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THESIS ABSTRACT

GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

NAME : SHU-PING LIN MONTH/YEAR : JULY/2005
ADVISOR : DR. YEONG-SUNG LIN
DR. HONG-HSU YEN

AN ENERGY-EFFICIENT DATA-CENTRIC ROUTING
ALGORITHM IN WIRELESS SENSOR NETWORKS

Recently wireless sensor networks (WSNs) have attracted a great deal of
attention due to their potential for numerous military, environmental detection, and
civil applications. Sensor nodes in WSNs are highly energy-constrained, because of
the limitations of hardware and the infeasibility of recharging sensor nodes under a
severe environment. When a sensor is in operation, therefore, reducing energy
consumption during the forwarding and sensing of data is a crucial issue in WSNs.
Incorporating sensor nodes with data aggregation capabilities to transmit less data in
WSNs could reduce total energy consumption. However, this calls for an efficient and

effective data-centric routing algorithm to facilitate this potential advantage.

In this thesis, our work emphasizes on the construction of an energy-efficient
data aggregation tree that possesses good QoS and minimizes the total energy
consumption of sensor nodes simultaneously. In the first part of this thesis, we model

the data-centric routing problem based on a rigorous mixed integer linear
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mathematical formulation, where the objective function is to minimize the total
transmission cost, subject to multicast tree and data aggregation constraints. With the
advances in sensor network technology, sensor nodes with configurable transmission
radius capability would further reduce energy consumption. Thus, the second part of
this paper considers the transmission radius assignment of each sensor node and the
data-centric routing assignment jointly. The objective function is to minimize the total
power consumption together with consideration of construction of a data aggregation
tree and sensor node transmission radius assignment. Finally, the effects of data
retransmission and maximum end-to-end delay due to data aggregation delay are also
considered in order to reflect the tradeoff between the advantages and the costs of data
aggregation. We take the properties of QoS in wireless sensor networks as a new
energy consumption metric that can not only maintain the traditional transmission
delay, but also simultaneously reduce the energy consumption of sensor nodes
operating in idle mode. How to (construct a data aggregation tree that is
energy-efficient and has QoS properties is a complicated problem that needs to be
investigated. We conceive a rigorous mathematical formulation, where the objective
function is to minimize the total energy consumption of data transmission subject to

tree, data retransmission, and maximum end-to-end delay constraints.

The solution approach is based on Lagrangean relaxation in conjunction with
novel optimization-based heuristics. With the exceptional properties of Lagrangean
relaxation we are able to efficiently solve this complicated optimization problem, and
derive an effective algorithm for routing assignments and construct a data aggregation
tree simultaneously. Through our computational experiments, we show that the
proposed algorithms calculate better solutions than other existing heuristics. When

considering QoS routing in WSNs, the proposed algorithms can not only construct a
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better data aggregation tree in terms of energy consumption, but also maintain good

maximum end-to-end delay.

Keywords—Data Aggregation, Data-Centric Routing, Energy-Efficient Routing,
Optimization, Lagrangean Relaxation Method, Mixed Integer Linear
Programming, Wireless Sensor Networks.
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Chapter 1 Introduction

1.1 Background

Wireless sensor networks (WSNs) are types of nascent technologies that probe
and collect environmental information such as temperature, atmospheric pressure, and
irradiation by providing ubiquitous sensing, computing, and communication
capabilities. Each sensor in a WSN is capable of sensing ambient information in its
vicinity and reporting the sensed data. Because of the rapid advances in
microprocessor, memory, and radio techniques, the deployment of distributed
networks comprising small, inexpensive sensor nodes capable of sensing and wireless

communication will soon become reality.

In recent years, WSNs have attracted a great deal of attention for researchers due
to their potential for numerous military, environmental detection, and civil
applications. For example, on a battle field, a network of sensors could be used to
track moving targets, detect chemical gases, or assist in surveillance missions. In
some environmental research, sensor networks could gather various geologic
parameters of interest. With such data, it is possible for scientists to make some
forecasts such as the eruption of volcano or to detect harsh natural phenomena. In a
disaster situation, such as the terror attack, if people were equipped with a small
badge then sensor networks could locate the exact position of survivors and help
rescuers to extricate them rapidly. In all the application scenarios described above,
sensors would be typically scattered throughout an area of interest in unattended mode;

thus recharging the batteries of a sensor would not be feasible. Energy aware



management in WSNs, therefore, becomes an essential issue in order to prolong the

lifetime of deployed sensors.

Wireless sensor networks are similar to mobile ad-hoc networks (MANETS) in
that both involve multi-hop communications. However, there are two main differences
between them. First, the typical communication mode in wireless sensor networks
conveys information from multiple data sources to one data sink. This is a kind of
reverse-multicast, rather than the communication between any two pair of nodes in
MANETSs. Second, since data are collected by multiple sensors there must be some
redundancy in the data, being transmitted by numerous sources. Transmitting
redundant data would rapidly deplete the energy of sensors and result in disconnected
network. A data aggregation function, therefore, has been suggested as a particularly
useful function for routing in terms of energy consumption in WSNs [2, 3, 8, 9, 12,

18].

A canonical system architecture of wireless sensor nodes is shown in Figure 1-1.
A sensor node is composed of four major subsystems [13], namely:

1) Computing subsystem: the microcontroller unit (MCU) is responsible for
executing the signal processing algorithm, data processing, and the
communication protocol.

2) Communication subsystem: the leading component in a sensor node is radio
frequency communication with which the sensor node can communicate with
neighboring nodes and transmit data. This subsystem causes more energy
consumption compared against any other component.

3) Sensing subsystem: the sensing subsystem is in charge of sensing real world

phenomena and translating it into electronic signals. There are two types of



sensor, analog and digital, for measuring different environmental parameters.
4) Power supply subsystem: the power supply subsystem consists of a battery
and a DC-DC converter. The latter is used to stabilize the voltage of the power

provided by battery.

Algorithms and Protocols

Real-Time Operating System

Figure 1-1. System architecture of a typical wireless sensor node [13]

Sensor nodes are highly energy-constrained due to the limitations of hardware
and the infeasibility of recharging sensor nodes under severe environments. A great
deal of research has focused on how to reduce energy consumption while a sensor is
operating. From the perspective of a single sensor node, some conventional
low-power design techniques and hardware architectures would be helpful for
providing a mechanism where energy conservation of single sensor node is concerned.
However, in addition to sensing and transmitting its own data to other nodes, a sensor
node is also responsible for relaying and forwarding data from other nodes to the

destination. Therefore, enormous numbers of sensor nodes are involved in data



routing when sensors report data to the sink node. A low-power design technique for a
single sensor node is inadequate for a highly energy-constrained WSN, since the total
energy consumption of an entire network must be considered systematically. It is
important to adopt a thorough approach that enables an energy-aware design from the
underlying hardware platform to the application software and communication
protocol. This approach would be useful for conserving not only the energy of an
individual sensor, but also of the groups involved in data transmission as well in the
whole sensor network. In this paper we consider the energy aware routing (EAR) with
respect to operations of entire sensor network and try to minimize the total power

consumption of a group of sensors involved in data transmission.

A representative wireless sensor network is shown in Figure 1-2. Sensor nodes
are usually scattered in a sensor field. When any event occurs, such surging irradiation
or temperature decline below a certain threshold, sensor nodes within a specific
sensing range detect the event and collect data and transmit it to the sink node for
further processing. We refer to the sink node as the data sink and each sensor node
within the sensing range as the data source since data are generated from these
sensors. The application scenario described above is called event-driven because
sensors are assigned to detect some particular events. There are two other different
applications of wireless sensor networks, namely periodic and query-based. In
periodic scenario, sensors probe environmental information periodically and report
their measurements back to the sink node. All sensors in this kind of network are
necessitated to be synchronized such that they all sense information and report it
simultaneously. The query-based scenario, on the other hand, is applied to
user-oriented applications. Users can request information from certain area of sensors

about subjects they are interested in.
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Figure 1-2. A typical wireless sensor network

In the event-driven model, as a specific event occurs raw data are collected and
processed before conveying it to data sink. Redundant and useless data are discarded.
The local raw data are first combined together in the data source and then the
aggregated result is transmitted to the sink node. Interestingly, data are routed along a
reverse multicast tree where multiple data sources transmit information back to the
single data sink. Every non-leaf node on this reverse multicast tree can perform the
data aggregation function to summarize the output from upstream data sources. This
process is called data-centric routing. The operation described above can also be
applied to periodic applications where all sensor nodes or parts of them are data
sources and periodically report sensed data of interest to the data sink. If all sensor
nodes in WSNs are designated as data sources, then the problem of minimum energy
consumption for constructing a data aggregation tree becomes a minimum power

consumption spanning tree problem.



Data aggregation is the key to the data-centric routing. By combining the data
coming from different sources, redundant information can be eliminated; therefore,
the total number of transmissions involved in data routing can be reduced significantly.
Data aggregation achieves energy-efficient data transmission by processing data as it
flows from the data source to the sink node. In addition to redundancy suppression,
other possible aggregation functions could be MAX, MIN, and SUM. Data
aggregation is application dependent, which means that according to the goal of the
application the appropriate data aggregation function should be employed. For
example, suppose that a controlled temperature environment is considered, the
maximum temperature would need to be monitored. In this paper we assume that
every sensor node possesses a data aggregation capability, which transmits a single
aggregated packet if it receives multiple input packets to the same data sink. Figure
1-3 shows an illustrative example of data-centric routing, where the maximum
temperature is reported to the data sink. The aggregation function is MAX. Label x(y)
at each node represents the local temperature measurement which is x while the
aggregated (maximum) value so far is y. For example, at node 4(7), the maximum

temperature up to this node is 7 and its local temperature measurement is 4.

Figure 1-3. An illustrative example of data aggregation



1.2 Motivation

The construction of a data aggregation tree that would enable multiple data
sources to transmit sensed data to a single sink node is a hard problem to solve. The
tree adopted as the data aggregation tree significantly affects the total power
consumption of sensor nodes. When constructing an aggregation tree, three major
factors that consume the energy of a sensor node must be considered, namely: the
transmission radius that each sensor activates; the retransmission times incurred on a

link; and the maximum end-to-end delay between each data source and the data sink.

In WSNs, the transmission power (radius) is associated with the physical
distance between the source and the destination. Thus, it is reasonable to assume that
the transmission cost associated with each link is identical to the cost of transmission
in the opposite direction. By this assumption, the total transmission cost in Figure 1-3
is identical to the multicast tree transmission cost where the root is node (10) and the
other nodes are the destinations. In Chapter 2, we propose a DCR model that
formulates this problem as a mixed integer linear programming (MILP) problem to
optimally solve the minimum cost of the multicast tree transmission problem without
considering retransmission and end-to-end delay effects. Construction of the
minimum cost multicast tree is the well-known Steiner tree problem, which is proven

to be the NP-complete [7].

In addition to the energy consumption of data transmission, data retransmission
resulting from collisions and the hidden terminal problem in wireless communication
also consumes a sensor’s energy. The more data an intermediate node aggregate, the

greater the number of collisions that will occur at intermediate node, which results in



excess energy consumption. Besides the total amount of data that an intermediate
node aggregates, many sensor nodes, called the neighbor nodes, whose transmission
radii cover the intermediate node would also substantially influence data transmission
times between children nodes and the intermediate node. By increasing the number of
neighbor nodes, it is obvious that collisions would be very severe at the intermediate
node during data transmission from children nodes, and consequently more energy

consumption would be incurred at the children nodes.

End-to-end delay is another issue that we should consider. Sustaining
satisfactory end-to-end delay implies two important factors about WSNs: energy
consumption and quality of service (QoS). Each sensor node in a data aggregation tree
should wait for data from the children nodes, and during the waiting time (the
maximum end-to-end delay from the farthest leaf node, the sensor node would operate
in idle mode). As shown in [13], the energy consumption for a sensor operating in idle
mode is slightly less than that of operating in transmission mode. Therefore, the
end-to-end delay in WSNs should implicitly be minimized in terms of energy
consumption. Also, note that delay is a good QoS metric of WSNs when supporting
reports of emergent events or real-time traffic is necessary. In this paper, we consider
not only the construction of a data aggregation tree with minimum total power
consumption, but also the retransmission effects and maximum end-to-end delay
constraint on each sensor node. This is a constrained Steiner tree problem and requires
an effective and efficient heuristic to solve it. In the following chapters, three MILP
are proposed to formulate the constrained Steiner tree problem and some heuristic are

derived to optimally solve it.



1.3 Literature Survey

In this section we survey the design problem of WSNs with data aggregation
property. Algorithms for fixed and adjustable transmission radius and different kinds

of QoS issues are studied.

1.3.1 Data Aggregation Tree without QoS

Although a great deal of existing research has been conducted to address the
routing problem in wireless sensor networks, to the best of our knowledge, no prior
work has investigated the handling of maximum end-to-end delay in conjunction with
the MAC retransmission effects simultaneously. S. Singh [16] and C. Toh [19] show
that by using new power-aware metrics, for example the energy consumed for
transmitting per packet, or a shortest-cost routing algorithm based on these new
power-aware metrics could reduce cost/packet of routing over shortest hop routing.
This motivates us to construct power-aware metrics (¢; in DCR model), instead of
hops which are used in [16], as the link cost. Even though the total power
consumption is a critical metric for minimum power routing, it has a major
disadvantage. Since it can reduce the total power consumption of the overall network,
it does not directly reflect the lifetime of each sensor node. In other words, if the
minimum power routes are via certain specific nodes, the energy of these nodes will
be depleted quickly, so that these energy-drained sensors will be unable to
continuously transmit data or sense environmental data. Therefore, the remaining
energy of each sensor node is another useful metric to enhance the power-aware
routing capability and thereby maximize system lifetime or total power consumption

[6, 10, 11, 19].



Krishnamachari [12] devised three interesting suboptimal aggregation heuristics,
namely, Shortest Paths Tree (SPT), Center at Nearest Source (CNS), and Greedy
Incremental Tree (GIT), respectively. Figure 1-4 is a simple illustration of these three
heuristics. Note that the transmission cost on each link is set to be 1. In the SPT
scheme, each data source node finds the shortest path back to sink node. Figure 1-4(b)
shows the tree generated by the SPT scheme, from which it is clear that SPT cannot
find the optimal solution. CNS selects the node nearest to the sink node as the
aggregation node and other data sources connect to this aggregation node using the
shortest hop path. Figure 1-4(c) shows the final routing assignment by adopting CNS
heuristic. In this case, CNS does not achieve the optimal solution, since nodes 2 and 3

can directly send data back to sink node rather than transmit via aggregation node 1.

