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論文摘要 

論文題目 : 具資料集縮能力之無線感測網路節能路由演算法 

作    者 : 林書平 民國九十四年七月 

指導教授 : 林永松  博士 

           顏宏旭  博士 

 

    近年來無線感測網路在諸多領域上具有高度應用價值，已被視為下一階段無

線通訊技訊的殺手級應用。然而受限於硬體以及應用環境，使感測器對於能源消

秏具有高度的限制性，因此在感測網路中降低感測器於運作過程所消秏的能源已

成為一個重要的研究議題。結合資料集縮 (data aggregation) 能力於感測器中

藉此減少資料傳輸量能有效降低感測器的能源消秏，而具備資料集縮能力之感測

網路需有以資料為中心 (data-centric) 之路由演算法來充份利用此能力以達

到節省能源消秏的目的。 

 

    本篇論文研究在感測器具有資料集縮能力之無線感測網路中，建立兼具最小

能源消秏量及服務品質之資料集縮樹 (data aggregation tree) 的問題，在考

量感測器之路由指定、傳輸半徑 (communication radius) 及資料重傳 (data 

retransmission) 限制下，透過集縮樹的方式盡可能減少資料的傳輸總量，使感

測網路回報資料時所需消秏之總能量最小化，藉此提高感測網路的系統生存時

間。此外，為了使問題能更符合應用環境，在考量資料集縮所帶來的集縮延遲時

間限制下，我們將最大端對端延遲 (maximum end-to-end delay) 的概念考慮進

來，並加以定義為感測器所消秏之集縮等待能源消秏，藉以更精確的描述感測網

路的總能源消秏。 

 

    我們將整個問題數學模式化為一個嚴謹的混合式整數線性最佳化數學模
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型，目標函式為最小化資料傳輸所需之總能源消秏，此數學問題在本質上是一個

整數非線性規劃問題，問題本身具有高度的複雜性和困難度。本論文採用以拉格

蘭日鬆弛法為基礎的方法來處理此一複雜問題，並根據所得到的結果改良演算法

以得到較佳的資料集縮樹。實驗結果顯示，我們不但能有效率地求得此問題解，

且在問題解的效能上亦比其它既有的演算法更為優越。 

 

關鍵詞: 資料集縮、資料中心路由、高效率節能路由、最佳化、拉格蘭日鬆弛法、

混合式整數線性規劃、無線感測網路。 
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AN ENERGY-EFFICIENT DATA-CENTRIC ROUTING 

ALGORITHM IN WIRELESS SENSOR NETWORKS 

 
 

Recently wireless sensor networks (WSNs) have attracted a great deal of 

attention due to their potential for numerous military, environmental detection, and 

civil applications. Sensor nodes in WSNs are highly energy-constrained, because of 

the limitations of hardware and the infeasibility of recharging sensor nodes under a 

severe environment. When a sensor is in operation, therefore, reducing energy 

consumption during the forwarding and sensing of data is a crucial issue in WSNs. 

Incorporating sensor nodes with data aggregation capabilities to transmit less data in 

WSNs could reduce total energy consumption. However, this calls for an efficient and 

effective data-centric routing algorithm to facilitate this potential advantage. 

 

In this thesis, our work emphasizes on the construction of an energy-efficient 

data aggregation tree that possesses good QoS and minimizes the total energy 

consumption of sensor nodes simultaneously. In the first part of this thesis, we model 

the data-centric routing problem based on a rigorous mixed integer linear 
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mathematical formulation, where the objective function is to minimize the total 

transmission cost, subject to multicast tree and data aggregation constraints. With the 

advances in sensor network technology, sensor nodes with configurable transmission 

radius capability would further reduce energy consumption. Thus, the second part of 

this paper considers the transmission radius assignment of each sensor node and the 

data-centric routing assignment jointly. The objective function is to minimize the total 

power consumption together with consideration of construction of a data aggregation 

tree and sensor node transmission radius assignment. Finally, the effects of data 

retransmission and maximum end-to-end delay due to data aggregation delay are also 

considered in order to reflect the tradeoff between the advantages and the costs of data 

aggregation. We take the properties of QoS in wireless sensor networks as a new 

energy consumption metric that can not only maintain the traditional transmission 

delay, but also simultaneously reduce the energy consumption of sensor nodes 

operating in idle mode. How to construct a data aggregation tree that is 

energy-efficient and has QoS properties is a complicated problem that needs to be 

investigated. We conceive a rigorous mathematical formulation, where the objective 

function is to minimize the total energy consumption of data transmission subject to 

tree, data retransmission, and maximum end-to-end delay constraints. 

 

The solution approach is based on Lagrangean relaxation in conjunction with 

novel optimization-based heuristics. With the exceptional properties of Lagrangean 

relaxation we are able to efficiently solve this complicated optimization problem, and 

derive an effective algorithm for routing assignments and construct a data aggregation 

tree simultaneously. Through our computational experiments, we show that the 

proposed algorithms calculate better solutions than other existing heuristics. When 

considering QoS routing in WSNs, the proposed algorithms can not only construct a 
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better data aggregation tree in terms of energy consumption, but also maintain good 

maximum end-to-end delay. 

 

Keywords—Data Aggregation, Data-Centric Routing, Energy-Efficient Routing, 
Optimization, Lagrangean Relaxation Method, Mixed Integer Linear 
Programming, Wireless Sensor Networks. 
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Chapter 1  Introduction 

1.1 Background 

Wireless sensor networks (WSNs) are types of nascent technologies that probe 

and collect environmental information such as temperature, atmospheric pressure, and 

irradiation by providing ubiquitous sensing, computing, and communication 

capabilities. Each sensor in a WSN is capable of sensing ambient information in its 

vicinity and reporting the sensed data. Because of the rapid advances in 

microprocessor, memory, and radio techniques, the deployment of distributed 

networks comprising small, inexpensive sensor nodes capable of sensing and wireless 

communication will soon become reality. 

 

In recent years, WSNs have attracted a great deal of attention for researchers due 

to their potential for numerous military, environmental detection, and civil 

applications. For example, on a battle field, a network of sensors could be used to 

track moving targets, detect chemical gases, or assist in surveillance missions. In 

some environmental research, sensor networks could gather various geologic 

parameters of interest. With such data, it is possible for scientists to make some 

forecasts such as the eruption of volcano or to detect harsh natural phenomena. In a 

disaster situation, such as the terror attack, if people were equipped with a small 

badge then sensor networks could locate the exact position of survivors and help 

rescuers to extricate them rapidly. In all the application scenarios described above, 

sensors would be typically scattered throughout an area of interest in unattended mode; 

thus recharging the batteries of a sensor would not be feasible. Energy aware 
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management in WSNs, therefore, becomes an essential issue in order to prolong the 

lifetime of deployed sensors. 

 

Wireless sensor networks are similar to mobile ad-hoc networks (MANETs) in 

that both involve multi-hop communications. However, there are two main differences 

between them. First, the typical communication mode in wireless sensor networks 

conveys information from multiple data sources to one data sink. This is a kind of 

reverse-multicast, rather than the communication between any two pair of nodes in 

MANETs. Second, since data are collected by multiple sensors there must be some 

redundancy in the data, being transmitted by numerous sources. Transmitting 

redundant data would rapidly deplete the energy of sensors and result in disconnected 

network. A data aggregation function, therefore, has been suggested as a particularly 

useful function for routing in terms of energy consumption in WSNs [2, 3, 8, 9, 12, 

18].  

 

A canonical system architecture of wireless sensor nodes is shown in Figure 1-1. 

A sensor node is composed of four major subsystems [13], namely:  

1) Computing subsystem: the microcontroller unit (MCU) is responsible for 

executing the signal processing algorithm, data processing, and the 

communication protocol. 

2) Communication subsystem: the leading component in a sensor node is radio 

frequency communication with which the sensor node can communicate with 

neighboring nodes and transmit data. This subsystem causes more energy 

consumption compared against any other component. 

3) Sensing subsystem: the sensing subsystem is in charge of sensing real world 

phenomena and translating it into electronic signals. There are two types of 
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sensor, analog and digital, for measuring different environmental parameters. 

4) Power supply subsystem: the power supply subsystem consists of a battery 

and a DC-DC converter. The latter is used to stabilize the voltage of the power 

provided by battery. 

 

Figure 1-1. System architecture of a typical wireless sensor node [13] 

Sensor nodes are highly energy-constrained due to the limitations of hardware 

and the infeasibility of recharging sensor nodes under severe environments. A great 

deal of research has focused on how to reduce energy consumption while a sensor is 

operating. From the perspective of a single sensor node, some conventional 

low-power design techniques and hardware architectures would be helpful for 

providing a mechanism where energy conservation of single sensor node is concerned. 

However, in addition to sensing and transmitting its own data to other nodes, a sensor 

node is also responsible for relaying and forwarding data from other nodes to the 

destination. Therefore, enormous numbers of sensor nodes are involved in data 
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routing when sensors report data to the sink node. A low-power design technique for a 

single sensor node is inadequate for a highly energy-constrained WSN, since the total 

energy consumption of an entire network must be considered systematically. It is 

important to adopt a thorough approach that enables an energy-aware design from the 

underlying hardware platform to the application software and communication 

protocol. This approach would be useful for conserving not only the energy of an 

individual sensor, but also of the groups involved in data transmission as well in the 

whole sensor network. In this paper we consider the energy aware routing (EAR) with 

respect to operations of entire sensor network and try to minimize the total power 

consumption of a group of sensors involved in data transmission. 

 

A representative wireless sensor network is shown in Figure 1-2. Sensor nodes 

are usually scattered in a sensor field. When any event occurs, such surging irradiation 

or temperature decline below a certain threshold, sensor nodes within a specific 

sensing range detect the event and collect data and transmit it to the sink node for 

further processing. We refer to the sink node as the data sink and each sensor node 

within the sensing range as the data source since data are generated from these 

sensors. The application scenario described above is called event-driven because 

sensors are assigned to detect some particular events. There are two other different 

applications of wireless sensor networks, namely periodic and query-based. In 

periodic scenario, sensors probe environmental information periodically and report 

their measurements back to the sink node. All sensors in this kind of network are 

necessitated to be synchronized such that they all sense information and report it 

simultaneously. The query-based scenario, on the other hand, is applied to 

user-oriented applications. Users can request information from certain area of sensors 

about subjects they are interested in. 
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Figure 1-2. A typical wireless sensor network  

In the event-driven model, as a specific event occurs raw data are collected and 

processed before conveying it to data sink. Redundant and useless data are discarded. 

The local raw data are first combined together in the data source and then the 

aggregated result is transmitted to the sink node. Interestingly, data are routed along a 

reverse multicast tree where multiple data sources transmit information back to the 

single data sink. Every non-leaf node on this reverse multicast tree can perform the 

data aggregation function to summarize the output from upstream data sources. This 

process is called data-centric routing. The operation described above can also be 

applied to periodic applications where all sensor nodes or parts of them are data 

sources and periodically report sensed data of interest to the data sink. If all sensor 

nodes in WSNs are designated as data sources, then the problem of minimum energy 

consumption for constructing a data aggregation tree becomes a minimum power 

consumption spanning tree problem. 
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Data aggregation is the key to the data-centric routing. By combining the data 

coming from different sources, redundant information can be eliminated; therefore, 

the total number of transmissions involved in data routing can be reduced significantly. 

Data aggregation achieves energy-efficient data transmission by processing data as it 

flows from the data source to the sink node. In addition to redundancy suppression, 

other possible aggregation functions could be MAX, MIN, and SUM. Data 

aggregation is application dependent, which means that according to the goal of the 

application the appropriate data aggregation function should be employed. For 

example, suppose that a controlled temperature environment is considered, the 

maximum temperature would need to be monitored. In this paper we assume that 

every sensor node possesses a data aggregation capability, which transmits a single 

aggregated packet if it receives multiple input packets to the same data sink. Figure 

1-3 shows an illustrative example of data-centric routing, where the maximum 

temperature is reported to the data sink. The aggregation function is MAX. Label x(y) 

at each node represents the local temperature measurement which is x while the 

aggregated (maximum) value so far is y. For example, at node 4(7), the maximum 

temperature up to this node is 7 and its local temperature measurement is 4. 

 

Figure 1-3. An illustrative example of data aggregation 
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1.2 Motivation  

The construction of a data aggregation tree that would enable multiple data 

sources to transmit sensed data to a single sink node is a hard problem to solve. The 

tree adopted as the data aggregation tree significantly affects the total power 

consumption of sensor nodes. When constructing an aggregation tree, three major 

factors that consume the energy of a sensor node must be considered, namely: the 

transmission radius that each sensor activates; the retransmission times incurred on a 

link; and the maximum end-to-end delay between each data source and the data sink.  

 

In WSNs, the transmission power (radius) is associated with the physical 

distance between the source and the destination. Thus, it is reasonable to assume that 

the transmission cost associated with each link is identical to the cost of transmission 

in the opposite direction. By this assumption, the total transmission cost in Figure 1-3 

is identical to the multicast tree transmission cost where the root is node (10) and the 

other nodes are the destinations. In Chapter 2, we propose a DCR model that 

formulates this problem as a mixed integer linear programming (MILP) problem to 

optimally solve the minimum cost of the multicast tree transmission problem without 

considering retransmission and end-to-end delay effects. Construction of the 

minimum cost multicast tree is the well-known Steiner tree problem, which is proven 

to be the NP-complete [7]. 

 

In addition to the energy consumption of data transmission, data retransmission 

resulting from collisions and the hidden terminal problem in wireless communication 

also consumes a sensor’s energy. The more data an intermediate node aggregate, the 

greater the number of collisions that will occur at intermediate node, which results in 
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excess energy consumption. Besides the total amount of data that an intermediate 

node aggregates, many sensor nodes, called the neighbor nodes, whose transmission 

radii cover the intermediate node would also substantially influence data transmission 

times between children nodes and the intermediate node. By increasing the number of 

neighbor nodes, it is obvious that collisions would be very severe at the intermediate 

node during data transmission from children nodes, and consequently more energy 

consumption would be incurred at the children nodes. 

