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論文摘要 

 
 自從美國 911 攻擊事件發生之後，如何有效保護重要資訊基礎建設已成為一

個重要的課題。而同為重要資訊基礎建設之一的網際網路，在近年來，隨著駭客

入侵與攻擊重要主機事件層出不窮，網路安全議題亦逐漸受到專家重視。然而在

理論與實務上，資訊安全都告訴我們，沒有任何系統是百分之百的安全。因此我

們不應該問「這個系統安不安全」，而是要關心「這個系統有多安全」。量化的「存

活度」概念便應運而生，成為網路安全專家衡量一個網路處於不正常（包含隨機

錯誤與惡意攻擊）的狀態下，維持正常服務程度的效能指標。 

另外，網路攻防也是網路安全專家所關心的議題。為了有效提升網路的存活

度，網路營運者必須投資一筆固定預算並加以妥善配置。而相對的，攻擊者針對

網路營運者所採用的資源配置策略，也會因應調整其攻擊方式，以最少的攻擊成

本達成攻擊目的。 

在本篇論文中，我們首先評估一個既有網路的存活度，也就是討論在給定的

網路拓樸中，給定一種資源配置策略，一個攻擊者攻擊成功所需花費的最小成

本；隨後我們討論：在一個給定的網路中，網路營運者（防禦者）投資一筆固定

預算的情況下，應該如何有效的配置資源，才能使得攻擊者攻擊成功所花費的總

成本最大。攻防的標的我們設定為：若干給定關鍵節點之間的正常連結。此時我

們假設攻擊者是夠聰明的，在給定的防禦資源配置策略下，攻擊者總是能夠找到

最小的攻擊成本策略，使得給定的關鍵節點之間無法連通。 

我們將整個問題仔細地分析成最佳化數學模型，而這個問題在本質上是一個

非線性混合整數規劃問題，具有高度的複雜度與困難度。我們採用以拉格蘭日鬆

弛法為基礎的演算法來處理此一問題。在實驗設計方面，我們針對隨機網路、格

狀網路與無尺度網路這三種不同網路拓樸，討論其網路的存活特性。 

另外，我們針對這個問題的特性，提出了一個數學證明。我們也在最後提出

許多豐富議題供後人從事相關研究。 

 

關鍵詞：網路規劃、最佳化、拉格蘭日鬆弛法、數學規劃、存活度、資訊安全、

網路攻防、資源配置、無尺度網路 
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THESIS ABSTRACT 
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NAME: CHIEN-HUNG CHEN   MONTH/YEAR: JULY, 2005 

ADVISER: YEONG-SUNG LIN 

        HONG-HSU YEN 

 

MAXIMIZATION OF NETWORK SURVIVABILITY AGAINST 

INTELLIGENT AND MALICIOUS ATTACKS 
 

Since the 911 terrorist attacks in the United States, how to protect critical 

information infrastructures effectively has become an even more important topic. One 

critical information infrastructure, the Internet, has drawn increasing attention from 

network security experts because of the growing number of malicious attacks on it. 

However, experience tells us that, in both theory and practice, a system cannot be 

100% secured. Therefore, we should not ask “Is the system secure?” but “How secure 

is the system?” A quantitative “survivability” concept has become an important 

performance metric for evaluating how a network sustains normal services under 

abnormal conditions, including random errors and malicious attacks. 

 

Other issues of interest to network security experts are network attack and 

defense scenarios. To enhance network survivability effectively, a network operator 

needs to invest a fixed amount of budget and distribute it properly. However, a 

potential attacker will always adjust his attack strategies to compromise a network 

with the minimal cost, if he knows the resource allocation policy of a network 

operator. 
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In this thesis, we first evaluate the survivability of a given network. That is, we 

assess the minimal attack cost incurred by an attacker, under given network topologies 

and budget allocation policies. We then discuss how a network operator should 

allocate fixed budget resources such that the minimal attack cost incurred by an 

attacker can be maximized. The target of the attack and defense is assumed to be the 

connectivity of given critical OD-pairs. In cases of budget allocation decisions, we 

assume that an attacker is smart enough, so he can always find the strategy of minimal 

attack cost to disconnect critical OD-pairs. 

 

We analyze the problems as optimization-based models, in which the problem 

structures are by nature nonlinear with mixed integer programming. To resolve such 

difficult problems, we adopt Lagrangean relaxation-based algorithms in conjunction 

with a number of optimization techniques. In the experimental design, we also 

evaluate the network survivability properties of different network topologies, 

including random networks, grid networks, and scale-free networks. In addition, we 

present a lemma based on the problem’s properties.  

 

We believe our work could provide the foundation for evaluating network 

survivability under various attack and defense scenarios. To this end, we conclude by 

indicating several interesting and challenging research directions. 

 

Keywords: Information Security, Lagrangean Relaxation, Mathematical 

Programming, Network Attack and Defense, Network Planning, Optimization, 

Resource Allocation, Scale-free Networks, Survivability 
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Chapter 1 Introduction 
1.1 Background 
 

 The events of 911 have led to a globally increasing focus on security and 

especially the protection of critical infrastructures, which encompass a wide array of 

physical assets, such as power plants, telecommunications, oil and gas pipelines, 

transportation networks, and computer data networks [2]. Specifically, the Internet has 

become a critical information infrastructure since 1980s. More and more people 

communicate with each other via this fascinating technological medium, and the 

prevailing Internet has made the world borderless. Moreover, many companies exploit 

the Internet to gain access to suppliers and customers, and also reduce transaction 

costs. E-commerce, for example, has emerged since the late 1990s, and has become a 

new business model attracting much attention. 

 

Despite these advantages, the popularity of the Internet also caused potential 

problems. Since important messages and sensitive data flowing around the Internet 

may be eavesdropped or fabricated, information security experts have suggested 

different encryption algorithms and authenticated protocols to deal with the problems. 

Moreover, a potential attacker may discourage important servers from offering normal 

services. To handle malicious attack behaviors, information security experts have 

suggested different tools and strategies that focus on different network attack modes. 

For example, firewalls are used to filter illegal packets; intrusion detection systems 

(IDSs) are designed for detecting possible intrusion patterns; intrusion prevention 

systems (IPSs) are used to prevent intrusions of susceptible packets and reduce the 

probability of potential attack behaviors. Multi-function security gateways combine 

the above functions and have become widely adopted by network operators. 

 

Despite the availability of various software and hardware tools, no one can be 
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sure that a system is 100% robust against attacks. As this phenomenon is due to the 

imperfection of software programming and communication protocols, there is at least 

the possibility that malicious attackers could find the vulnerabilities of a system and 

deliver attacks to compromise it. However, through applying security mechanisms 

that have different levels for the systems, we can efficiently reduce the probability of 

being targeted by attackers and therefore enhance the level of robustness. 

 

However, the robustness of a network consists in not only the availability of each 

component, but also the network’s topological structure. The Internet topology has 

been shown to follow a power-law degree distribution [3] [4] [5], where empirical 

evidence has highlighted one major weakness in that the Internet is highly susceptible 

to attacks. Looked at in more detail, the average performance of the Internet would be 

cut in half if only 1% of the most highly-connected routers were incapacitated, and if 

4% of the most connected routers succumbed to attacks, the integrity of the medium 

could be destroyed [2]. The secrets behind the Internet topology have drawn much 

attention from network researchers. 

 

In addition, many researchers have focused their research on evaluating and 

enhancing the survivability of a network. Survivability is used to depict how a 

network adapts to abnormal conditions. An increasing number of researchers are 

engaged in network survivability issues, researching proper definitions of 

survivability, estimating suitable survivability metrics, and proposing solutions to 

different scenarios. 

 

 To enhance the survivability of a network, a network operator may invest a fixed 

amount of budget. However, there has been little theoretical research to enable a 

network operator to gain a global understanding on how to allocate limited budgets to 

components so that the overall survivability of a network can be maximized. Besides, 

we believe that a network operator’s budget allocation strategies should consider 

responses from an attacker, due to the fact that an attacker may change his strategies 

to a better one if he finds other easier ways to attain his goals. It is therefore a 
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challenging issue for a network operator to derive sensible defense strategies against 

attacks. 

 

1.2 Motivation 
 

 From our survey of the literature, there has been little research on the issues of 

defense and attack based on mathematical programming models. To the best of our 

knowledge, no mathematical model that mentions defense and attack behavior in the 

context of survivability has been proposed. We therefore propose mathematical 

models under realistic scenarios to evaluate the network robustness for given defense 

resource allocation policies. We will also present a lemma to show the best resource 

allocation strategy for network operators under given scenarios. 

 

1.3 Literature Survey 
 

We will first introduce the concept of survivability, and then discuss the 

properties of scale-free networks in the literature survey. 

 

1.3.1 From Information Security to Survivability 

With the prevalence of the Internet, a great number of people have become 

highly relied on the convenient technological medium to communicate. However, new 

technologies also bring new problems. Due to the distributed and unsecured design of 

the Internet, data packets flowing around the nets may suffer from eavesdropping or 

packet drop. Therefore, issues such as confidentiality, availability, integrity, and 

privacy have become important topics, and many information security experts have 

proposed various encryption algorithms, authentication protocols, and so on, to secure 

communications. Moreover, other attack modes, such as Denial of Services (DoS) and 

Distributed Denial of Services (DDoS) focus on discouraging devices from providing 

normal services. Although information security experts continue proposing 
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countermeasures to known attacks or intrusions, the war between network operators 

and attackers will never end since number of system vulnerabilities and possible 

attack modes are potentially infinite. 

