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論文摘要 

論文題目：達成資訊洩露程度最小化之近似最佳化防禦資源配置策略 
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指導教授：林永松 博士 

網際網路的普及和便利造成人們對網路的依賴，然而這也使得網路犯罪有機

可乘。資訊竊取是造成最嚴重損失的網路犯罪之一，它不但造成金錢、財產之類

的有形損失，還讓無形的企業及個人聲譽受損；因此如何幫助網際網路發展有效

防禦策略，以降低資訊洩露的程度，就成了急需探討的研究議題。 

在這篇論文中，我們將一個攻防情境轉化成二階的數學規劃問題；其中內層

問題（AS 模型）敘述一個惡意攻擊者該如何配置其有限攻擊資源到目標網路，

以竊取最多的機敏資訊，而在外層問題（DRAS模型）中，目標網路的管理者則

希望能有效配置其有限防禦資源，來將由資訊洩漏所引發的損失最小化。為了求

得此問題的最佳解，我們採用以拉格蘭日鬆弛法為基礎的演算法來處理 AS 模

型，而利用以次梯度法為基礎的演算法來處理 DRAS模型。 

關鍵詞：資訊竊取、拉格蘭日鬆弛法、數學規劃、網路攻防、網路存活度、最佳

化、資源配置、無尺度網路 
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Near Optimal Network Defense Resource Allocation Strategies for 

the Minimization of Information Leakage 

Dependency on the Internet is giving cyber criminals increasing opportunities to 

steal information. Information theft, one of the most damaging cyber-crimes, not only 

causes property damage and monetary loss to victims, it can also ruin their reputations. 

As a result, research into developing defense strategies against information theft on 

the Internet is a pressing need. 

In this paper, we model an offence-defense scenario as a two-level mathematical 

programming problem. In the inner problem, defined by the AS model, an attacker 

allocates his limited attack power intelligently to the targeted network in order to steal 

as much valuable information as possible. Meanwhile, in the outer problem, defined 

by the DRAS model, the operator of the targeted network allocates limited defense 

resources appropriately to minimize the damage incurred by information theft. The 

Lagrangean relaxation-based algorithm is adopted to solve the AS problem, and a 

subgradient-based algorithm is proposed to solve the DRAS problem. 

Keywords: Information Theft, Lagrangean Relaxation, Mathematical 

Programming, Network Attack and Defense, Network Survivability, 

Optimization, Resource Allocation, Scale-free Networks 
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Chapter 1 Introduction 

1.1 Background 

Because of the convenience and varied applications of the Internet, it has become 

an indispensable part of people’s daily lives; however, increased dependence on the 

medium has also given cyber criminals more opportunities to steal information. 

Cyber-crime, which ranges from phishing and the use of botnets to information theft, 

has the potential to seriously disrupt our lives and even endanger our property. 

Therefore, the issue of how to deal with cyber-crime has become an urgent research 

topic in the field of network security. 

Among various cyber-crimes, information leakage is one of the most serious 

threats because it jeopardizes network security and causes profound damage and loss. 

According to the CSI/FBI Computer Crime and Security Survey (2005) [1], theft of 

propriety information rates as one of the top three security incidents, resulting in 

dramatic loss to U.S. corporations and government agencies. This year, the survey [2] 

again indicated the great impact of information leakage. However, the loss and 

damage caused by information leakage are not as direct and explicit as those caused 

by DoS, DDoS, or viruses; instead, they are often only realized after the stolen 

information has been exploited. Moreover, some victims are unaware of an attack 

because the information stolen does not affect normal network operations. This 

“silent” attack behavior may not attract the victim’s attention until the stolen 
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information is published or used, which could cause serious loss or damage to the 

victim and ruin his/her reputation. Consequently, network security experts have 

increased their efforts to develop strong countermeasures against information theft. 

To prevent information theft by malicious attackers, network administrators and 

organizations have invested large amounts of resources, including money, time, and 

manpower, and deployed security hardware/software to strengthen their networks’ 

robustness against attacks. However, due to the imperfection of software 

programming and communication protocols, malicious attackers always find ways to 

exploit the vulnerabilities of the Internet and launch attacks to compromise it. Given 

the inevitability of such attacks, perfect robustness of the Internet is unobtainable; 

hence, in recent years, the concept of security has been gradually generalized as an 

issue of survivability [3][4][5]. 

Typically, the states of network security are defined as safe or compromised [6]. 

However we believe that this binary concept is no longer sufficient to describe a 

system’s states under malicious attack or random error conditions, because there is no 

attack-proof or error-free system in the world, especially as most systems are in 

unbounded environments [7]. The general concept of survivability describes how well 

a system can sustain normal service under abnormal conditions [8], and it 

complements the system states that are not covered by security. Thus, in this paper, 

we are particularly interested in the so-called intermediate zone between the safe and 

compromised states. 

It is unfortunate that, despite the ongoing development of methods to strengthen 

network survivability, there is no consensus about a precise definition of the concept 

[9]. The most common definition [7] of survivability, proposed by Ellison et al. in 

1999 [6], is: “the capability of a system to fulfill its mission, in a timely manner, in 
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the presence of attacks, failures, or accidents”. Table 1-1 lists several different 

definitions proposed by other researchers. Although the definitions are diverse, their 

underlying concepts can be generalized as four basic components [9]: system, the 

environment that provides services, the Internet for example; usage, the service 

requested by users; minimum level of service, a set of functional specifications for 

requested services, each of which has associated quality attributes and values; and 

threats, including random errors (accidental threats), malicious attacks (intentional 

threats), and catastrophic occurrences, such as natural disasters. Given the above 

components of survivability, we can analyze a system’s survivability quantitatively. 

The development and performance of previous quantitative analysis studies is 

discussed in Section 1.3.1. 
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Table 1-1 Survivability Definition Summary 

No. Researcher Definition Year Origin

1 
Deutsch and 
Willis 

Survivability is the degree to which essential 
functions are still available, even though 
some part of the system is down. 

1988 [10] 

2 Liew and Lu

Suppose the selected feature of the network is 
quantified and denoted by x. Survivability S 
is measured by the fraction of x that remains 
after the considered disaster has happened. 
The survivability can be characterized by 
following functions: 

• Expected survivability E[S] is the 
expected survivability value s after the 
disaster. 

• Worst-case survivability sw is the 
minimum value of s under given disaster 
types. 

• r-percentile survivability sr is the 
probability that s is no greater than r% 
of the total resources.  

• Zero survivability P0 is the probability 
that s is 0. 

1992 [11] 

3 
Louca, 
Pitsillides, 
and Samaras 

(1) The ability of a network to maintain or 
restore an acceptable level of performance 
during network failure conditions by applying 
various restoration techniques. 

(2) The mitigation or prevention of service 
outage from potential network failures by 
applying preventative techniques. 

1999 [12] 

4 
Ellison, 
Fisher, and 
Linger 

Survivability is the capability of a system 
(including networks and large-scale systems) 
to fulfill its mission, in a timely manner, in 
the presence of attacks, failures, or accidents. 

1999 [6] 
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5 
Knight and 
Sullivan 

Survivability is the ability [of a system] to 
continue to provide one or more alternate 
services (possibly degraded, less dependable, 
or different) in a given operating environment 
when various events cause damage to the 
system or its operating environment. 

2000 [3][4]

6 

ANS 
T1.523-2001
, Telecom 
Glossary 
2000 
(revision of 
Federal 
Standard 
1037C) 

Survivability is a property of a system, 
subsystem, equipment, process, or procedure 
that provides a defined degree of assurance 
that the named entity will continue to 
function during and after a natural or 
man-made disturbance; e.g., a nuclear burst. 

Note: For a given application, survivability 
must be qualified by specifying the range of 
conditions over which the entity will survive, 
the minimum acceptable level or 
post-disturbance functionality, and the 
maximum acceptable outage duration. 

2000 [13] 

7 

T1A1.2 
Network 
Survivability 
Performance 
Working 
Group 

Suppose a measure of interest M has the 
value m0 just before a failure happens. The 
survivability behavior can be evaluated by the 
following attributes:  

• ma is the value of M just after the failure 
occurs.  

• mu is the maximum difference between 
the value of M and ma after the failure.  

• mr is the restored value of M after some 
time tr. 

• tR is the time required for the system to 
restore the value m0. 

2001 [8] 
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1.2 Motivation 

Information leakage has been shown to be a serious threat to individuals, 

organizations, or even nations [1]; moreover, it is also recognized that it will become 

an increasingly critical security issue to organizations in the near future [2]. When 

important sensitive information is stolen, it is not just a matter of privacy invasion; in 

worst case scenarios, it may lead to property loss, financial ruin, and the loss of life if 

national security is involved. Even so, people tend to ignore threats that do not have a 

direct impact on their lives, and may gloss over the seriousness of such events when 

they do occur. Yet, once an incident is revealed or the stolen information is used or 

published, the damage and loss incurred may be inestimable. According to the 2005 

Computer Crime and Security Survey by CSI/FBI [1], the average loss per U.S. 

organization caused by theft of proprietary information increased from $168.5K in 

2004 to $355.5K in 2005; however, this is just the tip of the iceberg. Given the 

mushrooming losses resulting from information theft, an in-depth study of strategies 

against such attacks is indeed a pressing need. 

Furthermore, unlike attackers in the past, who intended to crash a whole network 

or interrupt a system to stop it from providing normal services, attackers nowadays 

tend to exploit the vulnerabilities of a system and steal information from it, without 

necessarily crashing the system. Such information leakage often leads to huge damage 

and loss to the system’s owner and the network operator. To prevent such occurrences, 

network operators must invest some resources to enhance the robustness of the whole 

network. However, resources are limited and, as already noted, it is impossible to 

make a network entirely attack-proof. Thus, the question arises: How can a network 

operator allocate his limited resources effectively, such that the extent of information 

leakage can be minimized? 
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To answer this question, we must begin by understanding the factors that make a 

network vulnerable. The resistance of each component against malicious attacks is 

one of the keys to a network’s robustness. The stronger a component, the more effort 

an attacker must expend to compromise it. However, components in the network are 

not independent. On the AS (autonomous system) level of the Internet, a component’s 

failure will lead to direct exposure of other components connected to it, and also 

increase the probability that they will be attacked. In this scenario, the topological 

structure of the network is an important factor that influences a network’s robustness.  

Recent studies have demonstrated that the Internet and many complex networks 

follow a power-law degree distribution, and are thus called scale-free networks [14]. 

Unfortunately, one of the main characteristics of scale-free networks is that they are 

highly susceptible to malicious attacks; that is, a network will almost certainly fail 

once a few of the most important components have been compromised [14]. Thus, the 

protection of such components is essential. 

Nevertheless, knowing the factors that affect a network’s resistance against 

attacks only gives us a hint about how to allocate defense resources, rather than a 

solution to the problem. In order to determine the best defense resource allocation 

strategy, we must first consider the best attack strategy. As the saying goes: “know 

your enemy, know yourself.” Only by understanding how the attacker devises his 

strategy can the defender know how to protect the network. Therefore, in the 

following chapters we not only discuss how a network operator can allocate his 

defense budget optimally, but also how an attacker can adjust his strategies to steal as 

much information as possible in order to cause maximum damage to the network 

operator. 

