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論文摘要 

 

近年來，室內空間中使用者定位方面的服務逐漸成為一項熱門的議題，同時

IEEE802.11 無線網路技術之成熟，也使其成為室內空間定位上的首選。而由於

802.11 之 RF 訊號易受到室內空間中的障礙物以及人體的影響而衰減，因此傳統

的室外空間定位演算法，如三角定位法是不適用的。 

 

為了能在室內空間中精確地定位，許多研究提出為室內空間事先建立一個場

地訊號測量資訊的資料庫是有必要的。在實際定位過程中，藉由比對訊號資料庫

與行動端點收到各 AP 的訊號強度值，可得出該行動端點最有可能的定位點。然

而實際測量全部各點的訊號值卻是非常耗費人力的。因此，本研究的目標即在

於，透過精心選擇適量的實測點並收集其訊號實測值，輔以良好的訊號推估演算

法，可藉精確地推估出其餘各點的訊號強度值，並減少人力的浪費。 

 

本研究分為兩階段，第一個階段提出透過實測值以推測出推估值之最佳訊號

強度推估演算法;第二階段則根據第一階段的訊號推估演算法，以及給定的實測

密度，使用求解組合性最佳化的模擬退火法以求解最佳的實測點位置組合。. 

 

 

 

 

 

關鍵詞：室內定位、室內定位演算法、IEEE802.11、訊號強度、最佳化、模擬退

火法、組合性最佳化 
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THESIS ABSTRACT 
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ADVISER: YEONG-SUNG LIN 

MEASURE POINT SELECTION ALGORITHMS FOR WIRELESS 

INDOOR POSITIONING SYSTEMS 

Recently, the service of indoor positioning system has gradually become a hot issue; and 

with the maturation of IEEE 802.11 wireless technology, it has been the first choice for 

indoor positioning system. Owing to the sensitivity of RF signal of 802.11 which may 

attenuated by obstacles and human body, traditional outdoor positioning algorithm, such 

as triangle positioning algorithm, is not suitable to use for indoor positioning.  

 

In order to accurately position in indoor space, many researches have pointed out that a 

previously built RSSI (Received Signal Strength Indicator) database is necessary. By 

comparing the RSS vector received at mobile nodes with RSSI database, we can precisely 

position the location of mobile users. However, collecting RSS for all grids of indoor 

space costs lots of human resource. Hence, the purpose of this thesis is to propose a 

method, which selects measure points elaborately, and collocates with a nice RSS 

inference algorithm, and then we can build up well RSSI database with relatively lower 

cost. 

 

In this research we proposed a method that selects suitable quantity of measure points at 

elaborately selected locations, and infers the signal strength of the other points based on 
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these selected measure points to reduce signal strength collecting cost. 

 

Keywords: Indoor position, Indoor Positioning Algorithm, IEEE 802.11, Signal 

Strength, Optimization, Simulated Annealing, Combinatorial Optimization
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Chapter 1 Introduction 

 

1.1 Background 
 

With the emerging wireless technology, such as IEEE802.11, many issues and 

applications have been proposed, and the indoor positioning service is one of those 

issues. The main goal of indoor positioning service is to make users interacting with 

their surrounding environment. Consider the following example, while the user 

moving around in the Palace Museum with a handheld device such as PDA, he or she 

may want to know the history of the China in front of them, or they would like to be 

directed to the nearest service counter; furthermore, the positioning service can 

deliver the location-based content to the user’s handheld device as soon as they need 

immediately. Figure1-1 shows typical indoor positioning graph, and we may position 

mobile users with various positioning method. 
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Mobile user

III Embedded System Lab  

Figure 1–1 Typical  Indoor  Posi t ioning Field  

 

The granulation of location information needed varies from one application to another. 

One may acquire the exact location information, such as the distance how far they are 

from some proximity, while the others may just want to know which region they 

probably are. In general, the accuracy of positioning in the Indoor space depends on 

the purpose of the application, and the most important, the computation cost and 

complexity of the indoor positioning systems varies with the positioning accuracy.  

General wireless positioning system diagram proposed in [7] is as Figure1-2: 
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Figure 1–2 General  Wireless  Posi t ioning System Diagram 

 

The main elements of the system are a number of location sensing devices that 

measure metrics related to the relative position of a mobile device with respect to a 

known reference point, a positioning algorithm that process metrics reported by 

location sensing elements to estimate the location coordinates of mobile device, and a 

display system that illustrates the location of the mobile device to users. 

