一歩改進了原先系統生存時間的定義，把系統涵蓋率的條件考慮進來，並

同時考量部分應用對於資訊即時性的需求。透過該改進過後的系統生存時

間定義，我們可以求得更佳的路由演算法和整體系統生存時間。 

 

由於該問題的本質為一非線性混合整數問題，具有相當的複雜度和困

難度。爲了解決此一複雜的問題，本論文採用以拉格蘭日鬆弛法為基礎的

方法來處理，因為該法優越的特性，使得我們不但能夠非常有效率的求得

該問題解，同時也解決了系統路由的問題，得到一高效能(energy-efficient)
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的路由演算法。 

 

關鍵詞：無線感應器網路、高效能、路由演算法、數學規劃、最佳化、拉

格蘭日鬆弛法 
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AN ENERGY-EFFICIENT ROUTING ALGORITHM FOR  

THE MAXIMIZATION OF SYSTEM LIFETIME IN  

WIRELESS SENSOR NETWORKS  

 

The wireless sensor network has become a popular research topic in recent 

years. Advances in sensor node technology have enabled the rapid development 

of wireless sensor networks that can be used in various application areas, such 

as healthcare, the military, and the environment. Although there are many 

invaluable applications for wireless sensor networks, there are also a lot of 

emerging problems and challenges that need to be solved, at the same time. The 

biggest problem is how to efficiently use energy resources to prolong the 

overall system lifetime of such highly energy-constrained wireless sensor 

networks. 

 

Our solution to this problem is to design an energy-efficient routing 

algorithm. We use a mathematical programming technique to formulate the 

issue as a combinatorial optimization problem, where the objective function is 

to maximize the system lifetime. To make it more realistic, we modify the 
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definition of the system lifetime by considering the coverage constraint and 

time-critical demand of some applications. We can then derive a better routing 

algorithm to obtain a maximal system lifetime of a sensor network that is much 

closer to the real environment.  

 

Because the optimization problem itself is highly complicated and difficult, 

we use Lagrangean Relaxation method to solve it. Due to the method’s 

remarkable properties, we are able to solve this complicated optimization 

problem efficiently, and obtain an energy-efficient routing algorithm at the 

same time. 

 

Keywords: Wireless Sensor Network, Energy-efficient, Routing Algorithm, 

Mathematical Programming, Optimization, Lagrangean Relaxation. 
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Chapter 1  Introduction 

1.1 Background 

The wireless sensor network has become a popular research topic in recent 

years. Advances in sensor node technology, such as wireless communications 

and electronics, have enabled the development of extremely small, low cost, 

and low powered sensing devices that are equipped with programmable 

computing, multiple parameter sensing and wireless communication 

capabilities. 

 

A wireless sensor network is composed of a large number of wireless 

sensor nodes that are densely scattered in a sensor field as shown in Figure 1-1. 

Each of the scattered sensor nodes has the capability to collect and route data 

back to the Sink via a multi-hop architecture. The Sink can communicate with 

the task manager node via the Internet or satellite, while users can also make 

inquiries and retrieve data of interest to them by this mechanism. 
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Figure  1-1 A Wireless Sensor Network’s Communication Architecture  [1] 

 

The tiny wireless sensor nodes, which are the most significant elements of 

a wireless sensor network, have four basic components, namely: a sensing unit, 

a processing unit a communication unit (transceiver) and a power unit, as 

shown in Figure 1-2. 

 

 

Figure  1-2 Components of A Wireless Sensor Node  [1] 
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The sensing unit is usually composed of two subunits: sensors and 

analog-to-digital converters (ADCs). The analog signals produced by the 

sensors, based on the observed phenomenon or event, are converted into digital 

signals by the ADC. The signals are then fed into a processing unit, which is 

generally associated with a small storage unit that manages the sensor node as 

it collaborates with other nodes to carry out the assigned sensing tasks. A 

communication unit connects the node to the network. One of the most 

important components of a sensor node is the power unit which provides 

energy to other components. There are also other application-dependent 

components, such as a location finding system, a mobilizer and a power 

generator. Most of the wireless sensor network routing techniques and sensing 

tasks require extremely accurate information about the location of each sensor 

node. Thus, it is common that a sensor node has a location finding system. A 

mobilizer may sometimes be needed to move a sensor node when it is required 

to carry out assigned tasks. A power generator is used to support power units 

such as solar cells. 

 

The protocol stack of the Sink and the sensor nodes is shown in Figure1-3. 

The protocol stack combines power and routing awareness, integrates data with 

networking protocols, communicates power efficiently through the wireless 

medium, and promotes the cooperative efforts of sensor nodes. The protocol 

stack consists of: a physical layer, data link layer, network layer, transport layer, 

application layer, power management plane, mobility management plane, and 

task management plane.  
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The physical layer addresses the needs of simple but robust modulation, 

transmission, and receiving techniques. Since the environment is noisy and 

sensor nodes can be mobile, the medium access control (MAC) protocol must 

be power-aware and able to minimize collision with neighbors’ broadcasts. The 

network layer takes care of routing the data supplied by the transport layer. The 

transport layer helps to maintain the flow of data if the sensor networks 

application requires it. Depending on the sensing tasks, different types of 

application software can be built and used in the application layer. In addition, 

the power, mobility, and task management planes monitor the power, 

movement, and task distribution among the sensor nodes. These planes enable 

the sensor nodes to coordinate the sensing task and lower overall power 

consumption. 

 

 

Figure  1-3 Wireless Sensor Network’s Protocol Stack  [1] 
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The power management plane manages a sensor node’s use of its power. 

For example, to avoid getting duplicated messages, a sensor node may turn off 

its receiver after receiving a message from one of its neighbors. Also, when the 

power level of the sensor node is low, the sensor node broadcasts the situation 

to its neighbors that it cannot participate in routing messages. The remaining 

power is reserved for sensing. The mobility management plane detects and 

registers the movement of sensor nodes, so a route back to the user is always 

maintained, and the sensor nodes can keep track of who their neighbor sensor 

nodes are. By knowing who their neighbors are, the sensor nodes can balance 

their power and task usage. The task management plane balances and schedules 

the sensing tasks given to a specific region. Not all sensor nodes in that region 

are required to perform the sensing task at the same time. As a result, some 

sensor nodes perform the task more than others, depending on their power level. 

These management planes are needed so that sensor nodes can work together in 

a power-efficient way to route data in a mobile sensor network, and share 

resources between sensor nodes. 

 

Wireless sensor networks have a number of advantages over wired 

networks, such as ease of deployment (reducing installation costs), extended 

range (a network of tiny sensor nodes can be distributed over a wider region), 

fault-tolerance (the failure of one node does not affect the network operation), 

self-organization (the nodes can have the capability to reconfigure themselves), 

mobility (since these wireless sensor nodes are equipped with batteries, they 

can be mobile).  
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The above advantages ensure a wide range of applications for wireless 

sensor networks. In the military, for example, the rapid deployment, 

self-organization, and fault tolerance characteristics of wireless sensor networks 

make them a very promising sensing technique for military command, control, 

communications, computing, intelligence, surveillance, reconnaissance, and 

targeting systems. Meanwhile, in healthcare, sensor nodes can also be deployed 

to monitor patients and assist disabled patients, and in industry, sensor nodes 

can be used for factory instrumentation. In a large metropolis, sensor nodes can 

be deployed to monitor traffic density and road conditions. In engineering, 

sensor nodes can be used to monitor building structures. In the environment, 

sensor nodes can be used to monitor changes in forests and oceans, and can 

also make agricultural techniques more precise. Some other commercial 

applications include managing inventories, monitoring product quality, and 

assisting rescue efforts in disasters. 

 

Realizing these and other wireless sensor network applications, requires ad 

hoc wireless networking techniques. Though many protocols and algorithms 

have been proposed, most are not well suited to the unique features and 

application requirements of wireless sensor networks. We illustrate the 

distinctions between wireless sensor networks and ad hoc networks as follows. 

 The number of sensor nodes in a sensor network can be many times higher 

than the nodes in an ad hoc network.  

 Sensor nodes are densely deployed and prone to failure.  

 The topology of a sensor network changes very frequently.  

 Sensor nodes mainly use a broadcast communication paradigm, whereas 

most ad hoc networks are based on point-to-point communications.  
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 Sensor nodes are limited in power, computational capacities, and memory.  

 Sensor nodes may not have global identification (ID) because of the large 

amount of overhead and the large number of sensors. 

 Adjacent nodes may have similar data. Therefore, rather than sending data 

separately from each node to the requesting node, it is desirable to 

aggregate similar data and send it. 

 

Many researchers are actively engaged in developing schemes that fulfill 

these requirements to enable a variety of applications. This is also the goal of 

this paper. 

 

 

1.2 Motivation 

The advances in sensor node technology have enabled the rapid 

development of wireless sensor networks. As described in the previous section, 

there are many invaluable applications for wireless sensor networks. At the 

same time, there are also a lot of emerging problems and challenges which need 

to be solved. The biggest problem is how to efficiently use energy resources in 

this kind of highly energy-constrained wireless sensor networks. 

 

Energy optimization in wireless sensor networks is very complex because 

it not only involves reducing the energy consumption of a single sensor node, 

but also requires maximizing the system lifetime of an entire network. Many 

papers have already been published on this problem. Some of them focus on an 

individual sensor node to develop new technology to decrease the energy 
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consumption of each of its operations  [13] [14] [16]. Others, design an 

energy-efficient routing protocol from the perspective of an entire network 

 [3] [15] [18], and still others calculate the system lifetime by given 

environmental conditions and system parameters  [2] [4] [17].  

 

Although there are many energy-efficient routing algorithms, formulating 

the problem as a combinatorial optimization problem, where the objective 

function is to maximize system lifetime, is relatively rare. This motivates us to 

apply Lagrangean Relaxation, combined with the subgradient method, to solve 

this optimization problem. To the best of our knowledge, no previous research 

has adopted this approach. Due to the remarkable properties of Largrangean 

Relaxation, we are able to solve this complicated optimization problem 

efficiently, and obtain an energy-efficient routing algorithm. 