In addition, previous research shows that attempts to model attackers’ actions in 
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an abstract, mathematical way and then predict the future actions of attackers based 

on those models is a non-trivial and unsolved issue [15]. Accordingly, to resolve this 

issue, we model the offense-defense game between an attacker and a network operator 

as a two-level mathematical optimization problem, and solve it with our proposed 

solution approaches. We also propose a new survivability measure that considers the 

level of damage incurred by an attacker. 

1.3 Literature Survey 

In this section, we review previous works on the quantitative analysis of network 

survivability and scale-free networks. 

1.3.1 Quantitative Analysis of Network Survivability 

Since the concept of survivability focuses on a system’s behavior after failures, 

random errors or malicious attacks, good quantitative analysis measures for 

evaluating a network’s post-failure survivability level are essential. Westmark [9] 

generalized quantitative measurements of network survivability into three categories: 

connectivity, performance, and function of other quality or cost measures. The first 

two measures are discussed below. 

Network connectivity is defined as the minimum number of nodes or links that 

must be removed to disconnect an O-D (Origin-Destination) pair [13]. Generally, the 

more nodes or links needed to disconnect any O-D pair in a network, the more 

survivable the network will be. A network’s connectivity can be calculated by finding 

the maximal amount of node-disjoint or edge-disjoint paths between each O-D pair in 

the network. For instance, Louca et al. [12] improve the survivability of a network by 

transforming it into a trellis graph and then find the K-best node-disjoint paths 

between a given O-D pair. Their proposed algorithm ensures that if k node-disjoint 
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paths exist between an O-D pair, they can be found exactly, and the total cost of k 

paths can be minimized. The algorithm can be applied to routing protocol designs to 

make a network fault-tolerant and minimize the impact of component failure. 

To understand the impact of component failure on the Internet, many researchers 

have investigated the connectivity of the medium [14][16]. Different metrics are used 

to evaluate connectivity; for example, the maximal size of connected components, the 

average cluster size, the proportion of O-D pairs still connected, and the average 

network diameter. These researchers observed the Internet under different types of 

component failure scenarios, and found that node failure caused by malicious attacks 

is the major cause of Internet failure. This phenomenon is due to the topological 

structure of the Internet, which we discuss in the next section. 

The second metric, network performance, is the level at which a network fulfills 

its QoS (Quality of Service) function [13]. Because the objective of a network is to 

provide satisfactory service, measures for analyzing network performance usually 

focus on evaluating the service quality that may be affected by failures, such as the 

number of functioning units, the number of connected nodes, the maximum traffic 

capacity, blocking probability, throughput, and the service restoration time [5]. 

According to the T1A1.2 working group on network survivability performance [8], 

the assessment of network survivability performance has two aspects: 1) the 

assessment of the frequency that abnormal conditions occur; and 2) the measurement 

of the impact of these conditions. 

Most research into network performance focuses on the first aspect of 

performance assessment, and the most commonly used analysis technique is the 

continuous time Markov chain (CTMC) [5][17]. Liu and Trivedi [5] modeled network 

behavior as a truncated two-dimensional finite state system in which the state (i,j) 
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indicates there are i available trunks and j of them carry ongoing flows. The transition 

between states is described by the arrival rate of service calls and the call holding rate. 

If i is equal to j (i.e., all trunks are carrying traffic), the new requested service will be 

blocked; hence, the performance of the network can be evaluated by the service 

blocking rate Pbk.  

Keshtgary et al. [17] constructed a hierarchical survivability model, also known 

as a Markov chain model, which analyzes the availability of k disjoint paths between 

a given O-D pair. Each state of the model is a compound state of path sets. For 

example, state 1 2 3( )PP P  denotes that paths P1 and P3 are working and path P2 has 

failed. The transition rate between states is the probability of path failure or path 

restoration. In addition to the frequency of path failure, its impact is also analyzed. In 

this research, a Markov reward model (MRM) is proposed to evaluate the loss and the 

cost incurred by path failure and restoration. The total loss due to the unavailability of 

a path or paths and the capacity constraints on alternate paths when the primary path 

fails are defined as the susceptibility of the network; and the survivability of the 

network is calculated as (1 – susceptibility). 

In this paper, we focus on assessing the impact of malicious attacks. A novel 

survivability metric, which evaluates network performance by considering the total 

loss and damage resulting from information leakage, and the corresponding 

susceptibility metric are defined. Moreover, instead of using CTMC to analyze 

network survivability, we adopt mathematical programming with optimization 

techniques to accurately model the offense-defense scenario. Generally, the state 

transition in a Markov chain is two-way; however, only one-way transition exists in 

our scenario, since stolen information can not be redeemed. Thus, CTMC analysis is 

not really applicable in our research. 
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1.3.2 Scale-free Networks 

The Internet has been appropriately described as a network with a complex 

topology, in which routers or domains are nodes, and connections between any two 

routers or domains are links [18][19]. Although previous research into complex 

networks showed that they can be described with the random graph model of Erdős 

and Rényi (ER model), Albert et.al [20] suggested that such networks can actually be 

divided into two major classes based on their connectivity distribution P(k), given the 

probability that a node in the network is connected to k other nodes.  

The first class of networks, exponential networks, is characterized by a P(k) that 

peaks at an average k  and decays exponentially for k k , also referred to as 

the Poisson distribution. The ER model and the small-world model of Watts and 

Strogatz (WS model) are the most well-known examples of exponential networks [14]. 

In contrast, scale-free networks, which include the Internet at the AS level [18][19] 

and the World Wide Web (WWW), proposed by Barabási and Albert [20], are 

characterized by a P(k) that decays as a power-law, i.e., -( )P k k γ∼ , free of a 

characteristic scale. If we plot the node degree and its cumulative distribution on a 

log-log axis, a straight line with slope -γ will be evident. Figures 1-1 and 1-2 are 

visualizations of two classes of network, and Figure 1-3 illustrates an example of the 

power-law distribution. 



 

12 

 
Figure 1-1 Visualization of an Exponential Network [14] 

  

Figure 1-2 Visualization of a Scale-free Network [14] 

 
Figure 1-3 An Example of Power-law Distribution [19] 
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Albert et al. [14] observe that one of the major differences between exponential 

networks and scale-free networks is the homogeneity of nodes. Exponential networks 

result in homogeneous connectivity distribution, where each node has approximately 

the same number of links, k k≈ . Inhomogeneity of scale-free networks, on the 

other hand, leads to the creation of highly connected nodes, which is practically 

impossible in exponential networks.  

The power-law distribution of scale-free networks is generalized from two 

common characteristics of many real networks: growth and preferential attachment 

[14][20]. Most large networks in the real world evolve over time, e.g., social networks, 

citation networks, and the Internet. During a network’s growth, newly added nodes 

are inclined to connect with existing nodes that have higher connectivity, which 

makes them susceptible to attack. 

Although the inhomogeneous connectivity distribution of scale-free networks is 

more error-tolerant, it also has lower survivability against attacks [14]. The few 

existing highly connected nodes become a so-called “Achilles’ heel”, because once 

they have been compromised, information about the existence of most nodes in the 

network will be exposed. Unfortunately, in contrast to the uniform probability for 

each node in the case of random errors, nodes with higher connectivity, namely hubs, 

are much more likely to be targeted by an attacker. For this reason, the impact of 

random errors and that of malicious attacks on inhomogeneous scale-free networks 

are very different. Once the position of hubs becomes known, a scale-free network 

becomes highly susceptible to malicious attacks. 

An even more serious problem, according to Park et al. [16], is that the Internet 

is more vulnerable than general scale-free networks due to its stronger preferential 
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attachment property, and the situation will get more serious over time. This 

phenomenon was also demonstrated by Faloutsos et al. In 1998, they discovered that 

the Internet’s topology, both at the router level and the AS level, follows a power-law 

degree distribution [18]. In the following years, they continued to observe the 

evolution of the Internet [19], and found that the “six degrees of separation” property 

holds all the time. Similarly, Mahadevan et al.’s research [21] in 2006 also validated 

the power-law degree distribution and “six degrees of separation” phenomenon of the 

Internet AS-level topology. Since the size of the Internet grew from 3,000 nodes in 

1998 to about 17,500 nodes in 2004, the findings implies that more and more nodes 

will suffer because of the compromise of few critical hubs. This inference not only 

supports the result of Park et al. but also highlights the urgent need for research into 

defense mechanisms to protect the Internet against malicious attacks. 

1.4 Proposed Approach 

In this paper, we propose a min-max mathematical model to describe the defense 

resource allocation strategy (DRAS) problem and the attack strategy (AS) problem 

precisely. By solving this two-level model optimally, we not only know the maximal 

potential damage that could be incurred under a certain defense budget allocation, but 

also find the best budget allocation strategy for the network administrator. 

First, we formulate the DRAS problem as a mixed integer and linear 

programming (MILP) problem, where the problem objective is to minimize the 

potential total information value obtained by an attacker, subject to the network 

operator’s budget limit. The potential total loss is derived from the result of the AS 

problem, which is formulated as another MILP problem. The objective of the AS 

problem is to maximize the total damage caused by information theft, subject to the 
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attacker’s budget limit. We then propose using the Lagrangean Relaxation method, in 

conjunction with the subgradient method [22][23], to solve the AS problem. However, 

to solve the DRAS problem, a subgradient-based heuristic is proposed to adjust the 

defender’s budget allocation strategy according to attacker’s attack strategy. 

A network’s survivability is evaluated by the percentage of un-stolen information 

in the network. The higher the result, the more survivable the network is. In other 

words, a network with zero survivability would be fully compromised if the attacker 

allocates his attacker budget optimally. Comparisons of the survivability of networks 

under different defense budget allocation strategies and different topologies are 

presented in Chapter 4. 

1.5 Thesis Organization 

The remainder of the thesis is organized as follows. In Chapter 2, MILP 

formulations of the DRAS and the AS problems are proposed. In Chapter 3, solution 

approaches to the AS problem and the DRAS problem are presented; in Section 3.1, 

solution approaches based on Lagrangean Relaxation are proposed; in Section 3.2, a 

solution approach to the DRAS problem based on the subgradient method is proposed. 

In Chapter 4, the computational results of the AS problem and the DRAS problem are 

presented. Finally, in Chapter 5, we present our conclusions and indicate possible 

directions of future research.
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Chapter 2 Problem Formulation of the DRAS and 

AS Models 

2.1 Problem Description 

The problem we address is how a network operator should distribute a fixed 

amount of budget to each component so that the maximal damage and loss incurred 

by a potential attacker due to information leakage can be minimized. However, the 

“battle” between a network operator and an attacker is not static. A smart attacker will 

adjust his strategies dynamically to maximize the damage incurred, i.e., he will steal 

as much information as possible, if he knows the defense resource allocation strategy 

of the network operator and has sufficient attack power. It is therefore a challenge for 

network operators to derive adequate defense strategies against constantly changing 

attack strategies.  

On the other hand, it is also difficult for an attacker to decide how to launch his 

attack. Just like the network operator, the attacker only has limited resources. 

Moreover, as it takes time and money to compromise a component, only part of the 

network can be compromised. Therefore, the resources must be fully utilized so that 

the attacker can gain the most valuable information and cause the maximum harm to 

the network operator. 

Of course, the amount of information an attacker can gain from the network may 

differ when the defense resource allocation strategy changes. Hence, to evaluate the 
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efficiency of a certain defense budget allocation strategy, we analyze the survivability 

and the susceptibility of the network. The susceptibility metric, shown in the 

following equation, is defined as the percentage of stolen information, calculated by 

the percentage of the maximal damage incurred over the value of total information 

held by all the nodes in the network. The corresponding survivability metric is defined 

as the percentage of information not stolen, and which is a complement of the 

susceptibility metric. The more valuable the information stolen by the attacker, the 

lower the survivability of the network will be. Assume that di is the value of 

information contained by node i, where i∈N. Then, the metrics of network 

susceptibility and survivability can be presented as 
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respectively. 

