AR RN SRR

Y

R AR 4
Erte L

Maximization of Network Survivability
against Intelligent and Malicious Attacks

mrd imEz B

PERARAY e £






Maximization of Network Survivability
against Intelligent and Malicious Attacks

Ay BRI oFF
FRMERFAY I L R AL

LR F ST PN

=y

1

|~

D miEZ E

PERARAY e £






FRanh~ -

i;}:g_"rlﬁr’%\ﬁﬁm;] ﬁ;i’ ?_?%&ggﬁy&ﬂga.uﬂ}aﬁa
’&_é.’\»g j\ﬁn‘ﬂm? ﬂb;g'&f‘ﬂ};%‘;\; -Q},i\:’&j‘r‘n —?ﬁ_{"‘g ) o 7

B
AAFZASCA TR A E LA LD o R A LA A Fh
AEFEPT R PR F AR ;_';:z Jre JN ;g;\‘*m?;r %Ei{é})c

g
‘1‘11“\

A R A T

pAT G e R F gAY o BERF S XM E R RiEhH Y TR
oo F AR BT AP L AT e E o KEFSIAEAGE » g E i
B E TEAEYINEF O IRHA S F ARSI ol L E
AN FREFedp A FEATE Y N B SR R BRHEEF o R H I
%ﬁiiﬁﬁﬁﬂﬁé’im%mp NAVEN-E A T R R FAC L B
%) o TSR }} %Jﬂ;*&‘iﬁ*_l "Fi R%Lﬁ.l ‘ﬁ’ﬁ;"‘ —F;\li
[ ER - SRR St SEE TR IS S o Y

BT emd f paBl P AG PR LGRS

%E;Fi ’E;\mvmvﬂbiﬁmfr‘}%‘a’ E e & - ﬂ&*)’ﬁiﬁﬂi’ » AR E o
FoRMELEE A ENDFE > BT A Y BAFERRIR - F
Tdr PR -FR ST RE R RATHR LR d o0 BT S

TFC R R ANEEGET T A EY L 1 3F AR R A o

Frand T4 oR 4 o (AR ERBRFE- FH R o

Bt Z

= Q"‘?%‘%%ﬂfpfﬁ*



RF £

éﬁ}m9Uﬁ§zﬁ%i1@»wH¢ﬁ@% EFAAAEKE F G-
BERBHA A 5 £ 8 FAAHE K2
FEEFER I PT LRI E PRI 2RAESENL IS REMR R B
WHEFIHL o FTALRXMAFAP - LF T AL FAZP % 2o Flp RN
wz@g“F*@Hﬁiﬂiiyﬁiﬁwwréﬁﬁﬁ?

AR OPATEES 2 > FLRREXETEE - BRRAAIN (7 FAEH
B LR ) Sk T 0 mdE D ¥ RIMER gk 1 o

Voo Ry ERRE 25 FETH O IRRIE . 50 F o H RROGE
FIFE S UL Ly o @ ApE I’{?J"s’f”i"a‘
ﬁl&%%ﬁ__ﬁw%% ﬁjﬁlfﬂﬁ ko4 € FURB ST N B dut A

(w
-@%”
3%
J@
F_L
&
e
>_L
o
=
o

v

i
%
Ay
wE
(54
ok
&
S
S
“‘“—1}
A.\:“
._J

BARHY? O APE AR BRG DG ER 2 A AL D
REEEY > ST BFREE R - BITF F T S HATF TR k]
ACERAPAG D - BT RERA O RRYEL (BEY) BF- LHT
FE RT3z § oo B TR A i R E ST S S AT R e
PR LM Bt Yo ppER
PEK ST KB o B A TR R K T o st E F WA P 9
Bol e A AR o R FR RS FEE T -

APRERFEF ol TR G P RERA A SRREAAT £ B
MR E BRI LG B AOPRRAR G TR o A PR UPRFD R

N A oI m*ﬂ % P2

3.-:
> (r«}
ETIS
Qﬂ.
n

e

0k G ARHAEE F RAIEN - RAL e B SR 0 0 AT AR R #
ARRERE R RRRIEZ AT PRERIEE  HHE R aOGEEN

Fobo AP AHIE BRSNS BT - BEREED AP AB SR
FIERREECAKTIAMAY -

WA B Rb] BT TR RB R HIER TR 2
RRIAP  TRRE SR RRER

I



THESISABSTRACT

GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY
NAME: CHIEN-HUNG CHEN MONTH/YEAR: JULY, 2005
ADVISER: YEONG-SUNG LIN
HONG-HSU YEN

MAXIMIZATION OF NETWORK SURVIVABILITY AGAINST
INTELLIGENT AND MALICIOUSATTACKS

Since the 911 terrorist attacks in the United States, how to protect critical
information infrastructures effectively has become an even more important topic. One
critical information infrastructure, the Internet, has drawn increasing attention from
network security experts because of the growing number of malicious attacks on it.
However, experience tells us that, in both theory and practice, a system cannot be
100% secured. Therefore, we should not ask “Is the system secure?” but “How secure
is the system?”” A quantitative “survivability” concept has become an important
performance metric for evaluating how a network sustains normal services under

abnormal conditions, including random errors and malicious attacks.

Other issues of interest to network security experts are network attack and
defense scenarios. To enhance network survivability effectively, a network operator
needs to invest a fixed amount of budget and distribute it properly. However, a
potential attacker will always adjust his attack strategies to compromise a network
with the minimal cost, if he knows the resource allocation policy of a network

operator.

III



In this thesis, we first evaluate the survivability of a given network. That is, we
assess the minimal attack cost incurred by an attacker, under given network topologies
and budget allocation policies. We then discuss how a network operator should
allocate fixed budget resources such that the minimal attack cost incurred by an
attacker can be maximized. The target of the attack and defense is assumed to be the
connectivity of given critical OD-pairs. In cases of budget allocation decisions, we
assume that an attacker is smart enough, so he can always find the strategy of minimal

attack cost to disconnect critical OD-pairs.

We analyze the problems as optimization-based models, in which the problem
structures are by nature nonlinear with mixed integer programming. To resolve such
difficult problems, we adopt Lagrangean relaxation-based algorithms in conjunction
with a number of optimization techniques. In the experimental design, we also
evaluate the network survivability properties of different network topologies,
including random networks, grid networks, and scale-free networks. In addition, we

present a lemma based on the problem’s properties.

We believe our work could provide the foundation for evaluating network
survivability under various attack and defense scenarios. To this end, we conclude by

indicating several interesting and challenging research directions.
Keywords: Information Security, L agrangean Relaxation, M athematical

Programming, Networ k Attack and Defense, Networ k Planning, Optimization,

ResourceAllocation, Scale-free Networks, Survivability

v



Contents

7SSOSR I
BRI R s Il
THESISABSTRACT oottt [
(O70] 01 (= o | £ PPR PR PRURRORPIN Vv
IS ] B o U] =S VII
LiSt Of TADIES......eiieiee s VIl
Chapter 1 INtrodUCLION.......ccceieiieceeree e 1

1.1 Background...........c.ooouieiiieiieiiecieee e 1

1.2 MOtIVALION..c.ueiiietieiieetiest et sttt st sttt ettt sttt e bt e b sanesaeens 3

1.3 Literature SUIVey i e, . . ormmmre Bl i ceeneerseecorsaeeetecerseerseesarsaoesnees 3

1.3.1 From Information Security to Survivability .........c.ccccceeviiieennenn. 3
1.3.2 Scale-free NetWOTKS .....oiiherderees et 9

1.4 Proposed ApProach . ...li b i b iediee et 12
Chapter 2 Problem FOormulation .......cc..ciieveeiinie e 13

2.1 MOdED 1 ... R s s AL o o0 et enseenvenresssessuassassaesaassasssasses 13

2.1.1 Problem Description and AsSumptions............ccceeeeeeeveerereeneennen. 13
2.1.2 INOTATION. ¢ttt ettt 15
2.13 Problem Formulation ..........cc.ccoevieiiieiiiiiieiecee e, 16
2.1.4 Problem Reformulation.............cccoooiiiiiiiiiiiiiiiieceeeen 17

2.2 MOAEL 2 .. e 20
22.1 Problem Description and ASSUmMPions...........cccceeveevueeviervenennnens 20
222 INOLALION. ...ttt ettt ettt e e e 22
223 Problem Formulation ...........ccoooeiiiiiiiiiiiiieieeeeeeee 22
Chapter 3 Solution APProach .........cevev i 24
3.1 Solution to Model 1 ....cc.ooiiiiiiiiiiieeeeee e 24
3.1.1 Introduction to the Lagrangean Relaxation Method..............ccccc...... 24
3.1.2 Lagrangean Relaxation ...........cccceeevieeeiiieeiiieccieeeeeeeiee e 27



3.1.3 The Dual Problem and the Subgradient Method............cccccceveenennee. 29

3.1.4 Getting Primal Feasible Solutions ..........cccccceeeviieeiiieenieeeiee e, 30

3.2 Solution to Model 2 ........oooiiiiiiiiiiee e 33
3.2.1 BaSIC CONCEPL ..ouvvieniieeiiieiieeiiieiie ettt et iee ettt seeesbeesaeeenbeenenas 33

3. 2.2 LOIMIMA .ttt et e s e s 34
Chapter 4 Computational EXperiments.........cccecevevrieeneeseesieeeneeeens 36
4.1 Simple AIZOTIRM ©..c..iiiiiiiiiieece e 36