 

To our knowledge, there are few indoor positioning systems use pure 802.11 

architecture without any other additional entities. Most application with high 

positioning accuracy relies on additional hardware or use more than two types of 

signal simultaneously [5]. However, these applications suffer from the limitation of 

scalability and introduced more cost, because additional hardware or protocol 

modifications are required, and thus lacks portability. 

 

[1][2][3] developed indoor positioning systems relied on pure IEEE802.11b-based 

system architecture without any protocol modification or additional hardware. These 
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applications utilize off-the-shelf technology, which is relatively inexpensive and also 

reduce the limitation of hardware and protocol modification constraints.  

 

Positioning methods of these applications are achieved by the previous construction 

of the radio map of the information of the indoor space. Owing to the sensitivity of 

the RF signal, which may be interfered by the obstacles of indoor spaces, or it may be 

attenuated by human bodies, it is difficult to infer the location of users by time 

differencing method such as AOA (Angle of Arrival), TOA (Time of Arrival), or 

TDOA (Time Differentiate of Arrival). Such method requires time synchronization of 

mobile devices with base stations, and is not suitable for indoor environment [6]. 

Thus, these applications require construction of radio map of indoor space previously. 

Radio map of an indoor building includes the RSS (Received Signal Strength) vectors 

at every free space in the map. General radio map is a two dimensional discrete grids. 

In [1], they define each grid as either following four types: AP, Obstacle, Measure 

point, and Infer point. Obstacle grid stores the type of this obstacle and its attenuation 

efficient; Measure point and Infer point stores the RSS received from each AP. The 

system architecture of [1] is in Figure 1-3: 

 

 

 

 

 

 

 

Figure 1–3 System Archi tecture of  I II  Wireless  Indoor Posit ioning System 
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To realize this positioning system, it is divided into two processes: Offline-process 

and On-line process. In offline process, we collect RSS vectors of each point from 

each AP. The on-line mode is based upon the RSS information collected in the off-line 

mode; in on-line process, the mobile device periodically transmit the RSS vector 

received from each AP to the Central Control Server, and the Positioning Module in 

the Central Control Server would compare the RSS vector with the RSSI (Received 

Signal Strength Indicator) Database in the Database to find out where the mobile 

device is. This kind of systems achieves high positioning performance, but relies 

highly on the accuracy of RSSI Database build in off-line process, which is also 

called the radio map mentioned previously.  

 

1.2 Motivation 

 

In the previous section, we can see that positioning accuracy relies highly on the 

accuracy of the RSSI Database. To build a good RSSI Database, we have to collect 

RSS for all free space points, which introduces lots of human-resource. In fact, if we 

can collect RSS for only some specifically selected measure points, and if we also 

have an excellent algorithm to infer RSS for those infer points based on known 

measure point, then we can reduce lots of RSS collecting cost and acquire a 

considerable well RSSI Database. Our research has two phases. In phase1, we 

proposed several algorithms to infer RSS of each infer points based on those collected 

RSS measure points, then we compare which one is the best based on two RSSI 

Databases. In phase two, we designed an algorithm to select the optimal measure 

points based on the best algorithm proposed in phase one. The optimization algorithm 

in phase2 is based on simulated annealing method, which can be implemented with 
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large-scale combinatorial optimization problem.
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Chapter 2 Literature Survey 
 

2.1 Location and Tracking System 
 

Related work of location and tracking systems can be separated into four categories: 

(1) IR-based systems (2)indoor RF-based systems (3)wide-area cellular-based systems, 

and (4)The others, such as ultrasound-based systems. The relative work of these 

location and tracking systems are introduced and discussed below. 

 

The most representative work in IR-based location systems is the Active badge system 

[4]. User carries a handheld device which emits IR signal periodically. IR receivers 

are placed at known positions in indoor space. Upon receiving IR from handheld 

device, the IR receiver would relay this signal to location manager software. This 

system provides high accuracy, yet suffers from some drawbacks such as the poor 

signal range due to the IR, and it incurs significant hardware setup cost. 

 

The RF-based positioning systems are RADAR [1] and Duress Alarm Location 

System (DALS) [8]. These two systems uses RF signal strengths (RSS) to determine 

user location, but DALS differs from our system and RADAR that it requires special 

hardware and infrastructure deployment over and above a wireless network, and it 

does not consider the factor that the human orientation may have extremely effect on 
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RF signals and the factor of RF propagation model. RADAR system is developed by 

Microsoft Research Center which is based on RF signal without additional hardware. 