Using these metrics, we can evaluate the survivability of networks with different 

topological structures under the same defense budget allocation strategy, and the 

susceptibility of networks under different defense budget allocation strategies. 

Note that the network we discuss here is the AS-level Internet. The Internet’s 

topology is presented as an undirected graph, in which each node is a domain and 

each edge represents the inter-domain connection. 
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2.2 Problem Formulation of the DRAS Model 

The evaluation of the robustness of a network under malicious attack is modeled 

as an optimization problem, where the objective of an attacker is to maximize the total 

damage incurred by compromising nodes in a network, while the defender tries to 

minimize the total damage. In the DRAS model, we assume that, like the defender, 

the attacker has complete information about the targeted network topology and the 

defense strategy. Although it is nearly impossible for an attacker to know everything 

about a network, we assume the worst case scenario for the network defender, so that 

the research is comprehensive. Because information theft is the goal of the attack, we 

only consider attacks on nodes, which are more common in the real world. 

Initially, the attacker controls one node that connects directly to the targeted 

network, and that node is viewed as the initial hop-site to reach other nodes. Since the 

targeted network is at the AS level, the attacker cannot just attack any node directly. 

Instead, he can only reach uncompromised nodes from their immediate neighbors, 

which have already been compromised. Thus, the attacker needs to construct an attack 

tree, i.e., a tree consisting of compromised nodes and rooted at the initial hop-site. 

To describe the attack procedures specifically, we adopt the following concept. 

First, the attacker occupies an initial node, s (Figure 2-1). He then adds all neighbors 

of s to the set of victim candidates (Figure 2-2). Next, he chooses a target from the 

candidate set and compromises it if he can apply enough attack power to it. The 

compromised node is used as a hop-site and its uncompromised neighbors are added 

to the set of victim candidates for the next stage of the attack (Figures 2-3 and 2-4). 

The attack ends when the total attack budget is consumed and an attack tree has been 

constructed (Figure 2-5). Diagrams of the attack behavior are presented below. 
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Figure 2-1 Initial State 

Initially, the attacker is on node s. 

Figure 2-2 Probing Neighbors 

Add uncompromised neighbors of the initial 

hop-site to the set of victim candidates. 

Figure 2-3 Attacking a Target 

Compromising a node in the candidate set, and 

adding its uncompromised neighbors to the set. 

Figure 2-4 Post-attack Network State 

Continuing the attack until the attack resources 

are completely exhausted. 

ss 

ss 
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Figure 2-5 Attack Tree 

The attack tree is constructed after the attack is 

completed. 

The effort needed to compromise a node depends on the resources allocated to 

defend the node. Generally, the more defense resources a node has, the more robust it 

is, i.e., the attacker must use more resources to compromise that node. However, a 

node still has some defense capability even if no defense resources are allotted to it, 

since the node or the component itself is a shell for protecting the information. On the 

other hand, it should be noted that both the total defense and total attack resources are 

limited by their given budgets; therefore, how to distribute those resources effectively 

and intelligently is the objective of this work. The assumptions and description of the 

DRAS model are given in Table 2-1. 

Table 2-1 Problem Assumption and Description of the DRAS Model 

Assumption 

• The attacker’s objective is to maximize the total damage by constructing an 
“attack tree” of the targeted network. 

• The defender’s objective is to minimize the total damage by allocating a different 
budget to each node in the network. 

s 

Victim candidate 

Uncompromised node 

Attacker’s initial position s 

Compromised node 

Unreachable link 

Reachable link 

Link on the attack tree 

s
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• Both the attacker and the defender have complete information about the network 
topology. 

• Both the attacker and the defender have resource budget limitations. 

• Only node attacks are considered. 

• Only malicious attacks are considered. 

• Only AS-level networks are considered. 

• A node is only subject to attack if a path exists from attacker’s position to that 
node, and all the intermediate nodes on the path have been compromised. 

• A node is compromised if the attack resources applied to the node are equal to or 
more than the defense capability of the node. 

Given 

• Defense resource budget B 

• Attack resource budget A 

• Damage di incurred by compromising node i, i.e., the value of information held 
by node i 

• Attacker’s position s, which is connected to the target network 

• The network topology and the network size 

Objective 

• To minimize the maximized total damage 

Subject to 

• The total defense cost must be no more than B 

• The total attack cost must be no more than A 

• The node to be attacked must be connected to the existing attack tree 

To determine 

• Defender: budget allocation strategy 

• Attacker: which nodes to attack 
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 We model the above problem as a min-max mathematical programming problem. 

The parameters used in the model are defined in Table 2-2. 

Table 2-2 Given Parameters of the DRAS Model 

Given Parameters 
Notion Description 
N The index set of all nodes in the network 

W 
The set of all O-D pairs, where the origin is node s and the destinations are 
the nodes with positive di , where i, s∈N 

di Damage incurred by compromising node i, where i∈N 
Pw The index set of all candidate paths of an O-D pair w, where w∈W 
A The total attack power 
B The total defense budget 

δpi 
An indicator function, which is 1 if node i is on path p; and 0 otherwise 
(where i∈N, p∈ Pw) 

In this formulation, each node is given a positive di value, which is the value of 

the information it contains, and the damage incurred if it is compromised. The 

attacker’s goal is to collect as much di as possible. The defender knows all the given 

parameters, but the attacker only has a priori knowledge of N, A, and B. 

The decision variables of the DRAS problem are listed in Table 2-3. 

Table 2-3 Decision Variables of the DRAS Model 

Decision Variables 
Notion Description 
ai Attack power applied to node i, where i∈N 
bi Budget allocated to protect node i, where i∈N 

ˆ ( )i ia b  The threshold of the attack power required to compromise node i, i.e., the 
defense capability of node i, where i∈N 

yi 1 if node i is compromised; and 0 otherwise (where i∈N) 
xp  1 if path p is selected as the attack path; and 0 otherwise (where p∈ Pw) 

The DRAS problem is then formulated as the following two-level MILP problem 

(IP 1). 
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Objective function: 

 IP 1 ,
= min max
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Explanation of the mathematical formulation:  

• Objective function: The objective is to minimize the maximized total damage 

i i
i N

d y
∈
∑ . In the inner problem, an attacker tries to maximize the damage caused 

to the targeted network by deciding which nodes to attack, i.e., the yi value of 

each node i. In the outer problem, the defender tries to minimize the damage 

caused by the attacker by allocating defense resources, bi, to each node 



 

25 

appropriately. 

• Constraint (IP 1.2) enforces that if a node is chosen for attack, i.e., yi = 1, the 

attacker must find a path between his initial position s and the targeted node. 

• Constraint (IP 1.3) requires that if a node is chosen, the attack path for that node 

should be the only one.  

• Constraint (IP 1.1) requires that a node can only transited by (|N|-1) different 

attack paths, since there exist at most (|N|-1) targets. This constraint ensures the 

absence of a cycle on the attack tree, and also ensures that all nodes on each 

attack path are compromised.  

• Constraints (IP 1.4) and (IP 1.5) limit the value of xp and yi to 0 or 1. Therefore, 

Constraints (IP 1.1) ~ (IP 1.5) jointly enforce that if a node is chosen for attack, 

there must be exactly one path from the attacker’s initial position, s, to that node, 

and each node on the path must have been compromised. These constraints are 

jointly described as the “continuity constraints.” 

• Constraints (IP 1.6) and (IP 1.7) restrict the amount of defense resources, bi, that 

can be allocated to each node i. The total allotted defense resources, i
i N

b
∈
∑ , 

must not exceed the defense budget B.  

• Constraints (IP 1.8) and (IP 1.9) restrict the attack power ai that can be applied to 

each node i. The attack power cannot exceed the node’s defense capability, 

ˆ ( )i ia b  because it would be a waste of resources. Also, the total attack cost, 

i
i N

a
∈
∑ , must be less than the attack budget A.  

• Finally, Constraint (IP 1.10) enforces that a node can only be compromised 

successfully if attack power applied to it is greater than its defense capability. 
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2.3 Problem Formulation of the AS Model 

As noted earlier, it is extremely difficult to create a mathematical model that 

would predict an attacker’s strategy. However, in the AS model we successfully 

formulate an attacker’s behavior as an elegant mathematical optimization problem, 

which is also the inner problem of the DRAS model. By resolving this problem, we 

can predict the future actions of an intelligent attacker, and also design the best 

defense budget allocation strategy for a network operator. After the AS problem has 

been solved, its outcome is used as an input for the DRAS model to develop an 

advanced budget allocation strategy. 

 The model assumptions and attack processes of the AS model are the same as 

those of the DRAS model. We formulate the AS model as a mathematical 

maximization programming problem. The parameters are defined in Table 2-4. 

Table 2-4 Given Parameters of the AS Model 

Given Parameters 
Notion Description 
N The index set of all nodes in the network 

W 
The set of all O-D pairs, where the origin is node s; and the destinations are 
the nodes with positive di , where i, s∈N 

di Damage incurred by compromising node i, where i∈N 
Pw The index set of all candidate paths of an O-D pair w, where w∈W 
A The total attack power 

ˆ ( )i ia b  The threshold of the attack power required to compromise node i, i.e., the 
defense capability of node i, where i∈N 

δpi 
An indicator function, which is 1 if node i is on path p; and 0 otherwise 
(where i∈N, p∈ Pw) 

Note that ˆ ( )i ia b , which is a decision variable in the DRAS problem, is a given 

parameter in the AS problem. It is a function of bi, the allotted budget of node i, and 

also the defense capability of the node. Node i can only be compromised if the 
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attacker applies more attack power than ˆ ( )i ia b to it.  

The decision variables of the AS model and its formulation (IP 2) are given in 

Table 2-5. 

Table 2-5 Decision Variables of the AS Model 

Decision Variables 
Notion Description 
ai Attack power applied to node i, where i∈N 
yi 1 if node i is compromised; and 0 otherwise (where i∈N) 
xp 1 if path p is selected as the attack path; and 0 otherwise (where p∈ Pw) 

Objective function: 
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Explanation of the mathematical formulation: 
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• Objective function: The objective of the formulation is to maximize the total 

value of the information stolen. The result of the objective function is also the 

result of the inner problem in the DRAS model. For convenience, we transform 

(IP 2) from a maximization problem into an equivalent minimization problem. 

This does not affect the problem structure or the optimality conditions. 

• Constraints (IP 2.1) ~ (IP 2.5) are the same as Constraints (IP 1.1) ~ (IP1.5) in 

the DRAS problem, and together form the “continuity constraints.”  

• Constraints (IP 2.6), (IP 2.7), and (IP 2.8) are equal to Constraints (IP 1.8), (IP 

1.9), and (IP 1.10) of the DRAS problem. 