4.2 Simple ALZOTItM 2.....ooiiiiiiiiicie e 37

4.3 Parameters and Cases of the Experiment...........cccccoceeviriiniininincnene 37

4.4 Experimental RESUILS .........c.ceeiiiiiiiiieiie e 38

4.5  Discussion of the ReSUItS .........ccoerviiriiniiiiiiiieeeeeee e 45

4.6  Computational CompleXity ........ccceervuirrieriiieniieeiienie et 46
Chapter 5 Summary and Future Work .........ccccoocvevveviecee e 48
5.1 SUMMALY ...coeeenne e Pt Lo Tl i h e e e eervvreeeessunneeessranesssssannesasnns 48

5.2  Future Work ... .0 S 7o ool R N e 49
References ...t 2N S22 LR S 52

VI



List of Figures

Figure1-1 An Example of an ER Model [16].......cccooevieirieieieieeeeeeeeeeeeee, 10
Figure 1-2 An Example of a Scale-free Network [16].........ccccevevievierienieecieniennen. 11
Figure 3-1 lllustration of Lagrangean Relaxation Method ...............ccccoeveneee. 25
Figure 3-2 Lagrangean Relaxation Procedures............ccooeeveeeeiiicieeeecieeieeeennea. 26
Figure 4-1 Small-Sized Random Networksin Case4 ........ccccooevevevineeiceeeneennen. 43
Figure 4-2 Medium-Sized Random Networksin Casesb.........cccoceeeeeieveeieneennen. 43
Figure 4-3 Large-Sized Random Networksin Case6.........c.ccceeveeveeviecveeieeneenen. 44
Figure 4-4 Effect of Different TOPOIOQIES.........ccovevvieeiieiiiieeceeeeeeeeee e 44
Figure 4-5 Effect of Different TOPOlIOQIES..........ccevvieiieieiiieieceeeeeeeee e 45
Figure5-1 A Graph with the Initial BUdget........c...ccoeeveiieiieieeeeeeeeeeeeeee 49

VIl



List of Tables

Table 1-1 Different Definitions of Survivability ..........c.cccooveeiiiiiiiiieeeeeee 5
Table 2-1 Problem Assumptionsof Model 1.........cccoooveevieiiiiiiiiieeeeeee e 14
Table 2-2 Problem Descriptionsof Model 1............ccoooveiiiiioiiicieeeeeeee 14

Table 2-3 Methods for Getting a L egitimate L ower Bound of Nodesto Attack..19

Table 2-4 Problem Assumptions of MOdel 2...........ccooveieeieiieieeeeeeeee e 21
Table 2-5 Problem Descriptionsof Model 2..........cc.ooovveeiiiciieieeieeeeceeee e 21
Table 3-1 Getting Primal Feasible Algorithm..........c.ccooooieiiiiii 32
Table4-1 SIMple Algorithm L ... 36
Table4-2 SIMpIeAlIgOritRM 2 ..o 37
Table 4-3 Experimental Parameters.........c.ccooveeevveeiiecieeeeeeeieeeeeeeeee e 37
Table 4-4 Time COMPIEXITY ......ocviiiireieie ettt enaes 47

VIII



Chapter 1 Introduction

1.1 Background

The events of 911 have led to a globally increasing focus on security and
especially the protection of critical infrastructures, which encompass a wide array of
physical assets, such as power plants, telecommunications, oil and gas pipelines,
transportation networks, and computer data networks [2]. Specifically, the Internet has
become a critical information infrastructure since 1980s. More and more people
communicate with each other via this fascinating technological medium, and the
prevailing Internet has made the world borderless. Moreover, many companies exploit
the Internet to gain access to suppliers and customers, and also reduce transaction
costs. E-commerce, for example, has emerged since the late 1990s, and has become a

new business model attracting much attention.

Despite these advantages, the popularity of the Internet also caused potential
problems. Since important messages and sensitive data flowing around the Internet
may be eavesdropped or fabricated, information security experts have suggested
different encryption algorithms and authenticated protocols to deal with the problems.
Moreover, a potential attacker may discourage important servers from offering normal
services. To handle malicious attack behaviors, information security experts have
suggested different tools and strategies that focus on different network attack modes.
For example, firewalls are used to filter illegal packets; intrusion detection systems
(IDSs) are designed for detecting possible intrusion patterns; intrusion prevention
systems (IPSs) are used to prevent intrusions of susceptible packets and reduce the
probability of potential attack behaviors. Multi-function security gateways combine

the above functions and have become widely adopted by network operators.

Despite the availability of various software and hardware tools, no one can be



sure that a system is 100% robust against attacks. As this phenomenon is due to the
imperfection of software programming and communication protocols, there is at least
the possibility that malicious attackers could find the vulnerabilities of a system and
deliver attacks to compromise it. However, through applying security mechanisms
that have different levels for the systems, we can efficiently reduce the probability of

being targeted by attackers and therefore enhance the level of robustness.

However, the robustness of a network consists in not only the availability of each
component, but also the network’s topological structure. The Internet topology has
been shown to follow a power-law degree distribution [3] [4] [5], where empirical
evidence has highlighted one major weakness in that the Internet is highly susceptible
to attacks. Looked at in more detail, the average performance of the Internet would be
cut in half if only 1% of the most highly-connected routers were incapacitated, and if
4% of the most connected routers succumbed to attacks, the integrity of the medium
could be destroyed [2]. The secrets behind the Internet topology have drawn much

attention from network researchers.

In addition, many researchers have focused their research on evaluating and
enhancing the survivability of a network. Survivability is used to depict how a
network adapts to abnormal conditions. An increasing number of researchers are
engaged in network survivability issues, researching proper definitions of
survivability, estimating suitable survivability metrics, and proposing solutions to

different scenarios.

To enhance the survivability of a network, a network operator may invest a fixed
amount of budget. However, there has been little theoretical research to enable a
network operator to gain a global understanding on how to allocate limited budgets to
components so that the overall survivability of a network can be maximized. Besides,
we believe that a network operator’s budget allocation strategies should consider
responses from an attacker, due to the fact that an attacker may change his strategies

to a better one if he finds other easier ways to attain his goals. It is therefore a
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challenging issue for a network operator to derive sensible defense strategies against

attacks.

1.2 Motivation

From our survey of the literature, there has been little research on the issues of
defense and attack based on mathematical programming models. To the best of our
knowledge, no mathematical model that mentions defense and attack behavior in the
context of survivability has been proposed. We therefore propose mathematical
models under realistic scenarios to evaluate the network robustness for given defense
resource allocation policies. We will also present a lemma to show the best resource

allocation strategy for network operators under given scenarios.

1.3  Literature Survey

We will first introduce the concept of survivability, and then discuss the

properties of scale-free networks in the literature survey.

1.3.1 From Information Security to Survivability

With the prevalence of the Internet, a great number of people have become
highly relied on the convenient technological medium to communicate. However, new
technologies also bring new problems. Due to the distributed and unsecured design of
the Internet, data packets flowing around the nets may suffer from eavesdropping or
packet drop. Therefore, issues such as confidentiality, availability, integrity, and
privacy have become important topics, and many information security experts have
proposed various encryption algorithms, authentication protocols, and so on, to secure
communications. Moreover, other attack modes, such as Denial of Services (DoS) and
Distributed Denial of Services (DDoS) focus on discouraging devices from providing

normal services. Although information security experts continue proposing



countermeasures to known attacks or intrusions, the war between network operators
and attackers will never end since number of system vulnerabilities and possible

attack modes are potentially infinite.

A key to defeat attackers is to think one more step than attackers. However,
attackers may also think like this way. If both parties are smart enough, eventually
there is equilibrium between them. A game theoretic framework would be helpful in
describing this scenario: attackers try their best to attain a goal while network
operators, or defenders, try their best to discourage it. By definition of game theories,

it is a typical two person zero-sum game.

In [6], the authors consider the problem of detecting an intruding packet in a
communication network. Detection is accomplished by sampling a portion of the
packets, due to the high cost for real-time packet sampling and packet examination
software. Network operators would like to effectively sample network intrusions by
maximizing the chance of detection while ‘not exceeding a given total sampling
budget. However, a smart intruder would select paths in order to minimize chances of
detection. The authors further well-describe the problem through mathematical
formulation methods. The objective of an intruder is to minimize the maximal
detection probability where that of a service provider is to maximize the minimal

detection probability. According to the theorem in this paper, the two values will be

the same. That is to say, 8= I(ll’g}’l r?:lUx Z q(P)[ZPe] =r1pl€a5< r}lqellp z q(P)[ZPe] ,

PeP/ eeP PeP/ eeP

where g(P) is a probability distribution function that path P is selected by an intruder,

and P, is a probability of detecting a malicious packet on link e.
In summary, the game theoretic framework provides us with an insight that a
minimization of maximization or a maximization of a minimization objective is useful

in describing the interaction between the two parties, an attacker and a defender.

The concept of security has been generalized as survivability in recent years.



Since there are only two states, safe and compromised, in the context of security, it is
definitely insufficient to well-describe how likely a system remains functional under
different failure scenarios. Moreover, with the popularity of the Internet, a system or a
network is inevitably connected to the unbounded Internet, leading to more risk
suffering from undesired failures. We should therefore focus more on the system

recoverability and the ability of maintaining normal services when failures occur.

The concept of survivability is proposed accordingly. Survivability is roughly
defined as the ability a system can fulfill a mission in a timely manner, under attacks,
errors, or catastrophic failures [7]. Note that the survivability of a system is not only
determined by any single component of it, but depends on a global cooperative effort.
That means we have to pay attention to not only the reliability of each component, but
also the global topological information, such that we can find a substitution once any

component is failed for some reason.