 

End-to-end delay is another issue that we should consider. Sustaining 

satisfactory end-to-end delay implies two important factors about WSNs: energy 

consumption and quality of service (QoS). Each sensor node in a data aggregation tree 

should wait for data from the children nodes, and during the waiting time (the 

maximum end-to-end delay from the farthest leaf node, the sensor node would operate 

in idle mode). As shown in [13], the energy consumption for a sensor operating in idle 

mode is slightly less than that of operating in transmission mode. Therefore, the 

end-to-end delay in WSNs should implicitly be minimized in terms of energy 

consumption. Also, note that delay is a good QoS metric of WSNs when supporting 

reports of emergent events or real-time traffic is necessary. In this paper, we consider 

not only the construction of a data aggregation tree with minimum total power 

consumption, but also the retransmission effects and maximum end-to-end delay 

constraint on each sensor node. This is a constrained Steiner tree problem and requires 

an effective and efficient heuristic to solve it. In the following chapters, three MILP 

are proposed to formulate the constrained Steiner tree problem and some heuristic are 

derived to optimally solve it. 
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1.3 Literature Survey 

In this section we survey the design problem of WSNs with data aggregation 

property. Algorithms for fixed and adjustable transmission radius and different kinds 

of QoS issues are studied. 

1.3.1 Data Aggregation Tree without QoS 

Although a great deal of existing research has been conducted to address the 

routing problem in wireless sensor networks, to the best of our knowledge, no prior 

work has investigated the handling of maximum end-to-end delay in conjunction with 

the MAC retransmission effects simultaneously. S. Singh [16] and C. Toh [19] show 

that by using new power-aware metrics, for example the energy consumed for 

transmitting per packet, or a shortest-cost routing algorithm based on these new 

power-aware metrics could reduce cost/packet of routing over shortest hop routing. 

This motivates us to construct power-aware metrics (al in DCR model), instead of 

hops which are used in [16], as the link cost. Even though the total power 

consumption is a critical metric for minimum power routing, it has a major 

disadvantage. Since it can reduce the total power consumption of the overall network, 

it does not directly reflect the lifetime of each sensor node. In other words, if the 

minimum power routes are via certain specific nodes, the energy of these nodes will 

be depleted quickly, so that these energy-drained sensors will be unable to 

continuously transmit data or sense environmental data. Therefore, the remaining 

energy of each sensor node is another useful metric to enhance the power-aware 

routing capability and thereby maximize system lifetime or total power consumption 

[6, 10, 11, 19]. 
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Krishnamachari [12] devised three interesting suboptimal aggregation heuristics, 

namely, Shortest Paths Tree (SPT), Center at Nearest Source (CNS), and Greedy 

Incremental Tree (GIT), respectively. Figure 1-4 is a simple illustration of these three 

heuristics. Note that the transmission cost on each link is set to be 1. In the SPT 

scheme, each data source node finds the shortest path back to sink node. Figure 1-4(b) 

shows the tree generated by the SPT scheme, from which it is clear that SPT cannot 

find the optimal solution. CNS selects the node nearest to the sink node as the 

aggregation node and other data sources connect to this aggregation node using the 

shortest hop path. Figure 1-4(c) shows the final routing assignment by adopting CNS 

heuristic. In this case, CNS does not achieve the optimal solution, since nodes 2 and 3 

can directly send data back to sink node rather than transmit via aggregation node 1. 

Figure 1-4. A simple illustration of SPT, CNS, and GIT 
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In GIT scheme, initially the only member of the current tree is only the sink 

node. Each data source finds the shortest hop path to this current tree and the data 

source with the minimum hop along with the intermediate nodes on this path are 

included in this tree. Then, the other source nodes find the shortest hop path to this 

new tree and the minimum hop source node along with the intermediate nodes on this 

path are included in the tree. This process is repeated until all source nodes are 

included in the tree. Although it seems that GIT might overcome the major weakness 

of CNS, it may not find the optimal solution. Note that how to properly select the path 

when there are two paths with the same hop distance to the tree will have significant 

impact on the solution quality of the GIT solution. In Figure 1-4(d), after the nearest 

node, node 1, connects to the sink node, nodes 2 and 3 are three hops away from the 

tree consisting of sink node and node 1. If node 2 selects the path through nodes 4 and 

5 to reach the sink node then the resultant tree will be the optimal case. Moreover, this 

work does not deal with MAC retransmission effect and restriction on maximum 

end-to-end delay. 

 

Fixed transmission radius data-centric routing problem in wireless sensor 

networks has been studied in existing research described above. The basic idea of 

fixed transmission radius algorithm is to save energy by reducing number of sensor 

nodes involved in data aggregation tree, while adjustable transmission radius 

algorithms tend to estimate power consumption from another point of view. If the 

transmission radius of sensor node could be configured, it is believed that energy 

consumption could be further reduced. The power consumption of transmitting data is 

measured as rα  + c, where α is a signal attenuation constant ( usually between 2 to 4) 

and c is a positive constant that represents signal processing and r is Euclidean 

distance between source node and destination node.. 
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J. Carle [5] discusses the tradeoff between power consumption and coverage of 

transmission node. For long transmission radius (e.g. single-hop transmission), sensor 

nodes can cover other awake sensor nodes to relay data and also reduce the total 

number of sensor nodes involved in data transmission. However, with large signal 

attenuation constant (e.g. 4), long transmission radius incurs significant power 

consumption that would sacrifice the gain from reduced total number of transmissions. 

As we can see, the power consumption will increase exponentially as transmission 

radius increases. 

1.3.2 Data Aggregation Tree with QoS 
Younis [21] discusses the role that quality of service (QoS) traffic plays in WSNs. 

The paper presents a thorough discussion and the architectural and operational 

challenges of handling QoS traffic in sensor networks. Table 1-1 shows some 

architectural design issues and corresponding primary factors in WSNs. 

Table 1-1. Architectural Design Issues [21] 

Design Issue Primary Factors 

Network Dynamics Mobility of node, target, and sink 

Node Deployment Deterministic or Ad Hoc 

Node Communications Single-hop or multi-hop 

Data Delivery Models Continuous, event-driven, query-driven, 
or hybrid 

Node Capabilities Multi- or single function; homogeneous 
or heterogeneous capabilities 

Data Aggregation/Fusion In-network (partially or fully) or 
out-of-network 

 



 

 13

Youseef [22] augments power-aware routing algorithms by considering QoS in 

sensor networks, and proposes a power-aware routing algorithm whose objective is to 

minimize the total power consumption while a reasonable level of QoS is sustained. 

Youseef considers end-to-end delay from a source node to the sink node as a major 

QoS factor and takes end-to-end hop counts as its delay metric. The relations of 

end-to-end delay and energy consumption to the transmission distance are discussed 

in the experimental results. Although [22] considers delay in power-aware routing, it 

does not capture another cardinal factor, namely collisions resulting from contending 

media access control in a wireless environment. Collisions significantly affect total 

power consumption in terms of power-aware routing, because it consumes more 

energy of a sensor node in order to transmit data successfully. In this thesis, we take 

the collision effect into account. 

 

Akkaya [2] differentiates between real-time and non-real-time traffic according 

to the latency-constrained requirement. A Weighted Fair Queueing (WFQ) mechanism 

is employed at each sensor node to perform service differentiation and guarantee the 

end-to-end delay bound. Flow aggregation of real-time traffic results in increasing 

queueing delay at an aggregation node. Therefore, an adjustment of the bandwidth 

sharing weight should be made in order to meet end-to-end delay requirements. 

Although this work tries to maintain end-to-end delay from each node on the tree to 

the sink node, it only uses a simple heuristic, namely Shortest Path Tree (SPT), to 

construct the aggregation tree. In this paper we compare the performance of our 

proposed algorithm with SPT. From the computational results it is clear that our 

approach outperforms SPT. Note that while wireless sensor networks are limited in 

bandwidth, the bandwidth reservation mechanism for supporting QoS constrained 

traffic is impractical unless the data flows are generated in the continuous mode. [2] 
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also observes that when a low data generation rate is concerned the queueing delay 

introduced by aggregation becomes negligible. In this paper we assume that sensor 

networks operate in periodic or event-driven mode, where data generation rate would 

be low. We, therefore, consider the end-to-end delay as transmission, propagation and 

retransmission delay. We do not consider the queueing delay. 

 

Solis [17] discusses the impact of timing on data aggregation. Since data flows 

should be aggregated at intermediate nodes on the aggregation tree, a certain must be 

incurred. This kind of delay, namely, the maximum end-to-end delay, significantly 

influences data freshness (the interval between the time of data generation and that of 

sink node reception). [17] proposes a heuristic, called “cascading timeouts”, to 

calculate how long an intermediate node should wait in order to achieve maximum 

freshness and accuracy of sensed data. The basic idea of cascading timeouts is that a 

node’s timeout, i.e., the time interval it waits to receive data from its children before 

forwarding aggregated data, is based on its position on the data aggregation tree. Thus, 

the timeout of a node will occur immediately its parent’s. The construction of the 

aggregation tree is not discussed in [17]. In this paper, the impact of timing in data 

aggregation tree is considered as a maximum end-to-end delay metric to reflect the 

interval that each node should wait before data aggregation. Moreover, the maximum 

end-to-end delay for each node should be minimized, because it is also regarded as a 

cost, which is the energy consumed by a sensor node operating in idle mode. 

 

V. Annamalai [4] and S. Upadhyayula [20] propose the algorithm for solving the 

minimum energy convergecast problem which also tries to minimize data latency. 

These two algorithms construct the data aggregation tree based on greedy approach in 

which new nodes are iteratively added into the data aggregation tree such that the cost 
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of adding new link to original tree is less. The algorithm then allocates DSSS or FHSS 

codes to each node on the tree. This paper actually does not tackle the problem of 

transmission radius assignment. Instead it only takes distance as its criteria to assign 

transmission radius to each node. 

 
 

1.4 Proposed Approach 

In this paper we proposed three models to precisely describe the data-centric 

routing problem in WSNs. We first propose an optimization-based heuristic to solve 

the fixed transmission radius data-centric routing problems (DCR) in wireless sensor 

networks. The problem is first formulated as a mixed integer and linear programming 

(MILP) problem, where the objective function is to minimize the total transmission 

cost for all multicast groups, subject to multicast tree and data aggregation constraints. 

In the extension model of DCR, besides routing assignment, we also study the 

transmission radius assignment of sensor nodes to further reduce total energy 

consumption. Hence, the energy-efficient data-centric routing problem (EDCR) in 

wireless sensor network could be formally defined as minimizing total power 

consumption subject to reverse-multicast tree, and configurable transmission radius.  

 

Finally, the problem with consideration of data retransmission and the maximum 

end-to-end delay is then formulated as a MILP problem where the objective function is 

to minimize the total energy consumption of constructing the data aggregation tree, 

subject to aggregation tree, transmission radius, data retransmission times, and the 

maximum end-to-end delay constraints. We propose the Lagrangean relaxation scheme, 

in conjunction with the optimization-based heuristics to solve these two problems. 
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From the computational experiments, the proposed solution approaches are superior to 

the existing heuristics. 

 

 

1.5 Thesis Organization 

The remainder of this paper is organized as follows. In Chapter 2, MILP 

formulations of the DCR and EDCR problem are proposed. In Chapter 3, a MILP 

formulation of data-centric wireless sensor networks routing problem with QoS 

constrain and transmission radius assignment is proposed. In Chapter 4, solution 

approaches based on Lagrangean relaxation are presented. In Chapter 5, heuristics are 

developed for calculating good primal feasible solution of these problems. In Chapter 

6, the computational results are reported. Finally, in Chapter 7 we present our 

conclusions and indicate the direction of the future works. 
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Chapter 2  Problem Formulation of DCR 

and EDCR 

2.1 Problem Description 

The problem to be solved is to decide how far the sensor node should turn on its 

transmission radius so that accordance with that corresponding topology the energy 

consumption cost of constructing a data aggregation tree can be minimized. The data 

aggregation tree would be formed after determining the transmission radius of each 

sensor. Each data source node should be assigned exactly one routing path in order to 

transmit sensed data to the sink node. The routing assignment for each data source 

should be carefully chosen, because after determining the routing assignment of all 

data sources, the union of all routing paths will form the data aggregation tree. Two 

factors that significantly affect total energy consumption are considered in DCR and 

EDCR, namely: 

1) Data aggregation capability: as discussed in Chapter 1, data aggregation can 

substantially reduce the total energy consumption as it can incorporate many data 

packets into one single packet while its in-network processing ability is enabled. 

With the total number of aggregate flows increasing, the great benefit derived 

from transmitting fewer data packets would be that less transmission energy is 

needed to transmit data. 

2) Transmission radius assignment: the power consumption function for 

transmitting data is defined as rα + c. We observe that without properly assigning 

a transmission radius to each sensor node on the data aggregation tree, more 

power will be dissipated. 
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2.2 Problem Formulation 

2.2.1 DCR Problem 

A data-centric wireless sensor network is modeled as a graph in which sensors 

are represented as nodes and the arc connecting two nodes indicates that one node is 

within the other’s transmission radius. In WSNs, the transmission power (radius) is 

associated with the physical distance between the source and the destination. Thus, it 

is reasonable to assume that the transmission cost associated with each link is 

identical to the cost of transmission in the opposite direction. By this assumption, the 

total transmission cost of a data aggregation tree is identical to the multicast tree 

transmission cost, where the root is the sink node and the source nodes are 

destinations. In the DCR problem, we consider a topology in which the transmission 

radius of each sensor is fixed. The effects of data retransmission and end-to-end delay 

are not considered in the DCR model. The DCR model can be applied to a scenario 

where sensor nodes can not adjust their transmission radii, and there are few traffic 

flows to be sent such like event-driven applications; hence the effects of data 

retransmission and end-to-end delay can be neglected. The summary of problem 

description of the DCR model is given in Table 2-1. 

Table 2-1. Problem description for DCR problem 

Given:  

 The set of all multicast groups 

 The set of data source nodes for each multicast group 

 The set of all links in the network 

 The set of all candidate paths from the data source to the sink node 
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 Longest hops along shortest path to reach farthest data source for each 

multicast group 

 Transmission cost of each link with respect to energy consumption 

Objective: 

To minimize total transmission cost of the data aggregation tree. 

Subject to: 

 Data aggregation constraint— several data items arriving at the same node will 

be aggregated and the intermediate node will transmit only one aggregated set 

of data. 

 Routing constraint— each data source node should only select one routing path 

to send data back to the sink node. 

 Tree constraint— the union of routing paths of each data source shall be a tree, 

namely, a data aggregation tree.    