 

In addition, system lifetime in most of the above papers is defined as the 

time interval from the point that a sensor network starts its operation until the 

point the first sensor node fails. This kind of definition is not rational in 

practice and can be improved. 

 

To make the definition more realistic, we modify it by considering the 

coverage constraint and time-critical demand for some applications of wireless 

sensor networks. By using this modified definition, we can derive a better 

routing algorithm to obtain the maximal system lifetime of wireless sensor 

networks, which is much closer to the real environment. 
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1.3 Literature Survey 

1.3.1 Routing in Wireless Sensor Networks 

Wireless sensor networks can be classified on the basis of their mode of 

operation and functionality, and the type of target applications. Accordingly, 

wireless sensor networks are classified into two types: 

 Proactive networks: The sensor nodes in this network periodically sense 

the environment and transmit the data of interest. Thus, they provide a 

snapshot of the relevant parameters at regular intervals. They are 

well-suited to applications that require periodic data monitoring. 

 Reactive networks: In this scheme the sensor nodes react immediately to 

sudden and drastic changes in the value of a sensed attribute. As such, they 

are well- suited to time critical applications. 

 

Because wireless sensor networks are highly application dependent, once 

the type of network is decided, an adaptive routing protocol has to be designed. 

And based on the topology of wireless sensor networks, there are two 

alternative approaches have been considered: flat routing and hierarchical 

routing. We discuss them separately below. 

 

1.3.1.1 Flat Routing 

In  [10], the authors describe the directed diffusion paradigm for designing 

wireless sensor networks. A wireless sensor network is data-centric, and its 

application to query dissemination and processing has been demonstrated as 

follows. The query is disseminated (flooded) throughout the network and then 
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the gradients are set up. The gradients indicate the ‘goodness’ of the different 

possible next hops and are used to forward sensor node data to users. They are 

used to direct data satisfying the query toward the requesting node. Data starts 

flowing toward the requesting nodes from multiple nodes from multiple paths. 

A small number of paths can be reinforced to prevent further flooding. This 

type of information retrieval is only well-suited to persistent queries, where 

requesting nodes are expecting data that satisfies a query for an interval of time. 

This makes it unsuitable for historical or one-time queries as it is not worth 

setting up gradients for queries that employ the path only once. Also, this type 

of data collection doesn’t fully exploit the feature of wireless sensor networks 

that adjacent nodes have similar data. 

 

In  [8], the authors present a family of adaptive protocols called SPIN 

(Sensor Protocol for Information via Negotiation) that efficiently disseminates 

information among sensor nodes in an energy-constrained wireless sensor 

network. Nodes running a SPIN communication protocol name their data using 

high-level data descriptors, called meta-data. They use meta-data negotiations 

to eliminate the transmission of redundant data throughout the network. SPIN 

enables a user to query any node and get the required information immediately. 

These protocols make use of the property that nearby nodes have similar data 

and thus distribute only the data that other nodes don’t have. These protocols 

work proactively and distribute the information all over the network, even 

when a user does not request any data. 

 

In  [14], the authors propose a practical guideline that advocates a uniform 

resource utilization to prolong system lifetime. The authors also propose a 
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number of practical gradient-based routing algorithms that are inspired by the 

concept of gradients. The gradients indicate the ‘goodness’ of the different 

possible next hops and are used to forward sensor data to users. For example, 

when a sensor node detects that its energy reserve has dropped below a certain 

threshold, it discourages other sensor nodes from sending data to it by 

decreasing its gradient. This achieves the goal of utilizing resources uniformly 

and prolongs system lifetime effectively. 

 

In  [3], the authors formulate the routing problem with the objective 

function of maximizing system lifetime given the sets of origin and destination 

nodes and the information generation rates at the origin nodes. They propose an 

algorithm to select the routes and the corresponding power levels such that the 

time until the batteries of the nodes runs out is maximized. In  [18], the authors 

extend the energy conserving routing model presented by  [3] to a network 

where some of the sensor nodes have a very low data rate, as well as limited 

battery capacity. Both of these papers define the system lifetime as the length of 

time until the first battery drains out. 

 

1.3.1.2 Hierarchical Routing 

Before discussing hierarchical routing, we first consider the partial 

network structure shown in Figure 1-4. Each cluster has a cluster head which 

collects data from its cluster members, aggregates it and sends it to the Sink, or 

an upper level cluster head. For example, nodes 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5 

and 1.1 form a cluster with node 1.1 as the cluster head. Accordingly, there 

exist other cluster heads such as 1.2, 1 etc. These cluster heads, in turn, form a 

cluster with node 1 as their cluster head. This pattern is repeated to form a 
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hierarchy of clusters with the uppermost cluster nodes reporting directly to the 

Sink, which forms the root of this hierarchy and supervises the entire network. 

 

Figure  1-4 Hierarchical Clustering  [11] 

 

The main features of this architecture are as follows: 

 All the sensor nodes need to transmit only to their immediate cluster head, 

thus saving energy. 

 Only the cluster head needs to perform additional computations on the 

data. So, energy is again conserved. 

 The cluster members are mostly adjacent to each other and have similar 

data. Since the cluster heads aggregate similar data, aggregation is said to 

be more effective. 
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 Cluster heads at higher levels in the hierarchy need to transmit data over 

correspondingly larger distances. Combined with the extra computations 

they perform, they end up consuming energy faster than the other nodes. 

In order to evenly distribute this consumption, all the nodes take turns as 

the cluster head.  

 Since only the cluster heads need to know how to route the data toward 

their own cluster head or the Sink, the complexity of data routing is 

reduced. 

 

In  [7], the authors propose LEACH (Low-Energy Adaptive Clustering 

Hierarchy), a clustering-based protocol that minimizes energy dissipation in 

wireless sensor networks. LEACH is a good approximation of a proactive 

network protocol. Its key features are: 1) localized coordination and control for 

cluster set-up and operation; 2) randomized rotation of the cluster heads and the 

corresponding clusters; and 3) local compression to reduce global 

communication. LEACH outperforms classical clustering algorithms by using 

adaptive clusters and rotating cluster-heads, which allow the energy 

requirements of the system to be distributed among all the sensor nodes. In 

addition, LEACH is able to perform local computation in each cluster to reduce 

the amount of data that must be transmitted to the Sink. This achieves a large 

reduction in the energy dissipation, because computation is much cheaper than 

communication. 

 

In  [11], the authors introduce a new energy efficient protocol, TEEN 

(Threshold sensitive Energy Efficient sensor Network protocol) for reactive 

networks. It means time critical data can reach the user almost instantaneously. 
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It also provides some parameters for users to control the trade-off between 

energy efficiency and accuracy, based on their needs. The main drawback of 

this protocol is that it is not well suited for applications where the user needs to 

get data on a regular basis. In  [12], the same authors of  [11] further propose a 

hybrid protocol, APTEEN (Adaptive Periodic Threshold-sensitive Energy 

Efficient Sensor Network Protocol) which is both well suited for proactive and 

reactive networks. 

 

1.3.2 Bounding System Lifetime 

In  [2], the authors propose an optimal role assignment approach, which, in 

principle, permits derivation of bounds for networks with arbitrarily complex 

capabilities. However, the computational costs of such derivations may be 

prohibitive. This paper shows that for several practically useful scenarios, 

including wireless sensor networks with a specified topology that allows 

aggregation, this approach in fact leads to polynomial time bound derivation. 

 

In  [17], the authors propose an analytical model to estimate and evaluate 

the network lifetime in a randomly deployed multi-hop wireless sensor network. 

In this paper the network lifetime is defined as the time interval from the point 

that a sensor network starts its operation until the point that loss of 

communication to the Sink by all sensor nodes occurs. In most cases, the 

operation of the wireless sensor networks is completely disrupted if and only if 

all of the nodes that can directly communicate with the Sink expire. 

Consequently, the lifetime of these nodes is more critical to the network 

lifetime. Thus, we can derive the network lifetime by calculating the lifetime of 
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these critical sensor nodes. 

 

In  [4], the authors propose a model to estimate a clustering-based 

proactive heterogeneous wireless sensor network with two types of sensors 

equipped with different battery power. In addition, in  [18] the authors also 

derives a bound on the network lifetime. 
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Chapter 2  Problem Formulation 
 

The goal of this paper is to derive an energy efficient routing algorithm to 

maximize the system lifetime of wireless sensor networks. We define the 

system lifetime as the time interval from the point that a sensor network starts 

its operation until the point that the information about the occurrence of any of 

events can not be delivered to the Sink. This is the coverage constraint in this 

paper. With regard to some time-critical applications, if the information aobut 

the occurrence of any of events cannot be delivered to the Sink within a 

predefined time interval, namely the hop constraint, the system isn’t alive. 

 

At first, the sensor nodes are densely scattered in a sensor field. From the 

radius of sensing and communication of individual sensor nodes, the topology 

of wireless sensor networks can be depicted as shown in Figure 2-1. 
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Figure  2-1 Topology of Wireless Sensor Networks 

 

Problem assumption: 

 Once an event occurs, the sensor nodes sense this event and deliver this 

information to the Sink instantly. 

 In the beginning, the system is alive.  

 All sensor nodes and the Sink are fixed. 

 A sensor node dies when it runs out its energy. 

Table  2-1 Problem Assumptions 

 

 

Sink

Events

Sensor Nodes
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2.1 Model 1 

Although this model only describes the time interval from the point that a 

sensor network starts its operation until the point that the first sensor node runs 

out its energy, we can still use this model iteratively to obtain the system 

lifetime and satisfy our modified definition of system lifetime. 

 

2.1.1 Problem Descriptions 

Given: 

 A set of events. 