According to the author of [8], the definitions of survivability in the literature
vary case by case. Roughly speaking, survivability can be defined as how well a
network or a system can be sustained under random errors or malicious attacks, or
both. Survivability can be further measured by means of time sustainability during
accidents, the probability of functioning normally, and other interesting performance
metrics. The inconsistency of definitions for survivability causes many variations in
describing and modeling behavior of information systems under attack or failure. A

detailed illustration of different descriptions of survivability is shown in Table 1-1

18],

Table 1-1 Different Definitions of Survivability

Terminology Description

Availability The degree to which software remains operable in the presence

of system failures.

Architectural The degree to which software does not depend on specific




design  hardware | hardware environments; or the degree to which hardware does

dependence not depend on specific software environments.

Connectivity The degree to which a system will perform reliably when all
nodes and links are available.

Correctness The degree to which all software functions are specified.

Dependability The degree to which the system can provide services, even in
the event of a threat.

Endurability The degree to which a system can tolerate a threat and still

provide service.

Fairness

The ability of a network system to organize and route

information without failure.

Fault tolerance

The degree to which the software will continue to work
without a system failure that would cause damage to users.
Also, the degree to which software includes degraded

operation and recovery functions.

Interoperability The degree to which software can be connected easily with
other systems and operated.

Modifiability The degree of effort required to improve or modify the
efficiency of functions of the software.

Performance Composed of quality factors, such as Efficiency, Integrity,
Reliability, Survivability, and Usability.

Predictability The degrees of providing countermeasures to system failures
in the event of a threat.

Recoverability The ability to restore services in a timely manner.

Reliability A set of attributes that bear on the capability of software to
maintain its level of performance under stated conditions for a
stated period of time.

Restorability The ability of a system to recover from threat and provide
services in a timely manner.

Reusability The degree to which software can be reused in applications




other than the original application.

Safety The ability of the system not to cause harm to the network or
personnel.
Security The degree to which software can detect and prevent

information leaks, information loss, illegal use, and system

resource destruction.

Testability The effort required to test software.
Verifiability Relative efforts to verify the specified software operation and
performance.

There are some similar terms related to survivability. In [1], the author compares
survivability with reliability and availability. The definition of reliability is the
probability that an object will work normally under specific conditions and specific
time intervals. To be more specific, one can estimate a mean error rate, A, of the
object in its life time through statistical methods for forecasting the probability of
normal functionality under given situations. By definition, reliability is a function of

!

time and the error rate, which can be described as R(¢) = e * if Poisson distribution is

assumed.

Availability, on the other hand, is defined as the time ratio an object operates

under normal conditions. The definition of availability also implies possibilities of

uptime

malfunctions, but it concerns the ratio 4 = . A high availability

uptime + downtime
index indicates high reliability of the object and that there are sufficient maintenance
resources to quickly offer services again if the object should be out of order in the

future.

After reviewing the rough definitions of survivability, one may ask: “How can
survivability be measured?” In fact, measurement of survivability differs case by case.
For example, survivability can be defined in terms of the degree to which software

remains operable in the presence of system failures. It can also be measured as the



ability to restore services in a timely manner.

Computations and calculations of survivability are also diverse. Our broad
survey concludes that quantitative survivability can be divided into two categories:
connectivity and performance. The connectivity issue has been intensely researched
by graph theorists for a long time, and several papers that consider connectivity as a
metric have been published. In [9], the node connectivity factor (NCF) is proposed to
evaluate the level of robustness of a given network. The NCF quantifies the physical
stability of a network in terms of the expected number of critical nodes that must be
removed from a network to eliminate all communication links. By definition, the NCF

of'a connected graph G is defined recursively as:

NCF(G)=K(G)+ C(ZG:)[P(I') *NCF(G0))],

i=1
where
C(G)= number of minimum cut-vertex sets for .G,
K(G)= number of vertices in each minimum cut-vertex set of the graph G,
P(i)= likelihood of occurrence for the " minimum cut-vertex set
G(i)= i" subgraph of G induced by the removal of the i” minimum cut-vertex

set

For a disconnected graph, G, composed of m components, G,

NCF(G) = Z NCF(G,).

j=1
The introduction of NCF describes how robust and stable a given network topology is.
However, the computation of NCF value is a recursive procedure, which incurs an
exponential computation time with the growth of network size. Therefore, some
papers, [10], for example, further try to lower the computational complexity using
special data structures, such as knowledge-based look-ups. In any case, NCF is a
method to describe topological properties with the consideration of how many
expected number of critical nodes should be removed from the network, such that all
communication links are eliminated. The concept of NCF is definitely worthy of

consideration.



Another paper, [11], proposes a different survivability measure (SM) in the
context of connectivity and, through simulations, shows a high correlation between
the SM value and the probability that rest nodes in a network are still connected. A
significant contribution made by [11] is the worst case assumption from a network
operator’s perspective, i.e., each time the most important node is removed. Through
simulations, the authors conclude that the proposed measure is even more useful while
considering malicious attack, which is regarded as an important issue in military
networks. Moreover, the authors show that a balanced network topology yields the
highest SM value, which suggests network planners should not create super important
nodes in a network. However, we will show that it is not this case in the real world in

the “scale-free networks” section.

We also note that several papers discuss survivability in the context of
performance. The main idea of considering performance rather than connectivity as a
survivability metric lies in the fact that connectivity metrics focus on topology
information, where as performance metrics require more, such as traffic flows,
average end-to-end delay, and mean delay jitters. For example, traffic flows are used
in [12] and [13] as survivability metrics. Specifically, remaining traffic flow as a
percentage of original traffic under destruction of nodes or links is discussed in [12].
Meanwhile, in [14], the authors emphasize that users’ perceptions should be included
as a kind of performance metric. If the time to gain access to a resource, for example,
an http request for a webpage, is longer than an end user’s endurable time period, the

network is regarded as non-survivable.

1.3.2 Scale-free Networks

Network researchers have focused on random networks for a long time. However,
a growing number of evidences have shown that most real network topologies are not
random. The concept of a small-world model was then proposed, followed by another

scale-free model, to describe topological properties of real networks.



Paul Erdos and A. Renyi proposed a random graph model, which is also
well-known as an ER model, in 1950s [15]. In a random graph model, connectedness
of each pair of nodes is determined by a given probability, which makes a constructed
network balanced in terms of degrees of connectivity. Many previous computer
network topologies were created in simulations and discussed based on an assumption

of an ER model. An example of an ER model is shown in Figure 1-1.

Figure 1-1 An Example of an ER M odel [16]

However, evidences have shown that most of the existing networks are not
randomly constructed. In 1998, Duncan Watts and Steve Strogatz discovered a new
model after many observations and experiments: the small-world model [17]. The
small-world model is nominated for its introduction of rewiring probability. That is,
given a random graph, each link is rewired with certain probability p. The main
contribution of the small-world model is its brand-new discovery of secrets and rules
hidden behind general networks, which is believed to be applicable to many different
fields. For example, biologists find it useful in describing the evolution of nerve
systems of nematode; sociologists model interpersonal relationships as six degrees of
separation. Experiments approve that the small-world model best fits some realistic

situations.
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However, characteristics of some large networks, such as the Internet and World
Wide Web (WWW), still cannot be well-described by the small-world model [18]. In
1999, the Faloutsos et al. published their discovery of the Internet [3]. They found that
the degree of connectivity of the Internet follows a power-law distribution, which
means that the connectivity distribution P(k) is logarithmically proportional to 47,
with different constant » for different networks. In other words, there are relatively
small numbers of nodes with high degrees of connectivity; whereas a majority of
nodes are relatively low degrees. However, it was not until the introduction of the

scale-free networks could we realize the secrets behind the Internet.

Albert-Laszlo Barabasi and Reka Albert proposed a scale-free model in year
2000 [16] [19]. There are two properties in a scale-free network: growth and
preferential attachment. These kinds of networks are assumed to have a growth
tendency; moreover, a new node joining such a network has preferential interest in
connecting with nodes of high degree of connectivity. Due to the phenomenon of the
preferential attachment, a node with higher degree of connectivity could attract more
new nodes, while a lower degree one has lower probability of linking with new nodes.
It is these two properties that results in a power-law distribution of nodes’ degree of

connectivity. Figure 1-2 is an example of a scale-free model.

Figure 1-2 An Example of a Scale-free Network [16]

11



Reka Albert, Albert-Laszlo Barabasi, and Hawoong Jeong also showed important
characteristics of scale-free networks [16]. Scale-free networks, such as the Internet
and WWW, are capable of enduring high rate of random errors but are vulnerable to
malicious attacks. Simulations by Faloutsos et al. [3] investigated the topological
properties of the Internet at the router and inter-domain level, finding that the
diameter of the Internet remains unaffected by the random removal of as high as 2.5%
of the nodes, whereas if the same percentage of the most connected nodes are

eliminated (i.e. malicious attacks), the diameter grows more than triples [16].

Since most of the large scale networks are proven to be scale-free networks, we
will consider scale-free network topologies in our experiments, in addition to random

networks and grid networks.

1.4 Proposed Approach

We model the attack and defense problem as optimization problems. Due to the
high complexities of the problems, our proposed mathematical programming models
are nonlinear and mixed integer-programming ones. As we expected, the problems are

by nature highly complicated and difficult.

To the best of our knowledge, our proposed approach is the first attempt to solve
an attack and defense problem considering survivability issues in general networks via
mathematical programming techniques. We then apply the Lagrangean relaxation

method [20] [21] and the subgradient method [22] to solve the problem.
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Chapter 2 Problem Formulation

In this chapter, we propose two mathematical models with specific assumptions
and problem objectives. In Model 1, we consider how attackers might attack the
network under given budget allocation scenarios. In Model 2, we discuss how a

defender should allocate a budget under such attack scenarios.