To determine:  

 Routing path for each data source 

 Total number of data items on each link 

 Whether or not a link should be on the data aggregation tree 

Table 2-2. Notations of given parameters for the DCR problem  

Given parameters 
Notation Description 

G The set of all multicast groups 
gD  The set of data source nodes for the multicast group g 

L The set of all links on the graph 

gdP  The set of candidate paths from the data source node d to the sink node 
of multicast group g 

gh  The longest distance along the shortest path to reach the farthest data 
source node for the multicast group g 
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la  Unit power aware transmission cost associated with the link l 
plδ  The indicator function, which is 1 if link l is on path p; and 0 otherwise 

n- The set of all outgoing links belonging to the node n  

In this formulation, we generalize the formulation to consider multiple multicast 

groups, i.e., multiple events. Pgd considers all possible paths that source node d of 

multicast group g may use. We do not need to generate these paths in advance. In the 

algorithms proposed in Chapter 5, the arc weight, )( 32
glgdl uu + , on each link l enables 

us to find the shortest path by using the Dijkstra’s algorithm to identify the path used 

by data source d of multicast group g. 

 

The decision variables for the wireless sensor networks routing problem are 

denoted as follows. 

Table 2-3. Notations of decision variables for DCR problem 

Decision Variables 
Notation Description 

lC  Number of data units transmitted through the link l 
gly  1 if the multicast group g uses the link l and 0 otherwise 

gpdx  1 if multicast group g uses path p to reach source node d and 0 otherwise

The data-centric routing problem in wireless sensor networks is then formulated 

as the following combinatorial optimization problem (IP1). 

Objective function: 

                   ZIP1 = min ∑
∈Ll

llCa             (IP1) 

subject to: 

∑
∈

≤
Gg

lgl Cy        Ll ∈∀  (2-1) 

{ }  ,....,3 ,2 ,1 ,0 GCl ∈  Ll ∈∀  (2-2) 
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∑
∈

≤
gdPp

glplgpd yx     δ  Gg ∈∀ , Ll ∈ , gDd ∈   (2-3) 

1   0 orygl =  Gg ∈∀ , Ll ∈  (2-4) 

{ }∑
∈

≥
Ll

gggl Dhy    , max   Gg ∈∀  (2-5) 

∑ ∑
∈ ∈

≤
g gdDd

gl
Pp

gplgpd yDx     δ  Gg ∈∀ , Ll ∈  (2-6) 

∑
∈

=
gdPp

gpdx 1     Gg ∈∀ , gDd ∈  (2-7) 

1    0  orxgpd =  gdPp∈∀ , Gg ∈ , gDd ∈  (2-8) 

1≤∑
−∈nl

gly  Gg ∈∀ , .Nn∈  (2-9) 

The objective function of (IP1) is to minimize the total data transmission cost of 

data aggregation tree, which is equal to the total multicast routing cost. Constraint 

(2-1) requires that the number of multicast groups adopting link l as their multicast 

tree should be less then or equal to the number of data units transmitted through link l. 

Constraint (2-2) requires that number of data units on link l be at most the cardinality 

of G, registering sensor nodes can aggregate data belonging to the same multicast 

group. Constraint (2-3) requires that if one path is selected for the group g destined to 

the destination d, the path must also be on the tree adopted by the multicast group g. 

 

Constraints (2-4) and (2-5) require that number of links on the multicast tree 

adopted by the multicast group g be at least the maximum of hg and the cardinality of 

Dg. Note that both hg and Dg are legitimate lower bounds of the number of links on the 

multicast tree adopted by the multicast group g. For example, if there are two 

destination nodes in multicast group g, then |Dg| is equal to 2. An illustrated example 

is given in Figure 2-1, where the multicast group source node is 1 and the destination 

nodes are 2 and 6. Obviously, hg is 3, since the farthest destination node is node 6, 
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which is three hops away from the source node. From the computational experiments, 

we find that introducing Constraint (2-5) significantly improve the solution quality. 

Note that |Dg| and hg could be calculated in advance. We propose a revised Dijkstra’s 

algorithm, denoted as Calculate_hg, to compute hg for each multicast group g by 

setting each arc weight to be one. 

 

Figure 2-1. An illustrated example of Constraint (2-5) 

Algorithm Calculate_hg 

begin 

    initialize all arc weight to be 1; 

    for g := 1 to |G| do 

      begin 

        initialize hg[g] := 0; 

        for d := 1 to |N| do 

          begin 

            if gDd ∈  then 

              run Dijkstra’s shortest path algorithm to determine hops (hop[d]) 

between sink node and destination d. 

            if hop[d] > hg[g] then hg[g] := hop[d]; 

          end; 

      end; 

  end; 
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The left-hand term of Constraint (2-6) calculates the number of paths destined 

for data source nodes that pass through link l for a multicast group. The right-hand 

term of Constraint (2-6) is at most |Dg|. If the union of the paths destined for the data 

source nodes does exist a cycle, and this cycle contains link l, then Constraint (2-6) 

would not be satisfied, since there would be too many paths to pass through this link. 

In other words, Constraint (2-6) is to restrict that the union of the paths destined for 

data source nodes does not contain a cycle. Constraints (2-7) and (2-8) require that 

any multicast group g selects exactly one routing path destined for its destination d. 

Constraint (2-9) is the outgoing constraint, which means that each node on the 

aggregation tree should only have one outgoing link. By enforcing Constraints (2-6), 

(2-7), (2-8), and (2-9) the union of the routing paths shall be a tree.  
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2.2.2 EDCR Problem 

We first show the notations of EDCR model. 

Table 2-4. Notations of given parameters for EDCR problem 

Given parameters 
Notation Descriptions 

N The set of all sensor nodes 

sqP  The set of all candidate paths that the data source node s connects to the 
sink node q 

S The set of all data source nodes 

h Longest hops of shortest path to reach farthest data source node 

δp(n,k) 
The indicator function which is 1 if the link (n,k) is on the path p and 
otherwise 0 

dnk Euclidean distance between the node n and the node k 
q The data sink node 
Rn The set of all possible transmission radii that the node n can adopt 

)( nn re  Energy consumption function of the node n, which is a function of 
node’s transmission radius 

In EDCR model, we model the link l as the node pair (n,k). n is the origin node 

of the link l and k is the termination node of link l. As the node k is within 

transmission radius of the node n, link (n,k) will exist. The decision variables used in 

EDCR model are denoted as follows. 

Table 2-5. Notations of decision variables for EDCR problem  

Decision Variables 
Notation Descriptions 

nr  Transmission radius of the node n 

),( kny  1 if the link (n,k) is used by the aggregation tree 

spx  1 if the data source node s uses the path p to reach the sink node q 
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The EDCR is then formulated as the following combinatorial optimization 

problem (IP2). 

Objective: 

                   ZIP2 = min ∑
∈ Nn

nn re )(                         (IP2) 

subject to: 

∑
∈

≤
sqPp

knknpsp yx ),(),(     δ  Nkn ∈∀ , , Ss∈   (2-10) 

{ }∑∑
∈ ∈

≥
Nn Nk

kn Shy    , max  ),(  (2-11) 

∑ ∑
∈ ∈

⋅≤
Ss

kn
Pp

knpsp ySx
sq

),(),(     δ   Nkn ∈∀ ,   (2-12) 

1),( ≤∑
∈Nk

kny  Nn∈∀  (2-13) 

nnknk rdy ≤   Nkn ∈∀ ,   (2-14) 

nn Rr ∈   Nn∈∀  (2-15) 

1or    0  ),( =kny   ,n∀ Nk ∈  (2-16) 

1=∑
∈ sqPp

spx   Ss∈∀  (2-17) 

1or    0 =spx   ,Ss∈∀ .sqPp∈  (2-18) 

The objective function of (IP2) is to minimize total power consumption of the 

data aggregation tree for transmitting data to the sink node. Constraint (2-10) requires 

that if one path p is selected for the source node s to reach the sink node q, the path 

must also be on the tree. This constraint also enforces that if the link (n, k) is on the 

path p adopted by source node s to reach sink node, then y(n,k) must be 1. Constraint 

(2-11) and (2-16) require that total number of links on the aggregation tree be at least 

the maximum of h and the cardinality of S. Just as (IP1) in Section 2.2.1, introducing 

constraint (2-11) is to improve the solution quality. 
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Constraint (2-12) is to restrict that the union of the routing paths destined for data 

source nodes contains a cycle just as Constraint (2-6) in (IP1). Constraint (2-13) is the 

outgoing link constraint. All intermediate nodes on the aggregation tree should have 

only one outgoing link (e.g. node 4 has two incoming link and only one outgoing link 

in Fig. 1-4(a)). Constraint (2-17) and (2-18) require that any data source adopts only 

one path destined for sink node in aggregation tree. By enforcing Constraints (2-12), 

(2-13), (2-17), and (2-18) the union of the paths shall be a reverse multicast tree. 

 

Constraint (2-14) is a transmission radius coverage constraint. This constraint 

enforces that if the link (n,k) is used by aggregation tree, the transmission radius of 

node n should be large enough in order to cover node k. Constraint (2-15) indicates 

the set of possible transmission radii for sensor node, which is a discrete and finite set. 

By enforcing Constraints (2-14) and (2-15), we ensure that every link on the 

aggregation tree is covered within the transmission radius of the origin node of the 

link. 

 

After presenting the mathematical formulation of the EDCR model, we could 

summarize the major difference between the DCR and EDCR model. In the DCR 

model, after the maximum transmission radius is given, the topology of whole 

network can be constructed. Hence, the data centric aggregation algorithm developed 

for DCR model could also be applied to wired sensor network when al represents the 

link cost of physical link. On the other hand, in the EDCR model, the transmission 

radius of sensor node is also a decision variable. In other words, network topology 

needs to be determined by the transmission radius assignment of the sensor node. 

Such transmission radius assignment makes EDCR model more general than the DCR 

model. 
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Chapter 3  Data Aggregation Tree with 

QoS Routing 

3.1 Problem Description 
The problem to be solved is to decide how far the sensor node should turn on its 

transmission radius so that accordance with the corresponding topology the total 

energy consumption for constructing a data aggregation tree can be minimized. The 

data aggregation tree is formed after determining the transmission radius of each 

sensor. Each data source node should be assigned exactly one routing path in order to 

transmit sensed data to the sink node. The routing assignment for each data source 

should be carefully chosen, because after determining the routing path of all data 

sources, the union of all routing paths will form the data aggregation tree. Three 

factors that significantly affect total energy consumption are considered in this model, 

namely: 

1) Data aggregation capability: as discussed in Chapter 1, data aggregation can 

substantially reduce the total energy consumption as it can incorporate many data 

packets into one single packet while its in-network processing ability is enabled. 

With the total number of aggregate flows increasing, the great benefit derived 

from transmitting fewer data packets would be that less transmission energy is 

needed to transmit data. 

2) MAC layer retransmission: interference in wireless communication and the 

hidden terminal problem play important roles in packet retransmission times as 

well as increasing energy consumption. In wireless communication, data 

retransmission times are affected by the total number of sensor nodes whose 

transmission radius covers the receiver. The more flows that the intermediate 
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node on the aggregation tree are aggregated, the higher the probability that the 

sender will incur data retransmissions. Thus, it would be more appropriate to take 

the MAC layer retransmission times into account when deciding the transmission 

radius of a sensor and constructing an aggregation tree in wireless sensor 

networks. 

3) End-to-end delay from the leaf node to the sink node: aggregation extends 

the delay at the relay nodes and can thus complicate the handling of 

latency-constrained data [20, 23]. We analyze the delay metric and apply it to this 

model. Moreover, we think of end-to-end delay as an energy consumption factor, 

since sensor nodes operating in idle mode also consume a lot of energy [13]. 

 

Figure 3-1. Tradeoff between data aggregation and data 
retransmission times 
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Figure 3-1 shows the tradeoff between the benefit of aggregating as many flows 

as possible and the cost of retransmitting data as the number children nodes on the 

aggregation tree increases. Obviously, when node S, which is the receiver of three 

children nodes, aggregates more flows sent from other nodes, each sender will suffer 

severe collisions resulting in more retransmission times in order to send data 

successfully to the receiver. Collisions at the receiver side are a characteristic of 

wireless transmissions and a cardinal issue that affects the energy consumption of 

sensor nodes when transmitting data to the sink node. In this paper, we discuss the 

impacts on retransmission of aggregating data, and achieve the balance between 

aggregating benefits and data retransmission costs. 

 

The analysis of retransmission is conducted as follows. First of all, we assume 

that each sensor node is equipped with a CSMA-CA compatible transceiver. Based on 

the analysis in [15], we derive the mean retransmission time of a sender. Our 

perspective is that each transmission conforms to Geometric distribution and each 

sensor node generates data packets that follow Poisson distribution with a certain rate, 

λ. Successful transmission of data from a sender to a receiver is influenced by the 

number of sensor nodes whose transmission radius covers the receiver. As shown in 

Figure 3-1, we find that node S is covered by four sensor nodes where three of them 

are its children nodes and another is the neighbor node. By considering the receiver 

side collisions in terms of the communication radius of sensor nodes, the hidden 

terminal problem is also implicitly contemplated. We then derive the probability of 

successfully transmitting data from node n to node k is: 

Average Retransmission Times(n,k) .11
)2(

),(
∑

==
∈

++−
Nj

jkzSIFSRTS
knsuccess e

p θλ   (3-1) 
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The definitions of notations are given in Section 3.2. The meaning of (3-1) is the 

mean value of the Geometric distribution where the successful transmission 

probability, say psuccess, is that no data transmission is occurring at any node whose 

transmission radius covers receiver node k within the interval of RTS + SIFS + 2θ. 

 

Figure 3-2. Tradeoff between maximum end-to-end delay and 
transmission radius 

    Figure 3-2 shows the tradeoff between maximum end-to-end delay and 

transmission radius in data aggregation tree. In Figure 3-2 (a) we can observe that the 

maximum end-to-end delay is higher than (b), but the transmission radius of most 

sensors in (a) is smaller than (b). On the other hand, the maximum end-to-end delay is 

low in (b), but the average of transmission radius is large. As the total energy 

consumption of data aggregation tree is sum of transmitting energy and idle energy, 

we should construct the data aggregation tree that balances the energy consumption 

caused by maximum end-to-end delay and data transmission. 
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3.2 Problem Formulation 
In this section, we consider a topology that transmission radius of each sensor 

should be determined and effects of retransmission and end-to-end delay are 

considered. This model can be applied to periodic application scenario where each 

sensor periodically reports information to the sink node. Besides the energy 

consumption of data retransmissions, end-to-end delay for each sensor should be 

considered as another energy consumption factor under periodic application. Before 

aggregating data coming from children nodes, each sensor nodes must defer its data 

transmission until all data are received. During the waiting time sensor operates in 

idle mode in which considerable energy would be consumed. Therefore, it is 

reasonable to take end-to-end delay as an energy consumption factor. In this problem 

total energy consumption, including data transmission, retransmission, and operating 

energy in idle mode, is minimized. The summary of problem description is listed as 

below. 

