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THESIS ABSTRACT

GRADUATE INSTITUTE OF INFORMATION MANAGEMENT

NATIONAL TAIWAN UNIVERSITY

NAME: TA-CHUN CHEN MONTH/YEAR: JULY, 2004

ADVISER: YEONG-SUNG LIN

MEASURE POINT SELECTION ALGORITHMS FOR WIRELESS
INDOOR POSITIONING SYSTEMS

Recently, the service of indoor positioning system has gradually become a hot issue; and
with the maturation of IEEE 802.11 wireless technology, it has been the first choice for
indoor positioning system. Owing to the sensitivity of RF signal of 802.11 which may
attenuated by obstacles and human body, traditional outdoor positioning algorithm, such

as triangle positioning algorithm, is not suitable to use for indoor positioning.

In order to accurately position in indoor space, many researches have pointed out that a
previously built RSSI (Received Signal Strength Indicator) database is necessary. By
comparing the RSS vector received at mobile nodes with RSSI database, we can precisely
position the location of mobile users. However, collecting RSS for all grids of indoor
space costs lots of human resource. Hence, the purpose of this thesis is to propose a
method, which selects measure points elaborately, and collocates with a nice RSS
inference algorithm, and then we can build up well RSSI database with relatively lower

cost.

In this research we proposed a method that selects suitable quantity of measure points at

elaborately selected locations, and infers the signal strength of the other points based on
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these selected measure points to reduce signal strength collecting cost.

Keywords: Indoor_position, Indoor Positioning Algorithm, IEEE 802.11, Signal

Strength, Optimization, Simulated Annealing, Combinatorial Optimization
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Chapter 1 Introduction

1.1 Background

With the emerging wireless technology, such as IEEE802.11, many issues and
applications have been proposed, and the indoor positioning service is one of those
issues. The main goal of indoor positioning service is to make users interacting with
their surrounding environment. Consider the following example, while the user
moving around in the Palace Museum with a handheld device such as PDA, he or she
may want to know the history of the China in front of them, or they would like to be
directed to the nearest service counter; furthermore, the positioning service can
deliver the location-based content to the user’s handheld device as soon as they need
immediately. Figurel-1 shows typical indoor positioning graph, and we may position

mobile users with various positioning method.
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The granulation of location inform:sltijor___l::{;f}eedeﬁivqiﬁie_s from one application to another.
One may acquire the exact location inf-o;rnétio;l, such as the distance how far they are
from some proximity, while the others may just want to know which region they
probably are. In general, the accuracy of positioning in the Indoor space depends on
the purpose of the application, and the most important, the computation cost and
complexity of the indoor positioning systems varies with the positioning accuracy.

General wireless positioning system diagram proposed in [7] is as Figurel-2:
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Figure 1-2 General Wireless Positioning System Diagram

The main elements of the system are a number of location sensing devices that
measure metrics related to the relative position of a mobile device with respect to a
known reference point, a positioning algorithm that process metrics reported by
location sensing elements to estimate the location coordinates of mobile device, and a

display system that illustrates the location of the mobile device to users.

To our knowledge, there are few indoor positioning systems use pure 802.11
architecture without any other additional entities. Most application with high
positioning accuracy relies on additional hardware or use more than two types of
signal simultaneously [5]. However, these applications suffer from the limitation of
scalability and introduced more cost, because additional hardware or protocol

modifications are required, and thus lacks portability.

[1][2][3] developed indoor positioning systems relied on pure IEEE802.11b-based

system architecture without any protocol modification or additional hardware. These



applications utilize off-the-shelf technology, which is relatively inexpensive and also

reduce the limitation of hardware and protocol modification constraints.