2.1 Model 1

2.1.1 Problem Description and Assumptions

The objective of this problem is to decide the minimal attack cost for an attacker,

in order to “compromise” a network.

Here, we discuss survivability in'the domain of connectivity. Network
connectivity has been researched by computer network experts for many years,
yielding many different metrics for measuring the connectivity of a given network.
We focus on the connectivity of important node pairs. Given several critical
origin-destination pairs (OD-pairs), it is important to ensure at least one functional
path for each OD-pair making communications. In order to report the worst case
scenario for a defender, we research the strategies of applying the minimal attack cost
from the perspective of an attacker, such that there is no available path for critical

OD-pairs to communicate.

In this model, we assume that both the attacker and the defender have the
complete information about the targeted network topology. Moreover, the attacker has
complete information about the defender’s budget allocation. However, in the real
world, the defender can take advantage of information asymmetry by concealing or

confusing critical information, so that the attacker has to speculate about the real
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situation; therefore, the attacker may waste attack resources in order to compromise

the network. Consequently, we consider the worst case for the defender here.

The defender’s budget allocation strategy may greatly influence the difficulty

that the attacker experiences in compromising a network. Naturally, it is more difficult

to attack a node if more budgetary resources are allocated to it.

Note that, for simplicity we do not take relatively infrequent link attacks into

account, whereas node attacks, which result in worse case scenarios, are more

common in real computer networks. Also, if a node is attacked, all of its outgoing

links are no longer available. In addition, we do not consider random errors here

because we want to focus on the effects of malicious attacks.

Table 2-1 Problem Assumptions of Model 1

Problem assumptions:

1. The survivability metric is measured as the connectivity of the given
critical OD-pairs.

2. The attacker and the defender have complete information about the
targeted network topology.

3. The defender’s budget allocation strategy is a given parameter.
The objective of the attacker is to minimize the total attack cost of
destroying all paths between given critical OD-pairs.

5. We consider node attacks only. (No link attacks are considered). If a
node is attacked, its outgoing links are not functional.

6. We consider malicious attacks only. (No random errors are
considered.)

Table 2-2 Problem Descriptions of Model 1
Given:

1. The network topology and the network size
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2. The defender’s budget allocation policy
3. A set of critical OD-pairs
4. The minimal attack cost to compromise a node is a given function of

the budget allocation for it.
Objective:
To minimize the total cost of an attack
Subject to:

1. There is no available path for each given critical OD-pair to
communicate.

To determine:
1. Which nodes will be attacked

To describe the constraints mathematically, we adopt the following concepts. For
each OD-pair, we select exactly the shortest cost path and enforce it to be a
non-available path. The “cost” of a path is defined as the sum of the link costs along
that path, where the cost of a link is very large if that link is not functional and very

small otherwise.

The argument is that if there is at least one disconnected link along the shortest

cost path, then there is no available path for that OD-pair to communicate.

2.1.2 Notation

Given Parameters

Notation | Description

4 The index set of all nodes

L The index set of all links

w The index set of all given critical origin-destination pairs

OUT' The index set of outgoing links of node i, where ie V'

M A large number that represents the link disconnection

£ A small number that represents the link connectedness

P, The index set of all candidate paths of an OD-pair, w, where we W
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S An indicator function, which is 1 if link / is on path p, and 0 otherwise

b; Budget allocated to node i, where i€V
A Threshold of an attack cost leading to a successful attack, which is a
4 function of b;

Decision Variables

Notation | Description

Vi 1 if node 7 is compromised, and 0 otherwise

L. 1 if link / is used by OD pair, w, and 0 otherwise

Xp 1 if path p is chosen, and 0 otherwise

G Cost of link /, which is€ if link / functions normally, and M+ € if link [ is
broken

2.1.3 Problem Formulation

Objective function:

subject to

¢, =yM+e

z t,C < Z 5;;101

leL leL

Z xp§p1 =1,

PEPR,

M < thzcz

leL

przl

peP,
X, = Oorl

y,=0orl
t,=0orl
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VieV, le OUT'

Vpe P, weW

YweW, le L

Ywe W

Ywe W

Vpe P, weW

VieV
VYwe W, le L.

(IP1)

(IP 1.1)

(IP 1.2)

(IP 1.3)

(IP 1.4)

(IP 1.5)

(IP 1.6)

(IP 1.7)
(IP 1.8)




Explanation of the mathematical formulation:

Objective function: To minimize the total attack cost; the attacker minimizes the

objective value by deciding which nodes to compromise (i.e., y; for each node 7).

Constraint (IP 1.1) describes the definition of the link cost, which is € if the link

functions normally, and M+ € if the link is broken.

Constraint (IP 1.2) requires that the selected path for each OD-pair, w, should be a

shortest cost path.

Constraint (IP 1.3) is the relations among #,,, x, and §p, . We use the auxiliary set of

decision variables, ¢, to replace the sum of all xpé'pl . The substitution is to further
simplify the problem solving procedures.

Constraint (IP 1.4) requires that the given critical OD-pairs are all disconnected. We
depict the phenomenon by showing that the cost of the shortest path for each OD-pair

to communicate is greater than M.

Constraint (IP 1.5) and (IP 1.6) jointly require that exactly one path is selected

between each given OD-pair.

Constraint (IP 1.7) determines whether each node i is compromised, or not.

Constraint (IP 1.8) determines whether each link / is used to form a shortest cost path

by OD-pair, w, or not.

2.1.4 Problem Reformulation
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In order to mathematically solve the optimization problem, we reformulate the
problem with one assumption and some adjustments without affecting the problem
structure and the optimality conditions.

Assumption: In order to simplify the problem, we assume that a, =5,,Vie V', which

means that the minimal attack cost of compromising a node equals the allocated

budget for it.

We adjust some constraints, add two sets of redundant constraints, and explain them

later.

Objective function:

minZyibi
Vi e , (IPZ)
subject to
¢, SyM+e VieV, le OUT' (IP2.1)
Dt <Y 6,0 Vpe P, we W (IP2.2)
leL leL
> x,6,<t, Vwe W, le L (IP2.3)
peP,
M<Yt e Vwe W (IP 2.4)
leL
> x, =1 VYwe W (IP2.5)
peP,
x,=0orl Vpe P, weW (IP 2.6)
y,=0orl VieV (IP2.7)
t,=0orl VweW, le L (IP 2.8)
c,=£orM+e Vie L (IP 2.9)
>, (IP 2.10)

eV

Explanation of the reformulation:
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1. The objective function is modified to simplify the original problem.

2. Constraint (IP 2.1) is a relaxed version of (IP 1.1). Note that the relaxation of the
equation into an inequality version does not violate its optimality conditions.

3. Constraint (IP 2.3) is a relaxed version of (IP 1.3). Note that the relaxation of the
equation into an inequality version does not violate its optimality conditions.

4.  Constraint (IP 2.9) is a set of redundant constraints, since the value of each ¢,
should be either € or M +¢&. We will need it in the Lagrangean relaxation
problem.

5. Constraint (IP 2.10) is also a redundant constraint. We find a legitimate lower
bound, V), on the number of nodes an attacker should attack in order to
compromise the connectivity of given critical OD-pairs. The legitimate lower

bound can be obtained from either of the following methods.

Table 2-3 Methods for Getting a L egitimate L ower Bound of Nodes to Attack

Method 1:

We deliberately assign one unit budget to each node. Then we solve this revised
optimization problem and find an LR lower bound, denoted by LB, on the optimal
objective function value. Then LB indicates a minimal (but may not be feasible)
attack cost an attacker has to spend in order to reach his goal. Since each node is
assigned with one unit budget, LB also serves as a lower bound of number of nodes

an attacker needs to take away.

Method 2:

We first find an LR lower bound on the primal objective function value of the primal
problem. Denote this value by LB. We then find the min set of {b;}, in terms of
cardinality, in such a way that the sum of the elements in this set is no less than LB.

Then the cardinality of this set serves as a legitimate lower bound on the number of
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nodes an attacker needs to take away.

In our thesis, we adopt Method 1 to get a legitimate lower bound of V), .

We can further derive an upper bound on number of nodes an attacker may attack.
We first apply any heuristic to calculate a primal feasible solution, of which the
corresponding objective function value is denoted by UB. We then find the max set of
{b;}, in terms of cardinality, in such a way that the sum of the elements in this set is
no greater than UB. If such a sum is less than UB, then increment the cardinality by 1.
The cardinality of this set serves as a legitimate upper bound on the number of nodes

an attacker needs to take away.

2.2 Model 2

2.2.1 Problem Description and Assumptions

In Model 1, we assume the defender’s budget allocation is a given parameter. In
Model 2, we introduce another factor by allowing the defender to decide the budget
allocation strategy. In other words, the defender would like to distribute a given
amount of budget efficiently so that the attacker has to pay a higher price to reach his
goal, i.e., disconnection of given critical OD-pairs. Meanwhile, the attacker also wants
to choose critical nodes to attack in order to minimize the total attack cost. Therefore,
the problem becomes a max-min structure. We will present a well-formulated problem

structure in the following section, and present a lemma in the next chapter.

We first introduce an argument to clarify the relationship between each b; (the

budget allocated to a node, 7) and the total budget, B.

Argument: We claim that the optimality for the defender holds if and only if the total
budget, B, is fully used. Note that this argument holds only when the set of decision

variables, b;, is continuous.
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Table 2-4 Problem Assumptions of Model 2

Problem assumptions:
1. The survivability metric is measured as the connectivity of the given

critical OD-pairs.