{c) CNS Cost =9, (d) GIT Cost =9,

Figure 1-4. A simple illustration of SPT, CNS, and GIT
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In GIT scheme, initially the only member of the current tree is only the sink
node. Each data source finds the shortest hop path to this current tree and the data
source with the minimum hop along with the intermediate nodes on this path are
included in this tree. Then, the other source nodes find the shortest hop path to this
new tree and the minimum hop source node along with the intermediate nodes on this
path are included in the tree. This process is repeated until all source nodes are
included in the tree. Although it seems that GIT might overcome the major weakness
of CNS, it may not find the optimal solution. Note that how to properly select the path
when there are two paths with the same hop distance to the tree will have significant
impact on the solution quality of the GIT solution. In Figure 1-4(d), after the nearest
node, node 1, connects to the sink node, nodes 2 and 3 are three hops away from the
tree consisting of sink node and node 1. If node 2 selects the path through nodes 4 and
5 to reach the sink node then the resultant tree will be the optimal case. Moreover, this
work does not deal with MAC retransmission, effect and restriction on maximum

end-to-end delay.

Fixed transmission radius data-centric routing problem in wireless sensor
networks has been studied in existing research described above. The basic idea of
fixed transmission radius algorithm is to save energy by reducing number of sensor
nodes involved in data aggregation tree, while adjustable transmission radius
algorithms tend to estimate power consumption from another point of view. If the
transmission radius of sensor node could be configured, it is believed that energy
consumption could be further reduced. The power consumption of transmitting data is
measured as " + ¢, where a is a signal attenuation constant ( usually between 2 to 4)
and ¢ is a positive constant that represents signal processing and r is Euclidean

distance between source node and destination node..
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J. Carle [5] discusses the tradeoff between power consumption and coverage of
transmission node. For long transmission radius (e.g. single-hop transmission), sensor
nodes can cover other awake sensor nodes to relay data and also reduce the total
number of sensor nodes involved in data transmission. However, with large signal
attenuation constant (e.g. 4), long transmission radius incurs significant power
consumption that would sacrifice the gain from reduced total number of transmissions.
As we can see, the power consumption will increase exponentially as transmission

radius increases.

1.3.2 Data Aggregation Tree with QoS

Younis [21] discusses the role that quality of service (QoS) traffic plays in WSNs.
The paper presents a thorough discussion and the architectural and operational
challenges of handling QoS traffic in sensor networks. Table 1-1 shows some

architectural design issues and corresponding primary factors in WSNs.

Table 1-1. Architectural Design Issues [21]

Design lIssue Primary Factors

Network Dynamics Mobility of node, target, and sink

Node Deployment Deterministic or Ad Hoc

Node Communications Single-hop or multi-hop

Data Delivery Models Continuous, event-driven, query-driven,
or hybrid

Node Capabilities Multi- or single function; homogeneous
or heterogeneous capabilities

Data Aggregation/Fusion In-network (partially or fully) or
out-of-network
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Youseef [22] augments power-aware routing algorithms by considering QoS in
sensor networks, and proposes a power-aware routing algorithm whose objective is to
minimize the total power consumption while a reasonable level of QoS is sustained.
Youseef considers end-to-end delay from a source node to the sink node as a major
QoS factor and takes end-to-end hop counts as its delay metric. The relations of
end-to-end delay and energy consumption to the transmission distance are discussed
in the experimental results. Although [22] considers delay in power-aware routing, it
does not capture another cardinal factor, namely collisions resulting from contending
media access control in a wireless environment. Collisions significantly affect total
power consumption in terms of power-aware routing, because it consumes more
energy of a sensor node in order to transmit data successfully. In this thesis, we take

the collision effect into account.

Akkaya [2] differentiates between real-time and non-real-time traffic according
to the latency-constrained requirement. A Weighted Fair Queueing (WFQ) mechanism
is employed at each sensor node to perform service differentiation and guarantee the
end-to-end delay bound. Flow aggregation of real-time traffic results in increasing
queueing delay at an aggregation node. Therefore, an adjustment of the bandwidth
sharing weight should be made in order to meet end-to-end delay requirements.
Although this work tries to maintain end-to-end delay from each node on the tree to
the sink node, it only uses a simple heuristic, namely Shortest Path Tree (SPT), to
construct the aggregation tree. In this paper we compare the performance of our
proposed algorithm with SPT. From the computational results it is clear that our
approach outperforms SPT. Note that while wireless sensor networks are limited in
bandwidth, the bandwidth reservation mechanism for supporting QoS constrained

traffic is impractical unless the data flows are generated in the continuous mode. [2]
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also observes that when a low data generation rate is concerned the queueing delay
introduced by aggregation becomes negligible. In this paper we assume that sensor
networks operate in periodic or event-driven mode, where data generation rate would
be low. We, therefore, consider the end-to-end delay as transmission, propagation and

retransmission delay. We do not consider the queueing delay.

Solis [17] discusses the impact of timing on data aggregation. Since data flows
should be aggregated at intermediate nodes on the aggregation tree, a certain must be
incurred. This kind of delay, namely, the maximum end-to-end delay, significantly
influences data freshness (the interval between the time of data generation and that of
sink node reception). [17] proposes a heuristic, called “cascading timeouts”, to
calculate how long an intermediate node should wait in order to achieve maximum
freshness and accuracy of sensed data. The basic idea of cascading timeouts is that a
node’s timeout, i.e., the time interval it waits to receive data from its children before
forwarding aggregated data, is based on its position on the data aggregation tree. Thus,
the timeout of a node will occur immediately its parent’s. The construction of the
aggregation tree is not discussed in [17]. In this paper, the impact of timing in data
aggregation tree is considered as a maximum end-to-end delay metric to reflect the
interval that each node should wait before data aggregation. Moreover, the maximum
end-to-end delay for each node should be minimized, because it is also regarded as a

cost, which is the energy consumed by a sensor node operating in idle mode.

V. Annamalai [4] and S. Upadhyayula [20] propose the algorithm for solving the
minimum energy convergecast problem which also tries to minimize data latency.
These two algorithms construct the data aggregation tree based on greedy approach in

which new nodes are iteratively added into the data aggregation tree such that the cost
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of adding new link to original tree is less. The algorithm then allocates DSSS or FHSS
codes to each node on the tree. This paper actually does not tackle the problem of
transmission radius assignment. Instead it only takes distance as its criteria to assign

transmission radius to each node.

1.4 Proposed Approach

In this paper we proposed three models to precisely describe the data-centric
routing problem in WSNs. We first propose an optimization-based heuristic to solve
the fixed transmission radius data-centric routing problems (DCR) in wireless sensor
networks. The problem is first formulated as a mixed integer and linear programming
(MILP) problem, where the objective function is to minimize the total transmission
cost for all multicast groups, subject to multicast tree and data aggregation constraints.
In the extension model of DCR, besides, routing assignment, we also study the
transmission radius assignment of sensor nodes to further reduce total energy
consumption. Hence, the energy-efficient data-centric routing problem (EDCR) in
wireless sensor network could be formally defined as minimizing total power

consumption subject to reverse-multicast tree, and configurable transmission radius.

Finally, the problem with consideration of data retransmission and the maximum
end-to-end delay is then formulated as a MILP problem where the objective function is
to minimize the total energy consumption of constructing the data aggregation tree,
subject to aggregation tree, transmission radius, data retransmission times, and the
maximum end-to-end delay constraints. We propose the Lagrangean relaxation scheme,

in conjunction with the optimization-based heuristics to solve these two problems.
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From the computational experiments, the proposed solution approaches are superior to

the existing heuristics.

1.5 Thesis Organization

The remainder of this paper is organized as follows. In Chapter 2, MILP
formulations of the DCR and EDCR problem are proposed. In Chapter 3, a MILP
formulation of data-centric wireless sensor networks routing problem with QoS
constrain and transmission radius assignment is proposed. In Chapter 4, solution
approaches based on Lagrangean relaxation are presented. In Chapter 5, heuristics are
developed for calculating good primal feasible solution of these problems. In Chapter
6, the computational results are reported. Finally, in Chapter 7 we present our

conclusions and indicate the direction of the future works.

16



Chapter 2 Problem Formulation of DCR
and EDCR

2.1 Problem Description

The problem to be solved is to decide how far the sensor node should turn on its
transmission radius so that accordance with that corresponding topology the energy
consumption cost of constructing a data aggregation tree can be minimized. The data
aggregation tree would be formed after determining the transmission radius of each
sensor. Each data source node should be assigned exactly one routing path in order to
transmit sensed data to the sink node. The routing assignment for each data source
should be carefully chosen, because after determining the routing assignment of all
data sources, the union of all routing paths will form the data aggregation tree. Two
factors that significantly affect total energy consumption are considered in DCR and

EDCR, namely:

1) Data aggregation capability: as discussed in Chapter 1, data aggregation can
substantially reduce the total energy consumption as it can incorporate many data
packets into one single packet while its in-network processing ability is enabled.
With the total number of aggregate flows increasing, the great benefit derived
from transmitting fewer data packets would be that less transmission energy is

needed to transmit data.

2) Transmission radius assignment: the power consumption function for
transmitting data is defined as #*+ c. We observe that without properly assigning
a transmission radius to each sensor node on the data aggregation tree, more

power will be dissipated.
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2.2 Problem Formulation

2.2.1 DCR Problem

A data-centric wireless sensor network is modeled as a graph in which sensors
are represented as nodes and the arc connecting two nodes indicates that one node is
within the other’s transmission radius. In WSNs, the transmission power (radius) is
associated with the physical distance between the source and the destination. Thus, it
is reasonable to assume that the transmission cost associated with each link is
identical to the cost of transmission in the opposite direction. By this assumption, the
total transmission cost of a data aggregation tree is identical to the multicast tree
transmission cost, where the root is the sink node and the source nodes are
destinations. In the DCR problem, we consider a topology in which the transmission
radius of each sensor is fixed. The effects of data retransmission and end-to-end delay
are not considered in the DCR model.. The DCR model can be applied to a scenario
where sensor nodes can not adjust their transmission radii, and there are few traffic
flows to be sent such like event-driven applications; hence the effects of data
retransmission and end-to-end delay can be neglected. The summary of problem

description of the DCR model is given in Table 2-1.

Table 2-1. Problem description for DCR problem

Given:
® The set of all multicast groups
® The set of data source nodes for each multicast group

® The set of all links in the network

® The set of all candidate paths from the data source to the sink node
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® [Longest hops along shortest path to reach farthest data source for each
multicast group

® Transmission cost of each link with respect to energy consumption

Objective:

To minimize total transmission cost of the data aggregation tree.

Subject to:

® Data aggregation constraint— several data items arriving at the same node will
be aggregated and the intermediate node will transmit only one aggregated set
of data.

® Routing constraint— each data source node should only select one routing path
to send data back to the sink node.

® Tree constraint— the union of routing paths of each data source shall be a tree,
namely, a data aggregation tree.

To determine:

® Routing path for each data source

® Total number of data items on each link

®  Whether or not a link should be on the data aggregation tree

Table 2-2. Notations of given parameters for the DCR problem

Given parameters

Notation Description
G The set of all multicast groups
D, The set of data source nodes for the multicast group g
L The set of all links on the graph
Py The set of candidate paths from the data source node d to the sink node
of multicast group g
5 The longest distance along the shortest path to reach the farthest data

source node for the multicast group g
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a Unit power aware transmission cost associated with the link /

Sy The indicator function, which is 1 if link / is on path p; and 0 otherwise

n The set of all outgoing links belonging to the node n

In this formulation, we generalize the formulation to consider multiple multicast
groups, 1.e., multiple events. Py, considers all possible paths that source node d of

multicast group g may use. We do not need to generate these paths in advance. In the

algorithms proposed in Chapter 5, the arc weight, (u, +u}), on each link / enables

us to find the shortest path by using the Dijkstra’s algorithm to identify the path used

by data source d of multicast group g.

The decision variables for the wireless sensor networks routing problem are

denoted as follows.

Table 2-3. Notations of decision variables for DCR problem

Decision Variables
Notation Description
G Number of data units transmitted through the link /
Yl 1 if the multicast group g uses the link / and 0 otherwise
¥ gpd 1 if multicast group g uses path p to reach source node d and 0 otherwise

The data-centric routing problem in wireless sensor networks is then formulated

as the following combinatorial optimization problem (IP1).

Objective function:

Zipy =min Y,a,C, (IP1)
leL
subject to:
> vy <€ Viel (2-1)
o
C, €{0,1,2,3,....|G| } Viel (2-2)
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D XeaOuw < Yy VgeG,leL,deD, (2-3)

PEPy

Ya=0orl VgeG,lel (2-4)
zygl 2 max{hg’ Dg‘ } VgeG (2-5)
leL

z ngpd5pl < ‘Dg‘ygl VgeG,lel (2-6)
deD, pePy

DXy =1 VgeG.,deD, (2-7)
PEPy

Xgg = 0 0r 1 VpeP,,ge€G,deD, (2-8)
Zygl <1 VgeG,neN. (2-9)

len™

The objective function of (IP1) is to minimize the total data transmission cost of
data aggregation tree, which is equal to the total multicast routing cost. Constraint
(2-1) requires that the number of multicast groups adopting link / as their multicast
tree should be less then or equal to the number of data units transmitted through link /.
Constraint (2-2) requires that number of data units on link / be at most the cardinality
of G, registering sensor nodes can aggregate data belonging to the same multicast
group. Constraint (2-3) requires that if one path is selected for the group g destined to

the destination d, the path must also be on the tree adopted by the multicast group g.

Constraints (2-4) and (2-5) require that number of links on the multicast tree
adopted by the multicast group g be at least the maximum of 4, and the cardinality of
D,. Note that both 4, and D, are legitimate lower bounds of the number of links on the
multicast tree adopted by the multicast group g. For example, if there are two
destination nodes in multicast group g, then |D,| is equal to 2. An illustrated example
is given in Figure 2-1, where the multicast group source node is 1 and the destination

nodes are 2 and 6. Obviously, 4, is 3, since the farthest destination node is node 6,
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which is three hops away from the source node. From the computational experiments,
we find that introducing Constraint (2-5) significantly improve the solution quality.
Note that |D,| and 4, could be calculated in advance. We propose a revised Dijkstra’s
algorithm, denoted as Calculate hg, to compute h, for each multicast group g by
setting each arc weight to be one.