Table 3-1. Problem description for the model with QoS routing  

Given:  

 The set of all sensor nodes 

 The set of all candidate paths for each data source to reach sink node 

 The set of all data sources 

 Longest hops along shortest path from sink node to reach farthest data source 

 An arbitrary large number M 

 The maximum end-to-end delay B 

 The maximum number of retransmission times T on each link 

 Distance between each sensor node 
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 Transmission time for transmitting one data packet 

 Transmission time for RTS, CTS, ACK frame 

 Waiting time for SIFS, DIFS 

 Average packet arrival rate for each sensor node on data aggregation tree 

 Maximum propagation delay for transmission data packet 

 The sink node q  

 The set of all possible transmission radii that a sensor node can adopt 

 Energy consumption function whish is a function of sensor node’s transmission 

radius 

Objective:  

To minimize total energy consumption on data aggregation tree 

Subject to:  

 Routing constraint — each data source node should only select one routing 

path to send data back to the sink node. 

 Tree constraint — the combination of routing path of each data source shall be 

a tree, namely data aggregation tree. 

 Retransmission constraint — for data transmission on each link, there would be 

a certain retransmissions in order to transmit data successfully. 

 Maximum end-to-end delay constraint — the maximum end-to-end delay of 

each sensor nodes on data aggregation tree should be minimized in order  to 

    conserve energy consumption while sensor operates in idle mode. 

 Number of neighbors constraint — the total number of sensor nodes whose 

transmission radius covers a sensor node should be considered. 

To determine:  

 Routing path for each data source 

 Transmission radius for each sensor node 
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 Whether a link should be on the data aggregation tree 

 Maximum end-to-end delay for each sensor node on data aggregation tree 

 The data aggregation tree 

 

Table 3-2. Notations of given parameters for model with QoS routing  

Given Parameters 
Notation Description 

N The set of all sensor nodes 
Psq The set of all candidate paths that the data source node s connect to 

the sink node q 
S The set of all data source nodes 
h  Longest distance of shortest path to reach farthest data source node 
M An arbitrary large number, 1≥M  
A Maximum link delay 
B Maximum end-to-end delay 
δp(n,k) The indicator function which is 1 if the link (n, k) is on the path p and 

0 otherwise 
dnk Euclidean distance between the node n and the node k 
tdata Transmission time for transmitting a data packet 
RTS Transmission time for RTS frame 
CTS Transmission time for CTS frame 
SIFS Short inter-frame space time 
DIFS Distributed inter-frame space time 
Θ Maximum propagation delay for transmitting data packet 
λ  Packet arrival rate 
q  The sink node 
Rn The set of all possible transmission radii that the node n can adopt, 

this is a discrete set 
)( nn re  Energy consumption function of the node n, which is a function of 

sensor’s transmission radius 
Eidle Energy consumption when sensor nodes are operating in idle mode 

B  Average random backoff time 
N  Average network allocation vector (NAV) 
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Table 3-3. Notations of decision variables for model with QoS routing 

Decision Variables 
Notation Descriptions 

xsp 1 if the data source node s uses the path p to reach the sink node q 
y(n,k) 1 if the link (n, k) is on the tree 
rn Transmission radius of the node n 

l(n,k) Data transmission delay from the node n to the node k 
mn Maximum end-to-end delay from leaf nodes to the node n on data 

aggregation tree 
znk 1 if the node k is covered within transmission radius of the node n 
cnk Retransmission times of the node n to transmit data to the node k 

 

Objective function:  

            ZIP3 = idlen
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⎠
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The objective function of (IP3) is to minimize total energy consumption of the 

data aggregation tree for transmitting data to sink node and waiting for data 

aggregation. Constraint (3-2) requires that if the path p is selected for the source node 

s to reach the sink node q, the path must be on the tree. This constraint also enforces 

that if the link (n, k) is on the path p adopted by the source node s to reach the sink 

node, then y(n,k) must be 1. Constraint (3-3) and (3-14) require that total number of 

links on the aggregation tree is at least the maximum of h and the cardinality of S. 

Note that both h and |S| are legitimate lower bound on the total number of links on a 

aggregation tree. Introducing constraint (3-3) will significantly improve the solution 

quality. |S| and h could be calculated in advance. The explanation of this legitimate 
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lower bound is shown in Figure 2-1. 

 

The left-hand term of constraint (3-4) calculates the number of paths, which are 

destined for the sink node and passing through the link l on aggregation tree. The 

right-hand term of constraint (3-4) is at most |S|. When the union of the paths destined 

for the sink node does exist a cycle, and this cycle contains link l, then constraint (3-4) 

would not be satisfied since there would be many paths pass through this link. 

Constraint (3-5) and (3-13) require that any data source adopts only one routing path 

destined for sink node. Constraint (3-6) is the outgoing link constraint. All 

intermediate nodes on the aggregation tree should have only one outgoing link. The 

illustrative example of constraint (3-6) is shown in Figure 3-3. Constraint (3-4), (3-5), 

(3-6), and (3-13) enforce that the union of all routing paths would be a tree. 

 

Figure 3-3. An illustrative example of constraint (3-6).  

 

Constraint (3-7) and (3-8) are the number of neighbors constraints. If knn dr ≥ , 

znk should be equal to 1 and 0 otherwise. Using znk we can calculate the total number 

of sensor nodes whose transmission covers sensor node k, or the total number of 

sensor nodes covered by transmission radius of sensor node n. These two constraints 

Sink 

s s s 

s s 
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are complementary as shown in Table 3-4. By jointly enforcing constraint (3-7) and 

(3-8) we can model the relationship described above through decision variable znk. 

Table 3-4. Explanation of constraint (3-7) and (3-8).  

Constraint 

Condition 

Constraint (3-7) Constraint (3-8) 

If knn dr ≥  znk  = 1 znk  = 0 or 1 

If knn dr <  znk  = 0 or 1 znk  = 0 

Constraint (3-9) is a necessary constraint that relates decision variable y(n,k) to 

znk. If y(n,k) equals to 1 then znk also must be 1. Also note that constraint (3-9) 

implicitly obligates that if sensor nodes were not on the data aggregation tree, they 

would not choose any link emanating from them as a link used by data aggregation 

tree, since this behavior would increase the cost of objective function (IP3). 

Constraint (3-10) is the maximum end-to-end delay from leaf nodes of the 

aggregation tree to intermediate node n. Data aggregation schema in WSNs has a 

major characteristic that intermediate node on tree should wait a suitable delay time 

for aggregating all data items coming from children which may have subtree rooted at 

itself. This is a recursive relation between an intermediate node and its children nodes. 

Therefore, the maximum end-to-end delay of intermediate node n on aggregation tree 

is the maximum delay of its children plus link delay. This recursive relation then goes 

down along the tree until leaf nodes are reached. The illustration of maximum 

end-to-end delay is shown in Figure 3-4. 
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Figure 3-4. Illustrative example of Constraint (3-10). 

Constraint (3-11) is the calculation function of link transmission delay. 

Constraint (3-12) is the calculation function of link retransmission times. Constraint 

(3-16) restricts that the set of possible transmission radii that node n can adopt is 

discrete and finite set. Constraint (3-17) enforces that each data source node should 

turn on its transmission radius. The transmission radius of each source node can not 

be 0. Constraint (3-18) is the bounding constraint of retransmission times. The 

bounding value is related to maximum end-to-end delay or can be obtain according to 

specification of standard. Constraint (3-19) is the lower bound and upper bound of 

maximum end-to-end delay. Constraint (3-20) enforces the bounding constraint on the 

transmission delay of each link. 

 

For convenience of applying our solution approach to this model, we make some 

transformations on constraint (3-11) and (3-12) in order to make (IP3) solvable. 
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Constraint (3-11) can be approximated by: 
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    By adopt this function to approximate original delay function, we can guarantee 

that the error under five percent can be achieved. In addition to small error, the 

approximation function overestimates the link delay which means a good 

approximation from the perspective of engineering. The comparison of approximate 

and original function is depicted in Appendix. 

 

    We then take natural logarithm on both sides in order to make this function 

solvable. 
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    For constraint (3-12), we take natural logarithm on both side: 
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3.3 Extension to the Model without Aggregation 

    In some application scenarios of wireless sensor networks, the data sink node 

needs all sensed data of interest. Therefore, data is not necessary to be aggregated 

during data transmission. The model of data aggregation with QoS routing can be 

easily extended to the model without aggregation capabilities, where data will not be 

aggregated in intermediate nodes. It only requires additional flow conservation 

constraints in order to transform original model into extended model. The flow 

conservation constraint is as follows: 

∑ ∑ ∑∑ ∑ ∑
∈ ∈ ∈∈ ∈ ∈

=
Ss Pp Nj

jnpsp
Ss Pp Nk

nkpsp
sqsq

xx ),(),( δδ  Nn∈∀  (3-23) 

    Constraint (3-22) is flow conservation constraint. The meaning of constraint 

(3-23) is that the total incoming flows of each node should equal to the total outgoing 

flows. With constraint (3-23) we can restrict that each sensor node needs to send all 

received data to its parent node without any aggregation operation. In addition to flow 

conservation constraint, the objective function should be modified slightly in order to 

reflect more energy consumption due to no aggregation during data transmission. The 

modified objective function is as follows: 
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    By adding above constraints and modifications, we can transform the original 

model into the model without aggregation capabilities. 
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Chapter 4  Solution Approach 

4.1 Lagrangean Relaxation Method 

One of the most computationally useful ideas in the 1970s is the observation that 

many hard integer programming problems can be viewed as easy problems 

complicated by a relatively small set of side constraints. This technique is so-called 

decomposition which is an invaluable methodology to conquer many complicated 

problems in the field of computer science, industrial engineering, and operation 

research. Lagrangean relaxation method is one of the decomposition techniques. By 

dualizing the side, or complicated, constraints we form a Lagrangean relaxation 

problem that is easy to solve and whose optimal value is a lower bound (for the 

minimization problem) on the optimal value of the original problem. To obtain the 

best lower bound, we need to choose the appropriate Lagrangean multiplier for 

Lagrangean multiplier problem so that the optimal value of the Lagrangean 

subproblem is as large as possible. We can solve the Lagrangean multiplier problem in 

a variety of ways. The subgradient optimization technique is possibly the most 

popular technique for solving the Lagrangean multipliers problem. 

 

By decomposing the original problem into several easily solvable subproblems, 

Lagrangean relaxation can solve the subproblems that we have decomposed as 

stand-alone problems. In decomposed problems, Lagrangean relaxation solves core 

subproblems as stand-alone models. This solution approach permits us to exploit any 

well-know efficient algorithm for solving the subproblems. The Lagrangean 

relaxation method, therefore, can be used to solve optimization problems such as 

integer programming, non-linear programming, mixed integer linear programming, 
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and combinatorial optimization problems. This approach has led to dramatically 

improve algorithms for a large number of critical and difficult problems in the areas 

of routing assignment, location, scheduling assignment and set covering. 

 

Figure 4-1 illustrates the procedure of Lagrangean Relaxation, while Figure 4-2 

shows the detailed procedure of Lagrangean relaxation. 
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Figure 4-1. An illustration of Lagrangean relaxation  
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Figure 4-2. Detailed Lagrangean relaxation procedure  
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4.2 DCR Problem 

4.2.1 Solution Approach 

The algorithm development is based upon Lagrangean relaxation. In (IP1), by 

introducing Lagrangean multiplier vector u1,u2,u3, we dualize Constraints (2-1), (2-3) , 

and (2-6) to obtain the following Lagrangean relaxation problem (LR1). 

4.2.2 Lagrangean Relaxation 

ZD1(u1,u2,u3) = min∑ ∑ ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈ ∈ ∈

−+−+
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subject to: 

{ }  ,....,3 ,2 ,1 ,0 GCl ∈  Ll ∈∀  (4-1) 
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gggl Dhy    , max  Gg ∈∀  (4-3) 

∑
∈

=
gdPp
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1    0 orxgpd =   Gg ∈∀ , gDd ∈ , gdPp∈  (4-5) 
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gly  Gg ∈∀ , .Nn∈  (4-6) 

 

We can decompose (LR1) into three independent subproblems. 
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Subproblem 4-1 (related to decision variable lC )  

min l
Ll

ll Cua  )( 1∑
∈

−  (SUB4-1) 

subject to: 

{ }  ,....,3 ,2 ,1 ,0 GCl ∈   Ll ∈∀ . (4-1) 

(SUB4-1) can be further decomposed into |L| independent subproblems. For each 

link l, 

min lll Cua )( 1−   (SUB4-1-1) 

subject to: 

{ }  ,....,3 ,2 ,1 ,0 GCl ∈ . 

If coefficient of link l )( 1
ll ua −  is negative then set Cl to be |G| otherwise 0. 

The computational complexity of (SUB4-1) is )1(O  for each link l. 

Subproblem 4-2 (related to decision variable gly )  
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subject to: 

1    0 orygl =  Gg ∈∀ , Ll ∈  (4-2) 
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gggl Dhy    , max  Gg ∈∀  (4-3) 
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gly  Gg ∈∀ , Nn∈ . (4-6) 

(SUB4-2) can be further decomposed into |G| independent subproblems. For 

each multicast group g, 

min gl
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subject to: 

1    0 orygl =   Ll ∈∀  

{ }∑
∈

≥
Ll

gggl Dhy   , max   

1≤∑
−∈nl

gly  Nn∈ .  

The proposed algorithm for solving (SUB4-2) is described as follows: 

Step 1. Compute the number of negative coefficients for all links where the 

coefficient for each link l is ∑
∈

−−
gDd

gdlggll uDuu 231 || . 

Step 2. If the number of negative coefficients is greater than max{hg, |Dg|} for 

each multicast group g, then set each ygl whose corresponding coefficient 

is negative to 1 otherwise 0. 

Step 3. If the number of negative coefficients, say n, is less then max{hg, |Dg|} for 

multicast group g, then first let each ygl whose corresponding coefficient 

is negative be 1. Second, assign the (max{hg, |Dg|} n− ) number of ygl to 

be 1 whose corresponding coefficients is the smallest positive values. 

Third, let the remaining ygl be 0. 

Step 4. For each sensor node n, check that only one outgoing link ygl can be set to 

1. If there are more than one outgoing link set to 1, choose the link with 

smaller coefficient. After investigating the outgoing link constraint if the 

total number of ygl set to 1,say k, are smaller than max{hg, |Dg|}, assign 

the (max{hg, |Dg|} k− ) number of ygl to be 1 whose corresponding 

coefficients is the smallest values and has not been set to 1 before. 