 A set of nodes including sensor nodes and the Sink. 

 A set of links in the nodes. 

 A set of out-links and in-links of each sensor node. 

 A set of sensor nodes for each event, so that each of the sensor nodes not only 

senses the event, but also has at least one path to the Sink. 

 A set of events for each sensor node, so that the node not only senses each of the 

events, but also delivers information about the occurrence of these events to the 

Sink. 

 A set of sensor nodes which are one hop away from the Sink. 

 Number of flows per unit time caused by each event. 

 A set of candidate paths from each sensor node to the Sink. 

 Link capacity on each link and nodal capacity on each sensor node. 

 Hop constraint for each event. 

 Initial energy of each sensor node. 
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 Energy needed for each sensor node to execute its routine operations, as well as 

sending and receiving a unit of flow. 

 

Objective: 

To maximize the system lifetime of wireless sensor networks. 

 

Subject to: 

 Coverage constraint — the information about the occurrence of any of events can 

be delivered to the Sink by sensor nodes. 

 Routing constraint — for each sensor node, once it senses the occurrence of an 

event, it only selects one path to send data back to the Sink. 

 Hop constraint — for each event, paths which are selected to deliver the 

information about the occurrence of that event are limited by a predefined hop 

constraint to satisfy the time-critical demand of some applications. 

 Link capacity constraint — the total flow on each link can’t exceed its capacity. 

 Nodal capacity constraint — the total flow passed through a sensor node can’t 

exceed its capacity. 

 

To determine: 

1. Routing of wireless sensor networks 

2. Total flow on each link which is caused by events. 

3. Maximal system lifetime of wireless sensor networks. 

 

Table  2-2 Problem Description for Model 1 
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2.1.2 Notations 

Given Parameters 

Notation Description 

E  The set of events. 

N  The set of sensor nodes and the Sink. 

L  The set of links in N. 

nL+  The set of out-links of sensor node n.（ { }n N Sink∀ ∈ − ） 

nL−  The set of in-links of sensor node n. （ { }n N Sink∀ ∈ − ） 

eA  The set of sensor nodes that any one of them not only senses event e, but has at 

least one path to the Sink. （ e E∀ ∈ ） 

nB  The set of events that can be sensed and the information about the occurrence 

of each of them that can be delivered to the Sink by sensor node n.

（ { }n N Sink∀ ∈ − ） 

D  The set of sensor nodes which are one hop away from the Sink. 

ef  Number of flows per unit time caused by occurrence of event e.（ e E∀ ∈ ） 

nP  The set of paths which are from sensor node n to the Sink. （ { }n N Sink∀ ∈ − ）

plδ  1 if path p uses link l; otherwise 0. {1,0}plδ = （ np P∀ ∈ , l L∀ ∈ ） 

lC  flow capacity on link l, the upper bound of flow per unit time on link l.

（ l L∀ ∈ ） 

nU  flow capacity on sensor node n, the upper bound of flow per unit time on 

sensor node n.（ { }n N Sink∀ ∈ − ） 

eH  Hop constraint for event e. （ e E∀ ∈ ） 

nE  Initial energy of sensor node n.（ { }n N Sink∀ ∈ − ）（ 0nE > ） 
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sentE  Energy consumption of a sensor node when sending a unit of flow. 

recvE  Energy consumption of a sensor node when receiving a unit of flow. 

ε  Energy consumption per unit time of a sensor node when operating some 

routine operations, such as sensing.（ 0ε > ）  

Table  2-3 Notation of Given Parameters for Model 1 

 

Decision Variables 

Notation Description 

enpx  1 if path p is selected from event e through sensor node n to the Sink; otherwise 

0. （ e E∀ ∈ , en A∀ ∈ , np P∀ ∈ ） 

elM  The total flow per unit time on link l caused by the occurrence of event e.

（ e E∀ ∈ , l L∀ ∈ ） 

T  System lifetime. 

Table  2-4 Notation of Decision Variables for Model 1 

 

Formulation 

Objective function: 

1 maxIPZ T=  (IP1) 

For the convenience of later problem solving, we transform the original 

problem (IP1) into another equivalent minimization problem as follows. 

2 minIPZ T= −  (IP2) 

subject to: 

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1)

0 or 1enpx =  e E∀ ∈ , en A∀ ∈ , np P∀ ∈ (2)
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n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3)

e n

enp pl e el
n A p P

x f Mδ
∈ ∈

⋅ ⋅ ≤∑ ∑  e E∀ ∈ , l L∀ ∈  (4)

el l
e E

M C
∈

≤∑  l L∀ ∈  (5)

n n

el el n
e E e El L l L

M M U
+ −∈ ∈∈ ∈

+ ≤∑∑ ∑∑  { }n N Sink∀ ∈ −  (6)

0 el e eM A f≤ ≤ ⋅  e E∀ ∈ , l L∀ ∈  (7)

n n

n
el sent el recv

e E e El L l L

EM E M E
T

ε
+ −∈ ∈∈ ∈

⋅ + ⋅ + ≤∑∑ ∑∑  { }n N Sink∀ ∈ −  (8)

( ){ }

{ }

max
min 11 1 min

2 2 n n
n n

nn n D

n N Sink
e sent recv e sentn e sent n e recv n Dn N Sink D e B e Be B e B

EE T
f E E f EU f E U f E D

εε

∈

∈ −

∈
∈ − − ∈ ∈∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≤ ≤⎜ ⎟⎛ ⎞ ⎛ ⎞ ⋅ ⋅ + + ⋅ +⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑∑ ∑

 
(9)

 

Explanation of Constraints  

(1)(2)(3) 
These three constraints, which includes the hop constraint, means that a sensor 

node n  in eA  only selects one path to the Sink. 

(4) 

This constraint describes how { }elM  are calculated. Once the routing, 

i.e.{ }enpx , of the entire network is determined, the flow caused by events will 

move along the selected paths, so that { }elM  can be obtained. 

(5) This constraint is the link capacity constraint on each link l . 

(6) This constraint is the nodal capacity constraint on each sensor node n . 

(7) 

This constraint describes { }elM ’s bounds. Where the { }elM ’s lower bounds 

are straightforward, while their upper bounds are limited by eA  and ef , 

because link l  is at most shared by eA  different paths from event e . 

(8) 
This constraint describes that the system lifetime T  is less or equal to the all 

lifetime of sensor node n .  
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(9) 

This constraint describes T ’s bounds. Due to the nodal capacity constraint we 

can calculate each sensor node’s minimal lifetime and the T ’s lower bound 

equals the lifetime of the sensor node which has the minimal minimal-lifetime 

among all sensor nodes. In addition, due to the sensor nodes which are one hop 

away from the Sink are much more critical than other sensor nodes to the 

system lifetime, they are in chare of relaying almost all flows on the entire 

network to the Sink, so we can obtain the T ’s upper bound by finding the 

sensor node in D  has the maximal lifetime. 

Table  2-5 Explanation of Constraints for Model 1 
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2.2 Model 2 

This model describes the time interval from the point that a sensor 

network starts its operation until the point that the information about the 

occurrence of any of events can not be delivered to the Sink, and it satisfies our 

modified definition. We can use this model to obtain the system lifetime and 

satisfy our modified definition of system lifetime. 

 

2.2.1 Problem Descriptions 

Given: 

 A set of events. 

 A set of nodes including sensor nodes and the Sink. 

 A set of links in the nodes. 

 A set of out-links and in-links of each sensor node. 

 A set of sensor nodes for each event, so that each of the sensor nodes not only 

senses the event, but also has at least one path to the Sink. 

 A set of events for each sensor node, so that the node not only senses each of the 

events, but also delivers information about the occurrence of these events to the 

Sink. 

 Number of flows per unit time caused by each event. 

 A set of predefined candidate paths from each sensor node to the Sink. 

 A set of sensor nodes on each path. 

 Link capacity on each link and nodal capacity on each sensor node. 

 Hop constraint for each event. 
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 Initial energy of each sensor node. 

 Energy needed for each sensor node to execute its routine operations, as well as 

sending and receiving a unit of flow. 

 

Objective: 

To maximize the system lifetime of wireless sensor networks. 

 

Subject to: 

 Coverage constraint — information about the occurrence of any of the events can 

be delivered to the Sink by sensor nodes. 

 Routing constraint — for each sensor node, once it senses the occurrence of an 

event, it only selects one path to send data back to the Sink. 

 Hop constraint — for each event, paths which are selected to deliver the 

information about the occurrence of that event are limited by a predefined hop 

constraint to satisfy the time-critical demand of some applications. 

 Link capacity constraint — the total flow on each link can’t exceed its capacity. 

 Nodal capacity constraint — the total flow passed through a sensor node can’t 

exceed its capacity. 

 

To determine: 

1. Routing of wireless sensor networks 

2. Total flow on each link which is caused by events. 

3. Maximal system lifetime of wireless sensor networks. 

 

Table  2-6 Problem Description for Model 2 
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2.2.2 Notations 

Given Parameters 

Notation Description 

E  The set of events. 

N  The set of sensor nodes and the Sink. 

L  The set of links in N. 

vL+  The set of out-links of sensor node v. （ { }v N Sink∀ ∈ − ） 

vL−  The set of in-links of sensor node v. （ { }v N Sink∀ ∈ − ） 

eA  The set of sensor nodes that any one of them not only senses event e, but has at 

least one path to the Sink. （ e E∀ ∈ ） 

vB  The set of events that can be sensed and the information about the occurrence 

of each of them that can be delivered to the Sink by sensor node v.

（ { }v N Sink∀ ∈ − ） 

ef  Number of flows per unit time caused by the occurrence of event e.（ e E∀ ∈ ）

nP  The set of W  predefined paths from sensor node n to the Sink.