Positioning methods of these applications are achieved by the previous construction
of the radio map of the information of the indoor space. Owing to the sensitivity of
the RF signal, which may be interfered by the obstacles of indoor spaces, or it may be
attenuated by human bodies, it is difficult to infer the location of users by time
differencing method such as AOA (Angle of Arrival), TOA (Time of Arrival), or
TDOA (Time Differentiate of Arrival). Such method requires time synchronization of
mobile devices with base stations, and is not suitable for indoor environment [6].
Thus, these applications require construction of radio map of indoor space previously.
Radio map of an indoor building includes the RSS (Received Signal Strength) vectors
at every free space in the map. General radio map is a two dimensional discrete grids.
In [1], they define each grid as either following four types: AP, Obstacle, Measure
point, and Infer point. Obstacle grid stores the type of this obstacle and its attenuation
efficient; Measure point and Infer point stores the RSS received from each AP. The

system architecture of [1] is in Figure 1-3:

R3SI DataBase  [° . Fositioning Module

F

Mobile
| | .4 Device
Appleation DataDase > Application >
| |

DataBasze Central Control Server

Figure 1-3 System Architecture of III Wireless Indoor Positioning System



To realize this positioning system, it is divided into two processes: Offline-process
and On-line process. In offline process, we collect RSS vectors of each point from
each AP. The on-line mode is based upon the RSS information collected in the off-line
mode; in on-line process, the mobile device periodically transmit the RSS vector
received from each AP to the Central Control Server, and the Positioning Module in
the Central Control Server would compare the RSS vector with the RSSI (Received
Signal Strength Indicator) Database in the Database to find out where the mobile
device is. This kind of systems achieves high positioning performance, but relies
highly on the accuracy of RSSI Database build in off-line process, which is also

called the radio map mentioned previously.

1.2 Motivation

In the previous section, we can see that positioning accuracy relies highly on the
accuracy of the RSSI Database. To build a good RSSI Database, we have to collect
RSS for all free space points, which introduces lots of human-resource. In fact, if we
can collect RSS for only some specifically selected measure points, and if we also
have an excellent algorithm to infer RSS for those infer points based on known
measure point, then we can reduce lots of RSS collecting cost and acquire a
considerable well RSSI Database. Our research has two phases. In phasel, we
proposed several algorithms to infer RSS of each infer points based on those collected
RSS measure points, then we compare which one is the best based on two RSSI
Databases. In phase two, we designed an algorithm to select the optimal measure
points based on the best algorithm proposed in phase one. The optimization algorithm

in phase2 is based on simulated annealing method, which can be implemented with
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large-scale combinatorial optimization problem.



Chapter 2 Literature Survey

2.1 Location and Tracking System

Related work of location and tracking systems can be separated into four categories:
(1) IR-based systems (2)indoor RF-based systems (3)wide-area cellular-based systems,
and (4)The others, such as ultrasound-based systems. The relative work of these

location and tracking systems are introduced and discussed below.

The most representative work in IR-based location systems is the Active badge system
[4]. User carries a handheld device which emits IR signal periodically. IR receivers
are placed at known positions in indoor space. Upon receiving IR from handheld
device, the IR receiver would relay this signal to location manager software. This
system provides high accuracy, yet suffers from some drawbacks such as the poor

signal range due to the IR, and it incurs significant hardware setup cost.

The RF-based positioning systems are RADAR [1] and Duress Alarm Location
System (DALS) [8]. These two systems uses RF signal strengths (RSS) to determine
user location, but DALS differs from our system and RADAR that it requires special
hardware and infrastructure deployment over and above a wireless network, and it

does not consider the factor that the human orientation may have extremely effect on
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RF signals and the factor of RF propagation model. RADAR system is developed by
Microsoft Research Center which is based on RF signal without additional hardware.
Access Points (AP) are located in some way that provide overlapping coverage in the
area where is going to be used for positioning. User carries handheld device such as
PDA or mobile phone equipped with a wireless LAN card which responsible for
communicating with AP. RADAR uses the RSS received at each handheld device
from each AP to infer the user’s location. It build a Radio Map which is a database of
locations in the indoor space that stores the signal strength of the beacons emanating
from AP observed or estimated at those locations. RADAR proposed two types of
method to create the Radio MAP, the first one is empirical method, which requires a
mobile user walking around the building with a handheld device to record the RSS
from each AP at each locations. The second method is mathematical method, which
involved computing the RSS at each location with a mathematical model of indoor RF
signal propagation. This mathematical model considers both free space path loss and
attenuation due to obstructions like walls or obstacles between AP and the mobile

USCr.