Continue step 4 until constraint (4-3) is satisfied. 

The computational complexity of above algorithm is ( )|)|log|(||| LDLO g +  

for each multicast group g. 
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Subproblem 4-3 (related to decision variable gdpx )  

min ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

+
Gg Dd Ll Pp

gpdglgdl
g gd

xuu )( 32  (SUB4-3) 

subject to: 

∑
∈

=
gdPp

gpdx 1 Gg ∈∀ , gDd ∈  (4-4) 

1    0 orxgpd =  Gg ∈∀ , gDd ∈ , gdPp∈ . (4-5) 

(SUB4-3) can be further decomposed into ∑
∈Gg

gD ||  independent shortest path 

problems with nonnegative arc weight. For each shortest path problem it can be 

effectively solved by Dijkstra’s algorithm. The computational complexity of 

Dijkstra’s algorithm is )|(| 2NO  for each destination of the multicast group. 

4.2.3 The Dual Problem and the Subgradient Method 

According to the algorithms proposed above, we could effectively solve the 

Lagrangean relaxation problem optimally. Based on the weak Lagrangean duality 

theorem (for any given set of nonnegative multipliers, the optimal objective function 

value of the corresponding Lagrangean relaxation problem is a lower bound on the 

optimal objective function value of the primal problem [1]), Z D1(u1,u2,u3) is a lower 

bound on ZIP1. We construct the following dual problem to calculate the tightest lower 

bound and solve the dual problem by using the subgradient method [1]. 

Dual Problem (D1): 

( )321
11 , , max uuuZZ DD =  (D1) 

subject to: .0, , 321 ≥uuu  
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Let the vector S be a subgradient of Z D1(u1,u2,u3) at (u1,u2,u3). In iteration k of 

the subgradient optimization procedure, the multiplier vector mk = (u1k,u2k,u3k) is 

updated by mk+1 = mk + αkSk, where =),,( 321 uuuS k ,(∑
∈

−
Gg

lgl Cy  

,∑
∈

−
gdPp

glplgpd yx δ ∑ ∑
∈ ∈

−
g gdDd Pp

plgpdx δ )|| glg yD . 

The step size αk is determined by 2
11

||||
)(

k

k
D

k
IP

S
mZZ −

δ , where k
IPZ  is the best 

primal objective function value found by iteration k (an upper bound on the optimal 

primal objective function value), and δ is a constant ( 20 ≤≤ δ ). 

 

 

4.3 EDCR Problem 

4.3.1 Solution Approach  

The algorithm development is based upon Lagrangean relaxation. In (IP2), by 

introducing Lagrangean multiplier vector v1,v2,v3, we dualize Constraints (2-10), 

(2-12) ,and (2-14) to obtain the following Lagrangean relaxation problem (LR2). 

4.3.2 Lagrangean Relaxation 

ZD2(v1,v2,v3) = min ∑ ∑ ∑ ∑∑
∈ ∈ ∈ ∈∈

−+
Nn Nk Ss Pp

knknpspskn
Nn

nn
sq

yxvre )()( ),(),(
1

),( δ  

)||( ),(),(
2

),( kn
Nn Nk Ss Pp

knpspkn ySxv
sq

⋅−+ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

δ   

)( ),(
3

),( n
Nn Nk

nkknkn rdyv −+ ∑∑
∈ ∈

 (LR2) 

subject to: 
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{ }∑∑
∈ ∈

≥
Nn Nk

kn Shy    , max  ),(  (4-7) 

1),( ≤∑
∈Nk

kny  Nn∈∀  (4-8) 

nn Rr ∈   Nn∈∀  (4-9) 

1or    0  ),( =kny   ,n∀ Nk ∈  (4-10) 

1=∑
∈ sqPp

spx   Ss∈∀  (4-11) 

1or    0 =spx  ,Ss∈∀ sqPp∈ . (4-12) 

We can decompose (LR2) into three independent subproblems. 

 

Subproblem 4-4 (related to decision variable nr )  

min  ))(( 3
),(∑ ∑

∈ ∈

−
Nn Nk

knnnn vrre  (SUB4-4) 

subject to: 

nn Rr ∈  Nn∈∀ . (4-9) 

(SUB4-4) can be further decomposed into || N  independent subproblems. For 

each node n, 

min ∑
∈

−
Nk

knnnn vrre 3
),()(   (SUB4-4-1) 

subject to: 

nn Rr ∈ .  

Since Rn is a finite and discrete set, we can examine all possible transmission 

radii of node n to identify the smallest value of the objective function. The 

computational complexity of (SUB4-4) is |)(| nRO  for each node n. 
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Subproblem 4-5 (related to decision variable ),( kny )  

min ),(
1

),(
2

),(
3

),( )||( kn
Nn Ss

skn
Nk

knnkkn yvSudv∑ ∑∑
∈ ∈∈

−−  (SUB4-5) 

subject to: 

{ }∑∑
∈ ∈

≥
Nn Nk

kn Shy    , max  ),(  (4-7) 

1),( ≤∑
∈Nk

kny  Nn∈∀  (4-8) 

1or    0  ),( =kny  ,n∀ Nk ∈ . (4-10) 

The proposed algorithm for solving (SUB4-5) is described as follows: 

Step1. For each link (n,k) compute the coefficient ∑
∈

−−
Ss

sknknnkkn vSvdv 1
),(

2
),(

3
),( ||  

for each y(n,k). 

Step2. For all outgoing links of node n, find the smallest coefficient. If the 

smallest coefficient is negative then set the corresponding y(n,k) to be 1 and 

the other outgoing links y(n,k) to be 0, otherwise set all outgoing link y(n,k) to 

be 0. Repeat step 2 for all nodes. 

Step3. If the total number of y(n,k) whose value is 1 (denote as T) are smaller than 

max{h, |S|}, then identify the nodes that have all its outgoing links y(n,k) = 0. 

From these identified nodes, selected (max{h, |S|}−T) number of these 

identified nodes whose corresponding smallest coefficients are the smallest. 

Then, assign the outgoing link y(n,k) = 1 with the smallest coefficient for 

each of these selected nodes.  

The computational complexity of above algorithm is )|(| 2NO . 
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Subproblem 4-6 (related to decision variable spx )  

min ∑∑∑ ∑
∈ ∈ ∈ ∈

+
Nn Nk Ss Pp

knpspknskn
sq

xvv ),(
2

),(
1

),( )( δ  (SUB4-6) 

subject to: 

1=∑
∈ sqPp

spx  Ss∈∀  (4-11) 

1or    0 =spx  ,Ss∈∀ sqPp∈ . (4-12) 

    (SUB4-6) can be further decomposed into |S| independent shortest path problems 

with nonnegative arc weight whose value is 2
),(

1
),( knskn vv + . For each shortest path 

problem it can be effectively solved by Dijkstra’s algorithm. The computational 

complexity of Dijkstra’s algorithm is )|(| 2NO  for each source node. 

4.3.3 The Dual Problem and the Subgradient Method 

According to the algorithms proposed above, we could effectively solve the 

Lagrangean relaxation problem optimally. Based on the weak Lagrangean duality 

theorem (for any given set of nonnegative multipliers, the optimal objective function 

value of the corresponding Lagrangean relaxation problem is a lower bound on the 

optimal objective function value of the primal problem [1]), ZD2(v1,v2,v3) is a lower 

bound on ZIP2. We construct the following dual problem to calculate the tightest lower 

bound and solve the dual problem by using the subgradient method [1]. 

Dual Problem (D2): 

( )321
22 , , max vvvZZ DD =  (D2) 

subject to: .0, , 321 ≥vvv  
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Let the vector S be a subgradient of Z D2(v1,v2,v3) at (v1,v2,v3). In iteration k of the 

subgradient optimization procedure, the multiplier vector mk = (v1k,v2k,v3k) is updated 

by mk+1 = mk + αkSk, where =),,( 321 vvvS k ,( ),(),(∑
∈

−
sqPp

knknpsp yx δ  

,|| ),(),( kn
Ss Pp

knpsp ySx
sq

⋅−∑ ∑
∈ ∈

δ )),( nnkkn rdy − . The step size αk is determined by 

2
22

||||
)(

k

k
D

k
IP

S
mZZ −

δ , where k
IPZ  is the best primal objective function value found by 

iteration k (an upper bound on the optimal primal objective function value), and δ is a 

constant ( 20 ≤≤ δ ) 
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4.4 Data Aggregation Tree with QoS Routing 

4.4.1 Solution Approach 

Before applying Lagrangean relaxation to this model, we replace constraint (3-11) 

and (3-12) by (3-21) and (3-22), respectively. The development of algorithm is based 

upon Lagrangean relaxation. In (IP3), by introducing Lagrangean multiplier vector u1, 

u2, u3, u4, u5, u6, u7, and u8, we dualize Constraints (3-2), (3-4), (3-7), (3-8), (3-9), 

(3-10), (3-11), and (3-12) to obtain the following Lagrangean relaxation problem 

(LR3). 

4.4.2 Lagrangean Relaxation 

ZD3(u1,u2,u3,u4,u5,u6,u7,u8) = ∑∑ ∑
∈∈ ∈

⋅+⋅⎟
⎠

⎞
⎜
⎝

⎛
⋅+

Nn
idlen

Nn
nn

Nk
nk EmrecRTS )()(t min data  +  

∑∑∑ ∑
∈ ∈ ∈ ∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Nn Nk Ss Pp
knknpspnks

sq

yxu ),(),(
1 δ  + ∑∑ ∑ ∑

∈ ∈ ∈ ∈
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Nn Nk Ss Pp
knknpspnk

sq

ySxu ),(),(
2 ||δ  + 

∑∑
∈ ∈

−−
Nn Nk

nknknnk Mzdru )(3  + ∑∑
∈ ∈

−
Nn Nk

nnknknk rdzu )(4  +  ∑∑
∈ ∈

−
Nn Nk

nkknnk zyu )( ),(
5  + 

( )∑∑
∈ ∈

−−−+
Nn Nk

nnknkkkn myAlmu )1( ),(),(
6  + 

( )
+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−+++

+++++

∑∑ ∑

∑

∈ ∈
∈

∈

Nn Nk kn
Nj

jk

Nj
jn

nk lzSIFSRTS

zCTSSIFSRTS
u

)ln()2(

017.0115.0330ln

),(

7

θλ

∑∑ ∑
∈ ∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−++

Nn Nk
nkkn

Nj
jknk cyMzSIFSRTSu )ln()1()2( ),(

8 θλ  (LR3) 

subject to:  

|}S| ,max{),( hy
Nn Nk

kn ≥∑∑
∈ ∈

  (4-13) 
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1=∑
∈ sqPp

spx  Ss∈∀  (4-14) 

1),( ≤∑
∈Nk

kny  Nn∈∀  (4-15) 

1or    0 =spx  ,Ss∈∀ sqPp∈  (4-16) 

1or    0  ),( =kny  ,n∀ Nk ∈  (4-17) 

1or    0 =nkz  ,n∀ Nk ∈  (4-18) 

nn Rr ∈  Nn∈∀  (4-19) 

0≠nr  Sn∈∀  (4-20) 

}2,...., 1, ,0{ Tcnk ∈  ,n∀ Nk ∈  (4-21) 

0≥≥ nmB  Nn∈∀  (4-22) 

)330(115.0
),( +++⋅≥≥ CTSSIFSRTSelA kn  ,n∀ Nk ∈ . (4-23) 

    We can decompose (LR3) into six independent subproblems. 
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Subproblem 4-7 (related to decision variable nm )  

min ∑∑∑
∈ ∈∈

−+⋅
Nn Nk

nkkn
Nn

idlen mmuEm )(6  (SUB4-7) 

subject to: 

0≥≥ nmB  Nn∈∀ . (4-22) 

    We rewrite the objective function of (SUB4-7) into another form so that this 

subproblem can be efficiently solved. 

Transformation: 

    

.

)(

66

66

66

6

n
Nn Nk

kn
Nk

nkidle

Nn
n

Nk
kn

Nk
nk

Nn
idlen

Nn Nk
nkn

Nn Nk
kkn

Nn
idlen

Nn Nk
nkkn

Nn
idlen

muuE

muuEm

mumuEm

mmuEm

∑ ∑∑

∑ ∑∑∑

∑∑∑∑∑

∑∑∑

∈ ∈∈

∈ ∈∈∈

∈ ∈∈ ∈∈

∈ ∈∈

⎟
⎠

⎞
⎜
⎝

⎛
−+=

⎟
⎠

⎞
⎜
⎝

⎛
−+⋅=

−+⋅=

−+⋅

 

    After transforming the objective function, we can now decompose (SUB-4-7) 

into |N| independent subproblems. For each node n, 

                  min n
Nk

kn
Nk

nkidle muuE ⎟
⎠

⎞
⎜
⎝

⎛
−+ ∑∑

∈∈

66   (SUB4-7-1) 

subject: 

0≥≥ nmB  

    For each (SUB4-7-1) subproblem, we check the coefficient 

∑∑
∈∈

−+
Nk

kn
Nk

nkidle uuE 66  of each node n. If the coefficient of node n is negative then set 

mn to be B, otherwise 0. The computational complexity of (SUB4-7) is )1(O  for each 

node n. 
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Subproblem 4-8 (related to decision variable ),( kny )  

min ∑∑∑
∈∈ ∈

−−++
Ss

knnks
Nn Nk

nknknknk yuSuMuAuu ),(
12865 ) ||(  (SUB4-8) 

subject to: 

∑∑
∈ ∈

≥
Nn Nk

kn hy |}S| ,max{),(   (4-13) 

1),( ≤∑
∈Nk

kny  Nn∈∀  (4-15) 

1or    0  ),( =kny  ,n∀ Nk ∈ . (4-17) 

The proposed algorithm for solving (SUB4-8) is described as follows. 

    Step1.For each link (n,k) compute the coefficient 

∑
∈

−−++
Ss

nknknknknk uSuMuUuu 12865 ||  for each y(n,k). 

Step2. For all outgoing links of node n, find the smallest coefficient. If the 

smallest coefficient is negative then set the corresponding y(n,k) to be 1 and 

the other outgoing links y(n,k) to be 0, otherwise set all outgoing link y(n,k) to 

be 0. Repeat step 2 for all nodes. 

Step3. If the total number of y(n,k) whose value is 1 (denoted as T) are smaller 

than max{h, |S|}, then identify the nodes that have all its outgoing links 

y(n,k) = 0. From these identified nodes, selected (max{h, |S|} − T) number 

of these identified nodes whose corresponding smallest coefficients are the 

smallest. Then, assign the outgoing link y(n,k) = 1 with the smallest 

coefficient for each of these selected nodes.  