 

A key to defeat attackers is to think one more step than attackers. However, 

attackers may also think like this way. If both parties are smart enough, eventually 

there is equilibrium between them. A game theoretic framework would be helpful in 

describing this scenario: attackers try their best to attain a goal while network 

operators, or defenders, try their best to discourage it. By definition of game theories, 

it is a typical two person zero-sum game.  

 

In [6], the authors consider the problem of detecting an intruding packet in a 

communication network. Detection is accomplished by sampling a portion of the 

packets, due to the high cost for real-time packet sampling and packet examination 

software. Network operators would like to effectively sample network intrusions by 

maximizing the chance of detection while not exceeding a given total sampling 

budget. However, a smart intruder would select paths in order to minimize chances of 

detection. The authors further well-describe the problem through mathematical 

formulation methods. The objective of an intruder is to minimize the maximal 

detection probability where that of a service provider is to maximize the minimal 

detection probability. According to the theorem in this paper, the two values will be 

the same. That is to say, min max ( )[ ] max min ( )[ ]
t t

a a

e eq V q Vp U p Ue P e PP P P P

q P P q P Pθ
∈ ∈∈ ∈∈ ∈∈ ∈

= =∑ ∑ ∑ ∑ , 

where q(P) is a probability distribution function that path P is selected by an intruder, 

and eP  is a probability of detecting a malicious packet on link e.  

 

In summary, the game theoretic framework provides us with an insight that a 

minimization of maximization or a maximization of a minimization objective is useful 

in describing the interaction between the two parties, an attacker and a defender. 

 

The concept of security has been generalized as survivability in recent years. 
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Since there are only two states, safe and compromised, in the context of security, it is 

definitely insufficient to well-describe how likely a system remains functional under 

different failure scenarios. Moreover, with the popularity of the Internet, a system or a 

network is inevitably connected to the unbounded Internet, leading to more risk 

suffering from undesired failures. We should therefore focus more on the system 

recoverability and the ability of maintaining normal services when failures occur.  

 

The concept of survivability is proposed accordingly. Survivability is roughly 

defined as the ability a system can fulfill a mission in a timely manner, under attacks, 

errors, or catastrophic failures [7]. Note that the survivability of a system is not only 

determined by any single component of it, but depends on a global cooperative effort. 

That means we have to pay attention to not only the reliability of each component, but 

also the global topological information, such that we can find a substitution once any 

component is failed for some reason. 

 

According to the author of [8], the definitions of survivability in the literature 

vary case by case. Roughly speaking, survivability can be defined as how well a 

network or a system can be sustained under random errors or malicious attacks, or 

both. Survivability can be further measured by means of time sustainability during 

accidents, the probability of functioning normally, and other interesting performance 

metrics. The inconsistency of definitions for survivability causes many variations in 

describing and modeling behavior of information systems under attack or failure. A 

detailed illustration of different descriptions of survivability is shown in Table 1-1 

[8]. 

 

Table 1-1 Different Definitions of Survivability 

Terminology Description 

Availability The degree to which software remains operable in the presence 

of system failures. 

Architectural The degree to which software does not depend on specific 
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design hardware 

dependence 

hardware environments; or the degree to which hardware does 

not depend on specific software environments. 

Connectivity The degree to which a system will perform reliably when all 

nodes and links are available. 

Correctness The degree to which all software functions are specified. 

Dependability The degree to which the system can provide services, even in 

the event of a threat. 

Endurability The degree to which a system can tolerate a threat and still 

provide service. 

Fairness The ability of a network system to organize and route 

information without failure. 

Fault tolerance The degree to which the software will continue to work 

without a system failure that would cause damage to users. 

Also, the degree to which software includes degraded 

operation and recovery functions. 

Interoperability The degree to which software can be connected easily with 

other systems and operated. 

Modifiability The degree of effort required to improve or modify the 

efficiency of functions of the software. 

Performance Composed of quality factors, such as Efficiency, Integrity, 

Reliability, Survivability, and Usability. 

Predictability The degrees of providing countermeasures to system failures 

in the event of a threat. 

Recoverability The ability to restore services in a timely manner. 

Reliability A set of attributes that bear on the capability of software to 

maintain its level of performance under stated conditions for a 

stated period of time. 

Restorability The ability of a system to recover from threat and provide 

services in a timely manner. 

Reusability The degree to which software can be reused in applications 
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other than the original application. 

Safety The ability of the system not to cause harm to the network or 

personnel. 

Security The degree to which software can detect and prevent 

information leaks, information loss, illegal use, and system 

resource destruction. 

Testability The effort required to test software. 

Verifiability Relative efforts to verify the specified software operation and 

performance. 

 

There are some similar terms related to survivability. In [1], the author compares 

survivability with reliability and availability. The definition of reliability is the 

probability that an object will work normally under specific conditions and specific 

time intervals. To be more specific, one can estimate a mean error rate, λ , of the 

object in its life time through statistical methods for forecasting the probability of 

normal functionality under given situations. By definition, reliability is a function of 

time and the error rate, which can be described as ( ) tR t e λ−=  if Poisson distribution is 

assumed.  

 

Availability, on the other hand, is defined as the time ratio an object operates 

under normal conditions. The definition of availability also implies possibilities of 

malfunctions, but it concerns the ratio uptimeA
uptime downtime

=
+

. A high availability 

index indicates high reliability of the object and that there are sufficient maintenance 

resources to quickly offer services again if the object should be out of order in the 

future.  

 

After reviewing the rough definitions of survivability, one may ask: “How can 

survivability be measured?” In fact, measurement of survivability differs case by case. 

For example, survivability can be defined in terms of the degree to which software 

remains operable in the presence of system failures. It can also be measured as the 
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ability to restore services in a timely manner. 

 

Computations and calculations of survivability are also diverse. Our broad 

survey concludes that quantitative survivability can be divided into two categories: 

connectivity and performance. The connectivity issue has been intensely researched 

by graph theorists for a long time, and several papers that consider connectivity as a 

metric have been published. In [9], the node connectivity factor (NCF) is proposed to 

evaluate the level of robustness of a given network. The NCF quantifies the physical 

stability of a network in terms of the expected number of critical nodes that must be 

removed from a network to eliminate all communication links. By definition, the NCF 

of a connected graph G is defined recursively as: 
( )

1
( ) ( ) [ ( )* ( ( ))]

C G

i
NCF G K G P i NCF G i

=

= + ∑ , 

where 

( )C G =  number of minimum cut-vertex sets for iG  

( )K G =  number of vertices in each minimum cut-vertex set of the graph iG  

( )P i =  likelihood of occurrence for the thi  minimum cut-vertex set 

( )G i =  thi subgraph of G induced by the removal of the thi  minimum cut-vertex 

set 

For a disconnected graph, G, composed of m components, jG , 

1
( ) ( )

m

j
j

NCF G NCF G
=

=∑ . 

The introduction of NCF describes how robust and stable a given network topology is. 

However, the computation of NCF value is a recursive procedure, which incurs an 

exponential computation time with the growth of network size. Therefore, some 

papers, [10], for example, further try to lower the computational complexity using 

special data structures, such as knowledge-based look-ups. In any case, NCF is a 

method to describe topological properties with the consideration of how many 

expected number of critical nodes should be removed from the network, such that all 

communication links are eliminated. The concept of NCF is definitely worthy of 

consideration. 
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Another paper, [11], proposes a different survivability measure (SM) in the 

context of connectivity and, through simulations, shows a high correlation between 

the SM value and the probability that rest nodes in a network are still connected. A 

significant contribution made by [11] is the worst case assumption from a network 

operator’s perspective, i.e., each time the most important node is removed. Through 

simulations, the authors conclude that the proposed measure is even more useful while 

considering malicious attack, which is regarded as an important issue in military 

networks. Moreover, the authors show that a balanced network topology yields the 

highest SM value, which suggests network planners should not create super important 

nodes in a network. However, we will show that it is not this case in the real world in 

the “scale-free networks” section. 

 

We also note that several papers discuss survivability in the context of 

performance. The main idea of considering performance rather than connectivity as a 

survivability metric lies in the fact that connectivity metrics focus on topology 

information, where as performance metrics require more, such as traffic flows, 

average end-to-end delay, and mean delay jitters. For example, traffic flows are used 

in [12] and [13] as survivability metrics. Specifically, remaining traffic flow as a 

percentage of original traffic under destruction of nodes or links is discussed in [12]. 

Meanwhile, in [14], the authors emphasize that users’ perceptions should be included 

as a kind of performance metric. If the time to gain access to a resource, for example, 

an http request for a webpage, is longer than an end user’s endurable time period, the 

network is regarded as non-survivable. 

 

1.3.2 Scale-free Networks 

Network researchers have focused on random networks for a long time. However, 

a growing number of evidences have shown that most real network topologies are not 

random. The concept of a small-world model was then proposed, followed by another 

scale-free model, to describe topological properties of real networks. 
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Paul Erdos and A. Renyi proposed a random graph model, which is also 

well-known as an ER model, in 1950s [15]. In a random graph model, connectedness 

of each pair of nodes is determined by a given probability, which makes a constructed 

network balanced in terms of degrees of connectivity. Many previous computer 

network topologies were created in simulations and discussed based on an assumption 

of an ER model. An example of an ER model is shown in Figure 1-1.  