In the wide-area cellular area, several location determination systems have been
proposed [9]. The popular way of measuring mobile phones base upon the signal
attenuation such as angle of arrival (AOA), time of arrival (TOA) and time
differentiate of arrival (TDOA). These methods have well performance in the outdoor
environment, while they are not suitable for indoor environment because the RF
signal suffered from multiple reflections, for example, multi-path, shadow fading, and
non-light-of-sight problem. It is also no off-the-shelf technology to provide the time
synchronization supplies the TOA or TDOA method and requires additional hardware

(may be relatively expensive). Furthermore, Global Positioning System (GPS) is a

8



powerful outdoor positioning system, but it is not effective for indoor positioning

system because the GPS transmission would be blocked by buildings.

2.2 Simulated Annealing

Optimal measure point selection problem is an NP-hard problem. For each point, we
have to decide whether it is a measure point or an infer point, in other words, we have
to partite these points into two set, one is measure points, and the other is infer points.
Partitioning problem is a kind of combinatorial problem. A general approximation
algorithm that runs in polynomial-time needs to be used in order to solve this kind of
problems. It is difficult to find such algorithm to obtain near optimal solution.
Simulated annealing (SA) [12] is considered an approximation algorithm where it is
applicable to various problems in general.. The SA algorithm can be considered as a
version of an "iterative improvement algorithm"' which considers only specific
transitions and terminates in the first local minima found. Unlike those algorithms,
simulated annealing allows various types of transitions in which some of them may be
opposite towards achieving the goal. For instance, cost increasing transitions are also
accepted along with cost decreasing transitions whereas iterative improvement
algorithm would allow only cost-decreasing ones to pass. However, it is proven that
eventually simulated annealing produces more optimal solution than the original

iterative improvement algorithm.

Metropolis algorithm was the original idea behind the optimization technique of SA.
Kirkpatrick et. al, [11] has used Metropolis algorithm as a global optimizer. Thus,
simulated annealing is also known as global optimizer. This algorithm is then applied

to the physical design of computers. The advantage of using simulated annealing is its
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ability to scale for large scale optimization problems and its robustness towards

achieving local optima convergence.

SA starts with an initial solution, S. A neighbor to this solution S’, is then generated as
the next solution and the change in cost. The aim of a generation mechanism is to
generate a new solution S' out of the solution S by means of a random perturbation in
one of the variables of S. We adopted the generation mechanism of Spatial Simulated

Annealing (SSA) [13], which is a modification of SA. In SSA, s’ is done by moving

one randomly chosen measure point Z over a vector h with the direction of h

drawn randomly, and m taking a random value between 0 and hma. One of the

modifications of SSA as compared to ordinary SA is that hma initially is equal to
half the length of the sampling region, and decreases with time. This increase the
efficiency of the demanding recalculations after each modification in the sampling

scheme, because it can be expected that with optimization of sampling schemes,

successful modifications consist of increasingly smaller values of |T1| as the SSA

process advances. This is because the process deals with many similar variables.
Therefore, moving measure points randomly over large distance will not contribute
much to finding the minimum towards the end of the optimization process. At the end

the final value of the control parameter hmax will be almost equal to zero.

After s' has been generated, AF(s, S’) is evaluated. If a reduction in cost is found, the
current solution is replaced by the generated neighbor, otherwise we decide with a
certain probability whether S remains or S’ becomes the current solution. The
probability of accepting a transition that causes an increase, AF, in the cost is usually

called the acceptance function and is set to exp(-AF/T) where T is the control
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parameter that corresponds to temperature in the analogy with the physical annealing
process. In SA, the algorithm is started with a relatively high value of T, to have a
better chance to avoid being prematurely trapped in a local minimum. The control
parameter is lowered in steps until it approaches to zero. After termination, the final
configuration is taken as the solution of the problem at hand. That is, simulated
annealing is a generalization of the local search algorithm. As the Figure 2-1 and
Figure 2-2 shows below, SA has the chance to climb out of local optima and
eventually find the global optima. The general pseudo code of SA is also showed

below.