The computational complexity of above algorithm is )|(| 2NO . 
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Subproblem 4-9 (related to decision variable spx )  

min ∑∑∑ ∑
∈ ∈ ∈ ∈

+
Nn Nk Ss Pp

knpspnknks
sq

xuu ),(
21 )( δ  (SUB4-9) 

subject to: 

1=∑
∈ sqPp

spx  Ss∈∀  (4-14) 

1or    0 =spx  ,Ss∈∀ sqPp∈ . (4-16) 

(SUB4-9) can be further decomposed into |S| independent shortest path problems 

with nonnegative arc weight whose value is 21
nknks uu + . For each shortest path 

problem it can be effectively solved by Dijkstra’s algorithm. The computational 

complexity of Dijkstra’s algorithm is )|(| 2NO  for each source node. 

Subproblem 4-10 (related to decision variable nr and nkc )  

min ∑ ∑∑∑∑
∈ ∈ ∈∈∈

−+⋅+⋅
Nn Nn Nk

nnknk
Nk

nknn
Nn

datann ruucreRTStre )()()( 43  

∑∑
∈ ∈

−
Nn Nk

nknk cu )ln(8  (SUB4-10) 

subject to: 

nn Rr ∈  Nn∈∀  (4-19) 

0≠nr  Sn∈∀  (4-20) 

}2,...., 1, ,0{ Tcnk ∈  ,n∀ Nk ∈ . (4-21) 

(SUB4-10) can be further decomposed into || N  independent subproblems. For 

each node n, 

min ∑∑∑
∈∈∈

−−+⋅+⋅
Nk

nknk
Nk

nknkn
Nk

nknndatann cuuurcreRTStre )ln()()()( 843  

(SUB4-10-1) 

subject to: 
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nn Rr ∈  

0≠nr  Sn∈  

}2,...., 1, ,0{ Tcnk ∈  Nk ∈∀ . 

    Each (SUB4-10-1) subproblem can be optimally solved by exhaustively 

searching the combination of radius rn and cnk. The computational complexity of 

(SUB4-10) is |)||(| TRO n ×  for each node n. 

Subproblem 4-11 (related to decision variable nkz ) 

min 
( )

∑ ∑∑∑∑∑

∑∑

∈ ∈ ∈∈ ∈ ∈

∈ ∈

++

+++−−

Nn Nk Nj
jnnk

Nn Nk Nj
jknknk
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Nn Nk

nknknknk

zuzuu

CTSRTSzuMudu

787

534

017.0)(

)2( θλ
 (SUB4-11) 

subject to: 

1or    0 =nkz  ,n∀ Nk ∈ . (4-18) 

    We can transform the objective function of (SUB4-11) into the following 

form in order to effectively solve this subproblem: 
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    Thereafter, (SUB4-11) can be decomposed into NN ×  independent 

subproblems. For each link (n,k), 
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min ( ) nk
Nj Nj

kjjkjknknknknk zuuuCTSRTSuMudu ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++−−− ∑ ∑

∈ ∈

787534 017.0)2( θλ  (SUB4-11-1) 

subject to: 

1or    0 =nkz  

(SUB4-11-1) is an easy problem to be solved. If the corresponding coefficient 

( ) nk
Nj Nj

kjjkjknknknknk zuuuCTSRTSuMudu ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++−−− ∑ ∑

∈ ∈

787534 017.0)2(2 θλ  of link (n,k) 

is negative then set znk to be 1, otherwise 0. The computational complexity of 

(SUB4-11) is )1(O  for each link (n,k). 

Subproblem 4-12 (related to decision variable ),( knl )  

min ∑∑
∈ ∈

−
Nn Nk

knnkknnk lulu )ln( ),(
7

),(
6  (SUB4-12) 

subject to: 

)330(115.0
),( +++⋅≥≥ CTSSIFSRTSelA kn  ,n∀ Nk ∈ . (4-23) 

    We can further decompose (SUB4-12) into || NN ×  independent 

subproblems. For each link (n,k), 

min )ln( ),(
7

),(
6

knnkknnk lul�u −   (SUB4-12-1) 

subject to: 

)330(115.0
),( +++⋅≥≥ CTSSIFSRTSelA kn . 

For each (SUB4-12-1) subproblem, if 7
nku  is negative then set ),( knl  to be 

)330(115.0 +++⋅ CTSSIFSRTSe . If 7
nku  is positive then we can get the value of l(n,k) 

that makes (SUB4-12-1) minimal by following procedure.  
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Apply first derivative of l(n,k) on the objective function of (SUB4-12-1) and let it 

equal 0, the optimal value of l(n,k) is: 

.

0

))ln((
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7
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The second derivative of (SUB4-12-1) is larger than zero: 

positive. is  since ,0
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7
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The computational complexity of (SUB4-12) is )1(O  for each link (n,k). 
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4.4.3 The Dual Problem and the Subgradient Method 

According to the algorithms proposed above, we could effectively solve the 

Lagrangean relaxation problem optimally. Based on the weak Lagrangean duality 

theorem (for any given set of nonnegative multipliers, the optimal objective function 

value of the corresponding Lagrangean relaxation problem is a lower bound on the 

optimal objective function value of the primal problem [1]), Z D3(u1,u2,u3,u4,u5,u6,u7,u8) 

is a lower bound on ZD3. We construct the following dual problem to calculate the 

tightest lower bound and solve the dual problem by using the subgradient method [1]. 

 

Dual Problem (D3): 

( )87654321
33 ,, ,,,, , max uuuuuuuuZZ DD =  (D3) 

subject to: .0, ,,,, , 8654321 ≥uuuuuuu  −∞≥7u . 

Let the vector S be a subgradient of Z D3(u1,u2,u3,u4,u5,u6,u7,u8) at 

(u1,u2,u3,u4,u5,u6,u7,u8). In iteration k of the subgradient optimization procedure, the 

multiplier vector mk = (u1k,u2k,u3k,u4k,u5k,u6k,u7k,u8k) is updated by mk+1 = mk + αk Sk, 

where 
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 The step size αk is determined by 2
33

||||
)(

k

k
D

k
IP

S
mZZ −

δ , where k
IPZ  is the best 

primal objective function value found by iteration k (an upper bound on the optimal 

primal objective function value), and δ is a constant ( 20 ≤≤ δ ). 
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Chapter 5  Getting Primal Feasible 

Solutions 

By using Lagrangean relaxation and the subgradient method, we can get a 

theoretical lower bound of the primal problem. In addition, the results obtained from 

the procedure of Lagrangean relaxation will provide some good hints to help us get 

the primal feasible solutions. The solutions to the Lagrangean relaxation problem and 

Lagrangean multipliers are both good hints. If the solutions of Lagrangean relaxation 

satisfy all constraints in the primal problem, a primal feasible solution is found. 

Otherwise, we need to make some modifications to transform the infeasible solution 

into a feasible one. Lagrangean multipliers can also be used on some existing 

heuristics to adjust the original heuristic to a Lagrangean-based modified heuristic. 

5.1 Getting Primal Feasible Solutions of DCR 

To obtain primal feasible solutions for data-centric wireless sensor routing 

problems, solutions to the Lagrangean Relaxation (LR1) are considered. We propose 

the following two heuristics for getting primal feasible solutions. 

 

The first heuristic constructs a shortest path tree based on the solutions in 

(SUB4-3). However, in (SUB4-3), the union of the shortest path for each data source 

node may not be a tree, since the arc weight of link l is 32
glgdl uu + . The multiplier 2

gdlu  

is associated with each data source node d. In other words, each data source node may 

have a different arc weight on link l, which results in the possibility of having a cycle 

for the union of the shortest paths. Therefore, we set the arc weight of link l to be 
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lgl
g

Dd
gdl

au
D

u
g ++

∑
∈ 3

2

||
, so that the arc weight for link l is the same as each data source 

node d of multicast group g. This ensures that the union of the shortest paths destined 

to every data source in a multicast group shall be a tree. In order to take account of the 

transmission cost, we also introduce al on the arc weight. The computational 

complexity for first heuristic is )|||(| 2NGO . 

 

The basic idea of the second heuristic is GIT, which according to [12], is a better 

heuristic than shortest path tree heuristics. By leveraging the solutions to the dual 

problem (LR1), we set the arc weight for link l as 3
gll ua + . The first term, al, reflects 

the transmission cost and the second term, 3
glu , reflects the penalty cost for link l to 

be a link in a cycle. By incorporating 3
gll ua +  as the arc weight, we try to achieve the 

minimum transmission cost and gain from the data-centric routing (tree) at the same 

time. 

 

In addition to the link arc weight setting, we have developed an efficient method 

to implement the GIT algorithm. In the traditional GIT algorithm for tree construction, 

if there are three nodes in a tree and two unvisited data source nodes, we have to 

perform Dijkstra’s algorithm six times to determine the minimum distance to one 

unvisited data source node. By adding two pseudo nodes, we only need to perform 

Dijkstra’s algorithm once to identify the minimum route to the closest unvisited data 

source node. The first pseudo node is used for all nodes in the current multicast tree 

and the other is used for all source nodes not contained in the current multicast tree. 

For each node, n, in the current multicast tree we add a pseudo link whose arc weight 

is 0 from pseudo node 1 to n. For each unvisited source node, s, we add a pseudo link 
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whose arc weight is 0 from s to pseudo node 2. After the new topology is constructed, 

we perform Dijkstra’s algorithm to find the shortest path between pseudo nodes 1 and 

2. Along this shortest path, the closest unvisited data source node will be visited. The 

example in Figure 5-1 illustrates the concept. The computational complexity of the 

second heuristic is ∑
∈Gg

gDNO |)||(| 2 . 

 

Figure 5-1. (a) Initial topology with a current multicast tree and two 
unvisited sources. (b) New topology with the shortest path between 
pseudo nodes 1 and 2. 

In the following, we show the complete algorithm (denoted as LGR) for solving 

(IP1). 
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Algorithm LGR 

begin 

Initialize the Lagrangean multiplier vector (u1,u2,u3) to be all zero vectors; 

run Calculate_hg; 

UB := very large number;  LB := 0; 

improve_counter := 0;  step_size_coefficient := 2; 

for iteration := 1 to Max_Iteration_Number do 

begin 

  run subproblem (SUB4-1); 

  run subproblem (SUB4-2); 

  run subproblem (SUB4-3); 

calculate ZD1; 

if ZD1 > LB then  

LB := ZD1;  improve_counter := 0; 

else improve_counter := improve_counter + 1; 

if improve_counter = Improve_Threshold then 

improve_counter := 0;  δ := δ / 2; 

      run Primal_Heuristic_Algorithm of DCR; 

      if ub < UB then UB := ub;  /* ub is the newly computed upper bound. */ 

      run update-step-size; 

      run update-Lagrangean-multiplier; 

    end; 

  end; 

The computational complexity of LGR is |)|log|||||||(| 2 LGLDNO
Gg

g +∑×
∈

 for each 

iteration. 
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5.2 Getting Primal Feasible Solutions of EDCR 

To obtain the primal feasible solutions to the extension of data-centric wireless 

sensor routing problem, solutions to the Lagrangean Relaxation (LR2) are considered. 

We propose the following two heuristics to get the primal feasible solutions. 

 

The first heuristic constructs the shortest path tree based on the solutions in 

(SUB4-6). However, in (SUB4-6), the union of the shortest path for each data source 

node may not be a tree, since the multiplier, 1
),( sknv , is associated with each data 

source node s. In other words, each data source node may have a different arc weight 

on link (n,k), which results in the possibility of having a cycle for the union of the 

shortest paths. Therefore, we set the arc weight of link (n,k) to be 

22
),(

1
),(

)
4

(
||

nk
kn

Ss
skn dv

S

v
++

∑
∈ , so that the arc weight for link (n,k) is the same for all data 

source nodes. This ensures that the union of the shortest paths destined to every data 

source shall be a tree. In order to take account of the transmission energy 

consumption, we also introduce transmission distance dnk between nodes n and k on 

the arc weight. After the aggregation tree is determined, the minimum power to cover 

each link on the tree can be determined. The computational complexity for first 

heuristic is )|(| 2NO . 

 

The principle idea of the second heuristic is also based on leveraging GIT. We 

set the arc weight for link (n,k) as 
2

2
),( 4

⎟
⎠
⎞

⎜
⎝
⎛+ nk

kn
d

v  and then run the GIT algorithm. 

The idea of dividing dnk by 4 is for normalization purposes such that the arc weight 
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will not be dominated by dnk. The first term, 2
),( knv , reflects the penalty cost for link 

(n,k) to be a link in a cycle. The second term, 
2

4
⎟
⎠
⎞

⎜
⎝
⎛ nkd

, is used to reflect the 

transmission power consumption. By incorporating 
2

2
),( 4

⎟
⎠
⎞

⎜
⎝
⎛+ nk

kn
d

v  as the arc weight, 

we try to achieve minimum transmission energy and gain from the data-centric 

routing (tree) at the same time. After the aggregation tree is determined, the minimum 

power to cover each link on the tree can be determined. The computational 

complexity of second heuristic is |)||(| 2 SNO . 

 

In the following, we show the complete algorithm (denoted as LGR2) for solving 

(IP2). 

 

Algorithm LGR2 

begin 

Initialize the Lagrangean multiplier vector (v1,v2,v3) to be all zero vectors; 

run Calculate_hg to determine h. 

UB := very large number; LB := 0; 

improve_counter := 0; 

step_size_coefficient := 2; 

for iteration := 1 to Max_Iteration_Number do 

begin 

  run subproblem (SUB4-4); 

  run subproblem (SUB4-5); 

  run subproblem (SUB4-6); 
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calculate ZD2; 

if ZD2 > LB then  

LB := ZD2;  improve_counter := 0; 

else improve_counter := improve_counter + 1; 

if improve_counter = Improve_Threshold then 

improve_counter := 0;  δ := δ / 2; 

      run Primal_Heuristic_Algorithm of EDCR; 

      if ub < UB then UB := ub;  /* ub is the newly computed upper bound. */ 

      run update-step-size; 

      run update-Lagrangean-multiplier; 

    end; 

  end; 

The computational complexity for LGR1 is )|||||(| 2 ∑
∈

+
Nn

nRSNO  for each 

iteration. 
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5.3 Getting Primal Feasible Solutions for Data 

Aggregation Tree with QoS Routing 

To obtain the primal feasible solutions for a data aggregation tree with the QoS 

routing problem, we consider solutions to the Lagrangean relaxation (LR3) problem. 