 

Figure 1-1 An Example of an ER Model [16] 

 

However, evidences have shown that most of the existing networks are not 

randomly constructed. In 1998, Duncan Watts and Steve Strogatz discovered a new 

model after many observations and experiments: the small-world model [17]. The 

small-world model is nominated for its introduction of rewiring probability. That is, 

given a random graph, each link is rewired with certain probability p. The main 

contribution of the small-world model is its brand-new discovery of secrets and rules 

hidden behind general networks, which is believed to be applicable to many different 

fields. For example, biologists find it useful in describing the evolution of nerve 

systems of nematode; sociologists model interpersonal relationships as six degrees of 

separation. Experiments approve that the small-world model best fits some realistic 

situations.  
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However, characteristics of some large networks, such as the Internet and World 

Wide Web (WWW), still cannot be well-described by the small-world model [18]. In 

1999, the Faloutsos et al. published their discovery of the Internet [3]. They found that 

the degree of connectivity of the Internet follows a power-law distribution, which 

means that the connectivity distribution P(k) is logarithmically proportional to k γ− , 

with different constant r for different networks. In other words, there are relatively 

small numbers of nodes with high degrees of connectivity; whereas a majority of 

nodes are relatively low degrees. However, it was not until the introduction of the 

scale-free networks could we realize the secrets behind the Internet.  

 

Albert-Laszlo Barabasi and Reka Albert proposed a scale-free model in year 

2000 [16] [19]. There are two properties in a scale-free network: growth and 

preferential attachment. These kinds of networks are assumed to have a growth 

tendency; moreover, a new node joining such a network has preferential interest in 

connecting with nodes of high degree of connectivity. Due to the phenomenon of the 

preferential attachment, a node with higher degree of connectivity could attract more 

new nodes, while a lower degree one has lower probability of linking with new nodes. 

It is these two properties that results in a power-law distribution of nodes’ degree of 

connectivity. Figure 1-2 is an example of a scale-free model. 

 

Figure 1-2 An Example of a Scale-free Network [16] 
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Reka Albert, Albert-Laszlo Barabasi, and Hawoong Jeong also showed important 

characteristics of scale-free networks [16]. Scale-free networks, such as the Internet 

and WWW, are capable of enduring high rate of random errors but are vulnerable to 

malicious attacks. Simulations by Faloutsos et al. [3] investigated the topological 

properties of the Internet at the router and inter-domain level, finding that the 

diameter of the Internet remains unaffected by the random removal of as high as 2.5% 

of the nodes, whereas if the same percentage of the most connected nodes are 

eliminated (i.e. malicious attacks), the diameter grows more than triples [16]. 

 

Since most of the large scale networks are proven to be scale-free networks, we 

will consider scale-free network topologies in our experiments, in addition to random 

networks and grid networks. 

 

1.4 Proposed Approach 
We model the attack and defense problem as optimization problems. Due to the 

high complexities of the problems, our proposed mathematical programming models 

are nonlinear and mixed integer-programming ones. As we expected, the problems are 

by nature highly complicated and difficult.  

 

To the best of our knowledge, our proposed approach is the first attempt to solve 

an attack and defense problem considering survivability issues in general networks via 

mathematical programming techniques. We then apply the Lagrangean relaxation 

method [20] [21] and the subgradient method [22] to solve the problem. 
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Chapter 2 Problem Formulation 
In this chapter, we propose two mathematical models with specific assumptions 

and problem objectives. In Model 1, we consider how attackers might attack the 

network under given budget allocation scenarios. In Model 2, we discuss how a 

defender should allocate a budget under such attack scenarios. 

 

2.1 Model 1 

2.1.1 Problem Description and Assumptions 

 

The objective of this problem is to decide the minimal attack cost for an attacker, 

in order to “compromise” a network. 

 

Here, we discuss survivability in the domain of connectivity. Network 

connectivity has been researched by computer network experts for many years, 

yielding many different metrics for measuring the connectivity of a given network. 

We focus on the connectivity of important node pairs. Given several critical 

origin-destination pairs (OD-pairs), it is important to ensure at least one functional 

path for each OD-pair making communications. In order to report the worst case 

scenario for a defender, we research the strategies of applying the minimal attack cost 

from the perspective of an attacker, such that there is no available path for critical 

OD-pairs to communicate.  

 

In this model, we assume that both the attacker and the defender have the 

complete information about the targeted network topology. Moreover, the attacker has 

complete information about the defender’s budget allocation. However, in the real 

world, the defender can take advantage of information asymmetry by concealing or 

confusing critical information, so that the attacker has to speculate about the real 
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situation; therefore, the attacker may waste attack resources in order to compromise 

the network. Consequently, we consider the worst case for the defender here. 

 

The defender’s budget allocation strategy may greatly influence the difficulty 

that the attacker experiences in compromising a network. Naturally, it is more difficult 

to attack a node if more budgetary resources are allocated to it.  

 

 Note that, for simplicity we do not take relatively infrequent link attacks into 

account, whereas node attacks, which result in worse case scenarios, are more 

common in real computer networks. Also, if a node is attacked, all of its outgoing 

links are no longer available. In addition, we do not consider random errors here 

because we want to focus on the effects of malicious attacks. 
 

Table 2-1 Problem Assumptions of Model 1 

Problem assumptions: 
1. The survivability metric is measured as the connectivity of the given 

critical OD-pairs. 
2. The attacker and the defender have complete information about the 

targeted network topology. 
3. The defender’s budget allocation strategy is a given parameter. 
4. The objective of the attacker is to minimize the total attack cost of 

destroying all paths between given critical OD-pairs. 
5. We consider node attacks only. (No link attacks are considered). If a 

node is attacked, its outgoing links are not functional.  
6. We consider malicious attacks only. (No random errors are 

considered.) 
 

 

Table 2-2 Problem Descriptions of Model 1 

Given: 
1. The network topology and the network size 
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2. The defender’s budget allocation policy 
3. A set of critical OD-pairs 
4. The minimal attack cost to compromise a node is a given function of 

the budget allocation for it. 
Objective: 
To minimize the total cost of an attack 
Subject to: 
1. There is no available path for each given critical OD-pair to 

communicate. 
To determine: 
1. Which nodes will be attacked 

 
 

To describe the constraints mathematically, we adopt the following concepts. For 

each OD-pair, we select exactly the shortest cost path and enforce it to be a 

non-available path. The “cost” of a path is defined as the sum of the link costs along 

that path, where the cost of a link is very large if that link is not functional and very 

small otherwise. 

 

The argument is that if there is at least one disconnected link along the shortest 

cost path, then there is no available path for that OD-pair to communicate. 
 

2.1.2 Notation 

Given Parameters 
Notation Description 
V The index set of all nodes 
L The index set of all links 
W The index set of all given critical origin-destination pairs 
OUT i The index set of outgoing links of node i, where i V∈   
M A large number that represents the link disconnection 
ε  A small number that represents the link connectedness 

wP  The index set of all candidate paths of an OD-pair, w, where w W∈  
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plδ  An indicator function, which is 1 if link l is on path p, and 0 otherwise 

bi Budget allocated to node i, where i V∈  

ia
∧

 
Threshold of an attack cost leading to a successful attack, which is a 
function of bi 

Decision Variables 
Notation Description 
yi 1 if node i is compromised, and 0 otherwise 

wlt  1 if link l is used by OD pair, w, and 0 otherwise 
xp 1 if path p is chosen, and 0 otherwise 

lc  Cost of link l, which isε  if link l functions normally, and M+ε  if link l is 
broken 

 

2.1.3 Problem Formulation 
 
Objective function: 
 

min
i

i iy i V
y a

∧

∈
∑

,       (IP1)
 

subject to 
               

l ic y M ε= +         ,  ii V l OUT∀ ∈ ∈   (IP 1.1) 

wl l pl l
l L l L

t c cδ
∈ ∈

≤∑ ∑        ,  wp P w W∀ ∈ ∈   (IP 1.2) 

w

p pl wl
p P

x tδ
∈

=∑         ,  w W l L∀ ∈ ∈   (IP 1.3) 

wl l
l L

M t c
∈

≤∑         w W∀ ∈     (IP 1.4) 

1
w

p
p P

x
∈

=∑         w W∀ ∈     (IP 1.5) 

0 or 1px =         ,  wp P w W∀ ∈ ∈   (IP 1.6) 

0 or 1iy =         i V∀ ∈     (IP 1.7) 
0 or 1wlt =         ,  .w W l L∀ ∈ ∈   (IP 1.8) 
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Explanation of the mathematical formulation: 

 

Objective function: To minimize the total attack cost; the attacker minimizes the 

objective value by deciding which nodes to compromise (i.e., yi for each node i). 

 

Constraint (IP 1.1) describes the definition of the link cost, which is ε  if the link 

functions normally, and M+ε  if the link is broken. 

 

Constraint (IP 1.2) requires that the selected path for each OD-pair, w, should be a 

shortest cost path. 

 

Constraint (IP 1.3) is the relations among twl, px  and plδ . We use the auxiliary set of 

decision variables, twl, to replace the sum of all  p plx δ . The substitution is to further 

simplify the problem solving procedures.  