• The above formulation can be viewed as a 0-1 knapsack problem with continuity 

constraints, where each node represents an item, and the node’s information 

value and defense capability are the item’s profit and weight respectively. The 

total attack budget A is the total capacity of the knapsack, and the attacker tries to 

maximize the total profit up to the limit of the knapsack’s capacity. 
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Chapter 3 Solution Approach 

3.1 Solution Approach for the AS Model 

3.1.1 Lagrangean Relaxation Method 

The Lagrangean relaxation method was first used to solve large-scale 

mathematical programming problems during the 1970s [24]. One of the method’s 

basic concepts is “decomposition”; which efficiently reduces the complexities and 

difficulties of the primal problem. In fact, because of its efficiency and effectiveness 

in deriving proper solutions to many complicated programming problems, Lagrangean 

relaxation has become one of the most popular tools for solving optimization 

problems. Its applications include integer programming, linear programming 

combinatorial optimization, and non-linear programming problems. The method’s 

performance is excellent, especially when dealing with large-scale mathematical 

programming applications [23]. 

The foundation of the Lagrangean relaxation method is to “pull apart” models by 

removing constraints and placing them in the objective function with associated 

Lagrangean multipliers (µ ). The concept was inspired by the observation that many 

difficult integer programming problems arise from a relatively easy problem that is 

complicated by a set of side constraints. The Lagrangean relaxation method exploits 

this observation and creates a Lagrangean relaxation problem ( LRµ ) in which the 
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complicating constraints are relaxed to the objective function by multiplying the 

corresponding µ  [23]. By transforming the primal problem (P) into a Lagrangean 

relaxation problem ( LRµ ), we can decompose the complex mathematical model into 

several stand-alone subproblems, which can then be solved optimally by proper 

algorithms.  

In addition, the Lagrangean relaxation method can provide us with some hints 

about obtaining the boundary of the objective function value. For a minimization 

optimization problem, the objective value, D ( )Z µ , of the ( LRµ ) is always a lower 

bound (LB) on the optimal solution of (P) [24]. In order to derive the tightest LB, we 

try to tune µ  to make D ( )Z µ  as large as possible, which is also known as the 

Lagrangean dual problem. The Lagrangean dual problem can be solved in various 

ways; the subgradient optimization technique is the most popular. 

After resolving ( LRµ ), we can examine the feasibility of the result for (P). If all 

the constraints in (P) are satisfied by the outcome, a primal feasible solution is found; 

otherwise, we need to develop proper heuristics to tune the infeasible solution to a 

feasible one. Furthermore, Lagrangean multipliers (µ ) are also useful for adjusting 

the original heuristic to a Lagrangean-based modified heuristic, which may result in a 

better solution quality. Each feasible solution of (P) yields in an upper bound (UB) of 

the optimal value of (P); thus, the optimal solution to the primal problem is 

guaranteed to be within the Lagrangean LB and the primal feasible solution values. 

Figure 3-1 illustrates the main concepts of the Lagrangean relaxation method, and a 

detailed flow chart of Lagrangean relaxation method is presented in Figure 3-2. 

In the following sections, we show how the AS problem is solved by the 

Lagrangean relaxation method, which consists of a two-stage relaxation procedure. 
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Figure 3-1 Concepts of the Lagrangean Relaxation Method  

Lagrangean 
Relaxation 

Problem ( LRµ ) 

Lagrangean 
Dual Problem 

Subproblem Subproblem 

Optimal Solution Optimal Solution 

UB

LB

Primal Problem (P)

Adjust Lagrangean 
Multiplier (µ ) 

LB ≤ Optimal Objective Function Value ≤ UB 
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Figure 3-2 Lagrangean Relaxation Method Procedure 

STOP 

Solve Lagrangean Relaxation 
Problem 

1. Solve each subproblem of 
( LR kµ

) optimally 

2. Get decision variable xk and 
optimal value ZD(µk). 

1. If i reaches the Improvement 
Counter Limit, λ = λ / 2, i = 0 

2. D
2

( * ( ))

+

k
k

k k

Z Zt
Ax b

λ µ−
=  

3. uk+1 = max(0, uk + tk (Axk + b)) 
4. k = k + 1. 

Adjustment of Multiplier 

Check Termination 
 

If (|Z* - LB|) / min (|LB|, |Z*|) < ε 
or 

k reaches Iteration Counter Limit 
 or  

LB ≥ Z*? 

• Z*  – Best known feasible solution value of (P) = Initial feasible solution 
• 0µ   – Initial multiplier value       = 0 
• k    – Iteration count        = 0 
• i   – Improvement count      = 0 
• LB  – Lower bound of (P)       = -∞ 
• 0λ   – Initial step size coefficient    = 2. 

Initialization 

Get Primal Feasible Solution 

• If xk is feasible in (P), the 
resulting value is a UB of (P) 

• If xk is not feasible in (P), tune it 
with proposed heuristics. 

Update Bounds 

1.  Z* = min (Z*, UB) 
     LB = max (LB, ZD(µk)) 

2. i = i + 1 if LB does not change. 
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3.1.2 First-Stage Relaxation 

In order to derive tighter UBs and LBs of the AS problem, we adopt a two-stage 

Lagrangean relaxation procedure. In the first stage, we relax three constraints of (IP 2), 

and construct a Lagrangean relaxation problem (LR 1). After solving (LR 1), the 

resulting UB and LB are taken as the initial UB and LB, respectively, of (IP 2) in the 

second stage, in which different constraints are relaxed. 

3.1.2.1 Lagrangean Relaxation 

By applying the Lagrangean relaxation method, we transform the primal problem 

(IP 2) into the following Lagrangean relaxation problem (LR 1), where Constraints 

(IP 2.1), (IP 2.2), and (IP 2.8) are relaxed. With a vector of Lagrangean multipliers, 

the Lagrangean relaxation problem of (IP 2) is transformed as follows. 

Optimization problem: 

 

( , )

1
D 1 2 3

2 3

( , , ) min  - [ ( 1) ]

ˆ                               [ ] [ ( ) ]

i
w

s i

i i i p pi iy i N i N w W p P

i p i i i i i i
i N p P i N

Z d y x N y

x y a b y a

µ µ µ µ δ

µ µ
∈ ∈ ∈ ∈

∈ ∈ ∈

= + − −

+ − + −

∑ ∑ ∑ ∑

∑ ∑ ∑
 (LR 1) 

Subject to:  

1
w

p
p P

x
∈

≤∑       w W∀ ∈       (LR 1.1) 

0 1px or=       ,wp P w W∀ ∈ ∈     (LR 1.2) 

0 1iy or=       i N∀ ∈       (LR 1.3) 

ˆ0 ( )i i ia a b≤ ≤      i N∀ ∈       (LR 1.4) 

i
i N

a A
∈

≤∑  .            (LR 1.5) 
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The Lagrangean multipliers 1µ , 2µ , and 3µ  are the vectors of { 1
iµ }, { 2

iµ }, { 3
iµ } 

respectively, in which 1µ  and 3µ  are non-negative and the variable 2µ  is 

unrestricted. To solve (LR 1), we decompose it into three independent and easily 

solvable optimization subproblems as shown below. 

Subproblem 1.1 (related to decision variable xp) 

( , )

1 2
Sub 1.1 1 2( , ) min

w s i

i p pi i p
i N w W p P i N p P

Z x xµ µ µ δ µ
∈ ∈ ∈ ∈ ∈

= +∑∑ ∑ ∑ ∑  (Sub 1.1) 

Subject to: 

1
w

p
p P

x
∈

≤∑        w W∀ ∈      (Sub 1.1.1)

0 1px or=        ,wp P w W∀ ∈ ∈ .   (Sub 1.1.2)

In this problem, we want to determine the value of xp individually for each O-D 

pair. Note that Constraint (Sub 1.1.1) allows only one path to be chosen for an O-D 

pair. As described in the notations, each O-D pair w originates from an attacker’s 

position s and ends at one target node i, where i∈N. Thus, 
( , )

2

s i

i p
i N p P

xµ
∈ ∈
∑ ∑ can be 

transformed into 
( , )

2 2

w s s

i p s p
w W p P p P

x xµ µ
∈ ∈ ∈

+∑ ∑ ∑ , in which 
( , )

2

s s

s p
p P

xµ
∈
∑  can be ignored 

since no path starts and ends at the same node. After the transformation, we can 

further decompose (Sub 1.1) into |W| independent subproblems. For each O-D pair w 

= (s, i), i∈N and w∈W, 

1 2
Sub 1.1' 1 2( , ) min ( )

w

j pj i p
p P j N

Z xµ µ µ δ µ
∈ ∈

= +∑ ∑             (Sub 1.1') 

Subject to: 

1
w

p
p P

x
∈

≤∑        w W∀ ∈        (Sub 1.1.1') 
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0 1px or=        ,wp P w W∀ ∈ ∈ .     (Sub 1.1.2') 

The algorithm for solving (Sub 1.1) is as follows: 

Step 1: For each O-D pair w∈W, we find the minimum cost shortest path using 

1
jµ  as the node weight by Dijkstra’s minimum cost shortest path algorithm. The 

total cost of a path is the sum of the weights of the nodes on that path. 

Step 2: For each O-D pair w∈W, we set the xp value of each path p to zero except 

for the one already chosen to be the minimum cost shortest path for some O-D 

pair w, since not more than one path can exist between them. 

Step 3: For each O-D pair w∈W, we examine the sum of its minimum path cost 

and the 2
iµ  value of its destination node. If the resulting value is non-positive, 

the xp value of the minimum cost shortest path p between the O-D pair is set to 

one, because this is a minimization problem. The value of xp is set to zero if its 

associated parameter is positive. 

The time complexity of Dijkstra’s algorithm is O(|N|2). Since the source of each 

path is the same, Dijkstra’s algorithm only needs to be implemented once since its 

outcome is the minimum cost shortest path tree; thus, the total time complexity of 

(Sub 1.1) is O(|N|2). 

Subproblem 1.2 (related to decision variable yi) 

1 2 3
Sub 1.2 1 2 3 ˆ( , , )= min (- ( 1) ( ))i i i i i i i

i N
Z d N a b yµ µ µ µ µ µ

∈

− − − +∑  (Sub 1.2) 

Subject to: 

 0 1iy or=       i N∀ ∈ .     (Sub 1.2.1)

 (Sub 1.2) can be further decomposed into |N| independent sub problems, for which 
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we must decide the yi value of each node i∈N Since (Sub 1.2) is a minimization 

problem, and the value of each yi is either zero or one, we can solve the problem by 

examining the associated parameters of yi easily and optimally. For each node i∈N, if 

( 1 2 3 ˆ- ( 1) ( )i i i i i id N a bµ µ µ− − − + ) is positive, the value of yi is set to zero so that the 

value of this subproblem can be minimized. On the other hand, if the sum of the 

parameters is non-negative, yi is set to one. 

The time complexity of (Sub 1.2) is O(|N|). 

Subproblem 1.3 (related to decision variable ai) 

3
Sub 1.3 3( )= min (- )i i

i N
Z aµ µ

∈
∑   (Sub 1.3) 

Subject to: 

ˆ0 ( )i i ia a b≤ ≤                 i N∀ ∈      (Sub 1.3.1)

i
i N

a A
∈

≤∑ .             (Sub 1.3.2)

By its nature, (Sub 1.3) is a fractional knapsack problem, in which the original 

maximized positive profit is replaced by minimized negative loss. To solve (Sub 1.3) 

optimally, we first sort each node i∈N by the parameter of each ai and ai itself in 

ascending order with ( 3- iµ ) as the primary key. Because of the non-negativity of 3
iµ , 

the parameter of each ai will be non-positive. Next, we check the array of sorted 

nodes from the left, and set the value of each ai to ˆ ( )i ia b . We stop once the sum of ai 

reaches A, or there is insufficient space to set the next ai to to ˆ ( )i ia b . In such a case, 

the next ai is set to (A − the summation of ai that have already been given a value), 

and the remainder are set to zero. 