Selected links in the

multicast group

» Original links in the
graph

Source node: 1
Destination node: 2,6

Figure 2-1. An illustrated example of Constraint (2-5)

Algorithm Calculate_hg
begin
initialize all arc weight to be 1;
for g :=11to0 |G| do
begin
initialize ho/g] := 0;
ford:=1to|N| do
begin

if deD, then

run Dijkstra’s shortest path algorithm to determine hops (hop[d])
between sink node and destination d.
if hop[d] > he/[g] then ho/g] = hop|[d];
end;
end;

end;
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The left-hand term of Constraint (2-6) calculates the number of paths destined
for data source nodes that pass through link / for a multicast group. The right-hand
term of Constraint (2-6) is at most |D,|. If the union of the paths destined for the data
source nodes does exist a cycle, and this cycle contains link /, then Constraint (2-6)
would not be satisfied, since there would be too many paths to pass through this link.
In other words, Constraint (2-6) is to restrict that the union of the paths destined for
data source nodes does not contain a cycle. Constraints (2-7) and (2-8) require that
any multicast group g selects exactly one routing path destined for its destination d.
Constraint (2-9) is the outgoing constraint, which means that each node on the
aggregation tree should only have one outgoing link. By enforcing Constraints (2-6),

(2-7), (2-8), and (2-9) the union of the routing paths shall be a tree.
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2.2.2 EDCR Problem

We first show the notations of EDCR model.

Table 2-4. Notations of given parameters for EDCR problem

Given parameters

Notation Descriptions
N The set of all sensor nodes
P The set of all candidate paths that the data source node s connects to the
N sink node ¢
S The set of all data source nodes
h Longest hops of shortest path to reach farthest data source node
The indicator function which is 1 if the link (n,k) is on the path p and
%ty otherwise 0
duk Euclidean distance between the node n and the node &
q The data sink node
R, The set of all possible transmission radii that the node » can adopt
e (r) Energy consumption function. of the node n, which is a function of
node’s transmission radius

In EDCR model, we model the link / as the node pair (n,k). n is the origin node
of the link / and k is the termination node of link /. As the node k is within
transmission radius of the node 7, link (n,k) will exist. The decision variables used in

EDCR model are denoted as follows.

Table 2-5. Notations of decision variables for EDCR problem

Decision Variables

Notation Descriptions

r, Transmission radius of the node n

Ynk 1 if the link (n,k) is used by the aggregation tree

X, 1 if the data source node s uses the path p to reach the sink node ¢
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The EDCR is then formulated as the following combinatorial optimization

problem (IP2).
Objective:
Zipy=min Y e, (r,) (IP2)
ne N

subject to:

szpgp(n,k) < Yw Vn,ke N,seS (2-10)
PePy,

2 Vo 2 max{h, S| } (2-11)
neNkeN

2 2 %0 < SV Vn,k e N (2-12)
seS pePy,

> Youw <1 VneN (2-13)
keN

Yudy <, Vn,keN (2-14)
r, €R, VneN (2-15)
Vs =0 or 1 Vn, ke N (2-16)
>x, =1 VseS (2-17)
PeFRy,

x, =0 or 1 VseS,peP,. (2-18)

The objective function of (IP2) is to minimize total power consumption of the
data aggregation tree for transmitting data to the sink node. Constraint (2-10) requires
that if one path p is selected for the source node s to reach the sink node ¢, the path
must also be on the tree. This constraint also enforces that if the link (7, k) is on the
path p adopted by source node s to reach sink node, then y, » must be 1. Constraint
(2-11) and (2-16) require that total number of links on the aggregation tree be at least
the maximum of 4 and the cardinality of S. Just as (IP1) in Section 2.2.1, introducing

constraint (2-11) is to improve the solution quality.
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Constraint (2-12) is to restrict that the union of the routing paths destined for data
source nodes contains a cycle just as Constraint (2-6) in (IP1). Constraint (2-13) is the
outgoing link constraint. All intermediate nodes on the aggregation tree should have
only one outgoing link (e.g. node 4 has two incoming link and only one outgoing link
in Fig. 1-4(a)). Constraint (2-17) and (2-18) require that any data source adopts only
one path destined for sink node in aggregation tree. By enforcing Constraints (2-12),

(2-13), (2-17), and (2-18) the union of the paths shall be a reverse multicast tree.

Constraint (2-14) is a transmission radius coverage constraint. This constraint
enforces that if the link (n,k) is used by aggregation tree, the transmission radius of
node n should be large enough in order to cover node k. Constraint (2-15) indicates
the set of possible transmission radii for sensor node, which is a discrete and finite set.
By enforcing Constraints (2-14) and (2-15), we ensure that every link on the
aggregation tree is covered within the transmission radius of the origin node of the

link.

After presenting the mathematical formulation of the EDCR model, we could
summarize the major difference between the DCR and EDCR model. In the DCR
model, after the maximum transmission radius is given, the topology of whole
network can be constructed. Hence, the data centric aggregation algorithm developed
for DCR model could also be applied to wired sensor network when a; represents the
link cost of physical link. On the other hand, in the EDCR model, the transmission
radius of sensor node is also a decision variable. In other words, network topology
needs to be determined by the transmission radius assignment of the sensor node.
Such transmission radius assignment makes EDCR model more general than the DCR

model.
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Chapter 3 Data Aggregation Tree with
QoS Routing

3.1 Problem Description

The problem to be solved is to decide how far the sensor node should turn on its
transmission radius so that accordance with the corresponding topology the total
energy consumption for constructing a data aggregation tree can be minimized. The
data aggregation tree is formed after determining the transmission radius of each
sensor. Each data source node should be assigned exactly one routing path in order to
transmit sensed data to the sink node. The routing assignment for each data source
should be carefully chosen, because after determining the routing path of all data
sources, the union of all routing paths will form the data aggregation tree. Three
factors that significantly affect total energy consumption are considered in this model,

namely:

1) Data aggregation capability: as discussed in Chapter 1, data aggregation can
substantially reduce the total energy consumption as it can incorporate many data
packets into one single packet while its in-network processing ability is enabled.
With the total number of aggregate flows increasing, the great benefit derived
from transmitting fewer data packets would be that less transmission energy is

needed to transmit data.

2) MAC layer retransmission: interference in wireless communication and the
hidden terminal problem play important roles in packet retransmission times as
well as increasing energy consumption. In wireless communication, data
retransmission times are affected by the total number of sensor nodes whose

transmission radius covers the receiver. The more flows that the intermediate
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node on the aggregation tree are aggregated, the higher the probability that the
sender will incur data retransmissions. Thus, it would be more appropriate to take
the MAC layer retransmission times into account when deciding the transmission
radius of a sensor and constructing an aggregation tree in wireless sensor

networks.

3) End-to-end delay from the leaf node to the sink node: aggregation extends
the delay at the relay nodes and can thus complicate the handling of
latency-constrained data [20, 23]. We analyze the delay metric and apply it to this
model. Moreover, we think of end-to-end delay as an energy consumption factor,

since sensor nodes operating in idle mode also consume a lot of energy [13].

Sink Node

Figure 3-1. Tradeoff between data aggregation and data
retransmission times
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Figure 3-1 shows the tradeoff between the benefit of aggregating as many flows
as possible and the cost of retransmitting data as the number children nodes on the
aggregation tree increases. Obviously, when node S, which is the receiver of three
children nodes, aggregates more flows sent from other nodes, each sender will suffer
severe collisions resulting in more retransmission times in order to send data
successfully to the receiver. Collisions at the receiver side are a characteristic of
wireless transmissions and a cardinal issue that affects the energy consumption of
sensor nodes when transmitting data to the sink node. In this paper, we discuss the
impacts on retransmission of aggregating data, and achieve the balance between

aggregating benefits and data retransmission costs.

The analysis of retransmission is conducted as follows. First of all, we assume
that each sensor node is equipped with a CSMA-CA compatible transceiver. Based on
the analysis in [15], we derive the mean retransmission time of a sender. Our
perspective is that each transmission conforms to Geometric distribution and each
sensor node generates data packets that follow Poisson distribution with a certain rate,
A . Successful transmission of data from a sender to a receiver is influenced by the
number of sensor nodes whose transmission radius covers the receiver. As shown in
Figure 3-1, we find that node S is covered by four sensor nodes where three of them
are its children nodes and another is the neighbor node. By considering the receiver
side collisions in terms of the communication radius of sensor nodes, the hidden
terminal problem is also implicitly contemplated. We then derive the probability of

successfully transmitting data from node # to node £ is:

1 1

Average Retransmission Times k) = p —ﬂ(RT5+51FS+29)Zij © (3-1)
success(n,k) e jeN
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The definitions of notations are given in Section 3.2. The meaning of (3-1) is the
mean value of the Geometric distribution where the successful transmission
probability, say psuccess, 1S that no data transmission is occurring at any node whose

transmission radius covers receiver node k within the interval of RTS + SIFS + 2 4.

e M Node Max{10410,10,5+10) AN
Max{18.5+8.5,5+8.5} 20

=27

Max{10+8.5,8.5 Max{10,10,10}

Max{10,10,10

(a) Total Energy Consumption = 46,47 (b) Total Energy Consumption = 69.43

Figure 3-2. Tradeoff between maximum end-to-end delay and
transmission radius

Figure 3-2 shows the tradeoff between maximum end-to-end delay and
transmission radius in data aggregation tree. In Figure 3-2 (a) we can observe that the
maximum end-to-end delay is higher than (b), but the transmission radius of most
sensors in (a) is smaller than (b). On the other hand, the maximum end-to-end delay is
low in (b), but the average of transmission radius is large. As the total energy
consumption of data aggregation tree is sum of transmitting energy and idle energy,
we should construct the data aggregation tree that balances the energy consumption

caused by maximum end-to-end delay and data transmission.
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3.2 Problem Formulation

In this section, we consider a topology that transmission radius of each sensor
should be determined and effects of retransmission and end-to-end delay are
considered. This model can be applied to periodic application scenario where each
sensor periodically reports information to the sink node. Besides the energy
consumption of data retransmissions, end-to-end delay for each sensor should be
considered as another energy consumption factor under periodic application. Before
aggregating data coming from children nodes, each sensor nodes must defer its data
transmission until all data are received. During the waiting time sensor operates in
idle mode in which considerable energy would be consumed. Therefore, it is
reasonable to take end-to-end delay as an energy consumption factor. In this problem
total energy consumption, including data transmission, retransmission, and operating
energy in idle mode, is minimized. The summary of problem description is listed as

below.

Table 3-1. Problem description for the model with QoS routing

Given:

® The set of all sensor nodes

® The set of all candidate paths for each data source to reach sink node

® The set of all data sources

® [ongest hops along shortest path from sink node to reach farthest data source
®  An arbitrary large number M

® The maximum end-to-end delay B

® The maximum number of retransmission times 7 on each link

® Distance between each sensor node
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® Transmission time for transmitting one data packet

® Transmission time for RTS, CTS, ACK frame

®  Waiting time for SIFS, DIFS

®  Average packet arrival rate for each sensor node on data aggregation tree

® Maximum propagation delay for transmission data packet

® The sink node ¢

® The set of all possible transmission radii that a sensor node can adopt

® Energy consumption function whish is a function of sensor node’s transmission
radius

Objective:

To minimize total energy consumption on data aggregation tree

Subject to:

Routing constraint — each data source node should only select one routing
path to send data back to the sink node.

Tree constraint — the combination of routing path of each data source shall be
a tree, namely data aggregation tree.

Retransmission constraint — for data transmission on each link, there would be
a certain retransmissions in order to transmit data successfully.

Maximum end-to-end delay constraint — the maximum end-to-end delay of]
each sensor nodes on data aggregation tree should be minimized in order to
conserve energy consumption while sensor operates in idle mode.

Number of neighbors constraint — the total number of sensor nodes whose

transmission radius covers a sensor node should be considered.

To determine:

Routing path for each data source

Transmission radius for each sensor node
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® Whether a link should be on the data aggregation tree

® Maximum end-to-end delay for each sensor node on data aggregation tree

® The data aggregation tree

Table 3-2. Notations of given parameters for model with QoS routing

Given Parameters

Notation Description
N The set of all sensor nodes
Py, The set of all candidate paths that the data source node s connect to
the sink node ¢
S The set of all data source nodes
h Longest distance of shortest path to reach farthest data source node
M An arbitrary large number, M >1
A Maximum link delay
B Maximum end-to-end delay
Opink) The indicator function which is 1 if the link (n, k) is on the path p and
0 otherwise
Aok Euclidean distance between the node » ‘and the node &
data Transmission time for transmitting a data packet
RTS Transmission time for RTS frame
CTS Transmission time for CTS frame
SIFS Short inter-frame space time
DIFS Distributed inter-frame space time
e Maximum propagation delay for transmitting data packet
A Packet arrival rate
q The sink node
R, The set of all possible transmission radii that the node »n can adopt,
this is a discrete set
e,(r,) | Energy consumption function of the node n, which is a function of
sensor’s transmission radius
Eqe Energy consumption when sensor nodes are operating in idle mode
B Average random backoff time
N Average network allocation vector (NAV)
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Table 3-3. Notations of decision variables for model with QoS routing

Decision Variables

Notation Descriptions
Xsp 1 if the data source node s uses the path p to reach the sink node ¢
Yk 1 if the link (n, k) is on the tree
Tn Transmission radius of the node n
Link) Data transmission delay from the node 7 to the node &
m, Maximum end-to-end delay from leaf nodes to the node n on data
aggregation tree
Znk 1 if the node £ is covered within transmission radius of the node »
Cnk Retransmission times of the node » to transmit data to the node &

Objective function:

Z[P3 = min ZEtdata + (RTSZan )j i en (rn ) + mn ’ Eidle (IP3)
neN keN
subject to:
D X000 < Voo Vn,keN,seS (3-2)
PPy
Z Zy(n,k) > maxi{h,| S|} (3-3)
neN keN
D %00 0n SIST Yo Vn,ke N (3-4)
seS pePy,
> x, =1 VseS (3-5)
Pepy,
D Vo <1 VneN (3-6)
keN
r,—d,,
4 <z Vn,ke N 3-7
M nk ( )
z,d, <r, Vn,ke N (3-8)
Vs < Z Vn,ke N (3-9)
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(my +lgn)—AA=y4,n) <m, Vn,k e N (3-10)

~A(DIFS) sz,, _ —

I k):(e (RTS+SIFS+CTS+B)+DIFS+N)_N VnkeN (3-11)
n, —A(DIFS)Y z;, —A(RTS+SIFS+20) z,
e JEN e JEN

e*(liV(n,k))M

Coie 2 ~A(RTS+SIFS+20) Yz Vn, keN (3-12)
e jeN

x, =0 or 1 VseS,peP, (3-13)
Yuwy = 0 or 1 Vn, ke N (3-14)
z,=0or1 Vn, ke N (3-15)
r,€R, VneN (3-16)
r, #0 VnelS (3-17)
¢, €10,1,2,..T} Vn, ke N (3-18)
B>m, >0 Vne N (3-19)
A>1,, >RTS+SIFS+CTS+B+DIFS  Nn,keN. (3-20)

The objective function of (IP3) is to minimize total energy consumption of the
data aggregation tree for transmitting data to sink node and waiting for data
aggregation. Constraint (3-2) requires that if the path p is selected for the source node
s to reach the sink node ¢, the path must be on the tree. This constraint also enforces
that if the link (n, k) is on the path p adopted by the source node s to reach the sink
node, then yx must be 1. Constraint (3-3) and (3-14) require that total number of
links on the aggregation tree is at least the maximum of /4 and the cardinality of S.
Note that both / and |S] are legitimate lower bound on the total number of links on a
aggregation tree. Introducing constraint (3-3) will significantly improve the solution

quality. |S| and 4 could be calculated in advance. The explanation of this legitimate
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lower bound is shown in Figure 2-1.