Access Points (AP) are located in some way that provide overlapping coverage in the 

area where is going to be used for positioning. User carries handheld device such as 

PDA or mobile phone equipped with a wireless LAN card which responsible for 

communicating with AP. RADAR uses the RSS received at each handheld device 

from each AP to infer the user’s location. It build a Radio Map which is a database of 

locations in the indoor space that stores the signal strength of the beacons emanating 

from AP observed or estimated at those locations. RADAR proposed two types of 

method to create the Radio MAP, the first one is empirical method, which requires a 

mobile user walking around the building with a handheld device to record the RSS 

from each AP at each locations. The second method is mathematical method, which 

involved computing the RSS at each location with a mathematical model of indoor RF 

signal propagation. This mathematical model considers both free space path loss and 

attenuation due to obstructions like walls or obstacles between AP and the mobile 

user. 

 

In the wide-area cellular area, several location determination systems have been 

proposed [9]. The popular way of measuring mobile phones base upon the signal 

attenuation such as angle of arrival (AOA), time of arrival (TOA) and time 

differentiate of arrival (TDOA). These methods have well performance in the outdoor 

environment, while they are not suitable for indoor environment because the RF 

signal suffered from multiple reflections, for example, multi-path, shadow fading, and 

non-light-of-sight problem. It is also no off-the-shelf technology to provide the time 

synchronization supplies the TOA or TDOA method and requires additional hardware 

(may be relatively expensive). Furthermore, Global Positioning System (GPS) is a 
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powerful outdoor positioning system, but it is not effective for indoor positioning 

system because the GPS transmission would be blocked by buildings. 

 

2.2 Simulated Annealing 
 

Optimal measure point selection problem is an NP-hard problem. For each point, we 

have to decide whether it is a measure point or an infer point, in other words, we have 

to partite these points into two set, one is measure points, and the other is infer points. 

Partitioning problem is a kind of combinatorial problem. A general approximation 

algorithm that runs in polynomial-time needs to be used in order to solve this kind of 

problems. It is difficult to find such algorithm to obtain near optimal solution. 

Simulated annealing (SA) [12] is considered an approximation algorithm where it is 

applicable to various problems in general. The SA algorithm can be considered as a 

version of an "iterative improvement algorithm" which considers only specific 

transitions and terminates in the first local minima found. Unlike those algorithms, 

simulated annealing allows various types of transitions in which some of them may be 

opposite towards achieving the goal. For instance, cost increasing transitions are also 

accepted along with cost decreasing transitions whereas iterative improvement 

algorithm would allow only cost-decreasing ones to pass. However, it is proven that 

eventually simulated annealing produces more optimal solution than the original 

iterative improvement algorithm. 

 

Metropolis algorithm was the original idea behind the optimization technique of SA. 

Kirkpatrick et. al, [11] has used Metropolis algorithm as a global optimizer. Thus, 

simulated annealing is also known as global optimizer. This algorithm is then applied 

to the physical design of computers. The advantage of using simulated annealing is its 
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ability to scale for large scale optimization problems and its robustness towards 

achieving local optima convergence. 

 

SA starts with an initial solution, s. A neighbor to this solution s’, is then generated as 

the next solution and the change in cost. The aim of a generation mechanism is to 

generate a new solution s' out of the solution s by means of a random perturbation in 

one of the variables of s. We adopted the generation mechanism of Spatial Simulated 

Annealing (SSA) [13], which is a modification of SA. In SSA, s’ is done by moving 

one randomly chosen measure point ix  over a vector h  with the direction of h  

drawn randomly, and h  taking a random value between 0 and maxh . One of the 

modifications of SSA as compared to ordinary SA is that maxh  initially is equal to 

half the length of the sampling region, and decreases with time. This increase the 

efficiency of the demanding recalculations after each modification in the sampling 

scheme, because it can be expected that with optimization of sampling schemes, 

successful modifications consist of increasingly smaller values of h  as the SSA 

process advances. This is because the process deals with many similar variables. 

Therefore, moving measure points randomly over large distance will not contribute 

much to finding the minimum towards the end of the optimization process. At the end 

the final value of the control parameter maxh  will be almost equal to zero. 

 

After s' has been generated, ∆F(s, s’) is evaluated. If a reduction in cost is found, the 

current solution is replaced by the generated neighbor, otherwise we decide with a 

certain probability whether s remains or s’ becomes the current solution. The 

probability of accepting a transition that causes an increase, ∆F, in the cost is usually 

called the acceptance function and is set to exp(-∆F/T) where T is the control 
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parameter that corresponds to temperature in the analogy with the physical annealing 

process. In SA, the algorithm is started with a relatively high value of T, to have a 

better chance to avoid being prematurely trapped in a local minimum. The control 

parameter is lowered in steps until it approaches to zero. After termination, the final 

configuration is taken as the solution of the problem at hand. That is, simulated 

annealing is a generalization of the local search algorithm. As the Figure 2-1 and 

Figure 2-2 shows below, SA has the chance to climb out of local optima and 

eventually find the global optima. The general pseudo code of SA is also showed 

below. 