2. The attacker and the defender have complete information about the
targeted network topology.

3. The objective of the attacker is to minimize the total attack cost of
destroying all paths between given critical OD-pairs.

4. The objective of the defender is to distribute the total amount of
budget effectively so that the minimal total attack cost can be
maximized.

5. We consider node attacks only. (No link attacks are considered). If a
node is attacked, its outgoing links are not functional.

6. We consider malicious attacks only. (No random errors are

considered.)

Table 2-5 Problem Descriptions of M odel 2

Given:

1. The network topology and the network size

2. A set of critical OD-pairs

3. The total budget of the defender

Objective:

To maximize the attacker’s minimal total attack cost
Subject to:

1. The total budget constraint of the defender

2. No path is available for each given critical OD-pair to communicate.
To determine:
1. The budget allocated to each node

2. Which nodes the attacker has decided to target
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2.2.2 Notation

Given Parameters

Notation | Description

B Total budget of the defender

V The index set of all nodes

L The index set of all links

w The index set of all given critical origin-destination pairs

OUT' The index set of outgoing links of node i, where ie V'

M A big number that represents the link disconnection

£ A small number that represents the link connectedness

P, The index set of all candidate paths of OD-pair, w, where we W

5, An indicator function, which is 1 if link / is on path p, and 0 otherwise
Decision Variables

Notation | Description

b; The budget allocated to node i

Vi 1 if node i is compromised, and 0 otherwise

L. 1 if link / is used by OD pair, w, and 0 otherwise

Xp 1 if path p is chosen, and 0 otherwise

G Cost of link /, which is € if link / functions normally, and M+ € if link / is

broken

2.2.3 Problem Formulation

max min Z b,
e (IP3)
subject to
¢, <yM+e VieV, le OUT" (IP 3.1)
Dt <Y 6,0 Vpe P, we W (IP 3.2)

leL

leL
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D x,6,<t, VweW, le L (IP3.3)

PEP,

M<tc Ywe W (IP 3.4)
leL

D x,=1 Vwe W (IP 3.5)
PEPR,

x,=0orl Vpe P, weW (IP 3.6)
y,=0orl VieV (IP3.7)
t,=0orl VweW, lelL (IP 3.8)
c,=cgorM+e Vie L (IP 3.9)
> b=B (IP 3.10)
ieV

0<h<B VieV. (IP3.11)

Objective function:

To maximize the attacker’s minimal total attack cost. The attacker minimizes z vb,
ieV

by deciding which nodes to compromise (i.e., y; for each node 7), while the defender

maximizes Z v,b, by properly deciding each b;.

iev

Explanation of the formulation:

1. Constraints (IP 3.1) ~ (IP 3.9) are the same as the reformulation of Model 1.

2. Constraint (IP 3.10) reflects our argument that the optimality condition for the
defender holds if and only if the total budget, B, is fully used.

3. Constraint (IP 3.11) indicates that the set of decision variables, b;, is continuous,

and bounded by 0 and B.
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Chapter 3 Solution Approach

In this chapter, we first introduce the proposed solution approach, Lagrangean
relaxation, for Model 1, and show how we solve the problem in Model 1 with this

method. We also show an elegant lemma for solving the problem in Model 2.

3.1 Solution to Model 1

3.1.1 Introduction to the Lagrangean Relaxation Method

Lagrangean relaxation method was originally used for scheduling and solving
general integer programming problems in the 1970s [20], due to its effectiveness and
efficiency in providing proper solutions to these problems. In recent years, however, it
has gradually become one of the most popular tools for solving optimization problems,
such as integer programming, linear programming combinatorial optimization, and

non-linear programming problems.

There are several advantages to using the Lagrangean relaxation method. For
example, we can use it to decompose mathematical models into several subproblems,
which can then be separately, optimally, and easily solved by well-known algorithms.
By doing so, the complexity of an original problem can be significantly reduced [20]

[21].

In addition, Lagrangean relaxation can help us obtain the bounds of an objective
function, and we can use the bounds to evaluate how good the implemented primal
feasible solutions are. This is due to the definition of Lagrangean relaxation, in which
we “pull apart” models by removing constraints and placing them in the objective
function with associated Lagrangean multipliers. The new problem with fewer

constraints is called the Lagrangean relaxation problem, where the optimal value is by
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nature a lower bound (for minimization problems) of the objective function value in
the original problem. In order to get the best solution to the original problem, we try
to enhance the Lagrangean lower bounds by tuning Lagrangean multipliers, which is

also known as maximization of Lagrangean relaxation problems.

On the other hand, we iteratively lower the primal objective function value (for
minimization problems) from the hints of solving the Lagrangean relaxation problem.
Note that the optimal solution to the primal problem is guaranteed to be within the

Lagrangean lower bounds and the primal feasible solution values.

We can solve the Lagrangean relaxation problem in a variety of ways; however,
the most popular way is the subgradient optimization technique [20] [21]. Figure 3-1
illustrates the main concepts of the Lagrangean relaxation method. A detailed flow

chart of the Lagrangean relaxation method is presented in Figure 3-2.

{ Primal Problem W

Lo

L Lagrangian

Relaxation
Problem
subproblem ) ¢ e o o o o o o subproblem

Sub-Optimal Sub-Optimal

Multiplier

Dual
Problem

Figure 3-1 lllustration of L agrangean Relaxation Method
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Initialization

Solve Lagrangian

Adjust
Multiplier

1. IF ImproveCount
> MaxImproveCount
A=A /2, ImproveCount =0
2. ImproveCount ++

3. Renew f,, u,

Dual Problem

|

Get Primal
Solution

I

Update Bounds

1. Find Z" (initial feasible solution), LB= -«

2.5et  u'=02=2

3. Set IterationCount = 0, ImproveCounter = 0,
MaxIterationCount, MaxImproveCount

1. Optimally solve each subproblems
2. Get decision variables

—

1. Get primal feasible solution (UB) if it does
not violate relaxed constraints
2. tuning by proposed heuristic, otherwise

—

1. Check LB, If Z,(u¥) > LB then LB = Z (u¥)
2. Check UB, If UB < Z" then Z' = UB

~—

. IF ((IterationCount > MaxlIterationCount)
or ws-1B)y/LB<e ) STOP
2. IterationCount ++

G R

Figure 3-2 L agrangean Relaxation Procedures
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3.1.2 Lagrangean Relaxation

By applying the Lagrangean relaxation method, we can transform the primal problem
(IP2) into the following Lagrangean relaxation problem (LR), where constraints (IP
2.1), (IP 2.2), (IP 2.3), and (IP 2.4) are relaxed. With a vector of Lagrangean

multipliers, the Lagrangean relaxation problem of IP2 is transformed as follows.

Optimization problem:

ZD(ul,uz,u3,u4):rriinZyibi+Z z u' e, —(y,M + )]+

34 i€V leOUT’
+z z uzpr[tw'lcl _5plcl]+ Z Zu3wl[( Z xpgpl)_twl]-l_ z u4w |:M _ztwlcl:|
weW peP, leL weW leL peP, weW leL
(LR)
subject to
D x, =1 Ywe W (LR1)
PEPR,
x,=0orl Vpe P, weW (LR2)
y;=0o0rl VielV (LR3)
t,=0orl YweW, le L (LR4)
c,=cgorM+e Vie L (LR5)
2, (LR6)

ieV
By definition, u,,u,,uy,u, are the vectors of {u',}, {u’  }, {u’,}, {u’,},

respectively. Note that u,,u,,u,,u, are Lagrangean multipliers and wu,,u,,u,,u, 0.
To optimally solve (LR), we decompose it into the following three independent and

easily solvable optimization Subproblems.

3.1.2.1 Subproblem 1
SUB_1 (related to decision variable x, )

Zm(u)=min D> > >’ 6 x,, (Sub 1)

weW leL peP,

subject to
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D x,=1 Vwe W (Subl.1)

x,=0orl Vpe P, weW. (Subl.2)

w?

This problem can further be decomposed into || independent shortest cost path

Subproblems. In other words, we can determine the value of x, individually for each

OD-pair. Specifically, u°,, can be treated as the cost of link / in OD-pair w in the

shortest cost path Subproblems. Due to the phenomenon of the non-negativity

constraint of each u’ ,, we can therefore apply Dijkstra’s shortest path algorithm to

wl 2
optimally solve these shortest cost path Subproblems. Since the time complexity of

Dijkstra’s shortest path algorithm is  O(| V' [*) ), where |V] is the number of nodes, the
time complexity of SUB_1is O(|/W | x|V [*).

3.1.2.2 Subproblem 2
SUB_2 (related to decision variable y,)

Z,po(w)=min 3y +3, 3wy (=M)y, , (Sub2)
icV ieV leOUT!
subject to
y,=0orl VieV (Sub 2.1)
2, (Sub 2.2)

eV

To optimally solve SUB_2, we first apply a quick sort on the sum of the parameters of

each y,ie., b—M Z u', , to get an array in ascending order. To satisfy the
leOUT’

constraint (Sub 2.2), we then choose V), nodes from the left of the array, and set

their values of y, to one. The values of y, of the remaining nodes are decided by

their associated parameters, b, —M Z u', . For each remaining node ie V', if
leoUT’

b-M z u', is positive, the value of y, is set to zero, in order to minimize this
leour’
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Subproblem. On the other hand, if the sum of the parameters is non-positive, it is set

to one.

The time complexity of SUB 2is O(|V |log|V ).