The time complexity of (Sub 1.3) is O(|N|2). 
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3.1.2.2 The Dual Problem and the Subgradient Method 

By solving the above subproblems optimally, the Lagrangean Relaxation 

problem (LR 1) can also be solved optimally. According to the weak duality theorem 

[24], for any set of the multipliers 1 2 3( , , )µ µ µ , D 1 1 2 3( , , )Z µ µ µ  yields an LB on ZIP 2. 

In the following, we construct a dual problem (D 1) to calculate the tightest LB and 

solve it by the subgradient method [22][23]. 

Dual Problem (D 1) 

D D 1 2 3max ( , , )Z Z µ µ µ=           (D 1) 

Subject to: 1 3, 0µ µ ≥ . 

Let a vector m be a subgradient of D 1 1 2 3( , , )Z µ µ µ . Then, in iteration k of the 

subgradient procedure, the multiplier vector 1 2 2( , , )k k k kµ µ µ µ=  is updated by 

1k k k ku u t m+ = + , 

where  

( , )

1 2 3 ˆ( , , ) ( ( 1) , , ( ) )
w s i

k k k k
p pi i p i i i i i

w W p P p P
m x N y x y a b y aµ µ µ δ

∈ ∈ ∈

= − − − −∑ ∑ ∑ ; 

and the step size, tk, is determined by 
*

IP 2 D
2

( )k
k

k

Z Z ut
m

λ −
= . 

Z*IP 2 is the best UB on the primal objective function value found by iteration k. 

Note thatλ  is a scalar between 0 and 2. It is usually initiated with the value of 2 and 

halved if the best objective function value does not improve within a given iteration 

count. 
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3.1.2.3 Getting Primal Feasible Solutions 

During first-stage Lagrangean relaxation, solutions to (LR 1) and their associated 

Lagrangean multipliers are considered in order to obtain a primal feasible solution for 

(IP 2). The concept of the proposed heuristic, denoted as Heuristic_LR_1, is described 

below. 

Since an attacker’s objective is to construct an attack tree, where the total value 

of the information gained is maximized, we develop the heuristic based on the greedy 

method. In the first step, we assign each node i a different weight, 

2

2

ˆ ( )
max(0, )

( ) /
i i i

i i i

a b N
d d a

µ+
+

, where ai is the solution obtained from (LR 1), and i

i

d
a

 is set 

to zero if ai is equal to zero. This formula reflects the ratio of the attack cost to the 

profit gained, i.e., 
ˆ ( )i i

i

a b
d

; the denominator is squared to stress the influence of the 

damage caused. Moreover, the formula also considers the hints obtained from the 

solutions to (LR 1). If non-zero attack power is applied to a node when solving (LR 1), 

the node is more likely to be chosen by the attacker when deriving primal feasible 

solutions. 2
iN µ  reflects the penalty of inconsistency between xp and yi, where a 

node is inclined to be targeted for attack if it has been chosen in (LR 1) but there is no 

attack path to it. After assigning the nodes’ weights, we sort all nodes by their weights 

in ascending order for further processing by the greedy algorithm. 

To apply the greedy method, we start by “activating” the first 50% of the nodes, 

starting from the node with the smallest weight. Note that a node can only be selected 

for attack if it has been activated. Then, using Prim’s minimum cost spanning tree 

algorithm, a greedy-based algorithm, we try to construct a minimum cost 

sub-spanning tree with activated nodes from the attacker’s initial position, s. Note that 
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the sub-spanning tree may not be complete, since the activated nodes may not form a 

connected graph.  

Once the sub-spanning tree has been constructed, we examine each activated 

node in ascending order to see if it is on the sub-spanning tree, and if the total path 

cost from s to the node is affordable for the attacker. If the answer is positive, the 

node and all nodes on its path are compromised and added to the attack tree. Then the 

defense capability of each attacked node is deducted from the attacker’s total 

resources Next, the first half of the inactive nodes are activated, and Prim’s algorithm 

is applied again to add new nodes to the previous sub-spanning tree. The procedure 

for activating nodes, constructing the sub-spanning tree, and then constructing the 

attack paths is repeated until the attacker does not have enough power to compromise 

any other node. At this time, the total profit gained by the attacker is a feasible 

solution to (IP 2). 

The main idea of this heuristic arises from the attacker’s intention that 

compromise nodes with smaller weights but moderate path costs for the most 

beneficial results. Thus, only attack paths that are composed of activated nodes, i.e. 

nodes with smaller weights, will be successfully constructed. 

The total time complexity of Prim’s algorithm is O(|N|log|N|). To activate all 

nodes in the network, the whole attack procedure needs to be repeated 

( log | | 1)N +⎡ ⎤⎢ ⎥  times. Thus, the total computational complexity of this heuristic is 

O(|N|log2|N|). 
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Table 3-1 Heuristic_LR_1 Algorithm 

//Initialization 
FOR each node i { 

weight = 
2

2

ˆ ( )
max(0, )

( ) /
i i i

i i i

a b N
d d a

µ+
+

; 

} 
Sort all nodes by their weights in ascending order; 
Add source s to attack_tree; 
 
//Construction of the attack_tree 
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 

uncompromised nodes) { 
Activate the first half of inactive nodes; 
Prim(); //construct the minimum cost sub-spanning tree rooted at s 
FOR each activated and uncompromised node i { 

path_cost of i = summation of defense capability of all nodes on i’s path; 
IF (total_attack_cost + path_cost of i ≤ TOTAL_ATTACK_BUDGET) { 

Compromise node i and all nodes on i’s path, and add them to the 
attack_tree; 

total_attack_cost += path_cost of node i; 
} 

} 
} 

3.1.3 Second-Stage Relaxation 

After the first-stage relaxation, we can get both a UB and a legitimate LB on the 

objective value of (IP 2). However, in order to narrow the range between the UB and 

LB, we need a second stage of relaxation to improve both the UB and LB. In the 

second stage, the initial UB and the initial LB are the best UB and the best LB of the 

first-stage relaxation respectively. 
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3.1.3.1 Lagrangean Relaxation 

By applying Lagrangean relaxation method, we transform the primal problem (IP 

2) into the following Lagrangean relaxation problem (LR 2), where Constraints (IP 

2.1), (IP 2.2), and (IP 2.7) are relaxed. With a vector of Lagrangean multipliers, the 

Lagrangean relaxation problem of (IP 2) is transformed as follows. 

Optimization problem: 

 

( , )

1
D 1 2 3

2 3

( , , ) min  - [ ( 1) ]

                               [ ] [ ]

i
w

s i

i i i p pi iy i N i N w W p P

i p i i
i N p P i N

Z d y x N y

x y a A

ν ν ν ν δ

ν ν
∈ ∈ ∈ ∈

∈ ∈ ∈

= + − −

+ − + −
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∑ ∑ ∑
 (LR2) 

Subject to:  

1
w

p
p P

x
∈

≤∑       w W∀ ∈       (LR2.1) 

0 1px or=       ,wp P w W∀ ∈ ∈     (LR2.2) 

0 1iy or=       i N∀ ∈       (LR2.3) 

ˆ0 ( )i i ia a b≤ ≤      i N∀ ∈       (LR2.4) 

ˆ ( )i i i ia b y a≤      i N∀ ∈ .      (LR2.5) 

The Lagrangean multipliers 1ν , and 2ν are the vectors of { 1
iν }, { 2

iν } 

respectively, in which 1ν  is non-negative and the variable 2ν  is unrestricted. The 

Lagrangean multiplier 3ν  is non-negative. To solve (LR 2), we decompose it into 

three independent and easily solvable optimization subproblems, as shown below. 
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Subproblem 2.1 (related to decision variable xp) 

( , )

1 2
Sub 2.1 1 2( , )= min ( )

w s i

i p pi i p
i N w W p P p P

Z x xν ν ν δ ν
∈ ∈ ∈ ∈

+∑ ∑ ∑ ∑  (Sub 2.1) 

Subject to: 

1
w

p
p P

x
∈

≤∑        w W∀ ∈      (Sub 2.1.1)

0 1px or=        ,wp P w W∀ ∈ ∈ .   (Sub 2.1.2)

The subproblem is exactly the same as (Sub 1.1) in the first-stage relaxation; thus, 

we can adopt the algorithm proposed in Section 3.2.1.1 to solve (Sub 2.1) optimally. 

The time complexity of (Sub 2.1) is O(|N|2). 

Subproblem 2.2 (related to decision variable yi, ai) 

1 2 3
Sub 2.2 1 2 3( , , )= min (- ( 1) )i i i i i

i N i N
Z d N y aν ν ν ν ν ν

∈ ∈

− − − +∑ ∑     (Sub 2.2) 

Subject to: 

0 1iy or=        i N∀ ∈      (Sub 2.2.1)

ˆ0 ( )i i ia a b≤ ≤       i N∀ ∈      (Sub 2.2.2)

ˆ ( )i i i ia b y a≤               i N∀ ∈ .     (Sub 2.2.3)

This problem contains two decision variables, yi and ai, which are bound by 

Constraint (Sub 2.2.3). Their restricted relation is illustrated in Table 3-1. From Table 

3-1, we can conclude that if only one variable is set to non-zero, the other can be set 

to a value other than zero. (Sub 2.2) can be further decomposed into |N| independent 

subproblems. 
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Table 3-2 Relation between yi and ˆ ( )i ia b  

yi’s Value ai’s Value 

0 [0, ˆ ( )i ia b ] 

1 ˆ ( )i ia b  

As yi and ai are independent of each other, we discuss them separately. First, the 

value of each yi can be determined by the sum of its associated parameters, where i∈N. 

If the sum of the corresponding parameters of yi is positive, it is set to zero; otherwise, 

it is allowed to be set to one. 

Next, we consider ai. Since this is a minimization problem, and 3ν  is a 

non-negative multiplier, it can only be minimized by setting all ai to zero. However, 

due to the relation between ai and yi, ai must be set to ˆ ( )i ia b  if yi’s value is one. As a 

result, we need to consider the parameters of both ai and yi when determining the 

value of ai. 

For each node i∈N whose yi is already set to zero, its ˆ ( )i ia b  is also set to zero to 

comply with the limitations. For the other nodes, we examine the sum of the 

associated parameters of yi and ( 3
i

i N
aν

∈

×∑ ). If the outcome is non-positive, the value 

of yi is set to one determinately, and the value of ai is set to ˆ ( )i ia b . 

The time complexity of (Sub 2.2) is O(|N|). 

3.1.3.2 The Dual Problem and the Subgradient Method 

By solving above subproblems optimally, the Lagrangean Relaxation problem 

(LR 2) can also be solved optimally. According to the weak duality theorem [24], for 

any set of the multipliers 1 2 3( , , )ν ν ν , D 2 1 2 3( , , )Z ν ν ν  yields an LB on ZIP 2. In the 

following, we construct a dual problem (D 2) to calculate the tightest LB and solve it 

by the subgradient method [22][23].  
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Dual Problem (D 2), 

D D 1 2 3max ( , , )Z Z ν ν ν=            (D 2) 

Subject to: 1 3, 0ν ν ≥ . 