The left-hand term of constraint (3-4) calculates the number of paths, which are
destined for the sink node and passing through the link / on aggregation tree. The
right-hand term of constraint (3-4) is at most |S|. When the union of the paths destined
for the sink node does exist a cycle, and this cycle contains link /, then constraint (3-4)
would not be satisfied since there would be many paths pass through this link.
Constraint (3-5) and (3-13) require that any data source adopts only one routing path
destined for sink node. Constraint (3-6) is the outgoing link constraint. All
intermediate nodes on the aggregation tree should have only one outgoing link. The
illustrative example of constraint (3-6) is shown in Figure 3-3. Constraint (3-4), (3-5),

(3-6), and (3-13) enforce that the union of all routing paths would be a tree.

Sink
2
/
\
s s
s s s

Figure 3-3. An illustrative example of constraint (3-6).

Constraint (3-7) and (3-8) are the number of neighbors constraints. If », >d, ,
znx should be equal to 1 and 0 otherwise. Using z,; we can calculate the total number
of sensor nodes whose transmission covers sensor node k, or the total number of

sensor nodes covered by transmission radius of sensor node n. These two constraints
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are complementary as shown in Table 3-4. By jointly enforcing constraint (3-7) and

(3-8) we can model the relationship described above through decision variable z.

Table 3-4. Explanation of constraint (3-7) and (3-8).

Constraint Constraint (3-7) Constraint (3-8)
Condition
If r,2d,, zZe =1 zw =0orl
If r, <d,, zye =0orl Zye =0

Constraint (3-9) is a necessary constraint that relates decision variable yux) to
Znk. If Yaux) equals to 1 then z, also must be 1. Also note that constraint (3-9)
implicitly obligates that if sensor nodes were not on the data aggregation tree, they
would not choose any link emanating from them as a link used by data aggregation
tree, since this behavior would increase the cost of objective function (IP3).
Constraint (3-10) is the maximum end-to-end delay from leaf nodes of the
aggregation tree to intermediate node n. Data aggregation schema in WSNs has a
major characteristic that intermediate node on tree should wait a suitable delay time
for aggregating all data items coming from children which may have subtree rooted at
itself. This is a recursive relation between an intermediate node and its children nodes.
Therefore, the maximum end-to-end delay of intermediate node n on aggregation tree
is the maximum delay of its children plus link delay. This recursive relation then goes
down along the tree until leaf nodes are reached. The illustration of maximum

end-to-end delay is shown in Figure 3-4.
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Sink Node
Max{18.5+8.5,5+8.5}
=27

Max{ 10+8.5,8.5

Max{10,10,10}

Figure 3-4. Illustrative example of Constraint (3-10).

Constraint (3-11) is the calculation function' of link transmission delay.
Constraint (3-12) is the calculation function of link retransmission times. Constraint
(3-16) restricts that the set of possible transmission radii that node »n can adopt is
discrete and finite set. Constraint (3-17) enforces that each data source node should
turn on its transmission radius. The transmission radius of each source node can not
be 0. Constraint (3-18) is the bounding constraint of retransmission times. The
bounding value is related to maximum end-to-end delay or can be obtain according to
specification of standard. Constraint (3-19) is the lower bound and upper bound of
maximum end-to-end delay. Constraint (3-20) enforces the bounding constraint on the

transmission delay of each link.

For convenience of applying our solution approach to this model, we make some

transformations on constraint (3-11) and (3-12) in order to make (IP3) solvable.
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Constraint (3-11) can be approximated by:

~A(DIFS)Y z,, - .
(e < (RTS +SIFS+CTS +B)+ DIFS+N) —
—A(DIFS)Y z,, —A(RTS+SIFS+20)Y z, -N
e JEN e JEN
0.115+(0.017-A(DIFS)) Yz,
e = " (RTS + SIFS + CTS +330)
~A(DIFS) Yz, —A(RTS+SIFS+26)Y =
e JeN e JjeN
0.115+0.017 "z,
e 'Y (RTS + SIFS + CTS +330)
—A(RTS+SIFS+20) Y z 4
e JEN

Z(n,k)

~

By adopt this function to approximate original delay function, we can guarantee
that the error under five percent can be achieved. In addition to small error, the
approximation function overestimates the link delay which means a good
approximation from the perspective of engineering. The comparison of approximate

and original function is depicted in Appendix.

We then take natural logarithm on both sides in order to make this function

solvable.

In(l,,.;,) = In(RTS + SIFS + CTS +330)+0.115+0.017> z,,

JjeN
3-21

+ A(RTS + SIFS +26)) z ;. (-21)

JjeN
For constraint (3-12), we take natural logarithm on both side:

~(=Y1))M
ln(cnk) 2 1

= In(c,) 2 A(RTS+SIFS+20)Y z, —M +My,,,. (3-22)
jeN

—M(RTS+SIFS20) Y z,,
e jeN
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3.3 Extension to the Model without Aggregation

In some application scenarios of wireless sensor networks, the data sink node
needs all sensed data of interest. Therefore, data is not necessary to be aggregated
during data transmission. The model of data aggregation with QoS routing can be
easily extended to the model without aggregation capabilities, where data will not be
aggregated in intermediate nodes. It only requires additional flow conservation
constraints in order to transform original model into extended model. The flow

conservation constraint is as follows:

Z Z szp5p<k,n> = Z Z szp5p(n,j> VneN (3-23)

seS pely, keN seS pel, jeN

Constraint (3-22) is flow conservation constraint. The meaning of constraint
(3-23) is that the total incoming flows of each node should equal to the total outgoing
flows. With constraint (3-23) we can restrict that each sensor node needs to send all
received data to its parent node without any aggregation operation. In addition to flow
conservation constraint, the objective function should be modified slightly in order to
reflect more energy consumption due to no aggregation during data transmission. The

modified objective function is as follows:

min Z(Hn + (RTSZan )j ’ en (rn) + mn ’ Eidle

neN keN

where H, = Z Z szpép(w) VYneN.

seS peF, jeN
By adding above constraints and modifications, we can transform the original

model into the model without aggregation capabilities.

40



Chapter 4 Solution Approach

4.1 Lagrangean Relaxation Method

One of the most computationally useful ideas in the 1970s is the observation that
many hard integer programming problems can be viewed as easy problems
complicated by a relatively small set of side constraints. This technique is so-called
decomposition which is an invaluable methodology to conquer many complicated
problems in the field of computer science, industrial engineering, and operation
research. Lagrangean relaxation method is one of the decomposition techniques. By
dualizing the side, or complicated, constraints we form a Lagrangean relaxation
problem that is easy to solve and whose optimal value is a lower bound (for the
minimization problem) on the optimal value of the original problem. To obtain the
best lower bound, we need to choose the appropriate Lagrangean multiplier for
Lagrangean multiplier problem so that the optimal value of the Lagrangean
subproblem is as large as possible. We can solve the Lagrangean multiplier problem in
a variety of ways. The subgradient optimization technique is possibly the most

popular technique for solving the Lagrangean multipliers problem.

By decomposing the original problem into several easily solvable subproblems,
Lagrangean relaxation can solve the subproblems that we have decomposed as
stand-alone problems. In decomposed problems, Lagrangean relaxation solves core
subproblems as stand-alone models. This solution approach permits us to exploit any
well-know efficient algorithm for solving the subproblems. The Lagrangean
relaxation method, therefore, can be used to solve optimization problems such as
integer programming, non-linear programming, mixed integer linear programming,
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and combinatorial optimization problems. This approach has led to dramatically
improve algorithms for a large number of critical and difficult problems in the areas

of routing assignment, location, scheduling assignment and set covering.

Figure 4-1 illustrates the procedure of Lagrangean Relaxation, while Figure 4-2

shows the detailed procedure of Lagrangean relaxation.
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Primal Problem

Adjust Lagrangean

uB
v ‘ multiplier u
LB

// decompositior\\

subproblem O 0 O subproblem

Figure 4-1. An illustration of Lagrangean relaxation

2.Set u=0,41=2
3. Set IterationCount = 0, ImproveCounter = 0,
MaxlterationCount, MaxImproveCount

Initialization

l

Solve Lagranglan {1. Optimally solve each subproblems

{1. Find Z' (initial feasible solution), LB =—ocC

Dual Problem 2. Get decision variables
Get Primal 1. Get primal feasible solution (UB) if it does
Solution not violate relaxed constraints
l 2. tuning by proposed heuristic, otherwise

2. Check UB, If UB < Z" then Z' = UB

Update Bounds {1. Check LB, If Z.(u) > LB then LB = Z,(u")

: . IF ((IterationCount > MaxIterationCount)
AdJUSt or(UB-LB)/LB<L& ) STOP
Mlﬂtlpher 2. IterationCount ++
1. IF ImproveCount
> MaxImproveCount

A= /2, ImproveCount =0
2. ImproveCount ++

3. Renew u, STOP

Figure 4-2. Detailed Lagrangean relaxation procedure
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4.2 DCR Problem

4.2.1 Solution Approach

The algorithm development is based upon Lagrangean relaxation. In (IP1), by
introducing Lagrangean multiplier vector ul,uz,uS, we dualize Constraints (2-1), (2-3) ,

and (2-6) to obtain the following Lagrangean relaxation problem (LR1).

4.2.2 Lagrangean Relaxation

ZDz(uj,uz,ug) ZminZa,C, +Zu}(2yg, -C)+ Z z Zuzd;( ngpd5p, —yg,)

leL leL geG geGdeD, leL PEPy
+ZZM;(Z Z'xgpdé‘pl"Dg ’ygl) (LRI)
geG lel deD, pePy
subject to:
C, €{0,1,2,3,...[G] | vieL (4-1)
Vg =0o0rl VgeG,lel (4-2)
Zygl > max{hg, Dg‘ } VgeG (4-3)
leL
D X =1 VgeG.,deD, (4-4)
PePy
Xgg =0 0r 1 VgeG,deD,,peP, (4-5)
D ya <l VgeG,neN. (4-6)

len™

We can decompose (LR1) into three independent subproblems.
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Subproblem 4-1 (related to decision variable C,)

min Y (a, -u,)C, (SUB4-1)
leL

subject to:

C, €{0,1,2,3,..|d| | Viel. (4-1)

(SUBA4-1) can be further decomposed into |L| independent subproblems. For each
link /,

min (a, —u,)C, (SUB4-1-1)
subject to:

C e{0,1,2,3,...

Gl }.

If coefficient of link / (a, —u,) is negative then set C; to be |G| otherwise 0.

The computational complexity of (SUB4-1) is | O(1) for each link /.

Subproblem 4-2 (related to decision variable y )

min Y03 ~uy | Dy Dy =200 D eV (SUB4-2)
geG lel geG lel deD,

subject to:

Vg =0orl VgeG,lel (4-2)

Zygl > max{hg, Dg‘ } VgeG (4-3)

leL

D ya <1 VgeG.,neN. (4-6)

len™

(SUB4-2) can be further decomposed into |G| independent subproblems. For

each multicast group g,

min Z(u} —uy | D, | = ul, Jyg, (SUB4-2-1)

leL deDg
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subject to:

yg,=0 or 1 Viel
Zygl Zmax{hg,DgH

leL

Zyglgl neN.

len™

The proposed algorithm for solving (SUB4-2) is described as follows:

Step 1. Compute the number of negative coefficients for all links where the

. . . 1 2
coefficient for each link /is u, — uz,, | D, |- Zugd, :
deD,

Step 2. If the number of negative coefficients is greater than max{h,, |D,|} for
each multicast group g, then set each y,; whose corresponding coefficient
is negative to 1 otherwise 0.

Step 3. If the number of negative coefficients, say n, is less then max{h,, |D|} for
multicast group g, then first let each y, whose corresponding coefficient
is negative be 1. Second, assign the (max{hg, |D,|} —n) number of y, to
be 1 whose corresponding coefficients is the smallest positive values.
Third, let the remaining y. be 0.

Step 4. For each sensor node n, check that only one outgoing link y,; can be set to
1. If there are more than one outgoing link set to 1, choose the link with
smaller coefficient. After investigating the outgoing link constraint if the
total number of y, set to 1,say k, are smaller than max{h,, |D,|}, assign
the (max{hg, |Del!—k) number of y, to be 1 whose corresponding
coefficients is the smallest values and has not been set to 1 before.

Continue step 4 until constraint (4-3) is satisfied.

The computational complexity of above algorithm is 0(| L|(D,|+log|L |))

for each multicast group g.
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Subproblem 4-3 (related to decision variable x,,, )

min Y>> (uly +ul)x,, (SUB4-3)

geGdeD, leL pePy,

subject to:

D Xy =1 VgeG.,deD, (4-4)
pePgd

Xgog =0 0r 1 VgeG,deD,,peP,. (4-5)

(SUB4-3) can be further decomposed into Z\ D, | independent shortest path

geG
problems with nonnegative arc weight. For each shortest path problem it can be
effectively solved by Dijkstra’s algorithm. The computational complexity of

Dijkstra’s algorithm is O(] N |*) for each destination of the multicast group.