（ { }n N Sink∀ ∈ − ） 

plδ  1 if path p uses link l; otherwise 0. {1,0}plδ = （ np P∀ ∈ , l L∀ ∈ ） 

pV  The set of sensor nodes on path p. （ np P∀ ∈ , { }n N Sink∀ ∈ − ） 

lC  Flow capacity on link l, the upper bound of flow per unit time on link l.

（ l L∀ ∈ ） 

vU  Flow capacity on sensor node v, the upper bound of flow per unit time on 

sensor node v.（ { }v N Sink∀ ∈ − ） 

eH  Hop constraint for event e.（ e E∀ ∈ ） 
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vE  Initial energy of sensor node v.（ { }v N Sink∀ ∈ − ） （ 0vE > ） 

sentE  Energy consumption of a sensor node when sending a unit of flow. 

recvE  Energy consumption of a sensor node when receiving a unit of flow. 

ε  Energy consumption per unit time of a sensor node when operating some 

routine operations, such as sensing.（ 0ε > ）  

Table  2-7 Notation of Given Parameters for Model 2 

 

Decision Variables 

Notation Description 

enpx  1 if path p is selected from event e through sensor node n to the Sink, otherwise 

0. （ e E∀ ∈ , en A∀ ∈ , np P∀ ∈ ） 

elM  The total flow per unit time on link l, caused by the occurrence of event e.

（ e E∀ ∈ , l L∀ ∈ ） 

vT  Lifetime of sensor node v. （ { }v N Sink∀ ∈ − ） 

T  System lifetime. 

Table  2-8 Notation of Decision Variables for Model 2 

 

Formulation 

Objective function: 

3 maxIPZ T=  (IP3) 

subject to: 

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1) 

0 or 1enpx =  e E∀ ∈ , en A∀ ∈ , np P∀ ∈ (2) 
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n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3) 

e n

enp pl e el
n A p P

x f Mδ
∈ ∈

⋅ ⋅ =∑ ∑  e E∀ ∈ , l L∀ ∈  (4) 

el l
e E

M C
∈

≤∑  l L∀ ∈  (5) 

v v

el el v
e E e El L l L

M M U
+ −∈ ∈∈ ∈

+ ≤∑∑ ∑∑  { }v N Sink∀ ∈ −  (6) 

0 el e eM A f≤ ≤ ⋅  e E∀ ∈ , l L∀ ∈  (7) 

v v

v
v

el sent el recv
e E e El L l L

ET
M E M E ε

+ −∈ ∈∈ ∈

=
⋅ + ⋅ +∑∑ ∑∑

 { }v N Sink∀ ∈ −  (8) 

1 1
2 2 v

v v

v v
v

e sent
e Bv e sent v e recv

e B e B

E ET
f E

U f E U f E
ε

ε ∈
∈ ∈

≤ ≤
⋅ +⎛ ⎞ ⎛ ⎞

⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑ { }v N Sink∀ ∈ −   (9) 

,
max min

pe n
enp vv Vn A p P

T x T
∈∈ ∈

≤  e E∀ ∈  (10)

 

Explanation of Constraints  

(1)(2)(3) 
These three constraints, which includes the hop constraint, means that a sensor 

node n  in eA  only selects one path to the Sink. 

(4) 

This constraint describes how { }elM  are calculated. Once the routing, 

i.e.{ }enpx , of the entire network is determined, the flow caused by events will 

move along the selected paths, so that { }elM  can be obtained. 

(5) This constraint is the link capacity constraint on each link l . 

(6) This constraint is the nodal capacity constraint on each sensor node v . 

(7) 

This constraint describes { }elM ’s bounds. Where { }elM ’s lower bounds are 

straightforward, while their upper bounds are limited by eA  and ef , because 

link l  is at most shared by eA  different paths from event e . 
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(8) 

This constraint describes how { }vT  are calculated. For each sensor node v , its 

lifetime vT  equals its initial energy divided by its total energy consumption per 

unit time.  

(9) 

This constraint describes { }vT ’s bounds. Their upper bounds are 

straightforward, and their lower bounds can be calculated by considering the 

nodal capacity for each sensor node v . 

(10) 

This constraint describes the definition of the system lifetime. At first, we group 

all sensor nodes into several groups by different event e . Further, we divide 

each group into eA  subgroups. The lifetime of each subgroup equals the 

minimal lifetime of sensor node in each subgroup, and the lifetime of each group 

equals the maximal lifetime among the subgroups that belong to it. Finally, the 

system lifetime is the maximal lifetime among the groups. 

Table  2-9 Explanation of Constraints for Model 2 

 

For the convenience of later problem solving, the preceding formulation can be 

reformulated as follows, where K  and O  are constants. 

Let min
p

enp vv V
S T

∈
=   , e E∀ ∈ , en A∀ ∈ , np P∀ ∈  

Let 
,

max
e n

e enp enpn A p P
R x S

∈ ∈
= ⋅   , e E∀ ∈  

Formulation 

Objective function: 

4 max
e n

IP e enp
e E e E n A p P

Z T K R O S
∈ ∈ ∈ ∈

= − ⋅ + ⋅∑ ∑∑ ∑  (IP4) 

For the convenience of later problem solving, we further transform the 

problem (IP4) into another equivalent minimization problem as follows. 
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5 min
e n

IP e enp
e E e E n A p P

Z T K R O S
∈ ∈ ∈ ∈

= − + ⋅ − ⋅∑ ∑∑ ∑  (IP5) 

subject to: 

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1) 

0 or 1enpx =  
e E∀ ∈ , en A∀ ∈ ,

np P∀ ∈  
(2) 

n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3) 

e n

enp pl e el
n A p P

x f Mδ
∈ ∈

⋅ ⋅ =∑ ∑  e E∀ ∈ , l L∀ ∈  (4) 

el l
e E

M C
∈

≤∑  l L∀ ∈  (5) 

v v

el el v
e E e El L l L

M M U
+ −∈ ∈∈ ∈

+ ≤∑∑ ∑∑  { }v N Sink∀ ∈ −  (6) 
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e B e B

E ET
f E

U f E U f E
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eT R≤  e E∀ ∈  (14)
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Chapter 3  Solution Approaches 

3.1 Lagrangean Relaxation Method 

In the 1970s  [5], Lagrangean Relaxation method was used for scheduling 

and solving general integer programming problems. It is a flexible approach 

that can provide proper solutions for many problems, and has become one of 

the best tools for solving optimization problems such as integer programming, 

linear programming combinatorial optimization, and non-linear programming. 

The method has several advantages. For example, it can decompose complex 

mathematical models in many different ways into some stand-alone 

subproblems, which can then be solved optimally, using any proper algorithm 

 [5]. 

 

In addition, Lagrangean Relaxation allows us to determine the boundary 

of our objective function, thus we can use it to implement heuristic algorithms 

to obtain feasible solutions. It is a flexible solution strategy that permits 

modelers to exploit the underlying structure in any optimization problem by 

relaxing complicating constraints. This method permits us to “pull apart” 

models by removing constraints and place them in the objective function with 

associated Lagrangean multipliers. The optimal value of the relaxed problem is 
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always a lower bound (for minimization problems) on the objective function 

value of the problem. To obtain the sharpest lower bound, we need to choose 

the best multiplier (Lagrangean multiplier problem) so that the optimal value of 

the Lagrangean subproblem is as large as possible. Although we can solve the 

Lagrangean multiplier problem in a variety of ways, the subgradient 

optimization technique is the most popular technique for dealing with the issue 

 [5] [6]. 

 

Figure 3-1 illustrates Lagrangean Relaxation, while Figure 3-2 gives a 

detailed explanation of Lagrangean Relaxation procedures. 

 

Primal Problem

Lagrangian
Relaxation
Problem

subproblem subproblem

Multiplier 
Dual 

Problem

Sub-Optimal Sub-Optimal  

Figure  3-1 An Illustration of Lagrangean Relaxation 
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Initialization

Solve Lagrangian
Dual Problem

Get Primal
Solution

Update Bounds

Check
Termination

Adjust
Multiplier

1. Find Z* (initial feasible solution), LB =
2. Set
3. Set IterationCount = 0, ImproveCounter = 0,

MaxIterationCount, MaxImproveCount

2,0 0
0 == λu

STOP

1. Optimally solve each subproblems
2. Get decision variables

1. Get primal feasible solution (UB) if it does
not violate relaxed constraints

2. tuning by proposed heuristic, otherwise

1. Check LB, If ZD(uk) > LB   then LB = ZD(uk)
2. Check UB, If UB < Z* then Z* = UB

1. IF ImproveCount
> MaxImproveCount

λ = λ /2 , ImproveCount = 0
2. ImproveCount ++
3. Renew tk, uk

∞−

1. IF ((IterationCount > MaxIterationCount)
or ) STOP

2. IterationCount ++
ε≤− LBLBUB /)(

T

F

 

Figure  3-2 Lagrangean Relaxation Procedures 
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3.2 Model 1 

3.2.1 Solution Approach 

By using Lagrangean Relaxation method, we can transform the primal 

problem (IP2) into the following Lagrangean Relaxation problem (LR1) where 

constraints (4), (6) and (8) are relaxed. 