Let a vector m be a subgradient of D 2 1 2 3( , , )Z ν ν ν . Then, in iteration k of the 

subgradient procedure, the multiplier vector 1 2 2( , , )k k k kv ν ν ν=  is updated by 

1k k k kv v t m+ = + , 

where  

( , )

1 2 3( , , ) ( ( 1) , , )
w s i

k k k k
p pi i p i i

w W p P p P i N
m x N y x y a Aν ν ν δ

∈ ∈ ∈ ∈

= − − − −∑ ∑ ∑ ∑ ; 

and the step size, tk, is determined by 
*

IP 2 D
2

( )k
k

k

Z Z vt
m

λ −
= . 

Z*IP 2 is the best UB on the primal objective function value found by iteration k. 

Note that λ  is a scalar between 0 and 2. Usually, it is initiated with the value of 2 

and halved if the best objective function value does not improve within a given 

iteration count. 

3.1.3.3 Getting Primal Feasible Solutions 

To improve the solution quality of (IP 2), a heuristic is designed and 

implemented during the process of solving (LR 2), as in first-stage relaxation. In this 

heuristic, solutions to (LR 2) are adjusted to a feasible solution to (IP 2). The basic 

concept of the heuristic, denoted as Heuristic_LR_2, is described below. 

In the problem assumption of the AS model, if a node is chosen to be 

compromised, the attacker must construct an attack path originating from the source s 
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and ending at the targeted node. The union of all attack paths forms an attack tree. 

Based on this idea, we can utilize the solutions of (SUB 2.1), which is related to 

variable xp. If the value of xp is one, an attack path is constructed, and all nodes on the 

path are targeted. By taking the union of constructed attack paths, we can form an 

attack tree. If the total attack budget of the attack tree does not exceed the attacker’s 

total budget, the total profit of the tree is a feasible solution to (IP 2), and the tree can 

be further expanded. Otherwise, we apply a recovery mechanism that recovers some 

of the compromised nodes. As shown in Section 4.1, the weight of each node is 

determined by 
2

2

ˆ ( )
max(0, )

( ) /
i i i

i i i

a b N
d d a

µ+
+

.  

In the first case, i.e., the total attack cost is less than the attacker’s budget, the 

attack tree can be constructed a second time by using the remainder of the total attack 

budget. We start by building a spanning tree with Prim’s algorithm, while retaining 

the original attack tree. Next, all the nodes that were not on the original attack tree are 

examined in ascending order according their weights. These nodes and all untaken 

nodes on their paths are then compromised if the attacker has sufficient budget. The 

total value gained by the attacker is a feasible solution to (IP 2). 

In the second case, i.e., the total attack cost exceeds the attack budget, we 

recover the leaf node with the largest weight among all leaf nodes on the attack tree, 

and retrieve the attack budget. The recovery continues until the total attack cost is less 

than the total attack budget. Then, the total profit earned from the new attack tree is a 

feasible solution to (IP 2).  

The time complexity of the first case is O(|N|log|N|), and that of the second case 

is O(|N|2); therefore, the total computational complexity of this heuristic is O(|N|2). 
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Table 3-3 Heuristic_LR_2 Algorithm 

//Initialization 
FOR each node i { 

weight = 
2

2

ˆ ( )
max(0, )

( ) /
i i i

i i i

a b N
d d a

µ+
+

; 

} 
 
//Take the union of attack_paths 
FOR each attack_path p{ //i.e., paths whose value of xp is 1 

Each node i on p is added to the attack_tree; 
total_attack_cost += defense_power of node i; 

} 
 
//Reconstruction of the attack_tree  
IF (total_attack_cost < TOTAL_ATTACK_BUDGET) { 

Prim(); //construct the minimum cost spanning tree on the basis of the attack_tree 
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 

uncompromised nodes) { 
Find node i, which is uncompromised AND whose weight is the smallest 

among all uncompromised nodes; 
path_cost of i = summation of defense capability of all nodes on i’s path; 
IF (total_attack_cost + path_cost of i ≤ TOTAL_ATTACK_BUDGET) { 

Compromise node i and all nodes on i’s path, and add them to the 
attack_tree; 

total_attack_cost += path_cost of node i; 
} 

} 
} 
 
//Recovery of compromised nodes 
ELSE { 

WHILE (total_attack_cost > TOTAL_ATTACK_BUDGET) { 
Find node i, which is a leaf_node of the attack_tree AND whose weight is the 

largest among all leaf_nodes; 
Recover node i and remove it from the attack_tree; 
total_attack_cost –= defense_power of node i; 

} 
} 
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3.1.4 Summary of the Solution Approach for the AS Model 

3.1.4.1 Lagrangean Relaxation-based Algorithm 

We propose a Lagrangean relaxation-based algorithm to solve the AS model and 

denote it as LR. This algorithm is based on the mathematical formulation of the AS 

model, i.e., (IP 2), as shown in Section 2.3. The relaxed problems are then solved 

optimally, as described in Sections 3.1.2 and 3.1.3, to get a LB for the primal problem. 

Next two heuristics are adopted to derive feasible solutions to the primal problem in 

Section 3.1.4, and a subgradient method is used to update the Lagrangean multipliers. 

As shown in Figure 3-2, the LR procedure is repeated iteratively until the stop 

condition is fulfilled. The time complexity of each iteration is O(|N|log2|N|). Table 3-4 

describes the complete LR algorithm for solving (IP 2). 

Table 3-4 LR Algorithm 

//Objective: maximize the total value of the information collected, i.e., min (–ZIP 2) 
//Initialization of multipliers, as discussed in Section 3.1.5.2 
Initialize the Lagrangean multiplier vectors 1 2 3( , , )µ µ µ  and 1 2( , )ν ν  to be zero 

vectors; 
Initialize the Lagrangean multiplier 3ν  to be ˆ/ ( )m m md a b ; 

UB = 0; LB = –TOTAL_DAMAGE_OF_NETWORK; //LB = i
i N

d
∈

−∑  

improvement_counter = 0 
λ = 2; //step size coefficient 
Init_Budget_Allocation_Strategy(); 
 
//Main LR procedure 
FOR iteration = 1 TO ITERATION_COUNTER_LIMIT { 

IF iteration ≤ (ITERATION_COUNTER_LIMIT / 2) { 
Solve (Sub 1.1); 
Solve (Sub 1.2); 
Solve (Sub 1.3); 
Z*IP 2 = –Heuristic_LR_1(); //due to the transformation of objective function 
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} 
ELSE { 

Solve (Sub 2.1); 
Solve (Sub 2.2); 
Z*IP 2 = –Heuristic_LR_2();//due to the transformation of objective function 

} 
Calculate ZD; 
 
//Update bounds 
IF (ZD > LB) { 

LB = ZD; 
improvement_counter = 0; 

} 
ELSE { 

improvement_counter ++; 
} 
IF (Z*IP 2 <UB) { 

UB = Z*IP 2; 
} 
 
//Update step size and Lagrangean multipliers 
IF improvement_counter = IMPROVEMENT_COUNTER_LIMIT { 

improvement_counter = 0; 
λ = λ / 2; 

} 
Update_Step_Size(); 
Update_Lagrangean_Multiplier(); 

} 

3.1.4.2 Initial Multiplier Determination 

In order to derive the tightest LB on ZIP 2, we must adjust the Lagrangean 

multipliers in dual problems (D 1) and (D 2) to maximize the objective function value 

of corresponding Lagrangean relaxation problems (LR 1) and (LR 2). Because the 

number of iterations in the LR procedure is limited, the initial value of the 

Lagrangean multipliers must be determined accurately, or the final LB will not 
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converge at a desirable point in time. 

Usually the initial values of the Lagrangean multipliers are set to zero [22]; thus, 

the initial values of 1 2 3, , and µ µ µ  in the first-stage relaxation are all zero. In the 

second-stage relaxation, different constraints are relaxed; however, multipliers 

1 2 and ν ν are the same as 1 2 and µ µ  due to the equality of their corresponding 

relaxed constraints. Therefore, the value of 1 2and µ µ  at iteration 

(ITERATION_COUNTER_LIMIT) / 2 can be considered as the initial values of 

1 2 and ν ν , as if 1 2and µ µ  are still being used in the second-stage relaxation. 

Specifically, the initial value of 3ν  is set to ˆ/ ( )m m md a b , where m is the critical 

item and m N∈ . When solving a fractional knapsack problem by the greedy method, 

only part of the critical item m is included in the knapsack. Since the AS model can be 

viewed as a 0-1 knapsack problem with continuity constraints, we can refer to 

Martello and Toth’s research on 0-1 knapsack problems [26]. Following their research, 

the best LB for the objective function value of the AS model without continuity 

constraints can be obtained by 3 ˆ/ ( )m m md a bν = . This approach is used in the design of 

the computational experiments, and the quality of LB is effectively improved. 

3.2 Solution Approach for the DRAS Model 

The outcome of the AS model indicates the result of the best attack strategy 

under a certain defense budget allocation strategy. As noted earlier, the main objective 

of the DRAS model is to minimize the total damage caused by an attacker when 

he/she tries to compromise a network. Thus, the optimal solution of the AS model can 

be used as the input of the DRAS model, in which we adjust the budget allocation 

strategy according to the current attack strategy. After the adjustment, we solve the AS 

model again and obtain another attack strategy corresponding to the new defense 
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budget allocation strategy. The interaction between attack strategies and defense 

strategies continues until a balance is reached. 

The adjustment of the defense budget allocation strategy is based on the concept 

of the subgradient method, which adjusts each node’s allotted budget according to the 

current step size. First, we examine the state of each node after the attack. If the node 

is undamaged, it implies that budget allocated to this node is too much or the reward 

of attacking this node is unprofitable. Either way, it suggests that the node has too 

much defense budget. Therefore, we deduct a small proportion of the budget from the 

uncompromised nodes, and allocate it to compromised nodes. The percentage 

deducted is equal to the step size coefficient, and is halved if the optimal solution of 

the DRAS model does not improve within a certain number of iterations.  

Note that the exact amount of resources deducted from each node is different. 

Generally, the more times a node is used as a hop-site, the more important it is, since 

every time it is exploited, another node is compromised and extra damage is caused 

by the attacker. Thus, only small amount of budget is deducted from nodes that have 

been exploited frequently, even if they are not compromised under a certain defense 

resource allocation strategy. Furthermore, we propose an impact factor to normalize 

the number of times a node has been used as a hop-site. The factor is calculated 

by
max

iw
w

, where wi is the average frequency that node i has been used as a hop-site, 

and wmax is the potential maximal wi, which is equal to the average number of nodes 

compromised during each attack. The higher the impact factor of a node, the lower the 

amount of resources that will be deducted from it, even if it is not attacked. 

The complete heuristic for solving the DRAS model, denoted as 

Heuristic_DRAS, and the core algorithm of the adjustment procedure, denoted 
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Adjustment Procedure, are presented below. The computational complexity of the 

Adjustment_Procedure is O(|N|). 