SimulatedAnnealing()
S = Initial solution to the optimization problem;
T = Initial Temperature
While T > u
While (InnerLoop Condition)
M = A Randomly Chosen Modification to S;
If func(Gain(M), T)) Apply M to S;
End While
T = Update(T);
End While

Figure 2—1 Pseudo code of general simulated annealing procedure

11
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Chapter 3 Solution Approach

We divide our problem into two phases. Phase one is to compare several RSS
inference algorithms which infer RSS of an infer point by their surrounding measure
points, and find the best one using a previously built RSSI Database of floor 5 of
NTU Management Building. In phase two, we proposed an optimization algorithm
using simulated annealing (SA) to select optimal measure point based on the inferring

algorithm in phasel.

3.1 Phasel: RSS Inference Algorithms

We proposed several RSS inference algorithms below.

3.1.1 Notation

Notation Description

I Infer point.

S The ith measure point of I.
AP Access Point.

13



D The distance from | to Si.

RSS(p) The RSS of a measure or infer point p.

r Radius of current searching area circle.

Vi (X,,Y) , vector determined from AP to Sy,
Vv, (X,,Y3) , vector determined from AP to S,.
A (X5,Y5) , vector determined from AP to S,
Vv, (X4.Y4) | vector determined from AP to S
\Y (X,Y), vector determined from AP to | .
¢ The linear combination coefficient of Vi .

P The linear combination coefficient of Va.

4 The linear combinati;)n coefficient of Vi,

Table 3-1 Notations of phasel

3.1.2 Algorithml

This algorithm uses two measure point S; and S to infer RSS vector of an infer point

I. See Figure 3-1.
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line2

regionl region2

S1

® linel
D2

S2

Figure 3—1 Diagram of Algorithml

Linel is the line determined by AP to |, line2 is the line determined by a line which is
perpendicular to linel. Line2 divides searching area into two regions: regionl and
region2. In both regions, we search for a measure point S which is the nearest point to
I. Now S; and S; become the two nearest measure points in each region and Dy, D, is
the distance from each measure point to I. Then we evaluate RSS(I) by RSS of S; and
S, with the inverse of D; and D, to be their weight. The equation of evaluating RSS(I)

1s as follows:

D)1 Rss(s,)- (—2

RSS(1)=RSS(S,)-
) (1)(D1+D2 D, +D,

)

The main idea of this algorithm is to find two nearest measure point from |, and one
may has larger RSS than I, and the other one may has smaller RSS than I. If we

calculate the average of these two points with the weight of their inverse of distance

15



from |, then we may get a rough RSS of |. The mean error of algorithml is 3.9dbm.

3.1.3 Algorirhm2

Algorithm?2 uses three measure point Sy, Sy, and S3 to infer RSS of |. We first find
three measure points S;, Sy, and Sz which forms a convex hull that surrounds |I.

Figure 3-2 shows the concept of Algorithm?2.

S,

Figure 3-2 Diagram of Algorithm?2

Then we can calculate RSS(I) by these three points, the following equation shows how

to evaluate RSS(1):

16



1 1 1

_ dl , d2 . d3 .
RSS(')‘—1+1+1 RSS(SI)+—1+1+1 Rss,(sz)+—1+1+1 RSS(S,)
dl  d2 d3 dl d2 d3 dl d2 d3

As we can see, Algorithm3 adopt the fashion used in Algorithm1 that giving the
weight of each S; the inverse of D; The main idea is to find a triangle which has the
minimum area, and also surrounds |. The vertex concludes this triangle may have
similar RSS with I, and may never larger or smaller than RSS(I) simultaneously. The

mean error of algorithm?2 is 2.47dbm.