 

()
   = Initial solution to the optimization problem;
   = Initial Temperature
     
     (InnerLoop Condition)
         = A Randomly Chosen Modification to ;
         

SimulatedAnnealing
S
T
While T
While

M S
If f

µ>

( ( ),  ) Apply  to ;
     
      ( );
   

unc Gain M T M S
End While
T Update T

End While
=

 

Figure 2–1 Pseudo code of  general  s imulated anneal ing procedure 



 

 12

Iteratio n

C o s t

SA has the chance to climb out of local optima

 

Figure 2–2 the re la t ionship of  Cost  and I terat ion in  Simulated Anneal ing
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Chapter 3 Solution Approach 
 

We divide our problem into two phases. Phase one is to compare several RSS 

inference algorithms which infer RSS of an infer point by their surrounding measure 

points, and find the best one using a previously built RSSI Database of floor 5 of 

NTU Management Building. In phase two, we proposed an optimization algorithm 

using simulated annealing (SA) to select optimal measure point based on the inferring 

algorithm in phase1. 

 

3.1 Phase1: RSS Inference Algorithms 
 

We proposed several RSS inference algorithms below. 

 

3.1.1 Notation 
 

Notation Description 

I Infer point. 

iS  The ith measure point of I. 

AP Access Point. 
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iD  The distance from I to iS . 

RSS(p) The RSS of a measure or infer point p. 

r Radius of current searching area circle. 

1V  1 1( , )X Y , vector determined from AP to 1S . 

2V  2 2( , )X Y , vector determined from AP to 2S . 

3V  3 3( , )X Y , vector determined from AP to 3S . 

4V  4 4( , )X Y , vector determined from AP to 4S . 

V  ( , )X Y , vector determined from AP to I . 

α  The linear combination coefficient of 1V . 

β  The linear combination coefficient of 2V . 

γ  The linear combination coefficient of 3V . 

Table 3-1 Notat ions of  phase1 

 

3.1.2 Algorithm1 
 

This algorithm uses two measure point S1 and S2 to infer RSS vector of an infer point 

I. See Figure 3-1. 
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AP I
S1

S2

D1

D2

line1

line2

region1 region2

 

Figure 3–1 Diagram of  Algor i thm1 

 

Line1 is the line determined by AP to I, line2 is the line determined by a line which is 

perpendicular to line1. Line2 divides searching area into two regions: region1 and 

region2. In both regions, we search for a measure point S which is the nearest point to 

I. Now S1 and S2 become the two nearest measure points in each region and D1, D2 is 

the distance from each measure point to I. Then we evaluate RSS(I) by RSS of S1 and 

S2 with the inverse of D1 and D2 to be their weight. The equation of evaluating RSS(I) 

is as follows: 

 

2 1
1 2

1 2 1 2

( ) ( ) ( ) ( ) ( )D DRSS I RSS S RSS S
D D D D

= ⋅ + ⋅
+ +

 

 

The main idea of this algorithm is to find two nearest measure point from I, and one 

may has larger RSS than I, and the other one may has smaller RSS than I. If we 

calculate the average of these two points with the weight of their inverse of distance 



 

 16

from I, then we may get a rough RSS of I. The mean error of algorithm1 is 3.9dbm. 

 

3.1.3 Algorirhm2 
 

Algorithm2 uses three measure point S1, S2, and S3 to infer RSS of I. We first find 

three measure points S1, S2, and S3 which forms a convex hull that surrounds I.  

Figure 3-2 shows the concept of Algorithm2. 

S2

S1

S3

I
D2

D1

D3

 

Figure 3–2 Diagram of  Algor i thm2 

 

Then we can calculate RSS(I) by these three points, the following equation shows how 

to evaluate RSS(I): 
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1 2 3

1 1 1
1 2 3( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1

1 2 3 1 2 3 1 2 3

d d dRSS I RSS S RSS S RSS S

d d d d d d d d d

= ⋅ + ⋅ + ⋅
+ + + + + +

 

 

As we can see, Algorithm3 adopt the fashion used in Algorithm1 that giving the 

weight of each Si the inverse of Di. The main idea is to find a triangle which has the 

minimum area, and also surrounds I. The vertex concludes this triangle may have 

similar RSS with I, and may never larger or smaller than RSS(I) simultaneously. The 

mean error of algorithm2 is 2.47dbm. 