Once the routing path, spx , for each source, s, is determined, all other decision 

variables, e.g., rn and ynk, can be calculated and the total energy consumption of the 

data aggregation tree can be obtained. The solution of (SUB 4-9) is probably the most 

promising feasible solution to the primal problem, yet it may violate the tree 

constraint. Thus, we propose a drop heuristic to eliminate those links that form the 

cycle on the tree. 

     

The steps of the drop heuristic are as follows: 

1. Based on the solutions of (SUB 4-9) we can get the set of decision variables, spx , 

from which we can decide which link, ynk, is used on the routing path by source s. 

After determining ynk, if ynk is 1, we set the arc weight of it corresponding link to 

be 2

1

|| nk
Ss

nks

u
S

u
+

∑
∈ ; otherwise, we set the arc weight to be infinity. 

2. According to the arc weight calculated in Step 1, we sort the links from small to 

large. 

3. We sequentially examine all links from the link with the largest arc weight to the 

smallest, but we ignore the links with infinity costs. We remove each link say link 

(n, k) from the routing path and check whether every source node still has a 

routing path to the sink node. If any source node is unable to reach the sink node 

after removing link (n, k), we restore link (n, k) onto the routing path. If every 
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source still has a routing path to reach the sink node, we remove (n,k) and 

investigate the next link until all the links used by the union of routing path spx  

have been examined. 

After executing the drop heuristic we get a data aggregation tree without any 

cycles. The computational complexity of the drop heuristic is )|||(| 3NSO . 

 

In order to decrease the maximum end-to-end delay of the data aggregation tree 

obtained by the drop heuristic, we have developed a rerouting heuristic to improve the 

solution quality of getting primal feasible solutions. The steps of the rerouting 

heuristic are as follows: 

1. Identify the path (denoted as P) that incurs the maximum end-to-end delay. 

2. Investigate nodes located on P one by one. For each checked node (denoted as 

n), examine each node (denoted as k) within the transmission radius of n. If the 

maximum end-to-end delay of node n plus the link delay, l(n,k), is smaller than 

the maximum end-to-end delay of node k, then reroute the outgoing link on the 

routing path of node n from the original routing link to the outgoing link (n,k). 

If no node k can be rerouted by n, then check the next node on P until the sink 

node is reached. 

3. Update the decision variable y(n,k) and recalculate the maximum end-to-end 

delay of the new data aggregation tree. 

4. If no node on path P can be rerouted, then stop the heuristic; otherwise, go to 

Step 1.  

    The pseudo code of the rerouting heuristic is as follows: 
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Rerouting Heuristic 

begin 

Update_Success := true; 

while Update_Success = true do 

begin 

  Update_Success := false; 

  Identify the path P that incurs the maximum end-to-end delay. 

  for each node n on path P do  

  begin 

    for each node k within transmission radius of node n do 

    begin 

      if Mn + L(n,k) < Mk then 

        run update_ y(n,k); 

        Update_Success := true; 

        break; 

    end; 

    if Update_Sucess = true then 

      break; 

  end; 

  run recalculate_Maximum_End-to-End_Delay; 

end; 

  end; 

The computational complexity of the rerouting heuristic is )|(| 4NO . 
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In the following, we show the complete algorithm (denoted as LGR3) for solving 

(IP3). 

Algorithm LGR3 

begin 

Initialize the Lagrangean multiplier vector (u1,u2,u3,u4,u5,u6,u7,u8) to be all zero 

vectors; 

run Calculate_hg to determine h. 

UB := very large number; LB := 0; 

improve_counter := 0; 

step_size_coefficient := 2; 

for iteration := 1 to Max_Iteration_Number do 

begin 

  run subproblem (SUB4-7); 

  run subproblem (SUB4-8); 

  run subproblem (SUB4-9); 

  run subproblem (SUB4-10); 

  run subproblem (SUB4-11); 

  run subproblem (SUB4-12); 

calculate ZD3; 

if ZD3 > LB then  

LB := ZD3;  improve_counter := 0; 

else improve_counter := improve_counter + 1; 

if improve_counter = Improve_Threshold then 

improve_counter := 0;  δ := δ / 2; 

      run Primal_Heuristic_Algorithm of EDCR with QoS; 
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      if ub < UB then UB := ub;  /* ub is the newly computed upper bound. */ 

      run update-step-size; 

      run update-Lagrangean-multiplier; 

    end; 

  end; 

The computational complexity for LGR3 is )|(| 4NO  for each iteration. 
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Chapter 6  Computational Experiments 

6.1 Computational Experiments of DCR 

6.1.1 Experiment Environments 
The proposed algorithms for the DCR problem in wireless sensor networks are 

coded in C and run on a PC with INTELTM PIII-1.3G. Max_Iteration_Number and 

Improve_Threshold are set to 2000 and 50 respectively. The step size coefficient, δ , 

is initialized as 2 and is halved if the objective function value of the dual problem is 

not improved for iterations up to Improve_Threshold. 

 

Two source placement models, namely event-driven and random-source models, 

are tested. The event-drive model, described in Chapter 1, requires that all sensor 

nodes within sensing range of a specific event become source nodes. In a 

random-source model, non-sink nodes are randomly selected to be data source nodes. 

The random-source model differs from event-driven model in that the source nodes 

are not necessarily clustered. Query-based applications and periodic applications 

could be classified as the random-source model. 

 

We construct a network topology consisting of N = 300 sensor nodes randomly 

placed in a 1×1 square area. The power aware transmission cost, (al), is defined as 

100×Euclidean distance if the link length does not exceed the transmission radius. In 

Figure 6-1 and Figure 6-3, the communication radius is configured as 0.125. In other 

words, the link with a length greater than 0.125 will have an extremely high 

transmission cost. Hence, in Figure 6-1 and Figure 6-3, al = 100×Euclidean distance 
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if length of link l ≤  0.125, otherwise al = ∞. In Figures 6-1 ~ 6-4, SPT, CNS, and 

GIT are the solution approaches proposed in [12]. Heuristic 1 and heuristic 2 are the 

solution approaches of DCR proposed in Chapter 5. Each plotted point in Figures 6-1 

~ 6-4 is the mean value over 10 simulation results. The experimental parameters used 

in the experiments are listed in Table 6-1. 

Table 6-1. Experimental parameter settings for DCR problem 

Parameter Value 

Number of Nodes 300 

Number of Iterations 2000 

Improvement Counter 50 

Initial Upper Bound Solution of 1st Getting Primal Feasible 

Initial Multiplier 0 

Initial Scalar of Step Size 2 

 

Test Platform 

CPU: INTELTM Pentium-III 1.3 GH 

RAM: 512 MB 

OS: Window XP 

 

6.1.2 Experiment Results 

Figure 6-1 shows the transmission cost of different numbers of source nodes in a 

random-source model, where the communication radius = 0.125. We can see that the 

second heuristic proposed in Chapter 5 outperforms the other four solution 

approaches under all different numbers of source nodes. As the number of source 

nodes increases, the improvement ratio is more significant. Figure 6-2 shows the 

transmission cost under different communication radii for fixed 10 source nodes in 



 

 77

random-source model. Heuristic 2 still outperforms the other approaches. Note that as 

the communication radius decreases, the improvement ratio of the second heuristic is 

larger. This occurs because when the transmission radius is small, only links with 

shorter distance can exist and routing path needs more hops to reach its destination. 

Therefore, the advantage resulting from data aggregation will be more significant. 

 

Figure 6-3 shows the transmission cost of different numbers of source nodes in 

an event-driven model, where the communication radius = 0.125. Figure 6-4 shows 

the transmission cost for different communication radii for 10 fixed source nodes in 

the event-driven model. Similar computational results can be observed in Figure 6-3 

and Figure 6-4 for the event-driven model. Heuristic 2 still outperforms the other 

solution approaches. It is interesting to observe that the improvement ratio in the 

random-source model is often larger than in the event-driven model. This is because 

sources are randomly selected, not clustered, in the random-source model; thus, the 

advantages of the tree will be more significant. 

 

In order to measure effectiveness of the second heuristic, we define an 

improvement ratio as (other approach─ heuristic 2) / (heuristic 2) × 100. Table 6-2 

shows the improvement ratio for Figures 6-1 ~ 6-4. From Table 6-2, the improvement 

ratio of the second heuristic over SPT, CNS and GIT is up to 169%, 94% and 18% 

respectively. 
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Figure 6-1. Transmission cost v.s.  the number of sources in the 
random-source model 
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Figure 6-2. Transmission cost v.s.  the communication radius in the 
random-source model 
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Figure 6-3. Transmission cost v.s.  the number of sources in the 
event-driven model 
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Figure 6-4. Transmission cost v.s.  the communication radius in the 

event-driven model 

Table 6-2. Improvement Ratio of Heuristic 2 

Improvement Ratio (%) Figure 6-1 Figure 6-2 Figure 6-3 Figure 6-4 

SPT 75 110 97 169 

CNS 71 94 33 58 

GIT 15 18 11 12 
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6.2 Computational Experiments of EDCR 

6.2.1 Experiment Environments 
The proposed algorithms for the EDCR problem are coded in C and run on a PC 

with INTELTM PIV-2G. Max_Iteration_Number and Improve_Threshold are set to 

1000 and 25 respectively. The step size coefficient, δ , is initialized as 2 and will be 

halved when the objective function value of the dual problem is not improved by 

iterations up to Improve_Threshold. 

 

In the EDCR problem, the random-source model is tested. In random-source 

model, non-sink nodes are randomly selected to be data source nodes. We construct a 

network topology consisting of N = 150 sensor nodes randomly placed in a 1×1 

square unit area. Since the transmission power falls as 1/dn [14], n 2≧  and d 

represents the Euclidean distance, if we want to transmit data to a receiver with a 

certain acceptable level of signal power, the transmission cost will be proportional to 

the square of the Euclidean distance. Thus, the cost of the power aware function, 

)( nn re , is defined as the square of 100×Euclidean distance if the link length does not 

exceed the maximum transmission radius. The set of all possible transmission radii of 

sensor node n (Rn) is configured to begin from 0 and extend to the maximum 

transmission radius. Elements in the radius set are increased by 0.01 successively. In 

Figure 6-5, the maximum transmission radius is set to be 0.15. Each plotted point in 

Figure 6-5 and Figure 6-6 is the mean value over 5 experimental results. In all the 

experiments we assume that there is only one sensing group in sensor networks. In 

order to show the solution quality of our proposed algorithm, for comparison, we 
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implement three algorithms developed in [12]. Table 6-3 shows the experimental 

parameter settings in the EDCR problem. 

Table 6-3. Experimental parameter settings for EDCR problem 

Parameter Value 

Number of Nodes 150 

Number of Iterations 1000 

Improvement Counter 25 

Energy Consumption Function Square of Euclidean Distance 

Initial Upper Bound Solution of 1st Getting Primal Feasible 

Initial Multiplier 0 

Initial Scalar of Step Size 2 

 

Test Platform 

CPU: INTELTM Pentium-IV 2.0 GH 

RAM: 512 MB 

OS: Linux Red Hat 8.0 

 

6.2.2 Experiment Results 

Figure 6-5 shows the transmission cost of different numbers of source nodes in 

the random-source model. We can see that the second heuristic proposed Chapter 5 is 

superior to the other four solution approaches under all different numbers of source 

nodes. In addition, as the number of data source nodes grows the improvement ratio is 

more significant, which is similar to the DCR model. Figure 6-6 shows the 

transmission cost under different maximum transmission radii for 8 fixed source 

nodes in the random-source model. The maximum transmission radius is the 

maximum allowable transmission range that sensor nodes can chose. The second 
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heuristic still outperforms the other approaches. Note that as the transmission radius 

decreases, the improvement ratio of the second heuristic increases. This is similar to 

the results in the DCR model. Another interesting point is that the cost decreases with 

increasing maximum transmission radius because of the expanded feasible region. 

However, we can observe that when the maximum transmission radius is increased to 

a certain point (e.g., 0.17 in Figure 6-6), the cost can not be reduced any further. This 

is because the energy consumption cost is defined as the square of the transmission 

radius, and is will be increased rapidly when a large transmission radius is adopted. 

Therefore, even though the maximum allowable transmission radius is increased, we 

will not be willing to utilize it. 

 

From Table 6-4, the improvement ratio of the second heuristic in EDCR over 

SPT, CNS and GIT is up to 59%, 49% and 10% respectively. 
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Figure 6-5. Transmission power consumption cost v.s.  the number of 
sources in the random-source model 
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Figure 6-6. Transmission power consumption cost v.s.  the maximum 

transmission radius in the random-source model 
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Figure 6-7. Computational time per iteration 

 

Table 6-4. Improvement Ratio of Heuristic 2 

Improvement Ratio (%) Figure 6-5 Figure 6-6 

SPT 59 49 

CNS 49 33 

GIT 10 10 
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Figure 6-7 shows the computational time comparison of all algorithms per 

iteration under different numbers of sources. Although our proposed algorithms suffer 

from a slightly longer computational time, we can get a better data aggregation tree in 

terms of transmission cost and energy saving. Furthermore, the improvement ratio of 

our proposed algorithm is more significant when the number of source nodes 

increases. To summarize, compared to existing heuristics, although our algorithms 

require a slightly longer computational time, they have better data-centric aggregation 

capability and better solution quality, particularly when the number of source nodes 

increases and the sensor node deployment area is large. 

 

 

6.3 Computational Experiments of Data 

Aggregation Tree with QoS Routing 

6.3.1 Experiment Environments 
The proposed algorithms for constructing a data aggregation tree with QoS 

routing are coded in C and run on a PC with INTELTM PIV-2G. 

Max_Iteration_Number and Improve_Threshold are set to 2000 and 30 respectively. 

The step size coefficient, δ , is initialized as 2 and is halved when the objective 

function value of the dual problem is not improved by iterations up to 

Improve_Threshold. 

 

We assume that a sensor network operates in periodic mode where, the sensor 

nodes periodically report information to the sink node. The network topology 

comprises N = 150 sensor nodes randomly placed in a 1×1 square unit area. The cost 
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of the energy consumption function, )( nn re , is defined as the square of 

100×Euclidean distance multiplied by energy consumption per millisecond when the 

sensor node is transmitting data. The set of all possible transmission radii of a sensor 

node n (Rn) is configured to begin from 0 and extend to the maximum transmission 

radius. Elements in the radius set are increased by 0.01 successively. To evaluate the 

solution quality of our proposed algorithm, we implement three existing algorithms 

for comparison. The GIT and CNS algorithms are proposed in [12] and the third 

algorithm, CCA, is described in [20]. Table 6-5 shows the experimental parameter 

settings used in this model. 