4.2.3 The Dual Problem and the Subgradient Method

According to the algorithms proposed above, we could effectively solve the
Lagrangean relaxation problem optimally. Based on the weak Lagrangean duality
theorem (for any given set of nonnegative multipliers, the optimal objective function
value of the corresponding Lagrangean relaxation problem is a lower bound on the
optimal objective function value of the primal problem [1]), Z pi(id, i, u’) is a lower
bound on Z;p; We construct the following dual problem to calculate the tightest lower

bound and solve the dual problem by using the subgradient method [1].

Dual Problem (D1):

Z,, :maxZDl(ul,uz,Lf) (D1)

subject to: u',u’,u’ > 0.

47



Let the vector S be a subgradient of Z p;(u’,u’,u’) at (u',u’,i). In iteration k of

the subgradient optimization procedure, the multiplier vector m* = @' v ™) is
updated by m"' = mF + 'S, where S*@u',u*u’)= (Zyg, -C,,
geG

ngpd5pl ~Var Z ngpd5pl - |Dg |yg[)'

PEPy deD, pePy

IPlk —Zp (mk)

ISFIP , where Z," is the best

. . . Z
The step size of is determined by &

primal objective function value found by iteration & (an upper bound on the optimal

primal objective function value), and J is a constant (0 <0 <2).

4.3 EDCR Problem

4.3.1 Solution Approach

The algorithm development is based upon Lagrangean relaxation. In (IP2), by
introducing Lagrangean multiplier vector v/,v’v’, we dualize Constraints (2-10),

(2-12) ,and (2-14) to obtain the following Lagrangean relaxation problem (LR2).

4.3.2 Lagrangean Relaxation

ZD2(V11V2:V3):min Z e, (r,)+ Z Z Z v(ln,k)s( z ‘xspé‘p(n,k) - y(n,k))

neN neN keN seS peP,
2
+ Z Z v(",k)(z Z xsp5p(n,k)_ | S |'y(n,k))
neN ke N sesS pePw
3
+sz(ﬂ,k)(y(n,k)dnk =7,) (LR2)
neN keN

subject to:
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2.2 Y 2 max{h, |3} (4-7)
neNkeN

D Vo <1 VneN (4-8)
keN

r,€R, VneN (4-9)
Yy =0or 1 vn, ke N (4-10)
> x, =1 VseS (4-11)
PeFy,

x, =0 or 1 VseS,peP,. (4-12)

We can decompose (LR2) into three independent subproblems.

Subproblem 4-4 (related to decision variabler,)

min Z (en (rn) - rn zvgn,k)) (SUB4_4)
neN keN

subject to:

r,€R, VneN. (4-9)

(SUB4-4) can be further decomposed into | N | independent subproblems. For

each node n,
min €, () =7, Y Vo (SUB4-4-1)
keN
subject to:
r,e€R, .

Since R, is a finite and discrete set, we can examine all possible transmission

radii of node n to identify the smallest value of the objective function. The

computational complexity of (SUB4-4)is O(| R, |) for each node n.
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Subproblem 4-5 (related to decision variable y,, ;)

min z Z(v(3n,k)dnk - u(zn,k) | S | - Zv(ln,k)s )y(n,k) (SUB4_5)
neN keN seS

subject to:

D2 Vi = max{h, [S] | (4-7)

neNkeN

D Vow <1 VneN (4-8)

keN

Vi = 0 or 1 Vn,keN. (4-10)

The proposed algorithm for solving (SUB4-5) is described as follows:

Step1. For each link (n,k) compute the coefficient v(, .\d,, Vi, | S| —Z Vinkrs
seS

for each yg, ).

Step2. For all outgoing links of node #, find the smallest coefficient. If the
smallest coefficient is negative then set the corresponding y, » to be 1 and
the other outgoing links yy, » to be 0, otherwise set all outgoing link y, ) to
be 0. Repeat step 2 for all nodes.

Step3. If the total number of y,x) whose value is 1 (denote as 7) are smaller than
max{h, |S|}, then identify the nodes that have all its outgoing links y, » = 0.
From these identified nodes, selected (max{h, |S|}—7) number of these
identified nodes whose corresponding smallest coefficients are the smallest.
Then, assign the outgoing link 4, = 1 with the smallest coefficient for

each of these selected nodes.

The computational complexity of above algorithm is O(| N |*).
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Subproblem 4-6 (related to decision variable x,, )

min Z z Z z (v(ln,k)s + v(zn,k) )xsp 5}7(}1,/() (SUB4-6)
neN keN seS pePy,
subject to:
>x, =1 VseS (4-11)
peby
x, =0 or 1 VseS,pel,. (4-12)

(SUB4-6) can be further decomposed into |S| independent shortest path problems

with nonnegative arc weight whose value is v(lmk)s +v(2n,k). For each shortest path
problem it can be effectively solved by Dijkstra’s algorithm. The computational

complexity of Dijkstra’s algorithmis. O(|N|*) for each source node.

4.3.3 The Dual Problem and the Subgradient Method

According to the algorithms proposed above, we could effectively solve the
Lagrangean relaxation problem optimally. Based on the weak Lagrangean duality
theorem (for any given set of nonnegative multipliers, the optimal objective function
value of the corresponding Lagrangean relaxation problem is a lower bound on the
optimal objective function value of the primal problem [1]), Zp:(v',v',V’) is a lower
bound on Z;p; We construct the following dual problem to calculate the tightest lower

bound and solve the dual problem by using the subgradient method [1].

Dual Problem (D2):

Zm:maxZDz(vl,vz,v3) (D2)

subject to: v', v, v’ > 0.
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Let the vector S be a subgradient of Z p,(v',v’,v’) at (v/,v’,v’). In iteration k of the
subgradient optimization procedure, the multiplier vector m* = '* v v*) is updated

k
by m = m + aSk, where S"(vl,vz,v3)= (szpép(mk)—y(mk),

peby

Zszp5p(nﬂk)—|S|-y(nﬂk), y(n’k)dnk—rn). The step size o is determined by

seS peP,

‘ _Zm(mk)

5ZIP2
Is* 1

, where Z ,Pk is the best primal objective function value found by

iteration k (an upper bound on the optimal primal objective function value), and ¢ is a

constant (0 <0 <2)
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4.4 Data Aggregation Tree with QoS Routing

4.4.1 Solution Approach

Before applying Lagrangean relaxation to this model, we replace constraint (3-11)
and (3-12) by (3-21) and (3-22), respectively. The development of algorithm is based
upon Lagrangean relaxation. In (IP3), by introducing Lagrangean multiplier vector u’,
uz, u3, u’, u6, W, and u8, we dualize Constraints (3-2), (3-4), (3-7), (3-8), (3-9),
(3-10), (3-11), and (3-12) to obtain the following Lagrangean relaxation problem

(LR3).

4.4.2 Lagrangean Relaxation

nenN keN neN

Zps(u' '’ u’ 0’ u’) = min Z[tdm + (RTS - chk)j ce,(r,)+ Y m - Ey, +

zzzuzk{zxwm—y(n,k)j ! zzus{z zxspﬁp(n,k)—|m,k>] ;

neN keN seS PEPy neN keN seS pely,

3 4 5
z Zunk (rn - dnk _Mznk) + z Zunk (andnk - rn) + Z zunk (y(n,k) - an) +
neN keN neN keN neN keN
6
z Zu/m (mk + l(k,n) —A(l- J’(k,n)) - mn) +
neNkeN

In(RTS + SIFS + CTS +330)+0.115+0.017 ) z,,

> >l e
ey U+ A(RTS + SIFS + 29)2 zy —In(l, )

JjeN

D> uy [A(RTS +SIFS +20)Y z,, —~M (1= y,,,)—In(c,, )J (LR3)
neN keN JEN ’

subject to:

22 Vw2 max{h,[S[} (4-13)
neN keN
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Zymk) <1

keN

x, =0 or 1

Voky = 0orl

z,=0or1

r #0

n

¢, €1{0,1,2,...,T}

B>m, >0

A=l 2" - (RTS+SIFS+CTS+330)

We can decompose (LR3) into six independent subproblems.

54

VsesS

Vne N

VseS,peP,

Vn, ke N

Vn, ke N
Vne N
VnelS
Vn, ke N

Vne N

Vn, ke N.

(4-14)

(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

(4-20)

(4-21)

(4-22)

(4-23)



Subproblem 4-7 (related to decision variablem, )

min Y m, - Ey, + >, ug,(m, —m,) (SUB4-7)
neN neN keN

subject to:

B>2m, 20 VneN. (4-22)

We rewrite the objective function of (SUB4-7) into another form so that this

subproblem can be efficiently solved.

Transformation:

zmn .Eidle + zzulfn(mk _mn)

neN neN keN

_ 6 6

- Zmn ’ Eidle + z zulmmk - Z zuknmn
neN neN keN neN keN

— 6 6

- Zmn .Eidle + Z(zunk . Zukn)mn
neN neN \keN keN

_ 6 6

- Z(Eidle + zunk - Zukn }”n'
neN keN keN

After transforming the objective function, we can now decompose (SUB-4-7)

into |N] independent subproblems. For each node n,

min (Eid,e + D ug = ug, jm (SUB4-7-1)

keN keN

subject:

B>m, >0

For each (SUB4-7-1) subproblem, we check the coefficient

E,. + ZMSk - Zu,fn of each node n. If the coefficient of node n is negative then set
keN keN

m,, to be B, otherwise 0. The computational complexity of (SUB4-7) is O(1) for each

node n.
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Subproblem 4-8 (related to decision variable y, ;)

mln z Z (u’lsk + uflkA + unng - urzlk | S | - Zurllks )y(n,k) (SUB4-8)
neN keN ses

subject to:

2.2 Vs 2 max{h,[S|} (4-13)

neN keN

2 Vi <1 VneN (4-15)

keN

Yury = 0 or 1 Vn,keN. (4-17)

The proposed algorithm for solving (SUB4-8) is described as follows.
Stepl.For each link (n,k) compute the coefficient

5 6 8 2 1
uy +u, U+u, M—u, |S| —Zunk for each y g, ).

ses

Step2. For all outgoing links of node n, find the smallest coefficient. If the
smallest coefficient is negative then set the corresponding y,x to be 1 and
the other outgoing links y., » to be 0, otherwise set all outgoing link y, 5 to
be 0. Repeat step 2 for all nodes.

Step3. If the total number of y;, whose value is 1 (denoted as 7) are smaller
than max{h, |S|}, then identify the nodes that have all its outgoing links
Ymr = 0. From these identified nodes, selected (max{h, |S|} — T) number
of these identified nodes whose corresponding smallest coefficients are the
smallest. Then, assign the outgoing link y,x» = 1 with the smallest

coefficient for each of these selected nodes.

The computational complexity of above algorithm is O(| N |2)
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Subproblem 4-9 (related to decision variable x,, )

min > > D (g +Up )X, 0,0 (SUB4-9)
neN keN seS pePy,
subject to:
2%, =1 VseS (4-14)
peby
x, =0 or 1 VseS,pel,. (4-16)

(SUB4-9) can be further decomposed into |S| independent shortest path problems
with nonnegative arc weight whose value is u), +u’ . For each shortest path
problem it can be effectively solved by Dijkstra’s algorithm. The computational

complexity of Dijkstra’s algorithm is O(] N |2) for each source node.

Subproblem 4-10 (related to decision variable», andc,,)

min Zen(rn).tdata +RTSZ zen(rn) .an al ZZ(”ik _u:k)rn

neN neN keN neN keN

= > > uy In(c,,) (SUB4-10)

neNkeN

subject to:
r,€R, VneN (4-19)
r, #0 VneS (4-20)
¢, €{0,1,2,...T} Vn,keN. (4-21)

(SUB4-10) can be further decomposed into | N | independent subproblems. For

each node n,

min en(rn) 'tdata +RTS 'en(rn)zcnk +rn Z(uflk _u:k) - Zufrk ln(cnk)

keN keN keN

(SUB4-10-1)

subject to:
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r €eR

r, 20 nes
¢, €10,1,2,...T} VkeN.

Each (SUB4-10-1) subproblem can be optimally solved by exhaustively

searching the combination of radius 7, and c,. The computational complexity of

(SUB4-10)is O(|R, |x|T|) for each node n.

Subproblem 4-11 (related to decision variable z,, )

S (ulydy —ul, M —u?, )z, + A(RTS +CTS +20)
. neN keN
e S ) +ul )z, +0.017Y > > ul 2, (SUB4-11)
neN keN jeN neN keN jeN
subject to:
z,, =0 orl Vn, keN. (4-18)

We can transform the objective function of (SUB4-11) into the following

form in order to effectively solve this subproblem:

S S (utd, —ul M —u?, )z, + ARTS+CTS+20)S 33 (], +ub)z,,

neN keN neN keN jeN
+0.017> > >ulz,
neN keN jeN
= S (utd, —ul M —i, )z, + ARTS +CIS+26)3 Z(Zu}k i, Jznk
neN keN neN keN\ jeN
+0.017)_ Z{Zu;j jz,,k
neN keN\_jeN

. ZZ(u:kdnk —u3 M —ul, + ARTS + CTS +20)Y (], +u', )+ 0.0172%} Zu

neN keN JjeN jeN

Thereafter, (SUB4-11) can be decomposed into |N ><N| independent

subproblems. For each link (#,k),
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min (u;‘kdnk —u} Mt} ~ARTS+CTS+20) 3 (u], +u, | +0.017> ] ]znk (SUB4-11-1)

JjeN JjeN

subject to:

zx=0or1
(SUB4-11-1) is an easy problem to be solved. If the corresponding coefficient

(ujkdnk —ul M —u}, —2A(RTS+CTS+20) (i, +u’ )+0.0173 u] ]znk of link (,k)

JeN jeN
is negative then set z, to be 1, otherwise 0. The computational complexity of

(SUB4-11)is O(1) for each link (n,k).