 

3.1.4 Algorithm3 
 

Algorithm3 have I to be the origin of a 2-dimensional coordinates. The x-axis and 

y-axis divides this 2-d coordinates as 4 regions. For each region, we search for a 

measure point nearest to I. Now we can use S1, S2, S3 , and S4 to evaluate RSS(I). 

Figure 3-3 shows the concept of Algorithm3. 
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S1
S2

S3

S4

I

D2

D1

D2

D4

 

Figure 3–3 Diagram of  Algor i thm3 

 

The equation calculates RSS of I are showed below: 

 

1 2
1 2

1 2 3 4 1 2 3 4

3 4
3 4

1 2 3 4 1 2 3 4

1 1

( ) ( ) ( )1 1 1 1 1 1 1 1

1 1

                ( ) ( )1 1 1 1 1 1 1 1

D DRSS I RSS S RSS S

D D D D D D D D

D DRSS S RSS S

D D D D D D D D

= ⋅ + ⋅ +
+ + + + + +

⋅ + ⋅
+ + + + + +

 

 

The main idea is simple. We simply find four measure point around I and evaluate 

RSS(I) by the weight of inverse of Di. The mean error of Algorthm3 is 3.16dbm. 
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3.1.5 Algorithm4 
 

Algorithm4 is a little similar to Algorithm3, but has the lowest mean error so far. It 

works as follows: Line1 is determined by AP and I, Line2 is a line perpendicular to 

Line1 and passes through I. Line1 and Line2 divides searching area as four region: 

region1, region2, region3, and region4. Furthermore, a circle with radius r limits the 

searching area into this circle. We start searching from r=1, and find a measure point 

which is nearest to I for each region. If there are more than two measure points which 

have the same minimum distance to I, then we choose the one Si with the minimum 

angle determined by vector AP-to-Si and vector AP-to-I. If we can find four measure 

points in the circle with current r, then we doubled r in the next iteration, until all four 

measure points have been found. Line3 is a line perpendicular with Line1 and passes 

through AP. Region divides by Line3 which is opposite to the region where I locates 

is the restrict region. Even if circle determined by r has covered this region, we can 

not find measure point located at this region. Figure 3-4 shows the concept of 

Algorithm4.  
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r

AP

S1

S2

S3

S4

D1

D2

D3 D4

I

S1’

D1’

θ θ’ Line1

Line3

region1 region2

region3 region4

Restrict

Region

Restrict

Region

Line2

 

Figure 3–4 Diagram of  Algor i thm4 

 

In Figure 3-4, we can see that there are two measure points S1 and S1’ with distance 

D1 and D1’ to I respectively. If D1 equals D1’, then we have to choose the one with the 

smaller angle. θ  is smaller than 'θ , so we choose S1 as the measure point in 

region1. The following equation evaluates RSS(I), which is the same with Algorithm3: 

 

1 2
1 2

1 2 3 4 1 2 3 4

3 4
3 4

1 2 3 4 1 2 3 4

1 1

( ) ( ) ( )1 1 1 1 1 1 1 1

1 1

                ( ) ( )1 1 1 1 1 1 1 1

D DRSS I RSS S RSS S

D D D D D D D D

D DRSS S RSS S

D D D D D D D D

= ⋅ + ⋅ +
+ + + + + +

⋅ + ⋅
+ + + + + +

 

 

The mean error of Algorithm4 is 2.20dbm. 
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3.1.6 Algorithm5 
 

Algorithm5 is modified from Algorithm4. So far, we evaluate RSS based on the 

distance which is from I to each measure points. If we give the weight of each RSS of 

measure point based on the coefficient of linear combination, we may get more 

precise inferring value of RSS. Figure 3-5 shows the concept of Algorithm5: 

 

r

AP V1 D1

D2

D3 D4

S1

S2

S4

S3

V2

V3 V4

V I

 

Figure 3–5 Diagram of  Algor i thm5 

 

In Figure 3-5, vector V can be represented by various linear combinations of the four 

vectors V1, V2, V3, and V4, in other words, the multipliers of the four vectors have any 

kind of combinations. Our objective is to find a combination that satisfies the 

following objective functions and the constraints: 
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1 2 3 4

1 2 3 4

min  ( (1 ) )1 2 3 4

subject to:
  (1 )               (1)
  (1 )                      (2)
  0 1                                                          

D D D D

X X X X X
Y Y Y Y Y

α β γ α β γ

α β γ α β γ
α β γ α β γ

α

+ + + − − −

+ + + − − − =

+ + + − − − =
< <          (3)