 

Constraint (IP 1.4) requires that the given critical OD-pairs are all disconnected. We 

depict the phenomenon by showing that the cost of the shortest path for each OD-pair 

to communicate is greater than M. 

 

Constraint (IP 1.5) and (IP 1.6) jointly require that exactly one path is selected 

between each given OD-pair. 

 

Constraint (IP 1.7) determines whether each node i is compromised, or not. 

 

Constraint (IP 1.8) determines whether each link l is used to form a shortest cost path 

by OD-pair, w, or not. 

 

2.1.4 Problem Reformulation 
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In order to mathematically solve the optimization problem, we reformulate the 

problem with one assumption and some adjustments without affecting the problem 

structure and the optimality conditions. 

Assumption: In order to simplify the problem, we assume that   ,i ia b i V
∧

= ∀ ∈ , which 

means that the minimal attack cost of compromising a node equals the allocated 

budget for it. 

 

We adjust some constraints, add two sets of redundant constraints, and explain them 

later. 

 

Objective function: 

 
min

i
i iy i V

y b
∈
∑

,       (IP2)
 

subject to 
 

l ic y M ε≤ +         ,  ii V l OUT∀ ∈ ∈   (IP 2.1) 

wl l pl l
l L l L

t c cδ
∈ ∈

≤∑ ∑        ,  wp P w W∀ ∈ ∈   (IP 2.2) 

w

p pl wl
p P

x tδ
∈

≤∑         ,  w W l L∀ ∈ ∈   (IP 2.3) 

wl l
l L

M t c
∈

≤∑         w W∀ ∈     (IP 2.4) 

1
w

p
p P

x
∈

=∑         w W∀ ∈     (IP 2.5) 

0 or 1px =         ,  wp P w W∀ ∈ ∈   (IP 2.6) 

0 or 1iy =         i V∀ ∈     (IP 2.7) 
0 or 1wlt =         ,  w W l L∀ ∈ ∈   (IP 2.8) 
 or lc Mε ε= +        l L∀ ∈     (IP 2.9) 

.i lb
i V

y V
∈

≥∑              (IP 2.10) 

            

Explanation of the reformulation: 
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1. The objective function is modified to simplify the original problem. 

2. Constraint (IP 2.1) is a relaxed version of (IP 1.1). Note that the relaxation of the 

equation into an inequality version does not violate its optimality conditions. 

3. Constraint (IP 2.3) is a relaxed version of (IP 1.3). Note that the relaxation of the 

equation into an inequality version does not violate its optimality conditions. 

4. Constraint (IP 2.9) is a set of redundant constraints, since the value of each lc  

should be either   or Mε ε+ . We will need it in the Lagrangean relaxation 

problem. 

5. Constraint (IP 2.10) is also a redundant constraint. We find a legitimate lower 

bound,  lbV , on the number of nodes an attacker should attack in order to 

compromise the connectivity of given critical OD-pairs. The legitimate lower 

bound can be obtained from either of the following methods. 

Table 2-3 Methods for Getting a Legitimate Lower Bound of Nodes to Attack 

Method 1: 

We deliberately assign one unit budget to each node. Then we solve this revised 

optimization problem and find an LR lower bound, denoted by LB, on the optimal 

objective function value. Then LB indicates a minimal (but may not be feasible) 

attack cost an attacker has to spend in order to reach his goal. Since each node is 

assigned with one unit budget, LB also serves as a lower bound of number of nodes 

an attacker needs to take away. 

Method 2: 

We first find an LR lower bound on the primal objective function value of the primal 

problem. Denote this value by LB. We then find the min set of {bi}, in terms of 

cardinality, in such a way that the sum of the elements in this set is no less than LB. 

Then the cardinality of this set serves as a legitimate lower bound on the number of 
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nodes an attacker needs to take away. 

In our thesis, we adopt Method 1 to get a legitimate lower bound of  lbV . 

 

We can further derive an upper bound on number of nodes an attacker may attack. 

We first apply any heuristic to calculate a primal feasible solution, of which the 

corresponding objective function value is denoted by UB. We then find the max set of 

{bi}, in terms of cardinality, in such a way that the sum of the elements in this set is 

no greater than UB. If such a sum is less than UB, then increment the cardinality by 1. 

The cardinality of this set serves as a legitimate upper bound on the number of nodes 

an attacker needs to take away. 

 

2.2 Model 2 

2.2.1 Problem Description and Assumptions 

 

In Model 1, we assume the defender’s budget allocation is a given parameter. In 

Model 2, we introduce another factor by allowing the defender to decide the budget 

allocation strategy. In other words, the defender would like to distribute a given 

amount of budget efficiently so that the attacker has to pay a higher price to reach his 

goal, i.e., disconnection of given critical OD-pairs. Meanwhile, the attacker also wants 

to choose critical nodes to attack in order to minimize the total attack cost. Therefore, 

the problem becomes a max-min structure. We will present a well-formulated problem 

structure in the following section, and present a lemma in the next chapter. 

 

 We first introduce an argument to clarify the relationship between each bi (the 

budget allocated to a node, i) and the total budget, B. 

 

Argument: We claim that the optimality for the defender holds if and only if the total 

budget, B, is fully used. Note that this argument holds only when the set of decision 

variables, bi, is continuous. 
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Table 2-4 Problem Assumptions of Model 2 

Problem assumptions: 
1. The survivability metric is measured as the connectivity of the given 

critical OD-pairs. 
2. The attacker and the defender have complete information about the 

targeted network topology. 
3. The objective of the attacker is to minimize the total attack cost of 

destroying all paths between given critical OD-pairs. 
4. The objective of the defender is to distribute the total amount of 

budget effectively so that the minimal total attack cost can be 
maximized. 

5. We consider node attacks only. (No link attacks are considered). If a 
node is attacked, its outgoing links are not functional.  

6. We consider malicious attacks only. (No random errors are 
considered.) 

 
 

Table 2-5 Problem Descriptions of Model 2 

Given: 
1. The network topology and the network size 
2. A set of critical OD-pairs 
3. The total budget of the defender 
Objective: 
To maximize the attacker’s minimal total attack cost 
Subject to: 
1. The total budget constraint of the defender 

2. No path is available for each given critical OD-pair to communicate. 
To determine: 
1. The budget allocated to each node 

2. Which nodes the attacker has decided to target 
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2.2.2 Notation 

Given Parameters 
Notation Description 
B Total budget of the defender 
V The index set of all nodes 
L The index set of all links 
W The index set of all given critical origin-destination pairs 
OUT i The index set of outgoing links of node i, where i V∈   
M A big number that represents the link disconnection 
ε  A small number that represents the link connectedness 

wP  The index set of all candidate paths of OD-pair, w, where w W∈  

plδ  An indicator function, which is 1 if link l is on path p, and 0 otherwise 

Decision Variables 
Notation Description 
bi The budget allocated to node i 
yi 1 if node i is compromised, and 0 otherwise 

wlt  1 if link l is used by OD pair, w, and 0 otherwise 
xp 1 if path p is chosen, and 0 otherwise 

lc  Cost of link l, which isε  if link l functions normally, and M+ε  if link l is 
broken 

 

2.2.3 Problem Formulation 

max min
ii

i iyb i V
y b

∈
∑

,         (IP3)
 

subject to 
               

l ic y M ε≤ +         ,  ii V l OUT∀ ∈ ∈   (IP 3.1) 

wl l pl l
l L l L

t c cδ
∈ ∈

≤∑ ∑        ,  wp P w W∀ ∈ ∈   (IP 3.2) 
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w

p pl wl
p P

x tδ
∈

≤∑         ,  w W l L∀ ∈ ∈   (IP 3.3) 

wl l
l L

M t c
∈

≤∑         w W∀ ∈     (IP 3.4) 

1
w

p
p P

x
∈

=∑         w W∀ ∈     (IP 3.5) 

0 or 1px =         ,  wp P w W∀ ∈ ∈   (IP 3.6) 

0 or 1iy =         i V∀ ∈     (IP 3.7) 
0 or 1wlt =         ,  w W l L∀ ∈ ∈   (IP 3.8) 
 or lc Mε ε= +        l L∀ ∈     (IP 3.9) 

i
i V

b B
∈

=∑               (IP 3.10) 

0 ib B≤ ≤         .i V∀ ∈     (IP 3.11) 
 
Objective function:  

To maximize the attacker’s minimal total attack cost. The attacker minimizes i i
i V

y b
∈
∑  

by deciding which nodes to compromise (i.e., yi for each node i), while the defender 

maximizes i i
i V

y b
∈
∑  by properly deciding each bi. 

Explanation of the formulation: 

1. Constraints (IP 3.1) ~ (IP 3.9) are the same as the reformulation of Model 1. 

2. Constraint (IP 3.10) reflects our argument that the optimality condition for the 

defender holds if and only if the total budget, B, is fully used. 

3. Constraint (IP 3.11) indicates that the set of decision variables, bi, is continuous, 

and bounded by 0 and B. 



 

 24

 

Chapter 3 Solution Approach 
In this chapter, we first introduce the proposed solution approach, Lagrangean 

relaxation, for Model 1, and show how we solve the problem in Model 1 with this 

method. We also show an elegant lemma for solving the problem in Model 2. 