3.1.2.3 Subproblem 3
SUB_3 (related to decision variables ¢,,,c,)

Z s (U 1y Uy u,) = minz Z ulﬂcz + z Z uzwpz(twlcl - 5plcl) +

3 ) ieV leOUT' weW peP, leL (SLIb 3)
z Zu wi (_twl) + z u w (_Z twlcl)
weW leL weW leL
subject to
t,=0orl VweW, le L (Sub 3.1)
c,=corM+e Vie L. (Sub 3.2)

As constraints (Sub 3.1) and (Sub 3.2) show, either ¢, or ¢, has two choices. We
can therefore apply an exhaustive search to determine the values of ¢,, and c,,
depending on which combination results in the smallest objective function value. To
optimally solve SUB 3, we further decompose it into |L| independent Subproblems,

which are shown below.

|:u]il - Z Z u2wp5pl:|+

. weW peF, 3 R

Z. 3 (U 1y, Uy, 1, ) = min o=ty (Sub 37)
Z (Z uzwp)_u4w ZLwl =
weW | peP,

subject to

t,=0orl Vwe W (Sub 3.1°)

¢ =& or M +eé&. (SUb 32a)

The time complexity of SUB_3 is O(W|x|L]).

3.1.3 The Dual Problem and the Subgradient Method
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According to the weak Lagrangean duality theorem [21], for any set of the
multipliers (u,,u,,u;,u,) 20, Z,(u,,u,,u,,u,) isalowerboundon Z,,.The

following dual problem is then constructed to calculate the tightest lower bound.

Dual Problem (D)
Zp =max Zp (uy, uz us uy)
s.t. (uy, uy us, uy) 20

There are several methods for solving the dual problem (D), of which the
subgradient method [22] is the most popular one. We therefore adopt it as our solution
approach to the dual problem. Let a vector k be a subgradient of Zp( u;, uz,u3, uy).
Then, in iteration p of the subgradient procedure, the multiplier vector A= ( u;, uy ,u;,

u4) is updated by
/ftpﬂ = 1P+ 7k"
where the step size, ¢”, is determined by

h
tP:JZIPZ_ZD(ﬂ'p)_
%7

" s the best upper bound on the primal objective function value after the p"
P2

iteration. 0 is a value between 0 and 2. It is initiated with a value of 2 and halved
whenever the best objective function value does not improve within a given iteration

count.

3.1.4 Getting Primal Feasible Solutions

To obtain the primal feasible solutions to the original problem (IP2), we consider
the solutions from the LR problem. By using the Lagrangean relaxation and the
subgradient method to solve the LR problem, we not only get a theoretical lower

bound on the primal objective function value, but also obtain good hints for getting
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primal feasible solutions. However, as some critical and difficult constraints are
relaxed to obtain the easily-solvable LR problem, the solutions obtained from Zp may
not be valid to the primal problem. We therefore need to develop good heuristics to
tune the values of these decision variables, so that primal feasible solutions can be

obtained.

Our basic concept is as follows. From the solutions to Subproblem 2 of LR, we
can determine whether or not each y; should be set to one by examining its associated
parameters. The more negativity associated with the parameter, the more likely it is
that the y; of that node should be set to one. We therefore apply a quick sort method to

sort the parameters of y; in ascending order.

In addition, the solutions to Subproblem 3 of LR provide us with other useful
information. For each node, if any of its outgoing link costs in the dual solution is set
to M + ¢, the more likely it is that the node will be attacked. Recall the definition of

the link cost in the problem formulation.

If all nodes with the above characteristics have been considered, but there still
exists some path for at least one OD-pair to communicate, we have to consider extra
nodes by first choosing the smaller positive parameters of y;.. We stop when there does

not exist any available path for each OD-pair to communicate.

By combining the above ideas, we are able to derive a heuristic for getting primal
feasible solutions. However, we find that the solution quality is not as good as we
expect. After examining the results carefully, we conclude that some of the nodes are
“mis-attacked”, meaning that the attacker does not necessarily need to attack the
nodes in order to reach his goal. To improve the solution quality, we apply a greedy
algorithm to lower the primal objective function value as much as possible. The

algorithm is given below.
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Table 3-1 Getting Primal Feasible Algorithm

O o0 9 N B WD =

[\ e e T e e T e T U Y
S O o0 N O »n B~ WD = O

NN
[\ Y

Sort the nodes in ascending order w.x:t. the parameters of y; we mentioned
in Subproblem?2.

While (there is an available path for at least one OD-pair to communicate,
and some nodes remain unexamined){

One at a time, attack the leftmost unexamined node with a negative
parameter of y; or a large M of its outgoing link cost.

b
While (there is an available path for at least one OD-pair to
communicate){

One at a time, attack the left-most node which was not determined to
be attacked yet.

}
While (some nodes remain unexamined){

Apply a greedy algorithm; we sequentially recover the attacked node
with the largest budget, b;, and test if this recovery will lead to any
available path for any OD-pair. If yes, we do not recover this node.

b
While (some nodes remain unexamined) {

Apply a greedy algorithm; we sequentially examine if a recovery of

any two combinations of the attacked nodes will lead to any available

path for any OD-pair. If yes, we do not recover the nodes.

}

Step 1: In Line 1 and 2, we sort the nodes in an ascending order according to their

associated parameters in Subproblem?2.

Step 2: In Line 3 to 7, we sequentially set the y; of the leftmost unexamined node in
the sorted array to one, if the sum of its associated parameters in SUB_2 is negative or
any of the node’s outgoing link cost in SUB_3 is greater than M. We exit the while

loop if and only if a primal feasible solution is obtained or all nodes are examined.
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Step 3: In Line 8 to 12, if a primal feasible solution is not obtained yet, we
sequentially set the leftmost unexamined node of which y; = 0 to one. That is, we

ensure a primal feasible solution after Step 3.

Step 4: In Line 13 to 17, we apply a greedy heuristic to “recover” the attacked nodes.
That is, we one at a time recover the attacked node with the largest budget, b;, and test
if this recovery will lead to any available path for any OD-pair. If we find a recovery
can lead some available path for some OD-pair, this recovery is not allowed because it
violates the constraints of the primal problem; if a recovery is allowable, we save a

cost of b;.

Step 5: In Line 18 to 22, to further enhance the saving, we try the combinations of
“picking 2 out of N.” That is, for each un-attacked node, we try all “picking 2 out of
N combinations of other attacked nodes and test if the two nodes can be taken over

by the one node with a saving.

The time complexity of the getting primal heuristiciis O( W |x|V ).

3.2 Solution to Model 2

3.2.1 Basic Concept

Despite the complicated max-min mathematical form, we find that an optimal

solution can always be easily obtained. The basic concept is as follows.

We remind the readers that the goal of an attacker is to disconnect all paths of
given critical OD-pairs. Since a smart attacker may always find the best approach to

attain his goal, if a defender unevenly distributes the total amount of budget, some
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budgetary resources are “wasted.” To fully utilize a total budget, we come up with an
idea of protecting one critical path, and allocate all budgetary resources to it. In
addition, a “balanced” budget allocation strategy should be considered so that an
attacker cannot play tricks. Moreover, if there are fewer nodes on a critical path, the

more budget a node on the path is allocated, since the total amount of budget is fixed.

From the above statements, we propose a budget allocation policy: given a total
budget, a topology, and a set of critical OD-pairs, we find the minimal hop path
among the set of OD-pairs, in terms of number of nodes on the path, and evenly
distribute the total budget to each of the node on the minimal hop path. If there are

ties on the minimal hop path, arbitrarily choose one.

3.2.2 Lemma

We further write the above statements asa lemma.

Lemma:
Given a total budget, B, a topology, G= (V, E), and a set of critical OD-pairs, W. The
best budget allocation strategy to maximize the minimal attack cost is to evenly

distribute B to the nodes on a minimal hop path in G among all W. The

. . . B .
corresponding minimal attack cost is T where H, is the number of nodes on

m

the minimal hop path.

Assume that there is another budget allocation strategy such that the minimal

. C B
cost of an attack is 4, which is greater than T In such a case, both the source and

m

the destination node of the minimal hop path should be allocated a budget of at least 4.

If not, we simply attack either the source or the destination node and we are done with

. B .
minimal attack cost less than TR Moreover, in order not to grant an attacker any

m
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trick, we have to allocate a budget of at least 4 to the remaining H, -2 nodes along

the minimal hop path. Therefore, in such a case, the total budget used will be H, *4,
which is more than B. It leads to a contradiction since the total budget constraint,

be = B, is violated.

eV
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Chapter 4 Computational
Experiments

In order to show that the solution quality of our primal heuristic is better than
other approaches, we implement the following two simple algorithms for comparison

purposes.

4.1 Simple Algorithm 1

Since the core of our problem objective is to find a minimal total attack cost such
that all given critical OD-pairs cannot communicate, we want to find a set of critical
nodes and attack them. The concept is similar to finding a set of cuts to disconnect the
communications. Thus to minimize the total attack cost, we should find a “minimum
cut”. According to the maximum flow-minimum cut theorem, we obtain the minimum
cut by executing the maximum flow algorithm. Hence, we adopt the maximum flow
algorithm for each OD-pair to obtain the minimum cuts. By taking the union of the
minimum cuts, we are guaranteed to obtain a feasible solution to the primal problem.
In order to improve the solution quality, we apply the same concept to this simple
algorithm, as we did in “getting primal feasible solutions.” We now present the core

algorithm.

Table 4-1 SimpleAlgorithm 1

For (each OD-pair){

Run Maximum Flow algorithm to get the minimum cuts.

}

Take the union of all the minimum cuts, and let all the nodes, with at least one

outgoing link labeled as M, be the candidates.
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Sequentially recover one of the candidates, and run Dijkstra’s Shortest Path

algorithm to investigate if the recovery is allowable.