  0 1                                                                   (4)
  0 1                                                                    (5)
  0 (1 ) 1                  

β
γ

α β γ

< <
< <
< − − − <                               (6)

 

 

The equation that evaluates RSS(I) is: 

 

1 2 3 4( ) ( ) ( ) ( ) (1 ) ( )RSS I RSS S RSS S RSS S RSS Sα β γ α β γ= ⋅ + ⋅ + ⋅ + − − − ⋅  

 

As we can see from the objective function, coefficient of each vector relates to the 

distance from each measure point to I. Constraint (3), (4), (5), (6) force each measure 

point to contribute at least a little, and would not dominate to RSS(I). The RSS 

evaluating equation shows that measure point with larger distance has smaller 

contribution to the inferring RSS(I). 
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3.2 Phase2: Optimal Measure point Selection 

Algorithm 
 

In phase1, we proposed several inference algorithms and also found the best one. In 

phase2, we proposed an optimal algorithm to select measure points. This optimal 

algorithm would select measure points based on algorithm5 proposed in phase1, and 

solved by simulated annealing (SA). We also proposed a contrast algorithm to 

compare with the performance with Algorithm5. We defined an objective function for 

algorithm5 and the contrast algorithm, and would be used by SA to evaluate the cost 

of each combination of measure points. 

 

3.2.1 Notation 
 

Notation Description 

M  Positioning field map, a 2-dimensional m*n coordinates. 

D  Randomly generated number, 0 1D≤ ≤ . 

h  The shift vector for a candidate measure point t. 

h  Length of h , max1 h h≤ ≤ . 

maxh  The maximum distance in M. 

maxL  The maximum try iteration for current temperature. 

S  A combination of selected measure points. 

iS  Combination of selected measure points in stage i. 

1iS +  Combination of selected measure points in stage i+1. 
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t  A measure point randomly picked in S. 

T  Current temperature. 

fT  Final (lowest) temperature. 

Tα  Gradient of lower temperature. 

hα  Gradient of shorten h . 

iE  Energy of state i. 

E∆  1i iE E +−  

Table 3-2 Notat ions in  phase2 

 

3.2.2 Objective Function of Algorithm5 
 

The most important part of SA is the objective function. SA would use the objective 

function to evaluate the cost (or the energy state) of current solutions. Thus, the 

objective function should be as close the requirement of the inference algorithm as 

possible. In phase1, the inference algorithm select four measure points which are the 

closest points to the infer point, and also have the minimum angle formed by the 

AP-to-measure-point and the AP-to-infer-point two vectors. In Algorithm5, we can 

see that both distance and angle should be considered jointly, so we evaluate both 

angle and distance for each measure point simultaneously. Here is the pseudo code of 

our objective function: 
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_ _ ( )

  0;
  (each inferring point ){
     (each AP ){    
        find four sampling point , , ,  of based on 5;1 2 3 4
        (  , )1

Compute Objective Function S
begin

E
for I

for A
S S S S I Algorithm

E E angle AS AI a

=

= + +

1 2 3 4

(  , )2
               (  , ) (  , )3 4
               ;
     }
  }
   ;

ngle AS AI

angle AS AI angle AS AI

D D D D

return E
end

+

+ +

+ + +

 

 

E represents the energy state of current state, which represents the cost of current 

solution. In other words, lower energy has lower cost. This algorithm calculates 

angles and distance of each measure points and summarized in E because lager angle 

and distance means higher cost. 

 

3.2.3 Objective Function of Contrast Algorithm 
 

The contrast algorithm evaluates and summarizes the distance from infer point to its 

nearest measure point, and would be compared with algorithm5. Here we show the 

pseudo code of objective function of this contrast algorithm: 

 



 

 26

_ _ _ _ ()

0;
  (each inferring point ){
     find the nearest sampling point  of  ;
     = + ( , );
  }
   ;

Compute Objective Function Contrast Algorith m
begin
E

for I
S I

E E distance S I

return E
end

=

 

 

The objective of this algorithm is to minimize the distance from each infer point to its 

nearest measure point, thus makes the measure points to be evenly distributed. 