3.1.4 Algorithm3

Algorithm3 have I to be the origin of a 2-dimensional coordinates. The x-axis and
y-axis divides this 2-d coordinates as 4 regions. For each region, we search for a
measure point nearest to . Now we can use S;, Sp, Sz, and S4 to evaluate RSS().

Figure 3-3 shows the concept of Algorithm3.

17



Figure 3-3 Diagram of Algorithm3

The equation calculates RSS of | are showed below:

1 1
Dl D2
RSS(1)=—— —RSS(S)+— 7 "RSS(5,)+
—t——t—+ —t——t—+
D, D, D, D, D, D, D, D,
1 i
D, D,
— 77 RSS(S)+4——F—7—RSS(S,)
—t —t—t—+
D, D, D, D, D, D, D, D,

The main idea is simple. We simply find four measure point around | and evaluate

RSS(I) by the weight of inverse of D;. The mean error of Algorthm3 is 3.16dbm.

18



3.1.5 Algorithm4

Algorithm4 is a little similar to Algorithm3, but has the lowest mean error so far. It
works as follows: Linel is determined by AP and I, Line2 is a line perpendicular to
Linel and passes through I. Linel and Line2 divides searching area as four region:
regionl, region2, region3, and region4. Furthermore, a circle with radius r limits the
searching area into this circle. We start searching from r=1, and find a measure point
which is nearest to | for each region. If there are more than two measure points which
have the same minimum distance to |, then we choose the one S; with the minimum
angle determined by vector AP-t0-Si and vector AP-to-I. If we can find four measure
points in the circle with current r, then we doubled r in the next iteration, until all four
measure points have been found. Line3 is a line perpendicular with Linel and passes
through AP. Region divides by Line3 which is opposite to the region where | locates
is the restrict region. Even if circle determined by r has covered this region, we can
not find measure point located at this region. Figure 3-4 shows the concept of

Algorithm4.
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regionl region2

Restrict

Region

Restrict

Region

S,

region3 region4

Figure 3—4 Diagram of Algorithm4

In Figure 3-4, we can see that there are two measure points S; and S;” with distance
D, and D’ to | respectively. If D; equals D;’, then we have to choose the one with the
smaller angle. @ is smaller than @', so we choose S; as the measure point in

regionl. The following equation evaluates RSS(I), which is the same with Algorithm3:

1 1
D D
RSS(I) = 1 11 ] -RSS(S,)) + 1 21 I -RSS(S,) +
e+ ettt
Dl D2 D3 D4 Dl D2 3 D4
! 1
D, D,
1 1 RSS(S3)+1 I I I RSS(S,)
e e s ettt
Dl D2 D3 D4 Dl 2 3 D4

The mean error of Algorithm4 is 2.20dbm.
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3.1.6 Algorithm5

Algorithm5 is modified from Algorithm4. So far, we evaluate RSS based on the
distance which is from | to each measure points. If we give the weight of each RSS of
measure point based on the coefficient of linear combination, we may get more

precise inferring value of RSS. Figure 3-5 shows the concept of Algorithm5:

Figure 3-5 Diagram of Algorithm5

In Figure 3-5, vector V can be represented by various linear combinations of the four
vectors Vi, Va, V3, and V4, in other words, the multipliers of the four vectors have any
kind of combinations. Our objective is to find a combination that satisfies the

following objective functions and the constraints:
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min (aD;+8D,+yDyHl-a—-f~-y)D,)
subject to:

aX + X, +y X+ (l—a-p-y)X, =X
oY, + Y, + N, +(l—a-L-y)N, =Y
O<ax<l

0<p <l

O<y<l

O<(-a-p-y)<l

The equation that evaluates RSS(I) is:

(1)
(2)
)
(4)
)
(6)

RSS(1)=a-RSS(S,)+ B-RSS(S,) + 7 RSS(S,)+ (1= a— B—y)-RSS(S,)