 

3.1 Solution to Model 1 

3.1.1 Introduction to the Lagrangean Relaxation Method 

 

Lagrangean relaxation method was originally used for scheduling and solving 

general integer programming problems in the 1970s [20], due to its effectiveness and 

efficiency in providing proper solutions to these problems. In recent years, however, it 

has gradually become one of the most popular tools for solving optimization problems, 

such as integer programming, linear programming combinatorial optimization, and 

non-linear programming problems.  

 

There are several advantages to using the Lagrangean relaxation method. For 

example, we can use it to decompose mathematical models into several subproblems, 

which can then be separately, optimally, and easily solved by well-known algorithms. 

By doing so, the complexity of an original problem can be significantly reduced [20] 

[21]. 

 

In addition, Lagrangean relaxation can help us obtain the bounds of an objective 

function, and we can use the bounds to evaluate how good the implemented primal 

feasible solutions are. This is due to the definition of Lagrangean relaxation, in which 

we “pull apart” models by removing constraints and placing them in the objective 

function with associated Lagrangean multipliers. The new problem with fewer 

constraints is called the Lagrangean relaxation problem, where the optimal value is by 
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nature a lower bound (for minimization problems) of the objective function value in 

the original problem. In order to get the best solution to the original problem, we try 

to enhance the Lagrangean lower bounds by tuning Lagrangean multipliers, which is 

also known as maximization of Lagrangean relaxation problems.  

 

On the other hand, we iteratively lower the primal objective function value (for 

minimization problems) from the hints of solving the Lagrangean relaxation problem. 

Note that the optimal solution to the primal problem is guaranteed to be within the 

Lagrangean lower bounds and the primal feasible solution values. 

 

We can solve the Lagrangean relaxation problem in a variety of ways; however, 

the most popular way is the subgradient optimization technique [20] [21]. Figure 3-1 

illustrates the main concepts of the Lagrangean relaxation method. A detailed flow 

chart of the Lagrangean relaxation method is presented in Figure 3-2. 

 

Primal Problem

Lagrangian
Relaxation
Problem

subproblem subproblem

Multiplier 
Dual 

Problem

Sub-Optimal Sub-Optimal  

Figure 3-1 Illustration of Lagrangean Relaxation Method 
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Initialization

Solve Lagrangian
Dual Problem

Get Primal
Solution

Update Bounds

Check
Termination

Adjust
Multiplier

1. Find Z* (initial feasible solution), LB =
2. Set
3. Set IterationCount = 0, ImproveCounter = 0,

MaxIterationCount, MaxImproveCount

2,0 0
0 == λu

STOP

1. Optimally solve each subproblems
2. Get decision variables

1. Get primal feasible solution (UB) if it does
not violate relaxed constraints

2. tuning by proposed heuristic, otherwise

1. Check LB, If ZD(uk) > LB   then LB = ZD(uk)
2. Check UB, If UB < Z* then Z* = UB

1. IF ImproveCount
> MaxImproveCount

λ = λ /2 , ImproveCount = 0
2. ImproveCount ++
3. Renew tk, uk

∞−

1. IF ((IterationCount > MaxIterationCount)
or ) STOP

2. IterationCount ++
ε≤− LBLBUB /)(

T

F

 

Figure 3-2 Lagrangean Relaxation Procedures 
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3.1.2 Lagrangean Relaxation 
By applying the Lagrangean relaxation method, we can transform the primal problem 
(IP2) into the following Lagrangean relaxation problem (LR), where constraints (IP 
2.1), (IP 2.2), (IP 2.3), and (IP 2.4) are relaxed. With a vector of Lagrangean 
multipliers, the Lagrangean relaxation problem of IP2 is transformed as follows. 
 
Optimization problem: 
 

1
1 2 3 4

2 3 4

( , , , ) min [ ( )]

[ ] [( ) ]

i i

w w

D i i il l iy i V i V l OUT

wp wl l pl l wl p pl wl w wl l
w W p P l L w W l L p P w W l L

Z u u u u y b u c y M

u t c c u x t u M t c

ε

δ δ

∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

= + − + +

⎡ ⎤+ − + − + −⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑ ∑∑ ∑ ∑ ∑
 

(LR) 
 
subject to               

1
w

p
p P

x
∈

=∑         w W∀ ∈      (LR1) 

0 or 1px =         ,  wp P w W∀ ∈ ∈    (LR2) 

0 or 1iy =         i V∀ ∈      (LR3) 
0 or 1wlt =         ,  w W l L∀ ∈ ∈    (LR4) 
 or lc Mε ε= +        l L∀ ∈      (LR5) 

.i lb
i V

y V
∈

≥∑               (LR6) 

By definition, 1 2 3 4, , ,u u u u  are the vectors of { 1
ilu }, { 2

wpu }, { 3
wlu }, { 4

wu }, 

respectively. Note that 1 2 3 4, , ,u u u u  are Lagrangean multipliers and 1 2 3 4, , ,u u u u 0≥ . 
To optimally solve (LR), we decompose it into the following three independent and 
easily solvable optimization Subproblems. 
 
3.1.2.1 Subproblem 1 

SUB_1 (related to decision variable px ) 

3
1 3( ) min

w

sub wl pl p
w W l L p P

Z u u xδ
∈ ∈ ∈

= ∑∑∑ ,                 (Sub 1) 

subject to 
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1
w

p
p P

x
∈

=∑         w W∀ ∈     (Sub1.1) 

0 or 1px =         ,  .wp P w W∀ ∈ ∈   (Sub1.2) 

 

This problem can further be decomposed into |W| independent shortest cost path 

Subproblems. In other words, we can determine the value of  px  individually for each 

OD-pair. Specifically, 3  wlu can be treated as the cost of link l in OD-pair w in the 

shortest cost path Subproblems. Due to the phenomenon of the non-negativity 

constraint of each 3 wlu , we can therefore apply Dijkstra’s shortest path algorithm to 

optimally solve these shortest cost path Subproblems. Since the time complexity of 

Dijkstra’s shortest path algorithm is 2 (| | )O V ), where |V| is the number of nodes, the 

time complexity of SUB_1 is 2  (| | | | )O W V× . 

 
3.1.2.2 Subproblem 2 
SUB_2 (related to decision variable iy ) 

1
2 1( ) min ( )

i
sub i i il i

i V i V l OUT

Z u y b u M y
∈ ∈ ∈

= + −∑ ∑ ∑ ,         (Sub 2) 

subject to 

0 or 1iy =         i V∀ ∈     (Sub 2.1) 

.i lb
i V

y V
∈

≥∑              (Sub 2.2) 

 

To optimally solve SUB_2, we first apply a quick sort on the sum of the parameters of 

each   iy , i.e., 1

i
i il

l OUT

b M u
∈

− ∑ , to get an array in ascending order. To satisfy the 

constraint (Sub 2.2), we then choose lbV  nodes from the left of the array, and set 

their values of   iy  to one. The values of  iy  of the remaining nodes are decided by 

their associated parameters, 1

i
i il

l OUT

b M u
∈

− ∑ . For each remaining node i V∈ , if 

1

i
i il

l OUT

b M u
∈

− ∑  is positive, the value of  iy  is set to zero, in order to minimize this 
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Subproblem. On the other hand, if the sum of the parameters is non-positive, it is set 

to one. 

The time complexity of SUB_2 is  (| | log | |)O V V . 

 
3.1.2.3 Subproblem 3 
SUB_3 (related to decision variables  ,wl lt c ) 

1 2
3 1 2 3 4

3 4

( , , , ) min ( )

( ) ( )

i
w

sub il l wp wl l pl l
i V w W p P l Ll OUT

wl wl w wl l
w W l L w W l L

Z u u u u u c u t c c

u t u t c

δ
∈ ∈ ∈ ∈∈

∈ ∈ ∈ ∈

= + − +

− + −

∑ ∑ ∑ ∑ ∑

∑∑ ∑ ∑
   (Sub 3) 

subject to 

0 or 1wlt =         ,  w W l L∀ ∈ ∈   (Sub 3.1) 

 or lc Mε ε= +        .l L∀ ∈     (Sub 3.2) 

 

As constraints (Sub 3.1) and (Sub 3.2) show, either wlt  or lc  has two choices. We 

can therefore apply an exhaustive search to determine the values of  wlt  and  lc , 

depending on which combination results in the smallest objective function value. To 

optimally solve SUB_3, we further decompose it into |L| independent Subproblems, 

which are shown below. 

 

1 2

3
3' 1 2 3 4

2 4

( , , , ) min

( )

w

w

il wp pl
w W p P

sub l wl wl
w W

wp w wl
w W p P

u u

Z u u u u c u t

u u t

δ
∈ ∈

∈

∈ ∈

⎧ ⎫⎡ ⎤
− +⎪ ⎪⎢ ⎥

⎪ ⎪⎣ ⎦= −⎨ ⎬
⎡ ⎤⎪ ⎪−⎢ ⎥⎪ ⎪
⎣ ⎦⎩ ⎭

∑ ∑
∑

∑ ∑
,  (Sub 3’) 

subject to 
0 or 1wlt =         w W∀ ∈     (Sub 3.1’) 
 or .lc Mε ε= +             (Sub 3.2’) 

 

The time complexity of SUB_3 is ( | |)O W L× . 

3.1.3 The Dual Problem and the Subgradient Method 
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According to the weak Lagrangean duality theorem [21], for any set of the 

multipliers 1 2 3 4( , , , ) 0u u u u ≥ , 1 2 3 4( , , , )DZ u u u u  is a lower bound on 2IPZ . The 

following dual problem is then constructed to calculate the tightest lower bound. 