 

3.2.4 Annealing Process 
 

Here is the pseudo code of SA for optimal measure point selection: 
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max

_ _ _ ()

  Randomly generate an initial combination of sampling point ;
  _ _ ( );
  0;
   ( ){

      while( < ){

        Randomly select a

i

i i

f

SA Sampling Point Selection
begin

S
E Compute Objective Function S
L
while T T

L L

=
=

>

max

 sampling point  from ;
        {

          Randomly generate  where 1 ; 

          '  moves along with ;
        }
         ( '  is out of boundary of  or '  is not in free space);
 

it S
do

h h h

t t h

while t M t

≤ ≤

=

        where  in  replaced with ';
        _ _ ( );
        if( 0)
            Accept ,  ;
        else{
           Randomly generate  where 0 1;
          

j i i

j j

i j

j i j

S S t S t
E Compute Objective Function S

E E
S S S

D D

=

=

− ≥

=

≤ ≤

max max

 if(exp(( )/ ) )
               Accept ,  ;
        }
        1;
      }
      * ,  * ;
      0;
    }
    Output ;

i j

j i j

T h

i

E E T D
S S S

L L

T T h h
L

S
end

α α

− <

=

= +

= =
=
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The whole SA process begins with a randomly generated initial combination of 

measure points, and also evaluates the energy state (the cost) of the initial solution. 

The following is the temperature lowering process. For each round of temperature 

lowering process, there are Lmax times of try; each try we randomly generate a 

neighbor solution Sj from current solution Si, and evaluate its cost. The randomly 

selected point t in Si will be shifted along with randomly generated vector h . Initial 

length of h  is the maximum distance in M, and would be iteratively shortened while 

temperature is lowered, and become one unit of moving distance finally. If the cost of 

this neighbor solution is lower than current solution, then the current solution would 

be replaced by the neighbor solution. Otherwise, we evaluate if exp(( )/ )i jE E T D− < , 

and then the neighbor solution should be accepted. exp(( )/ )i jE E T−  is the 

acceptance function with value between zero and one. With higher temperature, the 

acceptance function would have lower value, that is, the neighbor solution has higher 

probability to be accepted even its cost is larger than current solution. This 

mechanism avoids SA to be trapped in local optima and has the ability to achieve 

global optima. If the try has reached Lmax, temperature would be lowered and h  

would be shortened. The parameter of Tα  and hα  is 0.99, T  is 2.25, and fT  is 

0.015, Lmax=200. 

 

Below is the flow chart of the SA for optimal measure point selection process: 
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Figure 3–6 f low char t  of  Measure point  Select ion with  SA 
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Chapter 4 Experimental Result 
 

To evaluate the performance of our algorithms, we build RSSI Databases for two test 

beds, one at floor five of National Taiwan University Management Building, and one 

at the Institute for Information Industry (III) Embedded System Laboratory, to 

evaluate the solutions computed by SA process. We have experiments for various 

densities of measure points computed by two algorithms, one for SA, and one for the 

contrast algorithms. We show the experiment result below, including the location of 

measure points and the mean error of various densities in two test beds. 

 

Symbol Meaning 

 
Obstacle 

 Infer point 

 Measure point 

 Access Point 

Table 4-1 Symbols for  Test  bed diagram 
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4.1 Test bed1: F5 of NTU Management Building 

 
entity Quantity 

AP 5 

Obstacles 691 

Boundary nodes 90 

Free space 396 

Table 4-2 Parameters  of  tes t  bed1 

 

Fig 4-1 shows the radio map of test bed1. 

 

Figure 4–1 Radio  map of  Floor  5  of  NTU Management  Build ing 
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Figure 4–2 measure points  with Alg5 1 with densi ty:  0 .8 mean error :  1 .99 

 

Figure 4–3 measure points  with CA2 with density:  0 .8 mean error :  2 .15 

 

Figure 4–4 measure points  with Alg5 with  density:  0 .6 mean error :  2 .10 

                                                 
1 Alg5 means objective function of Algorithm5. 
2 CA means objective function of Contrast Algorithm. 
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Figure 4–5 measure points  with CA with  densi ty:  0 .6 mean error :  2 .19 

 

Figure 4–6 measure points  with Alg5 with  density:  0 .4 mean error :  2 .25 

 

Figure 4–7 measure points  with CA with  densi ty:  0 .4 mean error :  2 .26 
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Figure 4–8 measure points  with Alg5 with  density:  0 .2 mean error :  2 .34 

 

Figure 4–9 measure points  with CA with  densi ty:  0 .2 mean error :  2 .39 

 

 Mean error (dbm) 

density Algorithm5 uniform 

0.2 2.34 2.39 

0.4 2.25 2.26 

0.6 2.10 2.19 

0.8 1.99 2.15 

1 1.95 1.95 

Table 4-3 mean error  of  two object ive funct ions in  test  bed1 
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 Maximum error (dbm) 

density Algorithm5 uniform 

0.2 15 22 

0.4 22 20 

0.6 17 16 

0.8 17 14 

1 21 21 

Table 4-4 maximum error  of  two object ive funct ions  in  tes t  bed1 

 