As we can see from the objective function, coefficient of each vector relates to the
distance from each measure point to |. Constraint (3), (4), (5), (6) force each measure
point to contribute at least a little, and would not dominate to RSS(I). The RSS

evaluating equation shows that measure point with larger distance has smaller

contribution to the inferring RSS(1).
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3.2 Phase2: Optimal Measure point Selection

Algorithm

In phasel, we proposed several inference algorithms and also found the best one. In
phase2, we proposed an optimal algorithm to select measure points. This optimal
algorithm would select measure points based on algorithm5 proposed in phasel, and
solved by simulated annealing (SA). We also proposed a contrast algorithm to
compare with the performance with Algorithm5. We defined an objective function for
algorithm5 and the contrast algorithm, and would be used by SA to evaluate the cost

of each combination of measure points.

3.2.1 Notation

Notation Description

M Positioning field map, a 2-dimensional m*n coordinates.
D Randomly generated number, 0 <D <1.

h The shift vector for a candidate measure point t.

‘ﬁ‘ Length ofh , IS‘H‘S h.. -

h The maximum distance in M.

L The maximum try iteration for current temperature.

S A combination of selected measure points.

s Combination of selected measure points in stage I.

gt Combination of selected measure points in stage i+1.
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t A measure point randomly picked in S.
T Current temperature.
T, Final (lowest) temperature.
a Gradient of lower temperature.
.
a, Gradient of shorten‘ﬁ‘ .
E! Energy of state i.
AE Ei _ Ei+1

Table 3-2 Notations in phase2

3.2.2 Objective Function of Algorithm5

The most important part of SA is the objecﬁve function. SA would use the objective
function to evaluate the cost (or the energy state) of current solutions. Thus, the
objective function should be as close the requirement of the inference algorithm as
possible. In phasel, the inference algorithm select four measure points which are the
closest points to the infer point, and also have the minimum angle formed by the
AP-to-measure-point and the AP-to-infer-point two vectors. In Algorithm5, we can
see that both distance and angle should be considered jointly, so we evaluate both
angle and distance for each measure point simultaneously. Here is the pseudo code of

our objective function:
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Compute Objective Function(S)
begin
E=0;
for(each inferring point I ){
for(each AP A){
find four sampling point Sl’ 82, 83, S4 of | based on Algorithms;

E=E Jrangle(A—S1 ,H)Jrangle(A—S2 AN +
angle(A—S3 ,ﬂ)+ang|e(A—S4' AN+
D, +D,+D,;+D,;

}
}

return E;
end

E represents the energy state of current, state, which represents the cost of current
solution. In other words, lower energy has lower cost. This algorithm calculates
angles and distance of each measure points and summarized in E because lager angle

and distance means higher cost.

3.2.3 Objective Function of Contrast Algorithm

The contrast algorithm evaluates and summarizes the distance from infer point to its
nearest measure point, and would be compared with algorithm5. Here we show the

pseudo code of objective function of this contrast algorithm:
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Compute Objective Function _Contrast _Algorith m()
begin
E=0;
for (each inferring point I){
find the nearest sampling point Sof I;
E=E+distance(S,I);
b
return E;
end

The objective of this algorithm is to minimize the distance from each infer point to its

nearest measure point, thus makes the measure points to be evenly distributed.

3.2.4 Annealing Process

Here is the pseudo code of SA for optimal measure point selection:
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SA Sampling Point _Selection()
begin
Randomly generate an initial combination of sampling point S';
E' =Compute Objective Function(S");
L=0;
while (T > T, ){
while(L<L_, ){
Randomly select a sampling point t from S';

do{

Randomly generate h where 1< ‘ﬁ‘ <h

max ?