Table 6-5. Experimental parameter settings 

Parameter Value 

Number of Nodes 150 

Number of Iterations 2000 

Improvement Counter 30 

CSMS Parameters Standard Value [15] 

 

Energy Consumption Function 

Square of Euclidean Distance * Energy 

Consumption per Millisecond During 

Transmission 

Initial Upper Bound Solution of 1st Getting Primal Feasible 

Initial Multiplier 0 

Initial Scalar of Step Size 2 

 

Test Platform 

CPU: INTELTM Pentium-III 2.0 GH 

RAM: 512 MB 

OS: Linux Red Hat 8.0 
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6.3.2 Experiment Results 
    Tables 6-6 and 6-7 show the total energy consumption and maximum end-to-end 

delay calculated by different algorithms under a different numbers of sources, 

respectively. It is obvious that Lagrangean relaxation-based algorithm can get better 

solution quality in terms of total energy consumption and maximum end-to-end delay. 

Although the maximum end-to-end delay of Lagrangean relaxation-based algorithm is 

sometimes slightly higher than CNS’s, the data aggregation tree constructed by the 

Lagrangean relaxation-based algorithm can significantly reduce the total energy 

consumption of a data aggregation tree compared with other heuristics. According to 

the experimental results, the data aggregation tree constructed by the Lagrangean 

relaxation-based algorithm can not only maintain a good maximum end-to-end delay, 

but also reduce total energy consumption needed by aggregation tree to transmit data. 

Table 6-6. Energy consumption experimental results with different 
numbers of sources 

Number of 

Sources 
LB UB Gap (%) CCA CNS GIT 

Imp. Ratio 

of CCA (%)

Imp. Ratio 

of CNS (%) 

Imp. Ratio 

of GIT (%)

10 143.57 171.06 19.14 381.09 194.5 254.49 122.78 13.7 48.77 

20 189.96 219.79 15.7 292.65 261.11 274.56 33.15 18.8 24.92 

30 207.1 264.02 27.48 364.11 342.07 357.52 37.91 29.56 35.41 

40 314.27 448.24 42.62 699.27 474.77 555.92 56 5.92 24.02 

50 407.97 579.97 42.16 829.51 664.7 687.6 43.03 14.61 18.56 

60 392.72 671.33 70.94 805.11 683.84 788.01 19.93 1.86 17.38 

70 416.8 722.45 73.33 994 746.37 986.18 37.59 3.31 36.5 

80 470.14 762.95 62.28 898.76 907.95 944.06 17.8 19 23.74 

90 541.73 899.36 66.01 1198.4 1012.4 1202.8 33.25 12.57 33.74 

100 587.93 986.94 67.86 1213.9 1126.6 1474.6 22.99 14.15 49.41 
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Table 6-7. Maximum end-to-end delay experimental results with 
different numbers of sources 

Number of 

Sources 
Delay LR (ms) Delay CCA (ms) Delay CNS (ms) Delay GIT (ms) 

10 44.2 51.13 39.24 94.97 

20 43.74 40.73 43.25 57.63 

30 43.78 45.41 37.7 81.28 

40 60.46 63.89 43.51 132.28 

50 66.98 71.54 55.9 139.24 

60 62.18 63.52 51.94 168.22 

70 61.59 73.43 54.71 191.91 

80 65.67 70.59 62.4 157.38 

90 71.55 79.96 68.82 204.74 

100 73.45 93.36 62.47 226.5 
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Figure 6-8. Energy consumption with different numbers of source 
nodes 
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    From Figure 6-8 we can see that as the number of sources increases our proposed 

Lagrangean based algorithm has a smooth monotonic increment property. In the 

contrast, the other three heuristics do not have this good property, so we can observe 

that their curves will wobble as the number of sources increases. 

 

Table 6-8 shows the experimental results under different maximum 

communication radii with 90 fixed source nodes. In all cases, the Lagrangean 

relaxation-based algorithm still gets a better solution than the other heuristics. 

Another interesting point is that as the maximum communication radius increases, the 

solution of our proposed algorithm changes slightly, whereas the solutions calculated 

by other algorithms increases dramatically. 

Table 6-8. Energy consumption experimental results under different 
maximum communication radii 

Maximum 

Communication 

Radius 

LR CCA CNS GIT 
Imp. Ratio 

of CCA (%)

Imp. Ratio 

of CNS (%) 

Imp. Ratio 

of GIT (%)

0.16 738.1 943.07 755.62 1245.12 27.77 2.37 68.69 

0.17 773.09 988.95 799.83 1245.12 27.92 3.46 61.06 

0.18 750.03 990 777.58 1245.07 31.99 3.67 66 

0.19 816.79 1042.38 828.02 1245.07 27.62 1.38 52.43 

0.2 843.65 960.15 863.38 1202.84 13.81 2.34 42.58 

0.21 856.61 1057.91 900.18 1202.84 23.5 5.09 40.42 

0.22 847.85 1120.19 922.33 1202.84 32.12 8.78 41.87 

0.23 871.47 1161.63 907.76 1202.84 33.3 4.16 38.02 

0.24 856.52 1147.16 934.77 1202.84 33.93 9.14 40.43 

0.25 899.36 1198.4 1012.4 1202.84 33.25 12.57 33.74 
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Table 6-9. Maximum end-to-end delay experimental results 
under different maximum communication radii 

Maximum 

Communication 

Radius 

Delay LR (ms) Delay CCA (ms) Delay CNS (ms) Delay GIT (ms) 

0.16 74.7 89.95 77.51 210.02 

0.17 78.12 84.68 82.99 210.02 

0.18 67.99 83.36 69.81 209.82 

0.19 71.18 83.11 71.51 209.82 

0.2 66.58 79.35 69.83 204.74 

0.21 78.44 79.3 69.65 204.74 

0.22 82.84 78.91 65.35 204.74 

0.23 62.15 78.15 63.67 204.74 

0.24 74.57 75.37 65.84 204.74 

0.25 71.55 79.96 68.82 204.74 
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Figure 6-9. Energy consumption under different maximum 

communication radii 
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To evaluate the solution quality of our proposed algorithm under different 

maximum allowable end-to-end delay, we conduct an experiment that changes the 

maximum end-to-end delay. Table 6-10 summarizes the experimental results of 

different algorithms under different maximum allowable end-to-end delays. The 

experimental results are also depicted in Figure 6-10. 

 

Through the experimental results we can observe that when the maximum 

allowable end-to-end delay constraint is looser, the solution obtained from 

Lagrangean relaxation-based algorithm is much better. Even if the maximum 

allowable end-to-end delay constraint is stringent, the Lagrangean relaxation-based 

algorithm can still calculate a good feasible solution, whereas GIT and CNS can not 

find a feasible solution. From the perspective of maximum end-to-end delay, although 

the delay calculated by our proposed algorithm is slightly higher than CNS, the 

benefit gained from the total energy consumption is significantly larger. This 

experiment shows that our proposed solution approach can obtain a good feasible 

solution under different levels of delay, and if the delay constraint is looser the 

improvement of Lagrangean relaxation-based algorithm over other heuristics is more 

significant in terms of total energy consumption. 
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Table 6-10. Experimental results under different maximum 
allowable end-to-end delays 

Maximum Allowable 

End-to-End Delay (ms) 
LR CCA CNS GIT 

Delay  

LR 

Delay 

CCA 

Delay 

CNS 

Delay 

GIT 

65 1035.11 N/A N/A N/A 64.09 79.96 68.82 204.74

70 1012.24 N/A 1012.4 N/A 67.03 79.96 68.82 204.74

75 987.52 N/A 1012.4 N/A 72.78 79.96 68.82 204.74

80 953.31 1198.4 1012.4 N/A 79.99 79.96 68.82 204.74

85 953.31 1198.4 1012.4 N/A 79.99 79.96 68.82 204.74

90 902.92 1198.4 1012.4 N/A 82.03 79.96 68.82 204.74

95 902.92 1198.4 1012.4 N/A 82.03 79.96 68.82 204.74

100 902.92 1198.4 1012.4 N/A 82.03 79.96 68.82 204.74

105 899.96 1198.4 1012.4 N/A 71.55 79.96 68.82 204.74

110 899.96 1198.4 1012.4 N/A 71.55 79.96 68.82 204.74

115 899.96 1198.4 1012.4 N/A 71.55 79.96 68.82 204.74
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Figure 6-10. Energy consumption under different maximum 

allowable end-to-end delays 
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    The following experiments evaluate the solution quality of different algorithms 

under different network sizes with 90 fixed sources and a loose delay constraint. Table 

6-11 summarizes the experimental results and Figure 6-11 depicts the results. We can 

observe that as the network size increases, the Lagrangean relaxation-based algorithm 

can obtain a better solution than the other algorithms. The improvement ratio is much 

larger when network size is large. This experiment shows our proposed algorithm can 

be applied to large networks and still outperform other algorithms. 

Table 6-11. Experimental results under different network sizes 

Network Size LR CCA CNS GIT 
Imp. Ratio 

of CCA (%)

Imp. Ratio 

of CNS (%) 

Imp. Ratio 

of GIT (%)

100 832.08 863.92 857.12 1062.04 3.83 3.01 27.64 

125 899.35 1033.4 984.06 1296.13 14.9 9.42 44.12 

150 899.36 1198.4 1012.4 1202.8 33.25 12.57 33.74 

175 1069 1353.3 1134.11 1253.32 26.59 6.09 17.24 

200 1060 1422.86 1218.58 1281.61 34.23 14.96 20.91 

225 1136.08 1619.39 1296.81 1555.47 42.54 14.15 36.92 

250 1088.42 1631.34 1394.56 1267.68 49.88 28.13 16.47 



 

 93

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
800

900

1000

1100

1200

1300

1400

1500

1600

E
ne

rg
y 

C
on

su
m

pt
io

n

Network Size

 LR
 CCA
 GIT
 CNS

Maximum Communication Radius = 0.25
Number of Sources = 90

Maximum Allowable End-to-End Delay = 250 (ms)

 
Figure 6-11. Energy consumption under different network sizes 

 

    Figure 6-12 shows the computational time of the Lagrangean relaxation-based 

algorithm per iteration. We can observe that the computational time increases when 

the number of sources increases. As the number of sources grows, the computational 

time is increased almost linearly. 
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Figure 6-12. Computation time under different numbers of source 

nodes 
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Chapter 7  Conclusion and Future Works 

7.1 Summary 
The deployment of distributed networks characterized by small, inexpensive 

sensor nodes capable of sensing and wireless communication will soon become the 

reality due to the rapid advancement in microprocessor, memory, and radio 

techniques. However, the highly energy-constrained issue should be considered, 

because recharging the batteries of sensors is infeasible under many severe 

environments. Data-centric routing could effectively reduce the transmission energy 

of sensor nodes with data aggregation capabilities in wireless sensor networks. In this 

thesis, our work emphasizes the construction of an energy-efficient data aggregation 

tree that possesses good QoS and minimizes the energy consumption of sensor nodes 

simultaneously. We take the properties of QoS in wireless sensor networks as a new 

energy consumption metric that can not only maintain the traditional transmission 

delay, but also simultaneously reduce the energy consumption of sensor nodes 

operating in idle mode. How to construct a data aggregation tree that is 

energy-efficient and has QoS properties is a complicated problem needed to be 

investigated. To address this problem, we have proposed a solution approach based on 

Lagrangean relaxation to construct an energy-efficient data aggregation tree that 

considers routing assignment, transmission radius assignment, data retransmissions, 

and maximum end-to-end delay constraints. 

 

In this thesis, we first propose a mixed integer and linear mathematical 

formulation for the data-centric routing problem with fixed communication radius. 

Solution approach based on Lagrangean relaxation and optimization-based heuristics 
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are proposed to solve this problem. Besides the routing assignment, transmission 

radius assignment is also considered to address the self-organized property of sensor 

nodes. In the EDCR problem, we jointly consider transmission radius assignment and 

routing assignment in data-centric sensor networks. Lagrangean relaxation techniques 

in conjunction with optimization-based heuristics are proposed to solve the EDCR 

problem. Finally, the effects of data retransmission and maximum end-to-end delay 

are considered in order to construct a data aggregation tree with QoS routing, while 

simultaneously minimizing the total energy consumption. 

 

The contribution of this paper can be expressed in terms of the mathematical 

formulation and experiment performance. For the formulation, we propose three 

precise mathematical expressions to model the problem of constructing a data 

aggregation tree efficiently. With regard to performance, the proposed Lagrangean 

relaxation and subgradient based algorithms outperform other heuristics, such as GIT, 

CCA, and CNS. According to the experiment results, the Lagrangean-based heuristic 

for the DCR and EDCR problem is superior to the existing approaches (SPT, CNS 

and GIT [6]) with improvement ratios of 169%, 94%, and 18% respectively. When 

considering the effects of maximum end-to-end delay and retransmission the proposed 

Lagrangean relaxation-based algorithm outperform better than the CCA, CNS, and 

GIT heuristics by 56%, 29.56%, and 49.41% respectively. From the perspective of the 

solution quality, we believe that our proposed optimization-based approaches can 

effectively and efficiently solve the energy-efficient data-centric routing problems in 

wireless sensor networks. 
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7.2 Future Works 
    For the energy-efficient data-centric routing problem in wireless sensor networks, 

there are still several ongoing research topics to be addressed. 

 

In this thesis we consider the construction of an energy-efficient data aggregation 

tree with several routing assignment and QoS constraints. However, over time sensors 

on an aggregation tree will have less residual energy compared to other sensors that 

are not on the tree. Therefore, it would be beneficial to reconstruct the aggregation 

tree periodically based on the current aggregation tree to minimize the reconstruction 

cost. 

 

    Cluster-based sensor network is a new approach to establishing sensor networks. 

As some powerful sensor nodes act as super node namely, cluster head, these super 

nodes control sensors nearby to form a cluster. How to construct these clusters and the 

data aggregation tree based on cluster-based routing simultaneously is an extension of 

my thesis. 

 

Another interesting research question is: How to maximize the system lifetime? 

This is now a hot topic in wireless sensor networks research. As we want to prolong 

the system lifetime of sensor networks as much as possible, carefully choosing the 

aggregation trees to be assigned to a sensor network could significantly sustain sensor 

network to function appropriately. Thus, given several candidate aggregation trees, 

how to allocate these candidate trees in different periods in order to maximize the 

total number of periods is another optimization problem worthy of investigation. 
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