 

3.2.2 Lagrangean Relaxation 

For a vector of non-negative Lagrangean multipliers, a Lagrangean 

Relaxation problem of IP2 is given by optimization problem (LR1): 

1( , , )dZ α β γ  

min
e n

el enp pl e el
e E l L n A p P

T x f Mα δ
∈ ∈ ∈ ∈

⎛ ⎞
= − + ⋅ ⋅ ⋅ −⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑  

{ } n n

n el el n
n N Sink e E e El L l L

M M Uβ
+ −∈ − ∈ ∈∈ ∈

⎛ ⎞
+ ⋅ + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑  

{ } n n

n
n el sent el recv

n N Sink e E e El L l L

EM E M E
T

γ ε
+ −∈ − ∈ ∈∈ ∈

⎛ ⎞
+ ⋅ ⋅ + ⋅ + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑    (LR1) 

subject to: 

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1) 

0 or 1enpx =  e E∀ ∈ , en A∀ ∈ , np P∀ ∈  (2) 

n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3) 

el l
e E

M C
∈

≤∑  l L∀ ∈  (5) 
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0 el e eM A f≤ ≤ ⋅  e E∀ ∈ , l L∀ ∈  (7) 

( ){ }

{ }

max
min 11 1 min

2 2 n n
n n

nn n D

n N Sink
e sent recv e sentn e sent n e recv n Dn N Sink D e B e Be B e B

EE T
f E E f EU f E U f E D

εε

∈

∈ −

∈
∈ − − ∈ ∈∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≤ ≤⎜ ⎟⎛ ⎞ ⎛ ⎞ ⋅ ⋅ + + ⋅ +⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑∑ ∑

 
(9) 

 

Where α , β , γ  are the vectors of { }elα , { }nβ , { }nγ  and α , β , γ  are 

the Lagrangean multipliers and α , β , γ  0≥ . To solve LR1, we can 

decompose it into the following three independent and easily solvable 

optimization subproblems. 

 

Subproblem 1-1 (related to decision variable T ) 

1 1( )subZ γ−  

{ }
min n

n
n N Sink

ET
T

γ
∈ −

= − − ⋅∑  

{ }
max n

n
n N Sink

ET
T

γ
∈ −

= + ⋅∑  

subject to: 

( ){ }

{ }

max
min 11 1 min

2 2 n n
n n

nn n D

n N Sink
e sent recv e sentn e sent n e recv n Dn N Sink D e B e Be B e B

EE T
f E E f EU f E U f E D

εε

∈

∈ −

∈
∈ − − ∈ ∈∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≤ ≤⎜ ⎟⎛ ⎞ ⎛ ⎞ ⋅ ⋅ + + ⋅ +⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑∑ ∑

 
(9) 

 

The graph of this subproblem is a convex curve. The maximal value occurs at 

an intersection point on either side of T ’s bound. Namely, either 

{ }
min

1 1
2 2

n n

n

n N Sink

n e sent n e recv
e B e B

ET
U f E U f E ε

∈ −

∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
 or 
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( )
{ }

max
1 min

n n

nn D

e sent recv e sentn Dn N Sink D e B e B

E
T

f E E f E
D

ε

∈

∈
∈ − − ∈ ∈

=
⋅ ⋅ + + ⋅ +∑ ∑ ∑

 

can obtain the maximal value. 

 

Subproblem 1-2 (related to decision variable enpx ) 

1 2 ( )subZ α−  

min
e n

el enp pl e
e E n A p P l L

x fα δ
∈ ∈ ∈ ∈

= ⋅ ⋅ ⋅∑∑ ∑∑  

min ( )
e n

enp el e pl
e E n A p P l L

x fα δ
∈ ∈ ∈ ∈

= ⋅ ⋅ ⋅∑∑ ∑ ∑  

subject to: 

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1) 

0 or 1enpx =  e E∀ ∈ , en A∀ ∈ , np P∀ ∈ (2) 

n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3) 

 

This subproblem is composed of E  hop constrained shortest path 

problems for each event e , where el efα ⋅  is the link cost of link l . By using 

the Bellman-Ford algorithm, we can optimally solve these problems, and then 

properly set { }enpx  to 1, if path p  is selected, otherwise set it to 0. 

 

Subproblem 1-3 (related to decision variable elM ) 

1 3 ( , , )subZ α β γ−  

{ }

min
n n

el el n el el
e E l L n N Sink e E e El L l L

M M Mα β
+ −∈ ∈ ∈ − ∈ ∈∈ ∈

⎛ ⎞
= − ⋅ + ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑∑ ∑∑  
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{ } n n

n el sent el recv
n N Sink e E e El L l L

M E M Eγ
+ −∈ − ∈ ∈∈ ∈

⎛ ⎞
+ ⋅ ⋅ + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑

 
( )

{ } { }
min

n n

el el n n sent el
e E n N Sink e E n N Sinkl L l L

M E Mα β γ
+ +∈ ∈ − ∈ ∈ −∈ ∈

= − ⋅ + + ⋅ ⋅∑ ∑ ∑ ∑ ∑ ∑  

( )
{ } n

n n recv el
e E n N Sink l L

E Mβ γ
−∈ ∈ − ∈

+ + ⋅ ⋅∑ ∑ ∑  

( ) ( )
{ } { }

min
n n

el n n sent el n n recv el
e E n N Sink e E n N Sinkl L l L

E M E Mα β γ β γ
+ −∈ ∈ − ∈ ∈ −∈ ∈

= − + + ⋅ ⋅ + + ⋅ ⋅∑ ∑ ∑ ∑ ∑ ∑

subject to: 

el l
e E

M C
∈

≤∑  l L∀ ∈  (5) 

0 el e eM A f≤ ≤ ⋅  e E∀ ∈ , l L∀ ∈  (7) 

 

To solve this subproblem we first need to determine all the coefficient 

values of { }elM . For each event e , by putting the start point sensor node of 

link l  into the first term of this subproblem’s objective function and then 

putting the end point sensor node of link l  into the second term of this 

subproblem’s objective function, we can obtain the coefficient value of elM  

on link l . Thus, we can calculate all the coefficient values of { }elM . We can 

then determine { }elM ’s values to obtain the optimal solution to this 

subproblem. If a elM ’s coefficient value is positive, we set its value to 0, 

otherwise we sort the elM s by their coefficient values from small to large. 

Later, we will determine these elM ’s values in this order, and to further satisfy 

constraint (5), i.e. el l
e E

M C
∈

≤∑  for each link l , we determine the elM ’s value 

one by one. Before determining each of them, we should check the residual 

capacity on link l . If it is greater than or equal to e eA f⋅ , we set its value to 

e eA f⋅ , then decrease the residual capacity on link l  by e eA f⋅ , otherwise 
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we set its value to the remaining residual capacity on link l , and decrease the 

residual capacity on link l  to 0.  

 

3.2.3 The Dual Problem and the Subgradient Method 

According to the weak Lagrangean duality theorem  [6], for anyα , β , γ  

0≥ , 1( , , )dZ α β γ  is a lower bound on 2IPZ . The following dual problem (D1) 

is then constructed to calculate the tightest lower bound. 

Dual Problem (D1): 

1DZ  =  1max ( , , )dZ α β γ  (D1) 

subject to: 

, ,α β γ  ≥  0  

 

The most popular method for solving the dual problem is the subgradient 

method  [9]. Let g  be a subgradient of 1( , , )dZ α β γ . Then, at the k th 

iteration of the subgradient optimization procedure, the multiplier vector 

( , , )π α β γ=  is updated by 1k k k kt gπ π+ = + . The step size kt  is determined 

by 
*

2 1
2

( )k IP d k
k k

Z Zt
g

πλ −
= . *

2IPZ  is the best upper bound on the primal 

objective function value after the k th iteration obtained from heuristic 

solutions. kλ  is a constant between 0 and 2. 
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3.3 Model 2 

3.3.1 Solution Approach 

By using Lagrangean Relaxation method, we can transform the primal 

problem (IP5) into the following Lagrangean Relaxation problem (LR2) where 

constraints (4), (6), (8), (10), (12) and (14) are relaxed. 

 

3.3.2 Lagrangean Relaxation 

For a vector of non-negative Lagrangean multipliers, a Lagrangean 

Relaxation problem of IP5 is given by optimization problem (LR2): 

2 ( , , , , , )dZ α β γ θ µ ω  

min
e n

e enp
e E e E n A p P

T K R O S
∈ ∈ ∈ ∈

= − + ⋅ − ⋅∑ ∑∑ ∑  

e n

el enp pl e el
e E l L n A p P

x f Mα δ
∈ ∈ ∈ ∈

⎛ ⎞
+ ⋅ ⋅ ⋅ −⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑  

{ } v v

v el el v
v N Sink e E e El L l L

M M Uβ
+ −∈ − ∈ ∈∈ ∈

⎛ ⎞
+ ⋅ + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑  

{ } v v

v
v el sent el recv

v N Sink e E e El L l L v

EM E M E
T

γ ε
+ −∈ − ∈ ∈∈ ∈

⎛ ⎞
+ ⋅ ⋅ + ⋅ + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑  

( )
e n p

enpv enp v
e E n A p P v V

S Tθ
∈ ∈ ∈ ∈

+ ⋅ −∑∑ ∑ ∑  

( )
e n

enp enp enp e
e E n A p P

x S Rµ
∈ ∈ ∈

+ ⋅ ⋅ −∑∑ ∑  

( )e e
e E

T Rω
∈

+ ⋅ −∑                                         (LR2) 

subject to: 



 

 42

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1) 

0 or 1enpx =  
e E∀ ∈ , en A∀ ∈ ,

np P∀ ∈  
(2) 

n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3) 

el l
e E

M C
∈

≤∑  l L∀ ∈  (5) 

0 el e eM A f≤ ≤ ⋅  e E∀ ∈ , l L∀ ∈  (7) 

1 1
2 2 v

v v

v v
v

e sent
e Bv e sent v e recv

e B e B

E ET
f E

U f E U f E
ε

ε ∈
∈ ∈

≤ ≤
⋅ +⎛ ⎞ ⎛ ⎞

⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑
 

{ }v N Sink∀ ∈ −  (9) 

min min
1 1
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p p

v v v

v v
enpv V v V

v e sent v e recv e e sent
e B e B e B
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U f E U f E f f Eε ε
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∑ ∑ ∑
 

e E∀ ∈ , en A∀ ∈ ,

np P∀ ∈  
(11) 

, ,

max min max min
1 1
2 2

p pe n e n

v v v

v v
ev V v Vn A p P n A p P

v e sent v e recv e e sent
e B e B e B
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U f E U f E f f Eε ε
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∈ ∈ ∈