t'=1t moves along with h;
h
while (t' is out of boundary of M ort' is not in free space);
S =S" wheret in S' replaced with t";
EJ =Compute Objective Function(S');
if(E'—E’' >0)
Accept Si S'=8l:
else{
Randomly generate D where 0< D <1;
if(exp((E' —E')/T)< D)
Accept Si s'=sl:
}
L=L+1;
}
T=T%*a, Ny =hp F o
L=0;
b
Output S';
end
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The whole SA process begins with a randomly generated initial combination of
measure points, and also evaluates the energy state (the cost) of the initial solution.
The following is the temperature lowering process. For each round of temperature
lowering process, there are Lmax times of try; each try we randomly generate a
neighbor solution S from current solution S', and evaluate its cost. The randomly
selected point t in S'will be shifted along with randomly generated vector h . Initial
length of h is the maximum distance in M, and would be iteratively shortened while
temperature is lowered, and become one unit of moving distance finally. If the cost of
this neighbor solution is lower than current solution, then the current solution would
be replaced by the neighbor solution. Otherwise, we evaluate if exp((E' —E')/T)<D,
and then the neighbor solution should be accepted. exp((E'—E')/T) is the
acceptance function with value between zero and one. With higher temperature, the
acceptance function would have lower value, that is, the neighbor solution has higher
probability to be accepted even  its cost is larger than current solution. This

mechanism avoids SA to be trapped in local optima and has the ability to achieve

global optima. If the try has reached Lma, temperature would be lowered and ‘ﬁ‘

would be shortened. The parameter of % and %, is 0.99, T is 2.25, and Te s

0.015, Lmax=200.

Below is the flow chart of the SA for optimal measure point selection process:
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Figure 3-6 flow chart of Measure point Selection with SA
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Chapter 4 Experimental Result

To evaluate the performance of our algorithms, we build RSSI Databases for two test
beds, one at floor five of National Taiwan University Management Building, and one
at the Institute for Information Industry (III) Embedded System Laboratory, to
evaluate the solutions computed by SA process. We have experiments for various
densities of measure points computed by two algorithms, one for SA, and one for the
contrast algorithms. We show the experiment result below, including the location of

measure points and the mean error of various densities in two test beds.

Symbol Meaning

Obstacle

Infer point

Measure point

~ ]l

Access Point

Table 4-1 Symbols for Test bed diagram
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4.1 Test bedl: F5 of NTU Management Building

entity Quantity
AP 5
Obstacles 691
Boundary nodes 90

Free space 396

Table 4-2 Parameters of test bedl

Fig 4-1 shows the radio map of test bed1.

]
] ENEEEEEEEEEEE
AP AP [ |
EEEEEEEEEEEEEEEEEEE ] H HEEEEEEE
] ] EEEEEEEEEEE B B
] HE H B
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE B
iPH

Figure 4-1 Radio map of Floor 5 of NTU Management Building
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Figure 4-2 measure points with Alg5' with density: 0.8 mean error: 1.99

Figure 4-4 measure points with Alg5 with density: 0.6 mean error: 2.10

' Alg5 means objective function of Algorithm5.
? CA means objective function of Contrast Algorithm.
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Figure 4-5 measure points with CA with density: 0.6 mean error: 2.19

Figure 4-6 measure points with Alg5 with density: 0.4 mean error: 2.25

Figure 4-7 measure points with CA with density: 0.4 mean error: 2.26
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Figure 4-9 measure points with CA with density: 0.2 mean error: 2.39

Mean error (dbm)
density Algorithm5 uniform
0.2 2.34 2.39
0.4 2.25 2.26
0.6 2.10 2.19
0.8 1.99 2.15
1 1.95 1.95

Table 4-3 mean error of two objective functions in test bedl
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Maximum error (dbm)
density Algorithm5 uniform
0.2 15 22
0.4 22 20,
0.6 17 16
0.8 17 14
1 21 21