Table 3-5 Heuristic_DRAS Algorithm 

//Objective: minimize the maximized total damage, i.e., min max ZIP 1 
//Initialization 
Init_Budget_Allocation_Strategy(); 
UB = –LR(); //the return value of LR() is negative due to the objective function 

transformation in the AS model 
improvement_counter = 0 
improvement_stage_counter = 0; 
θ = 0.5; //initial step size coefficient 
 
//Main Heuristic_DRAS procedure 
FOR iteration = 1 TO ITERATION_COUNTER_LIMIT { 

Adjustment_Procedure(θ); //as shown in Table 3-6 
Z*IP 1 = –LR(); 
 
//Update UB 
IF (Z*IP 1 <UB) { 

UB = Z*IP 1; 
improvement_counter = 0; 

} 
ELSE { 

improvement_counter ++; 
} 
 
//Update step size 
IF improvement_counter = IMPROVEMENT_COUNTER_LIMIT { 

improvement_counter = 0; 
improvement_stage_counter ++; 
θ = θ / 2; 

} 
} 
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Table 3-6 Adjustment_Procedure Algorithm 

//Initialization 
total_defense_cost = 0; 
FOR each node i { 

IF (node i is uncompromised) { 

max

(1 (1 ))i
i i

wb b
w

θ= − − ; //bi is the defense budget of node i, wi is the average 

number of times node i is used as a hop-site 
} 
total_defense_cost += bi; 

} 
collection = TOTAL_DEFENSE_BUDGET – total_defense_cost 
 
//Reallocation of defense budget 
FOR each node i { 

IF (node i is compromised) { 
bi += collection * Budget_Reallocation_Strategy(); //reallocate spare budget to 

compromised node according to reallocation strategy 
} 

} 
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Chapter 4 Computational Experiments 

4.1 Computational Experiments with the AS Model 

To demonstrate that our proposed heuristics are effective we implement the 

following two simple algorithms for comparison purposes. 

4.1.1 Simple Algorithm 1 

The concept of simple algorithm 1 is derived from the heuristic of first-stage 

Lagrangean relaxation shown in Section 3.1.4.1. Hence, simple algorithm 1 also 

adopts the concept of the greedy method whereby the node with smallest weight is 

activated first and is a priority attack target if its path cost is acceptable. However, 

unlike the proposed heuristic, we use 2

ˆ ( )
( )

i i

i

a b
d

, as the weight of each node i in the 

network. The pseudo code of simple algorithm 1, denoted as SA1, is presented below. 

Table 4-1 SA1 Algorithm 

//Initialization 
FOR each node i { 

weight = 2

ˆ ( )
( )

i i

i

a b
d

; 

} 
Sort all nodes by their weight in ascending order; 
Add source s to the attack_tree; 
 
//Construction of attack_tree 
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 

uncompromised nodes) { 



 

54 

Activate the first half of inactivated nodes; 
Prim(); //construct the minimum cost spanning tree rooted at s 
FOR each activated and uncompromised node i { 

IF (total_attack_cost + path_cost of i ≤ TOTAL_ATTACK_BUDGET) { 
Compromise node i and all nodes on i’s path, and add them to the 

attack_tree; 
total_attack_cost += path_cost of node i; 

} 
} 

} 

4.1.2 Simple Algorithm 2 

The concept of simple algorithm 2 is derived from the idea that nodes with 

smaller weights have a higher priority to be attacked. Here, we adopt Prim’s algorithm 

to predetermine the path from s to each node. Then, the uncompromised node with the 

smallest weight is targeted, and its attack path is constructed if the attacker has 

sufficient attack power. As in simple algorithm 1, we use 2

ˆ ( )
( )

i i

i

a b
d

 as the weight of 

each node i in the network. The pseudo code of simple algorithm 2, denoted by SA2, 

is presented below. 

Table 4-2 SA2 Algorithm 

//Initialization 
FOR each node i { 

weight = 2

ˆ ( )
( )

i i

i

a b
d

; 

} 
Add source s to the attack_tree; 
 
Prim(); //construct the minimum cost spanning tree rooted at s  
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 

uncompromised nodes) { 
Find node i, which is uncompromised AND whose weight is the smallest among 

all uncompromised nodes; 
IF (total_attack_cost + path_cost of i ≤ TOTAL_ATTACK_BUDGET) { 
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Compromise node i and all nodes on i’s path, and add them to the attack_tree; 
total_attack_cost += path_cost of node i; 

} 
} 

4.1.3 Simple Algorithm 3 

We assume that the attacker has complete information about the targeted network 

in the problem description, and design several heuristics based on this concept. 

However, it is also important to compare the difference between the performance of 

an attacker with complete information and an attacker with incomplete information. 

Thus, in this simple algorithm, we focus on the scenario where the attacker is only 

aware of the existence of uncompromised nodes through their compromised 

neighbors. 

First, the weight of each node is set to 2

ˆ ( )
( )

i i

i

a b
d

, as in the two other simple 

algorithms. After assigning the node weights, we construct an attack tree from the 

attacker’s initial position, s, by the greedy method. Initially, we create a victim 

candidate set consisting of nodes directly connected to s, and include the node with 

minimal weight in the set of the attack tree. The defense capability of the node should 

be deducted from attacker’s total energy budget. Next, we probe all the neighbors of 

the node just attacked and add them to the set if they have not been included in the 

attack tree already. This probing and attacking procedure is repeated until the attacker 

does not have enough power to compromise another node. The total computational 

complexity of this heuristic is O(|N|2); however, it can be reduced to O(|N|log|N|) if a 

heap is used to maintain the victim candidate set. The core of simple algorithm 3, 

denoted by SA3, is described in Table 4-3. 
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Table 4-3 SA3 Algorithm 

//Initialization 
FOR each node i { 

weight = 2

ˆ ( )
( )

i i

i

a b
d

; 

} 
Add source s to the attack_tree; 
 
//Construction of Attack Tree 
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 
uncompromised nodes) { 

Find node i, whose weight is the smallest among all other nodes’ weight in 
victim_candidate_set AND whose defense_capability is less than 
(TOTAL_ATTACK_BUDGET – total_attack_cost); 

Compromise node i and add it to the attack_tree; 
total_attack_cost += defense_power of node i; 
Update victim_candidate_set; 

} 

4.1.4 Experiment Environment 

The proposed algorithms for the AS model are coded in Visual C++ and run on a 

PC with an INTELTM Pentium 4.3GHz CPU. The Iteration Counter Limit and 

Improve Counter Limit are set to 2000 and 80 respectively; the first-stage relaxation 

process and the relevant primal algorithm are implemented in iterations 1~1000, and 

the second-stage relaxation process and the relevant primal algorithm are 

implemented in iterations 1001~2000. The step size scalar, λ, is initialized as 2 and is 

halved if the objective function value, ZD, does not improve after iterations up to the 

Improve Counter Limit. 

We adopt three kinds of network topology as attack targets. The first type is a 

grid network, which is a square area composed of k×k nodes; the second is a random 

network, in which each node is connected to several nodes arbitrarily, and the average 
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degree of each node is set to four, like the grid topologies; and the third is a scale-free 

network, in which each newly added node connects to two different nodes in the 

network. 

To observe the effect of different information value distribution patterns, we 

design three kinds of damage distribution mechanisms. The first is random 

distribution, in which the value of information held by a node is randomly decided; 

the second is degree-based distribution, in which the higher the degree of a node, the 

greater the loss that is incurred by an attack; the third is uniform distribution, in which 

each failed node causes the same amount of damage. 

We also design different budget allocation strategies to determine which budget 

allocation strategy is more effective under different circumstances. The first strategy 

is uniform budget allocation, whereby each node is allotted the same defense budget; 

the second is degree-based budget allocation, which allocates the budget according to 

the percentage of a node’s degree over the total degree of the network; the third is 

damage-based allocation, whereby each node’s budget is allocated according to the 

damage incurred if it is compromised. 

As to the function of defense capability, ˆ ( )i ia b , for simplicity, we define it as a 

linear function. In order to ensure cost-effectiveness, the resulting defense capability 

must be more than the defense budget invested, or the investment is will not profitable. 

Here, the cost-benefit ratio is 1:2. 

The parameters and scenarios used in our experiments are detailed below. 
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Table 4-4 Experiment Parameter Settings for the AS Model 

Parameters of LR 

Parameters Value 
Iteration Counter Limit 2000 
Improve Counter Limit 80 
Initial UB 0 
Initial Multiplier Value 0 0 0

1 2 3

1001 1000 1001 1000
1 1 2 2
1001
3

, , 0,

, ,  
ˆ/ ( ),  

where  is the critical item and 
m m md a b

m m N

µ µ µ

ν µ ν µ

ν

=

= =

=

∈

 

Initial Scalar of Step Size λ 2 
Test Platform CPU: INTELTM Pentium 4.3GHz 

RAM: 1 GB 
OS: Microsoft Windows 2000 

Parameters of the AS Model 

Parameters Value 
Testing Topology Grid networks, Random networks, Scale-free 

networks 
Number of Nodes |N| 49, 100, 400, 900 
Total Defense Budget B Equal to Number of Nodes 
Total Attack Budget A Equal to Total Defense Budget 
Damage Distribution Random distribution (D1), Degree-based 

distribution (D2), Uniform distribution (D3) 
Budget Allocation Strategy Uniform allocation (B1), Degree-based 

allocation (B2), Damage-based allocation (B3)
Defense Capability ˆ ( )i ia b  ˆ ( )i ia b  = 2bi  + ε, bi is the budget allocated 

to node i, i N∀ ∈  

4.1.5 Experiment Results 

To compare attack behavior under different scenarios, we use the network 

susceptibility metric to evaluate the degree to which the attacker’s objective is 

achieved Also, for clarity, solutions to the AS model and simple algorithms are 
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transformed to the susceptibility of the targeted network after attack; the greater the 

susceptibility, the more successful the attack. The LR value means the susceptibility 

calculated by the optimal feasible solution derived by the Lagrangean relaxation 

process; The LB value is a lower bound on LR obtained from (LR 1) and (LR 2); and 

SA1, SA2, and SA3 are the susceptibilities obtained from simple algorithms 1, 2, and 3 

respectively. To evaluate the quality of LR, we calculate the gap between LR and LB 

by LB LR 100%
LR
−

× . In addition, the improvement ratio of LR to SA1, SA2, and SA3 

is calculated by 1

1

LR SA 100%
SA
−

× , 2

2

LR SA 100%
SA
−

× , and 3

3

LR SA 100%
SA
−

× . 
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Table 4-5 Experiment Results of Small Networks (|N| = 49) 

Network 
Topology 

Damage 
Distribution 

Budget 
Allocation

LR 
(%)

Gap 
(%)

Improve- 
ment 

Ratio to 
SA1 (%)

Improve- 
ment 

Ratio to 
SA2 (%) 

Improve- 
ment 

Ratio to 
SA3 (%)

B1 69.41 7.80 2.95 2.51 4.32
B2 55.45 3.56 0.00 3.16 0.00D1 

B3 47.92 3.32 0.00 0.00 0.00
B1 70.31 6.08 5.54 8.79 5.61
B2 49.27 0.61 0.75 1.50 0.75D2 

B3 56.25 0.43 1.54 1.54 0.00
B1 49.65 0.12 0.10 0.50 0.22
B2 49.27 0.61 0.75 1.50 0.75

Grid 
Networks 

D3 

B3 47.92 3.32 0.00 0.00 0.00
B1 72.22 4.97 1.52 4.84 1.18
B2 67.11 2.34 0.16 3.05 0.00D1 

B3 47.92 3.32 0.00 0.00 0.00
B1 72.86 8.77 4.90 5.58 4.35
B2 49.28 0.82 0.00 0.00 0.00D2 

B3 60.83 10.00 4.31 9.80 7.41
B1 49.68 0.08 0.16 0.24 0.07
B2 49.28 0.82 0.00 0.00 0.00

Random 
Networks 

D3 

B3 47.92 3.32 0.00 0.00 0.00
B1 69.54 4.71 2.06 4.30 2.18

B2 71.18 1.72 0.00 5.73 0.00D1 

B3 47.92 3.32 0.00 0.00 0.00

B1 69.47 18.68 10.53 17.24 5.23

B2 49.63 0.39 0.65 0.43 0.22D2 

B3 62.08 20.96 6.49 26.31 3.55

B1 49.66 0.07 0.07 0.38 0.15

B2 49.63 0.39 0.65 0.43 0.22

Scale-free 
Networks 

D3 

B3 47.92 3.32 0.00 0.00 0.00
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Table 4-5 Experiment Results of Medium-sized Networks (|N| = 100) 