0

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

density

m
ea

n 
er

ro
r

Algorithm5

uniform

 

Figure 4–10 Line graph of  the performance of  two object ive funct ions in  tes t  bed1 
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4.2 Test bed2: III Embedded System Lab 
 

entity Quantity 

AP 5 

Obstacles 573 

Boundary nodes 60 

Free space 352 

Table 4-5 Parameters  of  tes t  bed2 

 

 

Figure 4–11 Radio map of  III  Embedded System Laboratory 
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Figure 4–12 measure points  with Alg5 with  densi ty:  0 .8 mean error :  2 .28 

 

Figure 4–13 measure points  with CA with densi ty:  0 .8 mean error :  2 .38 
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Figure 4–14 measure points  with Alg5 with  densi ty:  0 .6 mean error :  2 .53 

 

Figure 4–15 measure points  with CA with densi ty:  0 .6 mean error :  2 .60 
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Figure 4–16 measure points  with Alg5 with  densi ty:  0 .4 mean error :  2 .67 

 

Figure 4–17 measure points  with CA with densi ty:  0 .4 mean error :  2 .82 
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Figure 4–18 measure points  with Alg5 with  densi ty:  0 .2 mean error :  3 .28 

 

Figure 4–19 measure points  with CA with densi ty:  0 .2 mean error :  3 .44 
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 Mean error (dbm) 

density Algorithm5 uniform 

0.2 3.28 3.44

0.4 2.67 2.82

0.6 2.53 2.60

0.8 2.28 2.38

1 2.2 2.2

Table 4-6 mean error  of  two object ive funct ions in  test  bed2 

 

 Maximum error (dbm) 

density Algorithm5 uniform 

0.2 27 24

0.4 24 25

0.6 22 14

0.8 21 14

1 25 25

Table 4-7 maximum error  of  two object ive funct ions  in  tes t  bed2 
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Figure 4–20 Line graph of  the performance of  two object ive funct ions in  tes t  bed2 
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4.3 Result Discussion 
 

According to the result of the two test bed, we can find that the results of objective 

function1 are all better than objective function2 in all density. The main reason why 

objective function1 is better is, objective function2 considers how to select measure 

points evenly, but do not consider the angles which determined by vector 

AP-to-measure point and vector AP-to-infer point. Objective function1 considers 

angles and distance jointly, thus has better performance than objective function2.  
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Chapter 5 Summary and Future Work 
 

5.1 Summary 
 

Indoor positioning systems can be realized in various ways. We can purely use 

off-the-shelf technologies, or add additional entities to improve the accuracy of 

positioning, or modifies wireless protocols to meet the system requirement, or even 

develop a new standard. There is a tradeoff between using off-the-shelf technologies 

and modifying them to meet system requirement more. Using more entities and 

modification also introduce more cost, but using purely off-the-shelf technologies 

requires more precise or algorithms and process to lower inaccuracy. We have 

developed an indoor positioning system using purely IEEE 802.11 technology without 

additional entities and protocol modification, and in this thesis, we proposed an idea 

to infer RSS based on RSS of known measure points, thus reduce additional cost of 

building up radio maps. 

 

General optimization problems can be represented in mathematical forms and solved 

by mathematical techniques, such as Lagrangian relaxation method. But measure 

point selection problem in this thesis is difficult to be described in standard 

mathematical forms. Simulated Annealing (SA) is a substitute solution yet has very 

well performance solving hard combinatorial problems. We use SA to deal with the 
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optimal measure point selection problem and get great performance. The result of SA 

can give us hints that in what density of measure points can we achieve satisfying 

positioning accuracy with acceptable RSS collecting cost. We can choose the density 

based on the requirement of positioning accuracy or the cost constraint to collect RSS. 
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5.2 Future Work 
 

First, so far we considers every points in a field map of indoor space the same weight, 

which means every point in the indoor space have the same importance for mobile 

users. However, we can give different points the different weight, for example, the 

location of an antique being demonstrated is given weight 10, and the corridor toward 

toilet would be given 2. Hence, we can select more measure points for locations with 

higher weight, and fewer for lower weight. 

 

Second, besides the location of measure points, the location of Access Points may also 

affect the accuracy to infer RSS for inferring points. We can consider both the 

location of measure points and the location of AP jointly, and find the best 

combination to achieve even higher accuracy. Traditional AP placement problem 

considers only the coverage rate, and if we consider RSS inferring accuracy jointly, 

then it would be a new issue for us to explore. 
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