Table 4-4 maximum error of two objective functions in test bedl

—&— Algorithm5

—— uniform

mean error

0.2 0.4 0.6 0.8 1
density

Figure 4-10 Line graph of the performance of two objective functions in test bed!l
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4.2 Test bed2: 111 Embedded System Lab

entity Quantity
AP 5
Obstacles 573
Boundary nodes 60

Free space 352

Table 4-5 Parameters of test bed2

B
AANINENEENENEENEEEEEE

EEEEEEE EEEEm
. . . ||::.:..
E ENEEEEE B

Figure 4-11 Radio map of III Embedded System Laboratory
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Figure 4-12 measure points with-Alg5 with density: 0.8 mean error: 2.28

Figure 4-13 measure points with CA with density: 0.8 mean error: 2.38
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Figure 4-14 measure points with-Alg5 with density: 0.6 mean error: 2.53

Figure 4-15 measure points with CA with density: 0.6 mean error: 2.60
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Figure 4-16 measure points with-Alg5 with density: 0.4 mean error: 2.67

I I

11

11

Figure 4-17 measure points with CA with density: 0.4 mean error: 2.82
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Figure 4-18 measure points with-Alg5 with density: 0.2 mean error: 3.28

Figure 4-19 measure points with CA with density: 0.2 mean error: 3.44
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Mean error (dbm)

density Algorithm5 uniform
0.2 3.28 3.44
0.4 2.67 2.82
0.6 2.53 2.60
0.8 2.28 2.38
1 2.2 2.2

Table 4-6 mean error of two objective functions in test bed2

Maximum error (dbm)

density Algorithm5 uniform
0.2 27 24
0.4 24 25
0.6 22 14
0.8 21 14
1 25 25

Table 4-7 maximum error of two objective functions in test bed2
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density

Figure 4-20 Line graph of the performance of two objective functions in test bed2

42



4.3 Result Discussion

According to the result of the two test bed, we can find that the results of objective
functionl are all better than objective function2 in all density. The main reason why
objective functionl is better is, objective function2 considers how to select measure
points evenly, but do not consider the angles which determined by vector
AP-to-measure point and vector AP-to-infer point. Objective functionl considers

angles and distance jointly, thus has better performance than objective function2.
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Chapter 5 Summary and Future Work

5.1Summary

Indoor positioning systems can be realized in various ways. We can purely use
off-the-shelf technologies, or add additional entities to improve the accuracy of
positioning, or modifies wireless protocols to meet the system requirement, or even
develop a new standard. There is a tradeoff between using off-the-shelf technologies
and modifying them to meet system requirement more. Using more entities and
modification also introduce more cost, but using, purely off-the-shelf technologies
requires more precise or algorithms and process to lower inaccuracy. We have
developed an indoor positioning system using purely IEEE 802.11 technology without
additional entities and protocol modification, and in this thesis, we proposed an idea
to infer RSS based on RSS of known measure points, thus reduce additional cost of

building up radio maps.

General optimization problems can be represented in mathematical forms and solved
by mathematical techniques, such as Lagrangian relaxation method. But measure
point selection problem in this thesis is difficult to be described in standard
mathematical forms. Simulated Annealing (SA) is a substitute solution yet has very

well performance solving hard combinatorial problems. We use SA to deal with the
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optimal measure point selection problem and get great performance. The result of SA
can give us hints that in what density of measure points can we achieve satisfying
positioning accuracy with acceptable RSS collecting cost. We can choose the density

based on the requirement of positioning accuracy or the cost constraint to collect RSS.
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5.2 Future Work

First, so far we considers every points in a field map of indoor space the same weight,
which means every point in the indoor space have the same importance for mobile
users. However, we can give different points the different weight, for example, the
location of an antique being demonstrated is given weight 10, and the corridor toward
toilet would be given 2. Hence, we can select more measure points for locations with

higher weight, and fewer for lower weight.

Second, besides the location of measure points, the location of Access Points may also
affect the accuracy to infer RSS for inferring points. We can consider both the
location of measure points and the location of AP jointly, and find the best
combination to achieve even-higher accuracy. Traditional AP placement problem
considers only the coverage rate, and if we consider RSS inferring accuracy jointly,

then it would be a new issue for us to explore.
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