 
Dual Problem (D)  
   ZD =max ZD ( u1, u2, u3, u4) 
   s.t. ( u1, u2, u3, u4) ≥0 
 

There are several methods for solving the dual problem (D), of which the 

subgradient method [22] is the most popular one. We therefore adopt it as our solution 

approach to the dual problem. Let a vector k be a subgradient of ZD( u1, u2 ,u3, u4). 

Then, in iteration p of the subgradient procedure, the multiplier vector λ= ( u1, u2 ,u3, 

u4) is updated by 

                  
1p p p pt kλ λ+ = + , 

where the step size, pt , is determined by 

2
2

( )
|| ||

h
pp IP D

pt
k

z z λδ
−

= . 

2

h

IPz  is the best upper bound on the primal objective function value after the pth 

iteration. δ is a value between 0 and 2. It is initiated with a value of 2 and halved 

whenever the best objective function value does not improve within a given iteration 

count. 

 

3.1.4 Getting Primal Feasible Solutions 

  
To obtain the primal feasible solutions to the original problem (IP2), we consider 

the solutions from the LR problem. By using the Lagrangean relaxation and the 

subgradient method to solve the LR problem, we not only get a theoretical lower 

bound on the primal objective function value, but also obtain good hints for getting 
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primal feasible solutions. However, as some critical and difficult constraints are 

relaxed to obtain the easily-solvable LR problem, the solutions obtained from ZD may 

not be valid to the primal problem. We therefore need to develop good heuristics to 

tune the values of these decision variables, so that primal feasible solutions can be 

obtained. 

 

 Our basic concept is as follows. From the solutions to Subproblem 2 of LR, we 

can determine whether or not each yi should be set to one by examining its associated 

parameters. The more negativity associated with the parameter, the more likely it is 

that the yi of that node should be set to one. We therefore apply a quick sort method to 

sort the parameters of yi in ascending order.  

 

In addition, the solutions to Subproblem 3 of LR provide us with other useful 

information. For each node, if any of its outgoing link costs in the dual solution is set 

to M ε+ , the more likely it is that the node will be attacked. Recall the definition of 

the link cost in the problem formulation. 

 

If all nodes with the above characteristics have been considered, but there still 

exists some path for at least one OD-pair to communicate, we have to consider extra 

nodes by first choosing the smaller positive parameters of yi. We stop when there does 

not exist any available path for each OD-pair to communicate. 

 

By combining the above ideas, we are able to derive a heuristic for getting primal 

feasible solutions. However, we find that the solution quality is not as good as we 

expect. After examining the results carefully, we conclude that some of the nodes are 

“mis-attacked”, meaning that the attacker does not necessarily need to attack the 

nodes in order to reach his goal. To improve the solution quality, we apply a greedy 

algorithm to lower the primal objective function value as much as possible. The 

algorithm is given below. 
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Table 3-1 Getting Primal Feasible Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Sort the nodes in ascending order w.r.t. the parameters of yi we mentioned 

in Subproblem2. 

While (there is an available path for at least one OD-pair to communicate, 

and some nodes remain unexamined){ 

  One at a time, attack the leftmost unexamined node with a negative 

parameter of yi or a large M of its outgoing link cost. 

} 

While (there is an available path for at least one OD-pair to 

communicate){ 

  One at a time, attack the left-most node which was not determined to 

be attacked yet. 

} 

While (some nodes remain unexamined){ 

  Apply a greedy algorithm; we sequentially recover the attacked node 

with the largest budget, bi, and test if this recovery will lead to any 

available path for any OD-pair. If yes, we do not recover this node. 

} 

While (some nodes remain unexamined){ 

  Apply a greedy algorithm; we sequentially examine if a recovery of 

any two combinations of the attacked nodes will lead to any available 

path for any OD-pair. If yes, we do not recover the nodes. 

} 
 

Step 1: In Line 1 and 2, we sort the nodes in an ascending order according to their 

associated parameters in Subproblem2. 

 

Step 2: In Line 3 to 7, we sequentially set the yi of the leftmost unexamined node in 

the sorted array to one, if the sum of its associated parameters in SUB_2 is negative or 

any of the node’s outgoing link cost in SUB_3 is greater than M. We exit the while 

loop if and only if a primal feasible solution is obtained or all nodes are examined. 
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Step 3: In Line 8 to 12, if a primal feasible solution is not obtained yet, we 

sequentially set the leftmost unexamined node of which yi = 0 to one. That is, we 

ensure a primal feasible solution after Step 3. 

 

Step 4: In Line 13 to 17, we apply a greedy heuristic to “recover” the attacked nodes. 

That is, we one at a time recover the attacked node with the largest budget, bi, and test 

if this recovery will lead to any available path for any OD-pair. If we find a recovery 

can lead some available path for some OD-pair, this recovery is not allowed because it 

violates the constraints of the primal problem; if a recovery is allowable, we save a 

cost of bi. 

 

Step 5: In Line 18 to 22, to further enhance the saving, we try the combinations of 

“picking 2 out of N.” That is, for each un-attacked node, we try all “picking 2 out of 

N” combinations of other attacked nodes and test if the two nodes can be taken over 

by the one node with a saving.  

 

The time complexity of the getting primal heuristic is 5 (| | | | )O W V× . 

 

3.2 Solution to Model 2 

3.2.1 Basic Concept 

 

Despite the complicated max-min mathematical form, we find that an optimal 

solution can always be easily obtained. The basic concept is as follows. 

 

  We remind the readers that the goal of an attacker is to disconnect all paths of 

given critical OD-pairs. Since a smart attacker may always find the best approach to 

attain his goal, if a defender unevenly distributes the total amount of budget, some 
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budgetary resources are “wasted.” To fully utilize a total budget, we come up with an 

idea of protecting one critical path, and allocate all budgetary resources to it. In 

addition, a “balanced” budget allocation strategy should be considered so that an 

attacker cannot play tricks. Moreover, if there are fewer nodes on a critical path, the 

more budget a node on the path is allocated, since the total amount of budget is fixed.  

 

 From the above statements, we propose a budget allocation policy: given a total 

budget, a topology, and a set of critical OD-pairs, we find the minimal hop path 

among the set of OD-pairs, in terms of number of nodes on the path, and evenly 

distribute the total budget to each of the node on the minimal hop path. If there are 

ties on the minimal hop path, arbitrarily choose one. 

 

3.2.2 Lemma 

 

We further write the above statements as a lemma. 

 

Lemma: 

Given a total budget, B, a topology, G= (V, E), and a set of critical OD-pairs, W. The 

best budget allocation strategy to maximize the minimal attack cost is to evenly 

distribute B to the nodes on a minimal hop path in G among all W. The 

corresponding minimal attack cost is 
m

B
H

, where mH  is the number of nodes on 

the minimal hop path. 

 

Assume that there is another budget allocation strategy such that the minimal 

cost of an attack is A, which is greater than 
m

B
H

. In such a case, both the source and 

the destination node of the minimal hop path should be allocated a budget of at least A. 

If not, we simply attack either the source or the destination node and we are done with 

minimal attack cost less than 
m

B
H

. Moreover, in order not to grant an attacker any 
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trick, we have to allocate a budget of at least A to the remaining mH -2 nodes along 

the minimal hop path. Therefore, in such a case, the total budget used will be mH *A, 

which is more than B. It leads to a contradiction since the total budget constraint, 

i
i V

b B
∈

=∑ , is violated. 
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Chapter 4 Computational 
Experiments 

In order to show that the solution quality of our primal heuristic is better than 

other approaches, we implement the following two simple algorithms for comparison 

purposes. 

 

4.1 Simple Algorithm 1 

 
Since the core of our problem objective is to find a minimal total attack cost such 

that all given critical OD-pairs cannot communicate, we want to find a set of critical 

nodes and attack them. The concept is similar to finding a set of cuts to disconnect the 

communications. Thus to minimize the total attack cost, we should find a “minimum 

cut”. According to the maximum flow-minimum cut theorem, we obtain the minimum 

cut by executing the maximum flow algorithm. Hence, we adopt the maximum flow 

algorithm for each OD-pair to obtain the minimum cuts. By taking the union of the 

minimum cuts, we are guaranteed to obtain a feasible solution to the primal problem. 

In order to improve the solution quality, we apply the same concept to this simple 

algorithm, as we did in “getting primal feasible solutions.” We now present the core 

algorithm. 

Table 4-1 Simple Algorithm 1 

For (each OD-pair){ 

  Run Maximum Flow algorithm to get the minimum cuts. 

} 

Take the union of all the minimum cuts, and let all the nodes, with at least one 

outgoing link labeled as M, be the candidates. 
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Sequentially recover one of the candidates, and run Dijkstra’s Shortest Path 

algorithm to investigate if the recovery is allowable. 

 

4.2 Simple Algorithm 2 

 
In the literature, a survivability measure (SM) [11] is proposed to evaluate how a 

network sustain malicious attacks, under the assumption that the most important node 

is removed each time. We have shown that the importance of nodes can be evaluated 

by their level of connectivity. We now propose a simple algorithm that considers the 

removal of the most connected node sequentially. We stop the algorithm when there is 

not any available path for each OD-pair to communicate. The pseudo code is as 

follows. 