4.2 Simple Algorithm 2

In the literature, a survivability measure (SM) [11] is proposed to evaluate how a
network sustain malicious attacks, under the assumption that the most important node
is removed each time. We have shown that the importance of nodes can be evaluated
by their level of connectivity. We now propose a simple algorithm that considers the
removal of the most connected node sequentially. We stop the algorithm when there is
not any available path for each OD-pair to communicate. The pseudo code is as

follows.

Table 4-2 SimpleAlgorithm 2

Sort the nodes in descending order w.x#. the degree of connectivity.
While (there is an available path for at least one OD-pair to communicate){

Attack the most connected node among those not being attacked yet.

4.3 Parameters and Cases of the Experiment

We organize our experimental parameters and design of cases as the following table.

Table 4-3 Experimental Parameters

Number of Nodes 16 ~ 100

Number of Links 60 ~ 400

Number of critical OD-pairs 8 ~250

Testing Topology Random networks, Grid networks, and

Scale-free networks

Number of Iterations 2000
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Non-improvement Counter 80

Initial Upper Bound Solution of SA;

Initial budget allocation policy Uniform distribution,

Degree-based distribution

Test Platform CPU: Intel Pentium-4 2.0 GHz
OS: MS Windows XP

4.4 Experimental Results

We present the experimental results by a list of tables. The SA; and SA; are the
solutions from Simple Algorithm 1 and 2; the LR value means the primal feasible

solution from the LR process; the LB represents the lower bound gained from the LR

process. Moreover, the Gap is calculated by SR *100% ; the improvement ratio

of SA; and SA, are calculated by 'SAIi;JR *100% and SA2%"‘100% ,

respectively.

Case 1. Small-scale networ ks with uniform budget distribution

(Number of nodes is 16.)

Network | No.of | SA; | SA, | LR LB Gap Imp. Imp.

Topology | Ceritical Ratio | Ratio of

OD-pairs of SA; SA,

Grid 8 4 16 | 4 ]3.563926 | 12.24% | 0.00% | 300.00%

Networks 16 7 16 7 16370007 | 9.89% | 0.00% | 128.57%
24 7 16 7 | 6.73727 | 3.90% | 0.00% | 128.57%
32 10 16 10 | 8.539403 | 17.10% | 0.00% | 60.00%
40 12 16 12 ] 9.945028 | 20.66% | 0.00% | 33.33%

Random 8 8 11 6 |4.812023 | 24.69% | 33.33% | 83.33%

Networks 16 8 13 8 |6.232452 | 28.36% | 0.00% | 62.50%
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24 7 8 7 15.470252 | 27.96% | 0.00% | 14.29%
32 9 15 9 | 7.660677 | 17.48% | 0.00% | 66.67%
40 10 | 11 | 10 | 8.83108 | 13.24% | 0.00% | 10.00%
Scale-free 8 3 8 3 12948217 | 1.76% | 0.00% | 166.67%
Networks 16 5 7 5 14.847389 | 3.15% | 0.00% | 40.00%
24 6 9 6 |4.862614 | 23.39% | 0.00% | 50.00%
32 10 | 15 | 10 |8.995957 | 11.16% | 0.00% | 50.00%
40 9 11 9 |8.610195| 4.53% | 0.00% | 22.22%
Case 2: Medium-scale networ ks with uniform budget distribution
(Number of nodes is 50.)
Network | No.of | SA; | SA, | LR LB Gap Imp. Imp.
Topology | Critical Ratio | Ratio of
OD-pairs of SA, SA,
Grid 25 12 | 36 | 10 |7.441391 | 34.38% | 20.00% | 260.00%
Networks 50 19 | 40 | 18 | 14.06399 | 27.99% | 5.56% | 122.22%
75 20 | 45 | 19 | 14.5307 |30.76% | 5.26% | 136.84%
100 19 | 42 | 17 |12.30638 | 38.14% | 11.76% | 147.06%
125 20 | 46 | 20 |15.29588 | 30.75% | 0.00% | 130.00%
Random 25 15 | 23 | 13 |9.824965 | 32.32% | 15.38% | 76.92%
Networks 50 17 | 31 | 16 |12.16454 | 31.53% | 6.25% | 93.75%
75 19 | 40 | 18 |13.22959 | 36.06% | 5.56% | 122.22%
100 24 | 46 | 18 |14.50284 | 24.11% | 33.33% | 155.56%
125 21 46 | 19 |15.21835|24.85% | 10.53% | 142.11%
Scale-free 25 6 6 6 | 4.724655 | 26.99% | 0.00% | 0.00%
Networks 50 9 15 9 |7.636606 | 17.85% | 0.00% | 66.67%
75 25 | 35 | 13 |10.93413 | 18.89% | 92.31% | 169.23%
100 14 | 44 | 14 |11.63209 | 20.36% | 0.00% | 214.29%
125 18 | 49 | 18 |15.51449 | 16.02% | 0.00% | 172.22%

39




Case 3: Large-scale networ ks with uniform budget distribution

(Number of nodes is 100.)

Network | No.of | SA; | SA, | LR LB Gap Imp. Imp.
Topology | Critical Ratio | Ratio of
OD-pairs of SA; SA;
Grid 50 27 | 92 | 23 |16.44631 | 39.85% | 17.39% | 300.00%
Networks 100 34 | 94 | 26 |17.54971 | 48.15% | 30.77% | 261.54%
150 30 | 95 | 28 |20.09422 | 39.34% | 7.14% | 239.29%
200 38 | 98 | 31 |22.50487 | 37.75% | 22.58% | 216.13%
250 36 | 92 | 36 |20.63084 | 74.50% | 0.00% | 155.56%
Random 50 33 | 57 | 25 |16.93092 | 47.66% | 32.00% | 128.00%
Networks 100 37 | 99 | 30 |21.54363 |39.25% |23.33% | 230.00%
150 41 62 | 34 |26.22784|29.63% |20.59% | 82.35%
200 38 | 80 | 34 |24.61151 | 38.15% | 11.76% | 135.29%
250 47 | 87 | 40 |31.66511 | 26.32% | 17.50% | 117.50%
Scale-free 50 18 | 29 | 18 |14.31243 | 25.76% | 0.00% | 61.11%
Networks 100 21 | 53| 21 | 16.7806 |25.14% | 0.00% | 152.38%
150 26 | 40 | 23 | 1822227 |26.22% | 13.04% | 73.91%
200 26 | 96 | 25 |20.57828 | 21.49% | 4.00% |284.00%
250 27 | 53 | 25 [20.96103 | 19.27% | 8.00% | 112.00%
Case 4: Small-scale networkswith degree-based budget distribution
(Number of nodes is 16.)
Network | No. of SA, SA, LR LB Gap Imp. Imp.
Topology | Critical Ratio | Ratio of
OD-pair of SA, SA,
S
Grid 8 433 16 433 4.13249 | 4.86% | 0.00% |269.23%
Networks 16 7.33 16 7.33 6.63511 | 10.52% | 0.00% | 118.18%
24 7.33 16 733 | 6.853707 | 7.00% | 0.00% | 118.18%
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32 10.33 16 10.33 | 9.182209 | 12.54% | 0.00% | 54.84%
40 12.33 16 12.33 | 10.24175 | 20.42% | 0.00% | 29.73%
Random 8 8.5 13.25 6 4.905528 | 22.31% | 41.67% | 120.83%
Networks 16 8.75 14.5 8.75 | 7.140306 | 22.54% | 0.00% | 65.71%
24 10.5 15 10.5 | 8.701734 | 20.67% | 0.00% | 42.86%
32 11.5 15.5 10.25 | 8.964373 | 14.34% | 12.20% | 51.22%
40 11.31 15.45 10.75 |9.872351 | 8.89% | 5.21% | 43.70%
Scale-free 8 5.517241 | 11.58621 | 5.517241 | 4.984125 | 10.70% | 0.00% | 110.00%
Networks 16 8.827586 | 10.75862 | 7.448276 | 6.341982 | 17.44% | 18.52% | 44.44%
24 7.724138 | 12.13793 | 7.724138 | 6.552931 | 17.87% | 0.00% | 57.14%
32 10.75862 | 15.44828 | 10.48276 | 8.082209 | 29.70% | 2.63% | 47.37%
40 10.75862 | 13.24138 | 10.75862 | 8.964434 | 20.01% | 0.00% | 23.08%
Case 5: Medium-scale networ ks with degree-based budget distribution
(Number of nodes is 50.)
Network | No. of SA; SA, LR LB Gap Imp. Imp.
Topology | Critical Ratio | Ratio of
OD-pairs of SA; SA,
Grid 25 12.35294 | 38.82353 | 10.58824 | 7.891004 | 34.18% | 16.67% | 266.67%
Networks 50 22.35294 | 42.35294 | 18.82353 | 14.93268 | 26.06% | 18.75% | 125.00%
75 20.58824 | 46.76471 | 19.11765 | 14.68369 | 30.20% | 7.69% | 144.62%
100 | 18.82353 | 44.11765 | 18.23529 | 13.46099 | 35.47% | 3.23% | 141.94%
1251 20.58824 | 47.64706 20 15.19656 | 31.61% | 2.94% | 138.24%
Random 25 17.5 32.25 16 12.2877 | 30.21% | 9.38% | 101.56%
Networks 50 21.25 40 18 13.92853 | 29.23% | 18.06% | 122.22%
75 22.16495 | 47.93814 | 21.13402 | 15.37474 | 37.46% | 4.88% | 126.83%
100 | 23.71134 | 47.93814 | 22.16495 | 16.74541 | 32.36% | 6.98% | 116.28%
125 1 23.96907 | 47.93814 | 22.16495 | 16.98841 | 30.47% | 8.14% | 116.28%
Scale-free 25 19.3299 | 20.61856 | 16.49485 | 12.30288 | 34.07% | 17.19% | 25.00%
Networks 50 23.71134 | 29.63918 | 20.10309 | 16.47015 | 22.06% | 17.95% | 47.44%
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75 25 42.26804 | 21.90722 | 18.20349 | 20.35% | 14.12% | 92.94%
100 | 28.09278 | 46.90722 | 25.7732 | 20.80022 | 23.91% | 9.00% | 82.00%
125 1 29.38144 | 49.48454 | 26.03093 | 21.35496 | 21.90% | 12.87% | 90.10%
Case 6: Large-scale networ ks with degree-based budget distribution
(Number of nodes is 100.)
Network | No. of SA, SA, LR LB Gap Imp. Imp.
Topology | Critical Ratio | Ratio of
OD-pairs of SA, SA,
Grid 50 33.05556 | 94.44444 | 23.05556 | 16.48301 | 39.87% | 43.37% | 309.64%
Networks 100 | 31.94444 | 96.11111 | 26.66667 | 18.34765 | 45.34% | 19.79% | 260.42%
150 32.5 | 96.94444 | 29.16667 | 20.84595 | 39.92% | 11.43% | 232.38%
200 | 37.22222 | 98.88889 | 32.77778 | 21.08786 | 55.43% | 13.56% | 201.69%
250 | 40.83333 | 94.44444 | 36.94444 | 23.14333 | 59.63% | 10.53% | 155.64%
Random 50 35.5 75 30.5 |20.89109 | 46.00% | 16.39% | 145.90%
Networks 100 43 80 38.5. |25.62157 | 50.26% | 11.69% | 107.79%
150 44 85 4225 [31.91765 | 32.37% | 4.14% | 101.18%
200 47 92.25 4175 | 29.68885 | 40.63% | 12.57% | 120.96%
250 51.75 95.75 46.25 | 37.33963 | 23.86% | 11.89% | 107.03%
Scale-free 50 37.05584 | 56.09137 | 29.94924 | 23.38481 | 28.07% | 23.73% | 87.29%
Networks 100 | 45.68528 | 75.88833 | 37.05584 | 28.72076 | 29.02% | 23.29% | 104.79%
150 | 46.70051 | 65.98985 | 40.10152 | 31.20025 | 28.53% | 16.46% | 64.56%
200 42.8934 | 97.96954 | 42.13198 | 35.31172 | 19.31% | 1.81% | 132.53%
250 | 51.52284 | 75.88833 | 44.67005 | 33.1085 | 34.92% | 15.34% | 69.89%
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4.5 Discussion of the Results