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
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∑ ∑ ∑
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, ,

min max min min max min
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p pe n e n

v v v

v v
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v e sent v e recv e e sent
e B e B e B
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U f E U f E f f Eε ε
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∈ ∈ ∈
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∑ ∑ ∑

⎧ ⎫
⎪ ⎪
⎪ ⎪⎥
⎨ ⎬⎥
⎪ ⎪⎥
⎪ ⎪⎥⎩ ⎭

 
(15) 

 

Where α , β , γ , θ , µ  and ω  are the vectors of { }elα , { }vβ , { }vγ , 

{ }enpvθ , { }enpµ  and { }eω respectively; α , β , γ , θ , µ  and ω  are the 

Lagrangean multipliers; and β , θ , µ , ω  0≥ . To solve LR2, we can 

decompose it into the following three independent and easily solvable 

optimization subproblems. 
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Subproblem 2-1 (related to decision variable T , eR ) 
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(15) 

 

This subproblem can be optimally solved by the following steps: 

1. First, determine eR ’s value for each event e . If its coefficient value 

0
e n

enp e
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K µ ω
∈ ∈

⎛ ⎞
− − ≥⎜ ⎟
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2. To determine T ’s value. If its coefficient value 1 0e
e E

ω
∈

⎛ ⎞− ≥⎜ ⎟
⎝ ⎠
∑ , we set its 
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value to 
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Subproblem 2-2 (related to decision variable enpx , enpS ) 
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− ⋅ + ⋅ ⋅∑∑ ∑ ∑ ∑∑ ∑  

min ( )
e n p

enp el e pl enp enp enpv enp
e E n A p P l L v V

x f x O Sα δ µ θ
∈ ∈ ∈ ∈ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟= ⋅ ⋅ ⋅ + ⋅ + − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ ∑ ∑ ∑  

subject to: 

1
n

enp
p P

x
∈

=∑  e E∀ ∈ , en A∀ ∈  (1) 

0 or 1enpx =  
e E∀ ∈ , en A∀ ∈  

np P∀ ∈  
(2) 

n

enp pl e
p P l L

x Hδ
∈ ∈

⋅ ≤∑∑  e E∀ ∈ , en A∀ ∈  (3) 

min min
1 1
2 2

p p

v v v

v v
enpv V v V

v e sent v e recv e e sent
e B e B e B

E ES
U f E U f E f f Eε ε

∈ ∈

∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟≤ ≤⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ + + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

 e E∀ ∈ , en A∀ ∈ ,

np P∀ ∈  
(11) 

 

This subproblem can be optimally solved as follows: 

First, we should determine { }enpx ’s values. To solve { }enpx , we don’t have to 
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try all combinations of { }enpx . It is considerably costly. Thus, we further 

decompose this searching problem into e
e E

A
∈
∑  easily solvable searching 

subproblems, after which, due to the constraint (1) and the predefined W  

candidate paths for each sensor node, we only need to try W  combinations to 

solve each searching subproblem. To determine the best combination to each 

searching subproblem, we should choose the combination that makes 

( )
n p

enp el e pl enp enp enpv enp
p P l L v V

x f x O Sα δ µ θ
∈ ∈ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⋅ ⋅ ⋅ + ⋅ + − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑  the smallest. With 

regard to enpS ’s value, if its coefficient value 0
p

enp enp enpv
v V

x Oµ θ
∈

⎛ ⎞
⋅ + − ≥⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

we set its value to min
1 1
2 2

p

v v

v

v V

v e sent v e recv
e B e B

E

U f E U f E ε
∈

∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
; 

otherwise, we set its value to min
p

v

v

v V

e e sent
e B

E

f f E ε
∈

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟+ ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
. 

 

Subproblem 2-3 (related to decision variable elM ) 

2 3 ( , , )subZ α β γ−  

{ }

min
v v

el el v el el
e E l L v N Sink e E e El L l L

M M Mα β
+ −∈ ∈ ∈ − ∈ ∈∈ ∈

⎛ ⎞
= − ⋅ + ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑∑ ∑∑  

{ } v v

v el sent el recv
v N Sink e E e El L l L

M E M Eγ
+ −∈ − ∈ ∈∈ ∈

⎛ ⎞
+ ⋅ ⋅ + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑∑
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( )
{ } { }

min
v v

el el v v sent el
e E v N Sink e E v N Sinkl L l L

M E Mα β γ
+ +∈ ∈ − ∈ ∈ −∈ ∈

= − ⋅ + + ⋅ ⋅∑ ∑ ∑ ∑ ∑ ∑  

( )
{ } v

v v recv el
e E v N Sink l L

E Mβ γ
−∈ ∈ − ∈

+ + ⋅ ⋅∑ ∑ ∑  

( ) ( )
{ } { }

min
v v

el v v sent el v v recv el
e E v N Sink e E v N Sinkl L l L

E M E Mα β γ β γ
+ −∈ ∈ − ∈ ∈ −∈ ∈

= − + + ⋅ ⋅ + + ⋅ ⋅∑ ∑ ∑ ∑ ∑ ∑

subject to: 

el
e E

M C
∈

≤∑  l L∀ ∈  (5) 

0 el e eM A f≤ ≤ ⋅  e E∀ ∈ , l L∀ ∈  (7) 

 

To solve this subproblem we first need to determine all the coefficient 

values of { }elM . For each event e , by putting the start point sensor node of 

link l  into the first term of this subproblem’s objective function and then 

putting the end point sensor node of link l  into the second term of this 

subproblem’s objective function, we can obtain the coefficient value of elM  

on link l . Thus, we can calculate all the coefficient values of { }elM . We can 

then determine { }elM ’s values to obtain the optimal solution to this 

subproblem. If a elM ’s coefficient value is positive, we set its value to 0, 

otherwise we sort the elM s by their coefficient values from small to large. 

Later, we will determine these elM ’s values in this order, and to further satisfy 

constraint (5), i.e. el l
e E

M C
∈

≤∑  for each link l , we determine the elM ’s value 

one by one. Before determining each of them, we should check the residual 

capacity on link l . If it is greater than or equal to e eA f⋅ , we set its value to 

e eA f⋅ , then decrease the residual capacity on link l  by e eA f⋅ , otherwise 

we set its value to the remaining residual capacity on link l , and decrease the 

residual capacity on link l  to 0.  
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Subproblem 2-4 (related to decision variable vT ) 

2 4 ( , )subZ γ θ−  

{ }
min

e n p

v
v enpv v

v N Sink e E n A p P v Vv

E T
T

γ θ
∈ − ∈ ∈ ∈ ∈

= − ⋅ − ⋅∑ ∑∑ ∑ ∑  

{ }
max

e n p

v
enpv v v

e E n A p P v V v N Sink v

ET
T

θ γ
∈ ∈ ∈ ∈ ∈ −

= ⋅ + ⋅∑∑ ∑ ∑ ∑  

subject to: 

1 1
2 2 v

v v

v v
v

e sent
e Bv e sent v e recv

e B e B

E ET
f E

U f E U f E
ε

ε ∈
∈ ∈

≤ ≤
⋅ +⎛ ⎞ ⎛ ⎞

⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑
 

{ }v N Sink∀ ∈ −  (9) 

 

To solve this subproblem, we need to obtain vT ’s maximal value for each 

sensor node v . This occurs at an intersection point on either side of vT ’s 

bound. Either 
1 1
2 2

v v

v

v e sent v e recv
e B e B

E

U f E U f E ε
∈ ∈

⎛ ⎞ ⎛ ⎞
⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
 or  

v

v

e sent
e B

E
f E ε

∈

⋅ +∑
 can obtain vT ’s maximal value for each sensor node v . 
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3.3.3 The Dual Problem and the Subgradient Method 

According to the weak Lagrangian duality theorem  [6], for any β , θ , 

µ , ω  0≥ , 2 ( , , , , , )DZ α β γ θ µ ω  is a lower bound on 5IPZ . The following 

dual problem (D2) is then constructed to calculate the tightest lower bound. 

Dual Problem (D2): 

2DZ  =  2max ( , , , , , )dZ α β γ θ µ ω  (D2) 

subject to: 

, , ,β θ µ ω  ≥  0  

 

The most popular method for solving the dual problem is the subgradient 

method  [9]. Let g  be a subgradient of 2 ( , , , , , )dZ α β γ θ µ ω . Then, at the k th 

iteration of the subgradient optimization procedure, the multiplier vector 

( , , , , , )π α β γ θ µ ω=  is updated by 1k k k kt gπ π+ = + . The step size kt  is 

determined by 
*

5 2
2

( )k IP d k
k k

Z Zt
g

πλ −
= . *

5IPZ  is the best upper bound on the 

primal objective function value after the k th iteration obtained from heuristic 

solutions. kλ  is a constant between 0 and 2. 



 

 49

 

 

 

 

Chapter 4  Getting Primal Feasible 

Solutions 
 

By using Lagrangean Relaxation and the subgradient method as our tools 

to solve these subproblems, we not only obtain a theoretical lower bound of 

primal feasible solution, but also get some hints to help us find our primal 

feasible solution in each iteration of solving the dual problem. 

 

Since some constraints of the primal optimization problem are relaxed by 

Lagrangean Relaxation, we cannot guarantee that the results of dual problems 

will be a feasible solution to the primal problem. If the decision variables 

calculated satisfy the relaxed constraints, then a primal feasible solution is 

found. Otherwise, a modification to such infeasible primal solutions is 

necessary to obtain primal feasible solutions. 

 

Therefore, it is necessary to apply additional heuristics to obtain a primal 

feasible solution. We now give the details of the heuristics.. 
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4.1 Heuristic for Model 1 

To find primal feasible solutions for Model 1, solutions to the Lagrangean 

Relaxation problems are considered. 