Table 4-2 Simple Algorithm 2 

Sort the nodes in descending order w.r.t. the degree of connectivity. 

While (there is an available path for at least one OD-pair to communicate){ 

  Attack the most connected node among those not being attacked yet. 

} 

 

4.3 Parameters and Cases of the Experiment 
 

We organize our experimental parameters and design of cases as the following table. 

Table 4-3 Experimental Parameters 

Number of Nodes 16 ~ 100 
Number of Links 60 ~ 400 
Number of critical OD-pairs 8 ~ 250 
Testing Topology Random networks, Grid networks, and 

Scale-free networks 
Number of Iterations 2000 
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Non-improvement Counter 80 
Initial Upper Bound Solution of SA1 
Initial budget allocation policy Uniform distribution,  

Degree-based distribution 
Test Platform CPU: Intel Pentium-4  2.0 GHz 

OS: MS Windows XP 
 

4.4 Experimental Results 
 

We present the experimental results by a list of tables. The SA1 and SA2 are the 

solutions from Simple Algorithm 1 and 2; the LR value means the primal feasible 

solution from the LR process; the LB represents the lower bound gained from the LR 

process. Moreover, the Gap is calculated by LR-LB *100%
LB

; the improvement ratio 

of SA1 and SA2 are calculated by 1SA -LR *100%
LR

and 2SA -LR *100%
LR

, 

respectively. 

 

Case 1: Small-scale networks with uniform budget distribution 

(Number of nodes is 16.) 

Network 

Topology 

No. of 

Critical 

OD-pairs 

SA1 SA2 LR LB Gap Imp. 

Ratio 

of SA1 

Imp. 

Ratio of 

SA2 

8 4 16 4 3.563926 12.24% 0.00% 300.00%

16 7 16 7 6.370007 9.89% 0.00% 128.57%

24 7 16 7 6.73727 3.90% 0.00% 128.57%

32 10 16 10 8.539403 17.10% 0.00% 60.00%

Grid 

Networks 

40 12 16 12 9.945028 20.66% 0.00% 33.33%

8 8 11 6 4.812023 24.69% 33.33% 83.33%Random 

Networks 16 8 13 8 6.232452 28.36% 0.00% 62.50%
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24 7 8 7 5.470252 27.96% 0.00% 14.29%

32 9 15 9 7.660677 17.48% 0.00% 66.67%

40 10 11 10 8.83108 13.24% 0.00% 10.00%

8 3 8 3 2.948217 1.76% 0.00% 166.67%

16 5 7 5 4.847389 3.15% 0.00% 40.00%

24 6 9 6 4.862614 23.39% 0.00% 50.00%

32 10 15 10 8.995957 11.16% 0.00% 50.00%

Scale-free 

Networks 

40 9 11 9 8.610195 4.53% 0.00% 22.22%

 

Case 2: Medium-scale networks with uniform budget distribution 

(Number of nodes is 50.) 

Network 

Topology 

No. of 

Critical 

OD-pairs 

SA1 SA2 LR LB Gap Imp. 

Ratio 

of SA1 

Imp. 

Ratio of 

SA2 

25 12 36 10 7.441391 34.38% 20.00% 260.00%

50 19 40 18 14.06399 27.99% 5.56% 122.22%

75 20 45 19 14.5307 30.76% 5.26% 136.84%

100 19 42 17 12.30638 38.14% 11.76% 147.06%

Grid 

Networks 

125 20 46 20 15.29588 30.75% 0.00% 130.00%

25 15 23 13 9.824965 32.32% 15.38% 76.92%

50 17 31 16 12.16454 31.53% 6.25% 93.75%

75 19 40 18 13.22959 36.06% 5.56% 122.22%

100 24 46 18 14.50284 24.11% 33.33% 155.56%

Random 

Networks 

125 21 46 19 15.21835 24.85% 10.53% 142.11%

25 6 6 6 4.724655 26.99% 0.00% 0.00% 

50 9 15 9 7.636606 17.85% 0.00% 66.67%

75 25 35 13 10.93413 18.89% 92.31% 169.23%

100 14 44 14 11.63209 20.36% 0.00% 214.29%

Scale-free 

Networks 

125 18 49 18 15.51449 16.02% 0.00% 172.22%
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Case 3: Large-scale networks with uniform budget distribution 

(Number of nodes is 100.) 

Network 

Topology 

No. of 

Critical 

OD-pairs 

SA1 SA2 LR LB Gap Imp. 

Ratio 

of SA1 

Imp. 

Ratio of 

SA2 

50 27 92 23 16.44631 39.85% 17.39% 300.00%

100 34 94 26 17.54971 48.15% 30.77% 261.54%

150 30 95 28 20.09422 39.34% 7.14% 239.29%

200 38 98 31 22.50487 37.75% 22.58% 216.13%

Grid 

Networks 

250 36 92 36 20.63084 74.50% 0.00% 155.56%

50 33 57 25 16.93092 47.66% 32.00% 128.00%

100 37 99 30 21.54363 39.25% 23.33% 230.00%

150 41 62 34 26.22784 29.63% 20.59% 82.35%

200 38 80 34 24.61151 38.15% 11.76% 135.29%

Random 

Networks 

250 47 87 40 31.66511 26.32% 17.50% 117.50%

50 18 29 18 14.31243 25.76% 0.00% 61.11%

100 21 53 21 16.7806 25.14% 0.00% 152.38%

150 26 40 23 18.22227 26.22% 13.04% 73.91%

200 26 96 25 20.57828 21.49% 4.00% 284.00%

Scale-free 

Networks 

250 27 53 25 20.96103 19.27% 8.00% 112.00%

 

Case 4: Small-scale networks with degree-based budget distribution 

(Number of nodes is 16.) 

Network 

Topology 

No. of 

Critical 

OD-pair

s 

SA1 SA2 LR LB Gap Imp. 

Ratio 

of SA1

Imp. 

Ratio of 

SA2 

8 4.33 16 4.33 4.13249 4.86% 0.00% 269.23%

16 7.33 16 7.33 6.63511 10.52% 0.00% 118.18%

Grid 

Networks 

24 7.33 16 7.33 6.853707 7.00% 0.00% 118.18%
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32 10.33 16 10.33 9.182209 12.54% 0.00% 54.84%

40 12.33 16 12.33 10.24175 20.42% 0.00% 29.73%

8 8.5 13.25 6 4.905528 22.31% 41.67% 120.83%

16 8.75 14.5 8.75 7.140306 22.54% 0.00% 65.71%

24 10.5 15 10.5 8.701734 20.67% 0.00% 42.86%

32 11.5 15.5 10.25 8.964373 14.34% 12.20% 51.22%

Random 

Networks 

40 11.31 15.45 10.75 9.872351 8.89% 5.21% 43.70%

8 5.517241 11.58621 5.517241 4.984125 10.70% 0.00% 110.00%

16 8.827586 10.75862 7.448276 6.341982 17.44% 18.52% 44.44%

24 7.724138 12.13793 7.724138 6.552931 17.87% 0.00% 57.14%

32 10.75862 15.44828 10.48276 8.082209 29.70% 2.63% 47.37%

Scale-free 

Networks 

40 10.75862 13.24138 10.75862 8.964434 20.01% 0.00% 23.08%

 

Case 5: Medium-scale networks with degree-based budget distribution 

(Number of nodes is 50.) 

Network 

Topology 

No. of 

Critical 

OD-pairs 

SA1 SA2 LR LB Gap Imp. 

Ratio 

of SA1

Imp. 

Ratio of 

SA2 

25 12.35294 38.82353 10.58824 7.891004 34.18% 16.67% 266.67%

50 22.35294 42.35294 18.82353 14.93268 26.06% 18.75% 125.00%

75 20.58824 46.76471 19.11765 14.68369 30.20% 7.69% 144.62%

100 18.82353 44.11765 18.23529 13.46099 35.47% 3.23% 141.94%

Grid 

Networks 

125 20.58824 47.64706 20 15.19656 31.61% 2.94% 138.24%

25 17.5 32.25 16 12.2877 30.21% 9.38% 101.56%

50 21.25 40 18 13.92853 29.23% 18.06% 122.22%

75 22.16495 47.93814 21.13402 15.37474 37.46% 4.88% 126.83%

100 23.71134 47.93814 22.16495 16.74541 32.36% 6.98% 116.28%

Random 

Networks 

125 23.96907 47.93814 22.16495 16.98841 30.47% 8.14% 116.28%

25 19.3299 20.61856 16.49485 12.30288 34.07% 17.19% 25.00%Scale-free 

Networks 50 23.71134 29.63918 20.10309 16.47015 22.06% 17.95% 47.44%
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75 25 42.26804 21.90722 18.20349 20.35% 14.12% 92.94%

100 28.09278 46.90722 25.7732 20.80022 23.91% 9.00% 82.00%

125 29.38144 49.48454 26.03093 21.35496 21.90% 12.87% 90.10%

 

Case 6: Large-scale networks with degree-based budget distribution 

(Number of nodes is 100.) 

Network 

Topology 

No. of 

Critical 

OD-pairs 

SA1 SA2 LR LB Gap Imp. 

Ratio 

of SA1

Imp. 