Subproblem 4-12 (related to decision variable/, ,,)

min Y > upl, . —uy In(,,) (SUB4-12)
neN keN

subject to:

A=l >e"'" - (RTS+SIFS+CTS+330) Vn,keN. (4-23)

We can further decompose (SUB4-12) into |NxN| independent

subproblems. For each link (7,k),
min u,fkl(n’k) —u), In(/,, ) (SUB4-12-1)
subject to:

A=1,, >e™" - (RTS+ SIFS+ CTS+330).
For each (SUB4-12-1) subproblem, if u/, is negative then set i to be

""" . (RTS+ SIFS+CTS+330). If u], is positive then we can get the value of

that makes (SUB4-12-1) minimal by following procedure.
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Apply first derivative of /) on the objective function of (SUB4-12-1) and let it

equal 0, the optimal value of /[, is:

6 7
a(unkl(n,k) — Uy ln(l(n,k))) — S qu

—Yak T
al(n,k) l(n,k)
7
u
6 nk
=>u, — =0
(n,k)
7
u
=1, =2
(n,k) u6

The second derivative of (SUB4-12-1) is larger than zero:

7
u

Oty — ")
(n,k) U, 7

[
= 2 > O, S1Ince lxlnk 1S pOSlthe.
al(n,k) (l(n,k))

7

The computational complexity of (SUB4-12) is O(1) for each link (n,k).
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4.4.3 The Dual Problem and the Subgradient Method

According to the algorithms proposed above, we could effectively solve the
Lagrangean relaxation problem optimally. Based on the weak Lagrangean duality
theorem (for any given set of nonnegative multipliers, the optimal objective function
value of the corresponding Lagrangean relaxation problem is a lower bound on the
optimal objective function value of the primal problem [1]), Z ps(u’,u’,0’, 0”0, u° 0", ui°)

is a lower bound on Zp; We construct the following dual problem to calculate the

tightest lower bound and solve the dual problem by using the subgradient method [1].

Dual Problem (D3):

1 2 3 4 5 6 . 8
Z,, :mame(u JUS U U U ) (D3)

subject to: u', u’,u’,utu’, u®u® >0, u" > o,

Let the vector § be a subgradient of Z D3(u1,u2,u3,u4,u5,u6,u7,u8) at

('l u’ i’ u® o’ u®). In iteration k of the subgradient optimization procedure, the

1k 2k 3k 4k 5k 6k 7k 8k)

.1 k . K+l k k
multiplier vector m" = (u ", u”",u”",u”" ,u ", u”,u’",u”") is updated by m" " =m" + a Sk,

where
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k 1.2 3 4 5 6 7 8
S*(w u” o’ ut e u ) = [szz,&p(n,k) ~ Vnky» Z Z(xsp5p(n,k)—|Sly(n’k)),

Pep, seS peby,
ho=dy =Mz, z,d =1 Vi = Zys My F l(k,n) —A(l _y(k,n)) -m,,
In(RTS + SIFS+CTS +330)+0.115+0.017) z,,

JjeN

+ A(RTS+SIFS+20)> z, —In(l,, ),

JjeN

MRTS+SIFS+20)> 2, ~M(1-y, )~ ln(cnk)j.

jen

‘ _Zm(mk)
| S* 2

. . Z .
The step size o' is determined by &3 , where Z," is the best

primal objective function value found by iteration £ (an upper bound on the optimal

primal objective function value), and J is a constant (0 <6 <2).
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Chapter 5 Getting Primal Feasible

Solutions

By using Lagrangean relaxation and the subgradient method, we can get a
theoretical lower bound of the primal problem. In addition, the results obtained from
the procedure of Lagrangean relaxation will provide some good hints to help us get
the primal feasible solutions. The solutions to the Lagrangean relaxation problem and
Lagrangean multipliers are both good hints. If the solutions of Lagrangean relaxation
satisfy all constraints in the primal problem, a primal feasible solution is found.
Otherwise, we need to make some modifications to transform the infeasible solution
into a feasible one. Lagrangean multipliers can also be used on some existing

heuristics to adjust the original heuristic to a Lagrangean-based modified heuristic.

5.1 Getting Primal Feasible Solutions of DCR

To obtain primal feasible solutions for data-centric wireless sensor routing
problems, solutions to the Lagrangean Relaxation (LR1) are considered. We propose

the following two heuristics for getting primal feasible solutions.

The first heuristic constructs a shortest path tree based on the solutions in

(SUBA4-3). However, in (SUB4-3), the union of the shortest path for each data source

node may not be a tree, since the arc weight of link /is u}, +u}, . The multiplier u},

is associated with each data source node d. In other words, each data source node may
have a different arc weight on link /, which results in the possibility of having a cycle

for the union of the shortest paths. Therefore, we set the arc weight of link / to be
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2
Z Ugar

deD,

| D, |

+uz,, +a,, so that the arc weight for link / is the same as each data source

node d of multicast group g. This ensures that the union of the shortest paths destined
to every data source in a multicast group shall be a tree. In order to take account of the
transmission cost, we also introduce «@; on the arc weight. The computational

complexity for first heuristicis O( G|| N |*).

The basic idea of the second heuristic is GIT, which according to [12], is a better

heuristic than shortest path tree heuristics. By leveraging the solutions to the dual

problem (LR1), we set the arc weight for link / as a, +u,. The first term, a;, reflects

B

the transmission cost and the second term, uy,,

reflects the penalty cost for link / to

be a link in a cycle. By incorporating 4, +u;, as the arc weight, we try to achieve the

minimum transmission cost and  gain from the data-centric routing (tree) at the same

time.

In addition to the link arc weight setting, we have developed an efficient method
to implement the GIT algorithm. In the traditional GIT algorithm for tree construction,
if there are three nodes in a tree and two unvisited data source nodes, we have to
perform Dijkstra’s algorithm six times to determine the minimum distance to one
unvisited data source node. By adding two pseudo nodes, we only need to perform
Dijkstra’s algorithm once to identify the minimum route to the closest unvisited data
source node. The first pseudo node is used for all nodes in the current multicast tree
and the other is used for all source nodes not contained in the current multicast tree.
For each node, n, in the current multicast tree we add a pseudo link whose arc weight

is 0 from pseudo node 1 to n. For each unvisited source node, s, we add a pseudo link
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whose arc weight is 0 from s to pseudo node 2. After the new topology is constructed,
we perform Dijkstra’s algorithm to find the shortest path between pseudo nodes 1 and
2. Along this shortest path, the closest unvisited data source node will be visited. The

example in Figure 5-1 illustrates the concept. The computational complexity of the

second heuristicis O( N |* Y| D, |).

geG
paeudo
node 1
(:Imuir. in currenit
[ =ink | multicast reg
e BOUTCE ROde nod in
(1) = current rralticast trea
(5]
J oy P00 nexke mearest
(2 S current multicast tree
shortest path betwesn
(4] =) 1 psewde node | and 2
187 b =§}/G)\\:ﬁi= - = psewdo link
peeudo
node 2
{a) (b

Figure 5-1. (a) Initial topology with a current multicast tree and two
unvisited sources. (b) New topology with the shortest path between
pseudo nodes 1 and 2.

In the following, we show the complete algorithm (denoted as LGR) for solving

(IP1).
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Algorithm LGR
begin
Initialize the Lagrangean multiplier vector (’,47,1°) to be all zero vectors;
run Calculate_hg;
UB := very large number; LB :=0;
improve _counter :=0; step size_ coefficient :=2;
for iteration := 1 t0 Max_Iteration_Number do
begin
run subproblem (SUB4-1);
run subproblem (SUB4-2);
run subproblem (SUB4-3);
calculate Zp;;
if Zp; > LB then
LB :="Zp;; improve_ counter = 0;
else improve_counter = improve counter + 1,
if improve_counter = Improve_Threshold then
improve _counter :=0; 0:=0/2,
run Primal Heuristic_Algorithm of DCR;
if ub < UB then UB :=ub; /* ub is the newly computed upper bound. */
run update-step-size;
run update-Lagrangean-multiplier;
end;

end;

The computational complexity of LGR is (N \2 X %’Dg H|L||Gllog L]) for each
ge

iteration.

66




5.2 Getting Primal Feasible Solutions of EDCR

To obtain the primal feasible solutions to the extension of data-centric wireless
sensor routing problem, solutions to the Lagrangean Relaxation (LR2) are considered.

We propose the following two heuristics to get the primal feasible solutions.

The first heuristic constructs the shortest path tree based on the solutions in

(SUB4-6). However, in (SUB4-6), the union of the shortest path for each data source

node may not be a tree, since the multiplier, v, , is associated with each data

source node s. In other words, each data source node may have a different arc weight
on link (n,k), which results in the possibility of having a cycle for the union of the

shortest paths. Therefore, we set the arc weight of link (n,k) to be

Z"(ln,kys-

seS

FV o+ (%)2 , so that the arc weight, for link (7,k) is the same for all data
s

source nodes. This ensures that the union of the shortest paths destined to every data
source shall be a tree. In order to take account of the transmission energy
consumption, we also introduce transmission distance d,; between nodes n and &k on
the arc weight. After the aggregation tree is determined, the minimum power to cover
each link on the tree can be determined. The computational complexity for first

heuristicis O(| N [*).

The principle idea of the second heuristic is also based on leveraging GIT. We
d 2
set the arc weight for link (n,k) as v(zn’k) + (%) and then run the GIT algorithm.

The idea of dividing d,x by 4 is for normalization purposes such that the arc weight
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will not be dominated by dy. The first term, v? , , reflects the penalty cost for link

L d,\ .
(n,k) to be a link in a cycle. The second term, (T”kj , 1s used to reflect the

2
. . . . d .
transmission power consumption. By incorporating v, ,, + (fk as the arc weight,

we try to achieve minimum transmission energy and gain from the data-centric
routing (tree) at the same time. After the aggregation tree is determined, the minimum
power to cover each link on the tree can be determined. The computational

complexity of second heuristic is O(| N || S |).

In the following, we show the complete algorithm (denoted as LGR2) for solving

(IP2).

Algorithm LGR2
begin
Initialize the Lagrangean multiplier vector (v,v7,v’) to be all zero vectors;
run Calculate_hg to determine 4.
UB := very large number; LB :=0;
improve_counter = 0;
Step size coefficient = 2;
for iteration .= 1 t0 Max_Iteration Number do
begin
run subproblem (SUB4-4);
run subproblem (SUB4-5);

run subproblem (SUB4-6);
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calculate Zp;;

if Zp, > LB then
LB :=Zp,, improve counter :=0;

else improve counter := improve _counter + 1,

if improve_counter = Improve_Threshold then
improve counter :==0; 0:=0/2;

run Primal Heuristic Algorithm of EDCR;

if ub < UB then UB := ub; /* ub is the newly computed upper bound. */

run update-step-size;

run update-Lagrangean-multiplier;

end;

end;

The computational complexity (for LGR1 is O( N |’| S \+Z|Rn [) for each

neN

iteration.
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5.3 Getting Primal Feasible Solutions for Data
Aggregation Tree with QoS Routing

To obtain the primal feasible solutions for a data aggregation tree with the QoS

routing problem, we consider solutions to the Lagrangean relaxation (LR3) problem.

Once the routing path, x_, for each source, s, is determined, all other decision

>
variables, e.g., r, and y,, can be calculated and the total energy consumption of the
data aggregation tree can be obtained. The solution of (SUB 4-9) is probably the most
promising feasible solution to the primal problem, yet it may violate the tree
constraint. Thus, we propose a drop heuristic to eliminate those links that form the

cycle on the tree.

The steps of the drop heuristic are as follows:

1. Based on the solutions of (SUB 4-9) we can get the set of decision variables, x,,

from which we can decide which link, y,, is used on the routing path by source s.

After determining y., if v 1s 1, we set the arc weight of it corresponding link to

Z uilks
be > +u’ ; otherwise, we set the arc weight to be infinity.

S

2. According to the arc weight calculated in Step 1, we sort the links from small to

large.

3. We sequentially examine all links from the link with the largest arc weight to the
smallest, but we ignore the links with infinity costs. We remove each link say link
(n, k) from the routing path and check whether every source node still has a
routing path to the sink node. If any source node is unable to reach the sink node

after removing link (n, k), we restore link (n, k) onto the routing path. If every
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source still has a routing path to reach the sink node, we remove (n,k) and

investigate the next link until all the links used by the union of routing path x,,

have been examined.
After executing the drop heuristic we get a data aggregation tree without any

cycles. The computational complexity of the drop heuristic is O(| S || N [*).

In order to decrease the maximum end-to-end delay of the data aggregation tree
obtained by the drop heuristic, we have developed a rerouting heuristic to improve the
solution quality of getting primal feasible solutions. The steps of the rerouting
heuristic are as follows:

1. Identify the path (denoted as P) that incurs the maximum end-to-end delay.

2. Investigate nodes located on P one by one. For each checked node (denoted as
n), examine each node (denoted as k) within the transmission radius of 7. If the
maximum end-to-end delay of node n plus the link delay, /;, ), is smaller than
the maximum end-to-end delay of node %, then reroute the outgoing link on the
routing path of node n from the original routing link to the outgoing link (n,k).
If no node k can be rerouted by 7, then check the next node on P until the sink
node is reached.

3. Update the decision variable y and recalculate the maximum end-to-end
delay of the new data aggregation tree.

4. If no node on path P can be rerouted, then stop the heuristic; otherwise, go to
Step 1.

The pseudo code of the rerouting heuristic is as follows:
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Rerouting Heuristic
begin
Update Success := true;
while Update Success = true do
begin
Update Success = false;
Identify the path P that incurs the maximum end-to-end delay.
for each node n on path P do
begin
for each node & within transmission radius of node » do
begin
if M, + L <My then
run update_ yo.p;
Update Success = true;
break;
end;
if Update Sucess = true then
break;
end;
run recalculate Maximum_End-to-End Delay;
end;

end;

The computational complexity of the rerouting heuristic is O(| N |*).
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In the following, we show the complete algorithm (denoted as LGR3) for solving

(IP3).