 

4.1.1 Reroute Heuristic 

{ }enpx , which describe the routing of the entire network, is the most important 

factor in finding primal feasible solutions. Once { }enpx  are determined, { }elM  

can be calculated, and T  can also be obtained. The solution set of { }enpx  

obtained from Subproblem 1-2 may not be a feasible solution to the primal 

problem. We can make this infeasible solution become feasible by designing a 

reroute heuristic. The steps of the reroute heuristic are as follows: 

1. Based on { }enpx , we can calculate { }elM , then, check whether there are 

existing links which violate the link capacity. If so, these links are sorted 

according to the amount of “exceeding flow” (aggregate flow － link 

capacity), to find the most congested link, i.e. the link with the largest 

amount of “exceeding flow”. If not, go to 7. 

2. We analyze the flow on the most congested link to find which events the 

flow is coming from. Then sort these events by the values of el efα ⋅  in 

Subproblem 1-2 and find which event has the largest value of el efα ⋅ . 

There are probably several selected paths from the event with the largest 

value of el efα ⋅  passing through the most congested link. We remove the 

selected path which has the shortest lifetime sensor node on it, and decrease 
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the flow from each link on that path by ef . 

3. We then reroute by using the Bellman-Ford algorithm. The link cost of the 

congested link and the link which has the existing total flow on it, plus the 

ef , are larger than its link capacity are set to infinite; other links’ costs 

equal the existing total flow on them. By setting link cost in this manner, 

we can guarantee that the rerouted path doesn’t make an additional link that 

violates the link capacity, and thereby achieve the goal of effectively 

balancing the flow on the entire network. Then check if the result of the 

Bellman-Ford algorithm can successfully find a new path to replace the 

removed path. If so, we update { }enpx , and return to 1. 

4. So far, { }enpx  only satisfy the link capacity, but { }enpx  still have a 

probability to violate the nodal capacity. So we first check whether the 

{ }enpx  can result in a node that violates its nodal capacity. If so, go to 5; 

otherwise, we do find a feasible solution to the primal problem. Then we 

can further calculate { }elM  and obtain T  by the feasible { }enpx . 

5. We find the most congested node which has the largest amount of 

“exceeding flow” (aggregate flow － nodal capacity) among all nodes. 

And analyze the flow on the most congested node to find which events the 

flow is coming from. Then find the event with the largest value of ef , and 

randomly pick one selected path that passes through the congested node and 

remove it. 

6. We then use the Bellman-Ford algorithm to reroute the removed path, in the 

same way that the link cost is set in Step 5. Further, to avoid the rerouted 

path causing another node to violate its nodal capacity, we check each node 
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to see whether its existing flow on it, plus ef , is larger than its nodal 

capacity. If so, we set all its in-links’ costs to infinite. Then Check if the 

result of the Bellman-Ford algorithm can successfully find a new path to 

replace the removed path. If so, we update { }enpx , then return to 4. 

 

 

4.2 Heuristic for Model 2 

To find primal feasible solutions for Model 2, solutions to the Lagrangean 

Relaxation problems are considered. 

 

4.2.1 Reroute Heuristic 

The solution set of { }enpx  obtained from Subproblem 2-2 may not be a 

feasible solution to the primal problem. We can make this infeasible solution 

become feasible by designing a reroute heuristic. The steps of the reroute 

heuristic are as follows: 

1. Based on { }enpx , we can calculate { }elM , then, check whether there are 

existing  links which violate the link capacity. If so, these links are sorted 

according to the amount of “exceeding flow” (aggregate flow － link 

capacity), to find the most congested link, i.e. the link with the largest 

amount of “exceeding flow”. If not, go to 7. 

2. We analyze the flow on the most congested link to find which events the 

flow is coming from. Then sort these events by the values of el efα ⋅  in 

Subproblem 2-2 and find which event has the largest value of el efα ⋅ . 
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There are probably several selected paths from the event with the largest 

value of el efα ⋅  passing through the most congested link. We remove the 

selected path which has the shortest lifetime sensor node on it, and decrease 

the flow from each link on that path by ef . 

3. Then we check the remaining 1W −  paths. If the path can satisfy the link 

capacity constraint of each link on it after adding e ef  to it, we put it into a 

“feasible candidate paths” set; otherwise we omit it. 

4. We choose the path which has the largest value of enpS  in the “feasible 

candidate paths” set to be the new selected path, then update { }enpx  and 

return to 1. 

5. So far, { }enpx  only satisfy the link capacity, but { }enpx  still have a 

probability to violate the nodal capacity. So we first check the { }enpx  

whether can result in a node that violates its nodal capacity. If so, go to 6, 

otherwise, we do find a feasible solution to the primal problem. Then we 

can further calculate { }elM  and obtain T  by the feasible { }enpx . 

6. We find the most congested node which has the largest amount of 

“exceeding flow” (aggregate flow － nodal capacity) among all nodes. 

And analyze the flow on the most congested node to find which events the 

flow is coming from. Then find the event with the largest value of ef , and 

randomly pick one selected path that passes through the congested node and 

remove it. 

7. Then we check remaining 1W −  paths individually. If the path can satisfy 

the link and the nodal capacity constraints of each link and sensor node on 

it after adding ef  to it, we put it into a “feasible candidate paths” set; 
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otherwise we omit it. 

8. We choose the path that has the largest value of enpS  in the “feasible 

candidate paths” to be the new selected path, then update { }enpx  and return 

to 5. 

 



 

 55

 

 

 

 

Chapter 5  Computational Experiments 
 

In order to prove that our heuristics are efficient, we implement two 

simple algorithms to compare with our heuristics. 

 

 

5.1 Simple Algorithm for Model 1 (SA 1) 

We sort events from large to small according to their ef  values. Then, in 

this order, we select a path for each sensor node individually that can sense the 

sorted event. We can select the paths, i.e. determine the values of { }enpx , by 

using the Bellman-Ford algorithm, where the link cost of each link l  is the 

inverse of its end point sensor node’s residual energy. Once we select a path for 

a sensor node, we add flow on the selected path and update the relevant links’ 

costs. Before we select a path for another sensor node, however, we check if 

each link l  can satisfy the link capacity constraint after adding extra ef  to it. 

If not, we set its link cost to infinite. We further check if each sensor node can 

satisfy the nodal capacity constraint after adding extra 2 ef⋅  to it (flow-in + 

flow-out); otherwise, we set all its in-links’ costs to infinite. 
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5.2 Simple Algorithm for Model 2 (SA 2) 

We select a path for a sensor node by checking if path p  has the largest 

value of enpS  within the predefined W  candidate paths for the sensor node. If 

so, we set its enpx  value to 1; otherwise we set it to 0. Once we select a path 

for a sensor node, we add flow on the selected path and update the relevant 

enpS  value. We then select a path for another sensor node. 

 

 

5.3 Parameters and Scenarios of the Experiment 

To test the performance of these algorithms, we design three experimental 

scenarios: (1) 25 events and 25 sensor nodes; (2) 25 events and 50 sensor nodes; 

(3) 25 events and 100 sensor nodes. All events and sensor nodes are 

randomized in a 50m × 50m sensor field, and the Sink is located 5m away 

under the sensor field. The sensing radius and communication radius of an 

individual sensor node are 10m and 20m respectively. These parameters and 

scenarios for Model 1 and Model 2 used in our experiments are listed in Table 

5-1 and Table 5-2 below respectively. 

 

Parameters Values 

Number Of Iterations 
Firs stage: 2000 

Other stages: 1000 

Non-improvement Counter Scenario 1: 50 
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Scenario 2: 70 

Scenario 3: 90 

Initial Upper Bound SA 1 

Initial Scalar Step Size 2 

Initial Multipliers 0 

ef  (kbit/sec) (0,2] 

lC  (kbit/sec) 20 

nU  (kbit/sec) 100 

eH  (hop) 5 

nE  (J) 1 

sentE  (J/kbit) 0.9×10-4 

recvE  (J/kbit) 0.5×10-4 

ε  (J/sec) 0.1×10-4 

Table  5-1 Experimental Parameters for Model 1 

 

Parameters Values 

Number Of Iterations 1000 

Non-improvement Counter 100 

Initial Upper Bound SA 2 

Initial Scalar Step Size 2 

Initial Multipliers 0 

ef  (kbit/sec) (0,2] 

lC  (kbit/sec) 20 

vU  (kbit/sec) 100 
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eH  (hop) 5 

vE  (J) 1 

sentE  (J/kbit) 0.9×10-4 

recvE  (J/kbit) 0.5×10-4 

ε  (J/sec) 0.1×10-4 

W  (path) 
Scenario 1: 5 

Scenario 2: 10 

K  1 

O  9 

Table  5-2 Experimental Parameters for Model 2 

 

The initial upper bounds for Models 1 and 2 are set according to the result 

of each model’s respective simple algorithm. If the simple algorithm for Model 

1 can not find a feasible solution to the primal problem, we set it to 0. 

Meanwhile, if the simple algorithm for Model 2 can not find a feasible solution 

to the primal problem, we set it to 
e n

e enp
e E e E n A p P

T K R O S
∈ ∈ ∈ ∈

− + ⋅ − ⋅∑ ∑∑ ∑  where  

,

min max min
1 1
2 2

pe n

v v

v

e E v Vn A p P

v e sent v e recv
e B e B

ET
U f E U f E ε

∈ ∈∈ ∈

∈ ∈

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎜ ⎟= ⎨ ⎬⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭

∑ ∑

, 

,

max min
pe n

v

v
e v Vn A p P

e e sent
e B

ER
f f E ε

∈∈ ∈

∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟⎛ ⎞⎢ ⎥⎜ ⎟+ ⋅ +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑

 for each e E∈  and 

min
1 1
2 2

p

v v

v
enp v V

v e sent v e recv
e B e B

ES
U f E U f E ε

∈

∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⋅ + ⋅ + ⋅ − ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑
 for all { }enpS . The 

multipliers are all set to 0 initially. 
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The { }ef  are randomized in ( ]0, 2  kbit/sec, then the { }lC , { }nU ( or 

{ }vU ) and { }eH  are 20 kbit/sec, 100 kbit/sec and 5 hops respectively, where 

the values of { }lC  refer to the standard of IEEE802.15.4 (20, 40, 256 kbit/sec). 