From Figure 4-1, Figure 4-2, and Figure 4-3, we can see that the curves of the
LR-based algorithms are always below those of SA; and SA,, which means that the
solution quality of LR is evidently better than that of SA; and SA,, for this is a

minimization problem.

Looked at in more detail, the solution excellence of the LR-based algorithm is
more obvious when a network grows in size and more OD-pairs are considered. The
solution quality of SA; is not good enough due to its blindness in attacking the
most-connected nodes without considering the cost of the attack. Although the
solutions of SA; are effective in small-scale networks, its drawback of considering the

union of minimum-cuts is significant when a network grows.

Since a legitimate lower bound of the primal objective function value (LB) is
obtained through the process of Lagrangean Relaxation, we can also evaluate the

solution quality of LR by comparing with LB. We find that in a small-scale network,
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LR-LB

the duality gap, which is calculated by *100%, is less than 30%. Even in a

medium-scale network or a large-scale network, the duality gap in most cases is less

than 50%.

Moreover, we find that a network’s topological structure will greatly influence its
robustness against attacks. As shown in Figure 4-4, the cost to attack a random
network is evidently greater than a grid network or a scale-free network, given that a
uniform budget allocation policy is applied, where other conditions, such as the
network size, the number of critical OD-pairs, are the same. It indicates that the
property of randomness may greatly help maintain the connectivity of a network. As
the connectivity of a scale-free network is mainly maintained by a few super nodes,
the effect of destroying super nodes is significant and therefore the robustness of a
scale-free network is weaker than that of a random network. As to a grid network, the
regularity of the topology may be the reason for an attacker to incur a relatively less

attack cost to compromise the network.

In addition, if we compare Figure 4-4 with Figure 4-5, we can see that proper
budget allocation enhances the robustness of a network. As we can see in Figure 4-4, a
random network incurs the highest cost and a scale-free network incurs the lowest
cost; in Figure 4-5, while adjusting the budget allocation policy according to the
degree of connectivity, we achieve almost the same level of robustness of a random
network and a scale-free network. We therefore conclude that if we allocate proper
budgetary resources to the high-connectivity nodes, we will effectively increase the

costs incurred by an attacker.

4.6 Computational Complexity

The time complexities of all the algorithms we used to solve the problems are

presented below.
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Table 4-4 Time Complexity

Problem Time complexity to solve this problem
Subproblem 2 o(|V [log|V])

Getting Primal Feasible Heuristics 0(|W| V)

Simple Algorithm 1 0(|W| 148

Simple Algorithm 2 0(|W| 14
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Chapter 5 Summary and Future
Work

5.1 Summary

In this thesis, we have focused on two issues. First, we have shown how robust a
network is by evaluating the minimal attack cost it may experience based on the
survivability metric of connectivity of given critical OD-pairs. Second, we have
presented a lemma showing that the best allocation policy is to evenly distribute the
budgetary resources on the nodes along the minimal hop path among all critical

OD-pairs.

One of the main contributions of our thesis is the mathematical models. We have
researched the problem characteristics carefully, identified the problem objectives and
the associated constraints, and proposed the well-formulated mathematical models.
We also have solved the problem of minimal attack cost and derived a legitimate

lower bound on the number of nodes an attacker should target.

Another contribution is the lemma that solves the max-min complicated form.
We have fully described the max-min problem structure and its associated constraints

and presented a lemma that solves the problem elegantly.

Moreover, we have evaluated different topologies and observed their
survivability under malicious attacks. We have found that a random network is more
survivable than a grid or a scale-free network. However, with a proper budget
allocation policy, a scale-free network may achieve the same level of robustness as a

random network.
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5.2 Future Work

There are still a number of research issues to be addressed, which we summarize

in the following paragraphs.

Budget Allocation Srategy with an Initial Budget

Recall that, in Section 3.2.2 we presented a lemma for the optimality condition in
our definition of survivability. If we consider an initial budget on each node, the
trivial solution may no longer hold. One can easily examine this phenomenon via the

following graph. In Figure 5-1,

O Q
@é@(}

Figure 5-1 A Graph with the I nitial Budget

B

100

B 2

the number on each node is the initial budget. If we have an additional unit of budget,

what should we do so that the overall Minz v,b, is maximized? If we distribute the

Vi ey
additional unit of budget evenly along the minimum hop path, i.e., the budget of A, B,
S, and D becomes 5.25, 5.25, 100.25, and 100.25, respectively, the minimal attack
cost will be 3+5+5.25 = 13.25. If, on the other hand, we assign all the one unit budget
to node C, i.e., the budget of C becomes 4, the minimal attack cost will become

4+5+5 = 14, which is evidently better than the former case. The best budget allocation
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strategy for an initial budget is definitely a very challenging and interesting issue.

Different Survivability Metrics

Another issue to be addressed in the future is the adoption of different
survivability metrics in the domain of attack and defense. In this thesis, we assumed
that a network is survivable if there is at least one available path between at least one
critical OD-pair. To highlight the importance of critical OD-pairs, we can modify the
definition of network survivability as follows: if there is at least one available path
between each critical OD-pair, the network is survivable. To deal with the
modification, we find that our original formulation, IP2, remains useful in

characterizing the problem: we simply rewrite the constraint, [P2.4,

as M < Z thlcl .

weW leL

Moreover, we can further generalize the concept as follows. If there is at least
one available path between a given thresholds of critical OD-pairs, the network is
survivable. We could also analyze the impact on minimal attack cost with different

thresholds.

In addition to considering the connectivity of given critical OD-pairs, we could
further consider different kinds of connectivity, such as the connectivity of the largest
fragment in a network, as survivability metrics. With different definitions of
survivability, we believe that we could derive different mathematical models and

obtain different but interesting results.

Moreover, we could take the Quality of Services (QoS) performance metrics as
our survivability metrics. For example, when considering malicious attacks, if the
flow capacities between given OD-pairs are greater than a given threshold, or the
average delay is lower than a tolerable level, the system is survivable. Recoverability

is another interesting metric. If a system can be recovered within a given time period,

50



it is regarded as acceptable, and therefore, survivable.

Different Attack Behaviors

In our research, we have described the attack behavior on a node as a zero-one
decision, i.e., either to attack it or not. Actually, we can further characterize attack
behaviors as probabilistic models. A node is more likely to be successfully attacked if
fewer budgetary resources are allocated for it. We can therefore claim with 95%
confidence, for example, that the system is survivable under malicious attacks and

random errors.

Another way to model the attack behavior is the attack path. Assume that an
attacker has controlled one or more nodes of the given network; his objective is to
reach a core node or multiple core nodes through the most likely path or the minimal

attack cost path.

Applications on Different Transmission Media

In our problem description, we assumed a wired network; however, a growing
number of applications on the wireless media, such as cellular phone networks, and
wireless ad-hoc networks, have drawn much attention in recent years. In a wireless
network, a network topology is determined by the transmission radius of each node in
the network; therefore, a network topology may be changed dynamically and
dramatically. It is definitely a challenging task to incorporate the wireless issues when

discussing survivability.
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