Algorithm LGR3
begin

u’ ,u4,u5 ,ué,u7,u8) to be all zero

Initialize the Lagrangean multiplier vector (u’,u
vectors;
run Calculate_hg to determine /.
UB = very large number; LB = 0;
improve_counter := ();
step_size_coefficient .= 2;
for iteration := 1 to Max_Iteration. Number do
begin
run subproblem (SUB4-7);
run subproblem (SUB4-8);
run subproblem (SUB4-9);
run subproblem (SUB4-10);
run subproblem (SUB4-11);
run subproblem (SUB4-12);
calculate Zp;3;
if Zp; > LB then
LB = Zps; improve counter :=0;
else improve counter := improve _counter + 1,
if improve_counter = Improve_Threshold then
improve counter :==0; 0:=0/2;

run Primal Heuristic Algorithm of EDCR with QoS;
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if ub < UB then UB :=ub; /* ub is the newly computed upper bound. */
run update-step-size;
run update-Lagrangean-multiplier;

end;

end;

The computational complexity for LGR3is O(| N |*) for each iteration.
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Chapter 6 Computational Experiments

6.1 Computational Experiments of DCR

6.1.1 Experiment Environments

The proposed algorithms for the DCR problem in wireless sensor networks are
coded in C and run on a PC with INTEL™ PIII-1.3G. Max_Iteration_Number and
Improve Threshold are set to 2000 and 50 respectively. The step size coefficient, &,
is initialized as 2 and is halved if the objective function value of the dual problem is

not improved for iterations up to Improve Threshold.

Two source placement models, namely event-driven and random-source models,
are tested. The event-drive model, described in Chapter 1, requires that all sensor
nodes within sensing range of a specific 'event become source nodes. In a
random-source model, non-sink nodes are randomly selected to be data source nodes.
The random-source model differs from event-driven model in that the source nodes
are not necessarily clustered. Query-based applications and periodic applications

could be classified as the random-source model.

We construct a network topology consisting of N = 300 sensor nodes randomly
placed in a 1x1 square area. The power aware transmission cost, (a;), is defined as
100 xEuclidean distance if the link length does not exceed the transmission radius. In
Figure 6-1 and Figure 6-3, the communication radius is configured as 0.125. In other
words, the link with a length greater than 0.125 will have an extremely high

transmission cost. Hence, in Figure 6-1 and Figure 6-3, a; = 100 xEuclidean distance

75



if length of link / < 0.125, otherwise a; = «. In Figures 6-1 ~ 6-4, SPT, CNS, and
GIT are the solution approaches proposed in [12]. Heuristic 1 and heuristic 2 are the
solution approaches of DCR proposed in Chapter 5. Each plotted point in Figures 6-1
~ 6-4 is the mean value over 10 simulation results. The experimental parameters used

in the experiments are listed in Table 6-1.

Table 6-1. Experimental parameter settings for DCR problem

Parameter Value
Number of Nodes 300
Number of Iterations 2000
Improvement Counter 50
Initial Upper Bound Solution of 1* Getting Primal Feasible
Initial Multiplier 0
Initial Scalar of Step Size 2
CPU: INTEL™ Pentium-III 1.3 GH
Test Platform RAM: 512 MB
OS: Window XP

6.1.2 Experiment Results

Figure 6-1 shows the transmission cost of different numbers of source nodes in a
random-source model, where the communication radius = 0.125. We can see that the
second heuristic proposed in Chapter 5 outperforms the other four solution
approaches under all different numbers of source nodes. As the number of source
nodes increases, the improvement ratio is more significant. Figure 6-2 shows the

transmission cost under different communication radii for fixed 10 source nodes in
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random-source model. Heuristic 2 still outperforms the other approaches. Note that as
the communication radius decreases, the improvement ratio of the second heuristic is
larger. This occurs because when the transmission radius is small, only links with
shorter distance can exist and routing path needs more hops to reach its destination.

Therefore, the advantage resulting from data aggregation will be more significant.

Figure 6-3 shows the transmission cost of different numbers of source nodes in
an event-driven model, where the communication radius = 0.125. Figure 6-4 shows
the transmission cost for different communication radii for 10 fixed source nodes in
the event-driven model. Similar computational results can be observed in Figure 6-3
and Figure 6-4 for the event-driven model. Heuristic 2 still outperforms the other
solution approaches. It is interesting to observe that the improvement ratio in the
random-source model is often larger than in the event-driven model. This is because
sources are randomly selected, not clustered, in the random-source model; thus, the

advantages of the tree will be more significant.

In order to measure effectiveness of the second heuristic, we define an
improvement ratio as (other approach— heuristic 2) / (heuristic 2) x 100. Table 6-2
shows the improvement ratio for Figures 6-1 ~ 6-4. From Table 6-2, the improvement
ratio of the second heuristic over SPT, CNS and GIT is up to 169%, 94% and 18%

respectively.
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Figure 6-1. Transmission cost v.s. the number of sources in the
random-source model
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Figure 6-2. Transmission cost v.s. the communication radius in the
random-source model
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Figure 6-4. Transmission cost v.s. the communication radius in the
event-driven model

Table 6-2. Improvement Ratio of Heuristic 2

Improvement Ratio (%) | Figure 6-1 | Figure 6-2 | Figure 6-3 | Figure 6-4
SPT 75 110 97 169
CNS 71 94 33 58
GIT 15 18 11 12
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6.2 Computational Experiments of EDCR

6.2.1 Experiment Environments

The proposed algorithms for the EDCR problem are coded in C and run on a PC
with INTEL™ PIV-2G. Max_Iteration_ Number and Improve Threshold are set to
1000 and 25 respectively. The step size coefficient, o, is initialized as 2 and will be
halved when the objective function value of the dual problem is not improved by

iterations up to Improve Threshold.

In the EDCR problem, the random-source model is tested. In random-source
model, non-sink nodes are randomly selected to be data source nodes. We construct a
network topology consisting of N = 150 sensor nodes randomly placed in a 1x1
square unit area. Since the transmission power falls as 1/d" [14], n =2 and d
represents the Euclidean distance, if we want to transmit data to a receiver with a
certain acceptable level of signal power, the transmission cost will be proportional to
the square of the Euclidean distance. Thus, the cost of the power aware function,
e,(r,), 1s defined as the square of 100 xEuclidean distance if the link length does not
exceed the maximum transmission radius. The set of all possible transmission radii of
sensor node n (R,) is configured to begin from 0 and extend to the maximum
transmission radius. Elements in the radius set are increased by 0.01 successively. In
Figure 6-5, the maximum transmission radius is set to be 0.15. Each plotted point in
Figure 6-5 and Figure 6-6 is the mean value over 5 experimental results. In all the
experiments we assume that there is only one sensing group in sensor networks. In

order to show the solution quality of our proposed algorithm, for comparison, we

80



implement three algorithms developed in [12]. Table 6-3 shows the experimental

parameter settings in the EDCR problem.

Table 6-3. Experimental parameter settings for EDCR problem

Parameter Value
Number of Nodes 150
Number of Iterations 1000
Improvement Counter 25
Energy Consumption Function Square of Euclidean Distance
Initial Upper Bound Solution of 1* Getting Primal Feasible
Initial Multiplier 0
Initial Scalar of Step Size 2
CPU: INTEL"™ Pentium-IV 2.0 GH
Test Platform RAM: 512 MB
OS: Linux Red Hat 8.0

6.2.2 Experiment Results

Figure 6-5 shows the transmission cost of different numbers of source nodes in
the random-source model. We can see that the second heuristic proposed Chapter 5 is
superior to the other four solution approaches under all different numbers of source
nodes. In addition, as the number of data source nodes grows the improvement ratio is
more significant, which is similar to the DCR model. Figure 6-6 shows the
transmission cost under different maximum transmission radii for 8 fixed source
nodes in the random-source model. The maximum transmission radius is the

maximum allowable transmission range that sensor nodes can chose. The second
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heuristic still outperforms the other approaches. Note that as the transmission radius
decreases, the improvement ratio of the second heuristic increases. This is similar to
the results in the DCR model. Another interesting point is that the cost decreases with
increasing maximum transmission radius because of the expanded feasible region.
However, we can observe that when the maximum transmission radius is increased to
a certain point (e.g., 0.17 in Figure 6-6), the cost can not be reduced any further. This
is because the energy consumption cost is defined as the square of the transmission
radius, and is will be increased rapidly when a large transmission radius is adopted.
Therefore, even though the maximum allowable transmission radius is increased, we

will not be willing to utilize it.

From Table 6-4, the improvement ratio of the second heuristic in EDCR over

SPT, CNS and GIT is up to 59%, 49% and 10% respectively.
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Figure 6-5. Transmission power consumption cost v.s. the number of
sources in the random-source model
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Figure 6-7. Computational time per iteration

Table 6-4. Improvement Ratio of Heuristic 2

Improvement Ratio (%) | Figure 6-5 | Figure 6-6
SPT 59 49
CNS 49 33
GIT 10 10
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Figure 6-7 shows the computational time comparison of all algorithms per
iteration under different numbers of sources. Although our proposed algorithms suffer
from a slightly longer computational time, we can get a better data aggregation tree in
terms of transmission cost and energy saving. Furthermore, the improvement ratio of
our proposed algorithm is more significant when the number of source nodes
increases. To summarize, compared to existing heuristics, although our algorithms
require a slightly longer computational time, they have better data-centric aggregation
capability and better solution quality, particularly when the number of source nodes

increases and the sensor node deployment area is large.

6.3 Computational ~ Experiments of Data

Aggregation Tree with QoS Routing

6.3.1 Experiment Environments

The proposed algorithms for constructing a data aggregation tree with QoS
routing are coded in C and run on a PC with INTEL™ PIV-2G.
Max Iteration_Number and Improve Threshold are set to 2000 and 30 respectively.
The step size coefficient, ¢, is initialized as 2 and is halved when the objective
function value of the dual problem is not improved by iterations up to

Improve_Threshold.

We assume that a sensor network operates in periodic mode where, the sensor
nodes periodically report information to the sink node. The network topology

comprises N = 150 sensor nodes randomly placed in a 1 x1 square unit area. The cost
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of the energy consumption function, e,(r,) , is defined as the square of
100 xEuclidean distance multiplied by energy consumption per millisecond when the
sensor node is transmitting data. The set of all possible transmission radii of a sensor
node n (R,) is configured to begin from 0 and extend to the maximum transmission
radius. Elements in the radius set are increased by 0.01 successively. To evaluate the
solution quality of our proposed algorithm, we implement three existing algorithms
for comparison. The GIT and CNS algorithms are proposed in [12] and the third
algorithm, CCA, is described in [20]. Table 6-5 shows the experimental parameter

settings used in this model.

Table 6-5. Experimental parameter settings

Parameter Value
Number of Nodes 150
Number of Iterations 2000
Improvement Counter 30
CSMS Parameters Standard Value [15]

Square of Euclidean Distance * Energy

Energy Consumption Function Consumption per Millisecond During
Transmission
Initial Upper Bound Solution of 1* Getting Primal Feasible
Initial Multiplier 0
Initial Scalar of Step Size 2

CPU: INTEL™ Pentium-III 2.0 GH
Test Platform RAM: 512 MB

OS: Linux Red Hat 8.0
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6.3.2 Experiment Results

Tables 6-6 and 6-7 show the total energy consumption and maximum end-to-end

delay calculated by different algorithms under a different numbers of sources,

respectively. It is obvious that Lagrangean relaxation-based algorithm can get better

solution quality in terms of total energy consumption and maximum end-to-end delay.

Although the maximum end-to-end delay of Lagrangean relaxation-based algorithm is

sometimes slightly higher than CNS’s, the data aggregation tree constructed by the

Lagrangean relaxation-based algorithm can significantly reduce the total energy

consumption of a data aggregation tree compared with other heuristics. According to

the experimental results, the data aggregation tree constructed by the Lagrangean

relaxation-based algorithm can not only maintain a good maximum end-to-end delay,

but also reduce total energy consumption needed by aggregation tree to transmit data.

Table 6-6. Energy consumption experimental results with different
numbers of sources

Number of Imp. Ratio Imp. Ratio | Imp. Ratio
Sources kB b G O e e p of CCA (%) | of CNS (%) | of GIT (%)
10 143.57 | 171.06 19.14 381.09 194.5 | 254.49 122.78 13.7 48.77
20 189.96 | 219.79 15.7 292.65 | 261.11 | 274.56 33.15 18.8 24.92
30 207.1 | 264.02 27.48 364.11 | 342.07 | 357.52 37.91 29.56 35.41
40 314.27 | 448.24 42.62 699.27 | 474.77 | 555.92 56 5.92 24.02
50 407.97 | 579.97 42.16 829.51 664.7 687.6 43.03 14.61 18.56
60 392.72 | 671.33 70.94 805.11 | 683.84 | 788.01 19.93 1.86 17.38
70 416.8 | 722.45 73.33 994 746.37 | 986.18 37.59 3.31 36.5
80 470.14 | 762.95 62.28 898.76 | 907.95 | 944.06 17.8 19 23.74
90 541.73 | 899.36 66.01 1198.4 | 1012.4 | 1202.8 33.25 12.57 33.74
100 587.93 | 986.94 67.86 12139 | 1126.6 | 1474.6 22.99 14.15 49.41
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Table 6-7. Maximum end-to-end delay experimental results with
different numbers of sources

Number of
Delay LR (ms) Delay CCA (ms) | Delay CNS (ms) Delay GIT (ms)
Sources
10 44.2 51.13 39.24 94.97
20 43.74 40.73 43.25 57.63
30 43.78 45.41 37.7 81.28
40 60.46 63.89 43.51 132.28
50 66.98 71.54 55.9 139.24
60 62.18 63.52 51.94 168.22
70 61.59 73.43 54.71 191.91
80 65.67 70.59 62.4 157.38
90 71.55 79.96 68.82 204.74
100 73.45 93.36 62.47 226.5
Maximum Communication Radius = 0.25 —m—LR
Maximum Allowable End-to-End Delay = 250 ms —e—CCA
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Figure 6-8. Energy consumption with different numbers of source
nodes
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From Figure 6-8 we can see that as the number of sources increases our proposed
Lagrangean based algorithm has a smooth monotonic increment property. In the
contrast, the other three heuristics do not have this good property, so we can observe

that their curves will wobble as the number of sources increases.

Table 6-8 shows the experimental results under different maximum
communication radii with 90 fixed source nodes. In all cases, the Lagrangean
relaxation-based algorithm still gets a better solution than the other heuristics.
Another interesting point is that as the maximum communication radius increases, the
solution of our proposed algorithm changes slightly, whereas the solutions calculated

by other algorithms increases dramatically.