All sensor nodes start with an initial energy of 1J, then sentE , recvE  and ε  are 

respectively set to 41.4 10−× J/kbit, 40.5 10−× J/kbit and 40.1 10−× J/sec, where 

values of sentE  and recvE  are calculated by adopting a simple model from  [7] 

(see Figure 5-1 and Table 5-3). Thus, to transmit a k bit message a distance d  

using this radio model, the radio expends: 2( , )Tx elec ampE k d E k k dε= ⋅ + ⋅ ⋅ , and 

to receive this message, the radio expends: ( )Rx elecE k E k= ⋅ . In Model 2, the 

W  candidate paths from each sensor node are set to 5 and 10 in Scenario 2 and 

Scenario 3 respectively, and the constants K  and O  in the objective function 

are set to 1 and 9. 

 

 

Figure  5-1 First Order Radio Model  [7]  

 

 

Table  5-3 Radio Characteristics  [7] 
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5.4 Experimental Results 

5.4.1 Experimental Results for Model 1 

The experimental results obtained from seven randomly generated cases 

for each scenario for Model 1 are listed below. The SA1 value means the system 

lifetime obtained from the first stage of Model 1 using SA 1 and equals the 

system lifetime of the original definition. The LR1 value is the optimal system 

lifetime obtained from the first stage of Model 1 using LR. The gap defined by 

( ) 100%UB LB− × , where UB and LB is an optimal solution to the primal 

problem (IP) and dual problem (D), respectively, in the LR process. Gap1 is the 

gap obtained from the first stage of Model 1. The improvement ratio of SA1 is 

calculated by (LR1- SA1)/ SA1. The LRT is the system lifetime of our modified 

definition obtained by using LR, and the system lifetime improvement ratio is 

calculated by (LRT - LR1)/ LR1. 

 

Scenario 1: 

Case SA1 LR1 Gap1 SA1 Imp. ratio LRT T  Imp. ratio 

1 385.6 495.2 9.8％ 28.4％ 496.7 0.3％ 

2 765.2 1056 33.1％ 38.0％ 1188 12.5％ 

3 417.1 702.7 30.5％ 68.5％ 785.2 11.7％ 

4 670.6 752.4 20.8％ 12.2％ 752.4 0.0％ 

5 408.5 480.9 12.0％ 17.7％ 491.5 2.2％ 

6 333.6 624.2 24.3％ 87.1％ 736 17.9％ 

7 357.7 501.7 15.4％ 40.3％ 522.5 4.1％ 

Table  5-4 Experimental Results of Scenario 1 for Model 1 
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Scenario 2: 

Case SA1 LR1 Gap1 SA1 Imp. Ratio LRT T  Imp. ratio

1 360.7 500.8 28.6％ 38.8％ 566.9 13.2％ 

2 364.1 487.5 28.6％ 33.9％ 572.1 17.3％ 

3 363.5 473.3 16.8％ 30.2％ 515.7 9.0％ 

4 327.4 413.4 26.3％ 26.3％ 444.9 7.6％ 

5 370.4 541.7 19.1％ 46.2％ 604.6 11.6％ 

6 378.7 426.6 26％ 12.7％ 474.9 11.3％ 

7 358.2 472.4 22.3％ 31.9％ 495.7 4.9％ 

Table  5-5 Experimental Results of Scenario 2 for Model 1 

 

Scenario 3: 

Case SA1 LR1 Gap1 SA1 Imp. Ratio LRT T  Imp. ratio

1 335.1 388.5 30.2％ 15.9％ 476.4 22.6％ 

2 366.3 397.9 36.0％ 8.6％ 444.6 11.7％ 

3 291.0 351.1 13.6％ 20.6％ 359.6 2.4％ 

4 355.2 386.8 30.2％ 8.9％ 461.2 19.2％ 

5 379.0 428.4 33.8％ 13.0％ 549.1 28.2％ 

6 342.7 387.3 31.7％ 13.0％ 406.9 5.1％ 

7 376.7 416.6 28.0％ 10.6％ 489.3 17.5％ 

Table  5-6 Experimental Results of Scenario 3 for Model 1 
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5.4.2 Experimental Results for Model 2 

The experimental results obtained from seven randomly generated cases 

for each scenario for Model 2 are listed below. The SA value means the system 

lifetime obtained from Model 2 by using SA 2, and the LR value is the optimal 

system lifetime obtained from Model 2 using LR. The Gap defined by 

( ) 100%UB LB− × , where UB and LB is an optimal solution to the primal 

problem (IP) and dual problem (D), respectively, in the LR process. The 

improvement ratio of SA is calculated by (LR- SA)/ SA.  

 

Scenario 2: 

Case SA LR Gap SA Imp. ratio 

1 399.7 447.1 82.0％ 11.9％ 

2 0 383.9 80.1％ ∞％ 

3 528.8 528.8 78.2％ 0.0％ 

4 625.1 670 76.4％ 7.2％ 

5 401.6 474.4 73.4％ 18.1％ 

6 397.2 461.7 82.2％ 16.2％ 

7 392.7 464.7 83.0％ 18.3％ 

Table  5-7 Experimental Results of Scenario 2 for Model 2 

 

Scenario 3: 

Case SA LR Gap SA Imp. ratio 

1 381.4 419.4 76.8％ 10.0％ 

2 365.3 374.7 81.9％ 2.5％ 
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3 0 426.3 82.7％ ∞％ 

4 372 404.8 82.9％ 8.8％ 

5 423.1 482.9 79.6％ 14.1％ 

6 500.8 500.8 76.6％ 0.0％ 

7 438.2 466.5 80.9％ 6.5％ 

Table  5-8 Experimental Results of Scenario 3 for Model 2 

 

The average system lifetimes of our modified definition obtained from 

different scenarios for Models 1 and 2 are listed in Table 5-9 and depicted in 

Figure 5-2. 

 

Model 1 Model 2  

LR1 LRT LR 

Scenario 2 473.7 525.0 490.1 

Scenario 3 393.8 455.3 439.3 

Table  5-9 Comparison of Average System Lifetimes of Different Models 
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Figure  5-2 Comparison of Average System Lifetimes of Different Scenarios  
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5.4.3 Computation Time 

Average Computation Time (sec) 
Model 

Scenario 1 Scenario 2 Scenario 3 

Model 1 178.1 481.7 2388.6 

Model 2 X 131.4 1580.1 

Table  5-10 Computation Time of Different Models 

 

According to Table 5-10, the computation times increase when the number 

of sensor nodes scattered in a sensor field increase. Obviously, the computation 

times in Scenario 3 are much higher than in Scenario 2. This is because, in 

Model 1, we have to execute more stages when the number of sensor nodes 

grows. In Model 2, however, we have to use an exhaustive search method to 

solve Subproblem 2-2. As there are more candidate paths for each sensor node 

to the Sink once the number of sensor nodes grows, the needed computation 

time increases rapidly. 
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5.5 Discussion of Results  

According to our experimental results, it is clear that the results of LR are 

much better than SA. This is because we do not use any informative parameters 

in SA. In LR method, however, we fully use these informative parameters, 

which are obtained from solving the subproblems of LR. We use multipliers as 

the link cost when trying to reroute or find a better path to effectively achieve 

the purpose of balancing the total flow on the entire network. The values of 

multipliers are tuned by gradient method iteration by iteration and clearly 

respond to the situation of an individual link. When a link is over- loaded, the 

value of that link will increase iteration by iteration, so it will not be a good 

choice for constructing a path. 

 

In addition, the system lifetime obtained from our modified definition is 

much longer than the original definition, which is rather underestimated, and 

the result of Model 1 is better than Model 2. 

 

Further, we can use linear programming relaxation to explain the gap. 

Because of the integer constraint, there will be a bound between the lower 

bound and the result of heuristic. We call this the duality gap. If we eliminate 

the integer constraint, for example, a sensor node can select more than one path 

to transmit the flow to the Sink, and the total flow on the entire network will be 

more balanced. In addition, the corresponding calculated system lifetime, i.e. 

the lower bound, will be higher. 
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Chapter 6  Summary and Future Work 

6.1 Summary 

In this paper, our work emphasizes deriving an energy efficient routing 

algorithm to maximize the system lifetime of wireless sensor networks. We 

modify the original definition of system lifetime, and thereby obtain a system 

lifetime that is much closer to the real environment. 

 

We propose two models and formulate both as combinatorial optimization 

problems where the objective function is to maximize the system lifetime. We 

then use Lagrangean Relaxation, combined with the subgradient method, to 

solve these problems. While applying this methodology, we relax some 

complicated constraints in the primal problem, which makes it much easier to 

solve. Then, we further decompose this problem (LR) into several independent 

subproblems. We analyze these subproblems and optimally solve them, and 

develop several heuristics to obtain the primal feasible solution. 

 

We implement the algorithms in C code, and test them by using three 

well-designed scenarios. Our experimental results are very satisfactory because, 

by applying our algorithms, the system lifetime is greatly prolonged. 
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6.2 Future Work 

In this paper, we haven’t considered “data aggregation” behavior in our 

models. To obtain a more precise system lifetime of wireless sensor networks, 

data aggregation should be further considered. 

 

In addition, because of the uncertainty of wireless communication 

channels, we can further discuss the fault tolerance issue in wireless sensor 

networks. For example, we can require sensor nodes to deliver one more copy 

of a message along different paths to the Sink in order to increase the 

probability of successful delivery.  

 

Finally, we should focus on the distributed implementation of our 

proposed algorithms and consider other ways to prolong system lifetime, such 

as improving the sensor node so that it can adaptively change its sensing radius 

and communication radius. Another improvement would be to make the sensor 

node mobile. 
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