Ratio of 

SA2 

50 33.05556 94.44444 23.05556 16.48301 39.87% 43.37% 309.64%

100 31.94444 96.11111 26.66667 18.34765 45.34% 19.79% 260.42%

150 32.5 96.94444 29.16667 20.84595 39.92% 11.43% 232.38%

200 37.22222 98.88889 32.77778 21.08786 55.43% 13.56% 201.69%

Grid 

Networks 

250 40.83333 94.44444 36.94444 23.14333 59.63% 10.53% 155.64%

50 35.5 75 30.5 20.89109 46.00% 16.39% 145.90%

100 43 80 38.5 25.62157 50.26% 11.69% 107.79%

150 44 85 42.25 31.91765 32.37% 4.14% 101.18%

200 47 92.25 41.75 29.68885 40.63% 12.57% 120.96%

Random 

Networks 

250 51.75 95.75 46.25 37.33963 23.86% 11.89% 107.03%

50 37.05584 56.09137 29.94924 23.38481 28.07% 23.73% 87.29%

100 45.68528 75.88833 37.05584 28.72076 29.02% 23.29% 104.79%

150 46.70051 65.98985 40.10152 31.20025 28.53% 16.46% 64.56%

200 42.8934 97.96954 42.13198 35.31172 19.31% 1.81% 132.53%

Scale-free 

Networks 

250 51.52284 75.88833 44.67005 33.1085 34.92% 15.34% 69.89%
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Figure 4-1 Small-Sized Random Networks in Case 4 
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Figure 4-2 Medium-Sized Random Networks in Case 5 
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Figure 4-3 Large-Sized Random Networks in Case 6 
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Figure 4-4 Effect of Different Topologies 

(cases of a large size network and uniform budget allocation policy) 
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Figure 4-5 Effect of Different Topologies 

(cases of a large size network and degree-based budget allocation policy) 

 

4.5 Discussion of the Results 
 

From Figure 4-1, Figure 4-2, and Figure 4-3, we can see that the curves of the 

LR-based algorithms are always below those of SA1 and SA2, which means that the 

solution quality of LR is evidently better than that of SA1 and SA2, for this is a 

minimization problem.  

 

Looked at in more detail, the solution excellence of the LR-based algorithm is 

more obvious when a network grows in size and more OD-pairs are considered. The 

solution quality of SA2 is not good enough due to its blindness in attacking the 

most-connected nodes without considering the cost of the attack. Although the 

solutions of SA1 are effective in small-scale networks, its drawback of considering the 

union of minimum-cuts is significant when a network grows. 

 

Since a legitimate lower bound of the primal objective function value (LB) is 

obtained through the process of Lagrangean Relaxation, we can also evaluate the 

solution quality of LR by comparing with LB. We find that in a small-scale network, 
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the duality gap, which is calculated by LR-LB *100%
LB

, is less than 30%. Even in a 

medium-scale network or a large-scale network, the duality gap in most cases is less 

than 50%. 

 

Moreover, we find that a network’s topological structure will greatly influence its 

robustness against attacks. As shown in Figure 4-4, the cost to attack a random 

network is evidently greater than a grid network or a scale-free network, given that a 

uniform budget allocation policy is applied, where other conditions, such as the 

network size, the number of critical OD-pairs, are the same. It indicates that the 

property of randomness may greatly help maintain the connectivity of a network. As 

the connectivity of a scale-free network is mainly maintained by a few super nodes, 

the effect of destroying super nodes is significant and therefore the robustness of a 

scale-free network is weaker than that of a random network. As to a grid network, the 

regularity of the topology may be the reason for an attacker to incur a relatively less 

attack cost to compromise the network. 

 

In addition, if we compare Figure 4-4 with Figure 4-5, we can see that proper 

budget allocation enhances the robustness of a network. As we can see in Figure 4-4, a 

random network incurs the highest cost and a scale-free network incurs the lowest 

cost; in Figure 4-5, while adjusting the budget allocation policy according to the 

degree of connectivity, we achieve almost the same level of robustness of a random 

network and a scale-free network. We therefore conclude that if we allocate proper 

budgetary resources to the high-connectivity nodes, we will effectively increase the 

costs incurred by an attacker. 

 

4.6 Computational Complexity 
 

The time complexities of all the algorithms we used to solve the problems are 

presented below. 
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Table 4-4 Time Complexity 

Problem  Time complexity to solve this problem 

Subproblem 1 2 ( | | )O W V  

Subproblem 2  (| | log | |)O V V  

Subproblem 3  ( | |)O W L  

Getting Primal Feasible Heuristics 5 ( | | )O W V  

Simple Algorithm 1 3 ( | | )O W V  

Simple Algorithm 2 3 ( | | )O W V  
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Chapter 5  Summary and Future 
Work 
5.1 Summary 

 

In this thesis, we have focused on two issues. First, we have shown how robust a 

network is by evaluating the minimal attack cost it may experience based on the 

survivability metric of connectivity of given critical OD-pairs. Second, we have 

presented a lemma showing that the best allocation policy is to evenly distribute the 

budgetary resources on the nodes along the minimal hop path among all critical 

OD-pairs. 

 

One of the main contributions of our thesis is the mathematical models. We have 

researched the problem characteristics carefully, identified the problem objectives and 

the associated constraints, and proposed the well-formulated mathematical models. 

We also have solved the problem of minimal attack cost and derived a legitimate 

lower bound on the number of nodes an attacker should target. 

 

Another contribution is the lemma that solves the max-min complicated form. 

We have fully described the max-min problem structure and its associated constraints 

and presented a lemma that solves the problem elegantly. 

 

Moreover, we have evaluated different topologies and observed their 

survivability under malicious attacks. We have found that a random network is more 

survivable than a grid or a scale-free network. However, with a proper budget 

allocation policy, a scale-free network may achieve the same level of robustness as a 

random network. 
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5.2 Future Work 
 

There are still a number of research issues to be addressed, which we summarize 

in the following paragraphs. 

 

Budget Allocation Strategy with an Initial Budget 

  

Recall that, in Section 3.2.2 we presented a lemma for the optimality condition in 

our definition of survivability. If we consider an initial budget on each node, the 

trivial solution may no longer hold. One can easily examine this phenomenon via the 

following graph. In Figure 5-1, 

 

 

Figure 5-1 A Graph with the Initial Budget 

the number on each node is the initial budget. If we have an additional unit of budget, 

what should we do so that the overall 
i

i iy i V
Min y b

∈
∑

 
is maximized? If we distribute the 

additional unit of budget evenly along the minimum hop path, i.e., the budget of A, B, 

S, and D becomes 5.25, 5.25, 100.25, and 100.25, respectively, the minimal attack 

cost will be 3+5+5.25 = 13.25. If, on the other hand, we assign all the one unit budget 

to node C, i.e., the budget of C becomes 4, the minimal attack cost will become 

4+5+5 = 14, which is evidently better than the former case. The best budget allocation 
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strategy for an initial budget is definitely a very challenging and interesting issue. 

 

Different Survivability Metrics 

 

Another issue to be addressed in the future is the adoption of different 

survivability metrics in the domain of attack and defense. In this thesis, we assumed 

that a network is survivable if there is at least one available path between at least one 

critical OD-pair. To highlight the importance of critical OD-pairs, we can modify the 

definition of network survivability as follows: if there is at least one available path 

between each critical OD-pair, the network is survivable. To deal with the 

modification, we find that our original formulation, IP2, remains useful in 

characterizing the problem: we simply rewrite the constraint, IP2.4, 

as  wl l
w W l L

M t c
∈ ∈

≤ ∑∑ .  

 

Moreover, we can further generalize the concept as follows. If there is at least 

one available path between a given thresholds of critical OD-pairs, the network is 

survivable. We could also analyze the impact on minimal attack cost with different 

thresholds. 

 

In addition to considering the connectivity of given critical OD-pairs, we could 

further consider different kinds of connectivity, such as the connectivity of the largest 

fragment in a network, as survivability metrics. With different definitions of 

survivability, we believe that we could derive different mathematical models and 

obtain different but interesting results. 

 

Moreover, we could take the Quality of Services (QoS) performance metrics as 

our survivability metrics. For example, when considering malicious attacks, if the 

flow capacities between given OD-pairs are greater than a given threshold, or the 

average delay is lower than a tolerable level, the system is survivable. Recoverability 

is another interesting metric. If a system can be recovered within a given time period, 
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it is regarded as acceptable, and therefore, survivable. 

 

Different Attack Behaviors 

 

In our research, we have described the attack behavior on a node as a zero-one 

decision, i.e., either to attack it or not. Actually, we can further characterize attack 

behaviors as probabilistic models. A node is more likely to be successfully attacked if 

fewer budgetary resources are allocated for it. We can therefore claim with 95% 

confidence, for example, that the system is survivable under malicious attacks and 

random errors. 

 

 Another way to model the attack behavior is the attack path. Assume that an 

attacker has controlled one or more nodes of the given network; his objective is to 

reach a core node or multiple core nodes through the most likely path or the minimal 

attack cost path. 

 

Applications on Different Transmission Media 

  

In our problem description, we assumed a wired network; however, a growing 

number of applications on the wireless media, such as cellular phone networks, and 

wireless ad-hoc networks, have drawn much attention in recent years. In a wireless 

network, a network topology is determined by the transmission radius of each node in 

the network; therefore, a network topology may be changed dynamically and 

dramatically. It is definitely a challenging task to incorporate the wireless issues when 

discussing survivability. 
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