Table 6-8. Energy consumption experimental results under different

maximum communication radii

Maximum
Imp. Ratio Imp. Ratio Imp. Ratio
Communication LR CCA CNS GIT
of CCA (%) | of CNS (%) of GIT (%)
Radius

0.16 738.1 943.07 755.62 1245.12 27.77 2.37 68.69
0.17 773.09 988.95 799.83 1245.12 27.92 3.46 61.06
0.18 750.03 990 777.58 1245.07 31.99 3.67 66
0.19 816.79 1042.38 828.02 1245.07 27.62 1.38 52.43
0.2 843.65 960.15 863.38 1202.84 13.81 2.34 42.58
0.21 856.61 1057.91 900.18 1202.84 23.5 5.09 40.42
0.22 847.85 1120.19 922.33 1202.84 32.12 8.78 41.87
0.23 871.47 1161.63 907.76 1202.84 33.3 4.16 38.02
0.24 856.52 1147.16 934.77 1202.84 33.93 9.14 40.43
0.25 899.36 1198.4 1012.4 1202.84 33.25 12.57 33.74
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Table 6-9. Maximum end-to-end delay experimental results
under different maximum communication radii

Maximum
Communication Delay LR (ms) Delay CCA (ms) | Delay CNS (ms) Delay GIT (ms)
Radius
0.16 74.7 89.95 77.51 210.02
0.17 78.12 84.68 82.99 210.02
0.18 67.99 83.36 69.81 209.82
0.19 71.18 83.11 71.51 209.82
0.2 66.58 79.35 69.83 204.74
0.21 78.44 79.3 69.65 204.74
0.22 82.84 78.91 65.35 204.74
0.23 62.15 78.15 63.67 204.74
0.24 74.57 75.37 65.84 204.74
0.25 71.55 79.96 68.82 204.74
Number of sources = 90 —m— LR
Maximum Allowable End-to-End Delay = 250ms —e—CCA
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Figure 6-9. Energy consumption under different maximum

communication radii
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To evaluate the solution quality of our proposed algorithm under different
maximum allowable end-to-end delay, we conduct an experiment that changes the
maximum end-to-end delay. Table 6-10 summarizes the experimental results of
different algorithms under different maximum allowable end-to-end delays. The

experimental results are also depicted in Figure 6-10.

Through the experimental results we can observe that when the maximum
allowable end-to-end delay constraint is looser, the solution obtained from
Lagrangean relaxation-based algorithm is much better. Even if the maximum
allowable end-to-end delay constraint is stringent, the Lagrangean relaxation-based
algorithm can still calculate a good feasible solution, whereas GIT and CNS can not
find a feasible solution. From the perspective of maximum end-to-end delay, although
the delay calculated by our proposed algorithm is slightly higher than CNS, the
benefit gained from the total energy consumption is significantly larger. This
experiment shows that our proposed solution approach can obtain a good feasible
solution under different levels of delay, and if the delay constraint is looser the
improvement of Lagrangean relaxation-based algorithm over other heuristics is more

significant in terms of total energy consumption.
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Table 6-10. Experimental results under different maximum
allowable end-to-end delays

Maximum Allowable Delay | Delay | Delay | Delay
LR CCA CNS GIT
End-to-End Delay (ms) LR CCA CNS GIT
65 1035.11 N/A N/A N/A 64.09 79.96 68.82 | 204.74
70 1012.24 N/A 1012.4 N/A 67.03 79.96 68.82 | 204.74
75 987.52 N/A 1012.4 N/A 72.78 79.96 68.82 | 204.74
80 953.31 1198.4 1012.4 N/A 79.99 79.96 68.82 | 204.74
85 953.31 1198.4 1012.4 N/A 79.99 79.96 68.82 | 204.74
90 902.92 1198.4 1012.4 N/A 82.03 79.96 68.82 | 204.74
95 902.92 1198.4 1012.4 N/A 82.03 79.96 68.82 | 204.74
100 902.92 1198 4 1012.4 N/A 82.03 79.96 68.82 | 204.74
105 899.96 1198.4 1012 4 N/A 71.55 79.96 68.82 | 204.74
110 899.96 1198.4 1012.4 N/A 71.55 79.96 68.82 | 204.74
115 899.96 1198.4 10124 N/A 71.55 79.96 68.82 | 204.74
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Figure 6-10. Energy consumption under different maximum
allowable end-to-end delays
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The following experiments evaluate the solution quality of different algorithms
under different network sizes with 90 fixed sources and a loose delay constraint. Table
6-11 summarizes the experimental results and Figure 6-11 depicts the results. We can
observe that as the network size increases, the Lagrangean relaxation-based algorithm
can obtain a better solution than the other algorithms. The improvement ratio is much
larger when network size is large. This experiment shows our proposed algorithm can

be applied to large networks and still outperform other algorithms.

Table 6-11. Experimental results under different network sizes

Network Size R CCA ONS GIT Imp. Ratio Imp. Ratio Imp. Ratio
of CCA (%) | of CNS (%) | of GIT (%)

100 832.08 863.92 857.12 1062.04 3.83 3.01 27.64

125 899.35 1033.4 984.06 1296.13 14.9 9.42 44.12

150 899.36 1198.4 1012.4 1202.8 33.25 12.57 33.74

175 1069 1353.3 1134.11 1253.32 26.59 6.09 17.24

200 1060 1422.86 | 1218.58 | 1281.61 34.23 14.96 2091

225 1136.08 | 1619.39 | 1296.81 1555.47 42.54 14.15 36.92

250 1088.42 | 1631.34 | 1394.56 | 1267.68 49.88 28.13 16.47
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Figure 6-12 shows the computational time of the Lagrangean relaxation-based
algorithm per iteration. We can observe that the computational time increases when

the number of sources increases. As the number of sources grows, the computational

time is increased almost linearly.
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Chapter 7 Conclusion and Future Works

7.1 Summary

The deployment of distributed networks characterized by small, inexpensive
sensor nodes capable of sensing and wireless communication will soon become the
reality due to the rapid advancement in microprocessor, memory, and radio
techniques. However, the highly energy-constrained issue should be considered,
because recharging the batteries of sensors is infeasible under many severe
environments. Data-centric routing could effectively reduce the transmission energy
of sensor nodes with data aggregation capabilities in wireless sensor networks. In this
thesis, our work emphasizes the construction of an energy-efficient data aggregation
tree that possesses good QoS and minimizes the energy consumption of sensor nodes
simultaneously. We take the properties of QoS in wireless sensor networks as a new
energy consumption metric that can not only maintain the traditional transmission
delay, but also simultaneously reduce the energy consumption of sensor nodes
operating in idle mode. How to construct a data aggregation tree that is
energy-efficient and has QoS properties is a complicated problem needed to be
investigated. To address this problem, we have proposed a solution approach based on
Lagrangean relaxation to construct an energy-efficient data aggregation tree that
considers routing assignment, transmission radius assignment, data retransmissions,

and maximum end-to-end delay constraints.

In this thesis, we first propose a mixed integer and linear mathematical
formulation for the data-centric routing problem with fixed communication radius.

Solution approach based on Lagrangean relaxation and optimization-based heuristics
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are proposed to solve this problem. Besides the routing assignment, transmission
radius assignment is also considered to address the self-organized property of sensor
nodes. In the EDCR problem, we jointly consider transmission radius assignment and
routing assignment in data-centric sensor networks. Lagrangean relaxation techniques
in conjunction with optimization-based heuristics are proposed to solve the EDCR
problem. Finally, the effects of data retransmission and maximum end-to-end delay
are considered in order to construct a data aggregation tree with QoS routing, while

simultaneously minimizing the total energy consumption.

The contribution of this paper can be expressed in terms of the mathematical
formulation and experiment performance. For the formulation, we propose three
precise mathematical expressions to model the problem of constructing a data
aggregation tree efficiently. With regard to performance, the proposed Lagrangean
relaxation and subgradient based algorithms outperform other heuristics, such as GIT,
CCA, and CNS. According to the experiment results, the Lagrangean-based heuristic
for the DCR and EDCR problem is superior to the existing approaches (SPT, CNS
and GIT [6]) with improvement ratios of 169%, 94%, and 18% respectively. When
considering the effects of maximum end-to-end delay and retransmission the proposed
Lagrangean relaxation-based algorithm outperform better than the CCA, CNS, and
GIT heuristics by 56%, 29.56%, and 49.41% respectively. From the perspective of the
solution quality, we believe that our proposed optimization-based approaches can
effectively and efficiently solve the energy-efficient data-centric routing problems in

wireless sensor networks.
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7.2 Future Works

For the energy-efficient data-centric routing problem in wireless sensor networks,

there are still several ongoing research topics to be addressed.

In this thesis we consider the construction of an energy-efficient data aggregation
tree with several routing assignment and QoS constraints. However, over time sensors
on an aggregation tree will have less residual energy compared to other sensors that
are not on the tree. Therefore, it would be beneficial to reconstruct the aggregation
tree periodically based on the current aggregation tree to minimize the reconstruction

cost.

Cluster-based sensor network is a new approach to establishing sensor networks.
As some powerful sensor nodes act as super node namely, cluster head, these super
nodes control sensors nearby to form a ‘cluster. How to construct these clusters and the
data aggregation tree based on cluster-based routing simultaneously is an extension of

my thesis.

Another interesting research question is: How to maximize the system lifetime?
This is now a hot topic in wireless sensor networks research. As we want to prolong
the system lifetime of sensor networks as much as possible, carefully choosing the
aggregation trees to be assigned to a sensor network could significantly sustain sensor
network to function appropriately. Thus, given several candidate aggregation trees,
how to allocate these candidate trees in different periods in order to maximize the

total number of periods is another optimization problem worthy of investigation.

96



Reference

[1] R. K. Ahuyja, T. L. Magnanti and J. B. Orlin, “Networks Flows—Theory,
Algorithms, and Applications”, Prentice Hall, 1993.

[2] K. Akkaya, M. Younis and M. Youssef, “Efficient Aggregation of
Delay-Constrained Data in Wireless Sensor Networks”, Internet Compatible QoS in
Ad Hoc Wireless Networks, 2005.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114,
August 2002.

[4] V. Annamalai, S. Gupta, and L. Schwiebert, “On tree-based converge-casting in
wireless sensor networks,” in Proceedings of the IEEE Wireless Communications and
Networking Conference, Vol. 3,2003, pp. 1942.

[5] J. Carle and D. Simplot, “Energy Efficient Area Monitoring by Sensor Networks”,
IEEE Computer, Vol. 37, No 2 (2004) 40-46.

[6] J.-H. Chang and L. Tassiulas, “Energy Conserving Routing in Wireless Ad-hoc
Networks”, Proc. IEEE INFOCOM 2000, pp. 22-31, Tel Aviv, Israel, Mar. 2000.

[7] M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-completeness”, Freeman, San Francisco, 1979.

[8] J. Heidemann, F. Silve, C. Intanagonwiwat, R. Govindan, D. Estrin, and D.
Ganesan, “Building Efficient Wireless Sensor Networks with Low-Level Naming”,
18" ACM Symposium on Operating Systems Principles, October 21-24, 2001.

[9] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed Fiffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks”, ACM/IEEE MOBICOM
August 2000.

[10] K. Kalpakis, K. Dasgupta and P. Namjoshi. “Efficient Algorithms for Maximum

97



Lifetime Data Gathering and Aggregation in Wireless Sensor Networks”, Computer
Networks Journal, 42(6):697-716, August 2003.

[11] Koushik Kar, Murali Kodialam, T. V. Lakshman, Leandros Tassiulas, "Routing
for network capacity maximization in energy-constrained ad-hoc networks", /IEEE
INFOCOM 2003 - The Conference on Computer Communications, vol. 22, no. 1, Mar
2003 pp. 673-681.

[12] B. Krishnamachari, D. Estrin, and S.Wicker, "Modelling Data-Centric Routing in
Wireless Sensor Networks", IEEE INFOCOM 2002.

[13] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware
Wireless Microsensor Networks”, IEEE Signal Processing Magazine, March 2002.
[14] V. Rodoplu, and Teresa H. Meng, “Minimum Energy Mobile Wireless Networks”,
IEEE Journal on Selected Areas in Communications (JSAC), Vol. 17, No. 8, August
1999.

[15] S.T. Sheu, T.-H Tsai and JH Chen, “MR 2 RP : The Multi-Rate and Multi-Range
Routing Protocol for IEEE 802.11 Wireless Ad Hoc Networks”, ACM/Kluwer
Wireless Networks, Volume 9, Number 3, May 2003 pp. 165-177.

[16] S. Singh, M. Woo, and C. S. Raghavendra, “Power-Aware Routing in Mobile Ad
Hoc Networks”, ACM/IEEE MOBICOM 1998.

[17] L. Solis and K. Obraczka, “The Impact of Timing in Data Aggregation for Sensor
Networks”, IEEE International Conference on Communications (ICC), Paris, France,
June 2004.

[18] H. O. Tan and I. Korpeoglu, “Power Efficient Data Gathering and Aggregation in
Wireless Sensor Networks”, ACM SIGMOD Record, vol. 32, no. 4, pp. 66-71, 2003.
[19] C.-K. Toh, "Maximum Battery Life Routing to Support Ubiquitous Mobile
Computing in Wireless Ad Hoc Networks”, IEEE Communications Magazine, June

2001.

98



[20] S. Upadhyayula, V. Annamalai, and S. K. S. Gupta,” A Low-Latency and
Energy-Efficient Algorithm for Convergecast in Wireless Sensor Networks”, IEEE
GLOBECOM, 2003.

[21] M. Younis, K. Akkaya, M. Eltowiessy and A. Wadaa, “On Handling QoS Traffic
in Wireless Sensor Networks”, HAWAII International Conference on System Sciences
(HICSS-37), Big Island, Hawaii, January 2004.

[22] Moustafa A. Youssef, Mohamed F. Younis, Khaled A. Arisha, "A Constrained
Shortest-path Energy-aware Routing Algorithm for Wireless Sensor Networks",
WCNC 2002 - IEEE Wireless Communications and Networking Conference, vol. 3,
no.1, March 2002 pp. 682-687.

[23] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-Latency Tradeoffs for

Data Gathering in Wireless Sensor Networks”, IEEE INFOCOM, March 2004.

Appendix

2.5

2 2

LS T — Original Value

1 — Approximate

0.5 /

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Delay approximation function versus original function.

99



T

T

100



Publication:

1. Hong-Hsu Yen, Frank Yeong-Sung Lin, and Shu-Ping Lin, “Efficient Data-Centric
Routing in Wireless Sensor Networks”, [EEE International Conference on

Communications (ICC), Saul, Korea, April 2005.

101