Network 
Topology 

Damage 
Distribution 

Budget 
Allocation

LR 
(%)

Gap 
(%)

Improve- 
ment 

Ratio to 
SA1 (%)

Improve- 
ment 

Ratio to 
SA2 (%) 

Improve- 
ment 

Ratio to 
SA3 (%)

B1 71.36 4.97 8.98 3.01 5.45 
B2 54.70 0.71 0.00 0.21 0.00 D1 

B3 49.49 0.52 0.00 0.00 0.00 
B1 71.23 5.29 8.99 3.61 6.80 
B2 49.72 0.12 0.23 0.23 0.23 D2 

B3 54.55 0.39 0.00 0.00 0.00 
B1 49.82 0.06 0.06 0.05 0.03 
B2 49.72 0.12 0.23 0.23 0.23 

Grid 
Networks 

D3 

B3 49.49 0.52 0.00 0.00 0.00 
B1 73.32 3.25 1.76 4.28 2.57 
B2 67.80 0.38 0.00 3.03 0.07 D1 

B3 49.49 0.52 0.00 0.00 0.00 
B1 74.56 9.58 4.84 6.45 7.77 
B2 49.70 0.28 0.00 0.00 0.00 D2 

B3 61.21 9.99 3.43 8.24 4.16 
B1 49.84 0.03 0.04 0.10 0.03 
B2 49.70 0.28 0.00 0.00 0.00 

Random 
Networks 

D3 

B3 49.49 0.52 0.00 0.00 0.00 
B1 71.18 2.75 0.53 7.10 2.70 

B2 74.14 0.21 0.00 6.56 0.00 D1 

B3 49.49 0.52 0.00 0.00 0.00 

B1 72.07 16.01 9.44 19.46 5.08 

B2 49.77 0.25 0.10 0.21 0.10 D2 

B3 63.84 19.25 6.03 23.12 0.65 

B1 49.84 0.03 0.03 0.07 0.05 

B2 49.77 0.25 0.10 0.21 0.10 

Scale-free 
Networks 

D3 

B3 49.49 0.52 0.00 0.00 0.00 
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Table 4-6 Experiment Results of Large Networks (|N| = 400) 

Network 
Topology 

Damage 
Distribution 

Budget 
Allocation

LR 
(%)

Gap 
(%)

Improve- 
ment 

Ratio to 
SA1 (%)

Improve- 
ment 

Ratio to 
SA2 (%) 

Improve- 
ment 

Ratio to 
SA3 (%)

B1 71.72 4.90 8.45 1.71 5.81 
B2 52.47 0.15 0.00 0.00 0.00 D1 

B3 49.87 0.13 0.00 0.00 0.00 
B1 71.45 5.74 8.86 0.77 5.79 
B2 49.93 0.03 0.11 0.11 0.11 D2 

B3 52.38 0.08 0.00 0.00 0.00 
B1 49.96 0.01 0.01 0.01 0.01 
B2 49.93 0.03 0.11 0.11 0.11 

Grid 
Networks 

D3 

B3 49.87 0.13 0.00 0.00 0.00 
B1 72.30 3.08 1.57 4.10 1.52 
B2 68.22 0.09 0.00 3.41 0.02 D1 

B3 49.87 0.13 0.00 0.00 0.00 
B1 71.65 10.23 8.26 4.30 2.59 
B2 49.91 0.11 0.00 0.00 0.00 D2 

B3 61.00 10.28 2.20 5.56 3.95 
B1 49.96 0.01 0.00 0.01 0.00 
B2 49.91 0.11 0.00 0.00 0.00 

Random 
Networks 

D3 

B3 49.87 0.13 0.00 0.00 0.00 
B1 72.61 2.53 1.07 6.00 2.22 

B2 74.59 0.05 0.00 8.12 0.00 D1 

B3 49.87 0.14 0.00 0.00 0.00 

B1 71.61 21.34 9.65 16.99 0.22 

B2 49.95 0.05 0.03 0.05 0.05 D2 

B3 64.11 22.70 2.17 34.34 0.08 

B1 49.96 0.01 0.00 0.01 0.00 

B2 49.95 0.05 0.03 0.05 0.05 

Scale-free 
Networks 

D3 

B3 49.87 0.14 0.00 0.00 0.00 
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Table 4-7 Experiment Results of Extra-large Networks (|N| = 900) 

Network 
Topology 

Damage 
Distribution 

Budget 
Allocation

LR 
(%)

Gap 
(%)

Improve- 
ment 

Ratio to 
SA1 (%)

Improve- 
ment 

Ratio to 
SA2 (%) 

Improve- 
ment 

Ratio to 
SA3 (%)

B1 71.94 3.76 8.61 0.91 4.07 
B2 51.66 0.07 0.00 0.00 0.00 D1 

B3 49.94 0.09 0.00 0.00 0.00 
B1 71.81 4.23 8.98 1.11 3.77 
B2 49.97 0.01 0.05 0.05 0.05 D2 

B3 51.61 0.04 0.00 0.00 0.00 
B1 49.98 0.01 0.01 0.00 0.00 
B2 49.97 0.01 0.05 0.05 0.05 

Grid 
Networks 

D3 

B3 49.94 0.09 0.00 0.00 0.00 
B1 72.88 3.08 0.18 3.84 2.09 
B2 69.12 0.05 0.02 3.25 0.01 D1 

B3 49.94 0.06 0.00 0.00 0.00 
B1 72.18 10.64 4.86 4.29 3.13 
B2 49.97 0.03 0.00 0.00 0.00 D2 

B3 60.85 11.88 2.02 4.63 3.21 
B1 49.98 0.01 0.00 0.00 0.00 
B2 49.97 0.03 0.00 0.00 0.00 

Random 
Networks 

D3 

B3 49.94 0.06 0.00 0.00 0.00 
B1 72.64 2.79 0.98 5.41 2.27 

B2 74.71 0.02 0.00 8.02 0.00 D1 

B3 49.94 0.31 0.00 0.00 0.00 

B1 72.26 20.25 1.62 24.82 1.27 

B2 49.98 0.02 0.00 0.03 0.02 D2 

B3 64.29 23.96 3.89 36.48 0.24 

B1 49.98 0.01 0.00 0.00 0.00 

B2 49.98 0.02 0.00 0.03 0.02 

Scale-free 
Networks 

D3 

B3 49.94 0.31 0.00 0.00 0.00 
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Figure 4-1 Susceptibility of Small Networks under Different Scenarios (|N| = 49) 
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Figure 4-2 Susceptibility of Medium-sized Networks under Different Scenarios (|N| = 100) 
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Figure 4-3 Susceptibility of Large Networks under Different Scenarios (|N| = 400) 
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Figure 4-4 Susceptibility of Extra-large Networks under Different Scenarios (|N| = 900) 
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Figure 4-5 Susceptibility of Different Network Sizes and Topologies 

4.1.6 Discussion of Results 

Figures 4-1 to 4-4 show the susceptibility of the targeted network under different 

topology types, numbers of nodes, and damage distribution patterns. From these 

figures, we observe: 

• Networks with budget allocation strategy B3 are the most robust and 

therefore the most difficult for an attacker to compromise. This finding is 

consistent with the common idea that defense resources should be allocated 

according to the importance of each node. According to this result, the 
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budget allocation strategy B2 under damage distribution D2 and B3 under 

D2 can achieve the same effect as B3. 

• For grid networks, the network susceptibility of the B1 and B2 strategies is 

close, and the gap between them decreases with the growth of the networks. 

This is due to one of the main features of grid networks – the degree of each 

node is four, except for nodes on edges. The larger the network size, the 

more the average degree of a grid network will approach four. Thus, the 

difference between B1 and B2 disappears as the network grows and most 

nodes in the network have the same degree. 

• Under the scenarios of the D1 allocation pattern, the B1 and B2 strategies 

make the targeted network highly susceptible to attack. Because the 

information value of each node is decided randomly, the two divergent 

strategies can not protect important nodes effectively.  

• Networks under the D3 scenario have the lowest susceptibility among the 

three damage distribution patterns. Although wrong defense budget 

allocation strategies still cause high network susceptibility, generally 

speaking, the network susceptibility of the D3 pattern is lower than that of 

the D1 and D2 patterns. This result indicates that a network is more robust 

if “all nodes are created equal,” because the attacker can not target nodes 

selectively, and the number of nodes that are compromised directly decides 

the maximum total profit. 

• The degree distribution of a network’s topology affects the network’s 

susceptibility. Take the B1 strategy under the D2 distribution pattern for 

example. In this scenario, the susceptibility of grid networks is the lowest, 
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and that of scale-free networks is the highest among the three network 

topologies. Due to the uniform degree of each node in a grid network, the 

results of B1 and B2 are similar; however the node degrees in random 

networks are irregular, so the strategy of treating each node equally fails to 

reflect the discrepancy between the nodes. The situation is more serious in 

scale-free networks because the power-law degree distribution induces 

tremendous divergence between the average degree and the actual degree of 

each node. 

Figure 4-5 compares the solution quality of the proposed Lagrangean 

relaxation-based algorithm with simple algorithms 1, 2, and 3, and demonstrates the 

gap between LRs and LBs. The value of each point on the figure is the average 

susceptibility of different damage distribution patterns and different defense budget 

allocation strategies under same network size and topology. From the figure, we 

observe several trends. 

• Our proposed heuristic outperforms the three simple algorithms in all cases. 

From Figure 4-5, we observe that, while the three simple algorithms 

perform well in some network topologies, our attack strategy always causes 

the highest network susceptibility in all three topologies. This indicates that 

our proposed Lagrangean relaxation-based algorithm is not only capable of 

solving the AS model, but it is also applicable to various types of network 

topology. The gaps between LRs and LBs are small, which shows that our 

proposed approach can derive a near-optimal solution to the AS model. 

• Simple algorithm 2 performs very well in grid networks, but fails in 

scale-free networks. The main property of the algorithm is that the attacker 

decides the target first, and then finds an attack path to reach that node. This 
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strategy is useful when there are multiple paths between the source and the 

target because the attacker can make a detour when encountering nodes with 

high defense capability. However, in the case of scale-free networks, the 

connectivity between nodes is maintained by a few hubs, that is, very few 

paths exist between the source and the target. Therefore, the attacker can not 

avoid the nodes with the highest cost when constructing an attack path to 

the target node, so the attack budget is consumed rapidly. 

• Simple algorithm 3 performs reasonably well in all types of network, 

especially scale-free networks. Theoretically, the solution quality of this 

algorithm should be worse than that of the other algorithms because of its 

local-information-awareness property. However, the results show that there 

is only a small gap between attack strategies with complete information and 

those with local information. One possible reason is that when an attacker 

has too much information, he may not be able to utilize fully to develop the 

perfect attack strategy. On the other hand, attack strategies based on local 

information can generate almost the same susceptibility as that caused by 

strategies with complete information in scale-free networks. This is because 

the “six degrees of separation” property holds in scale-free networks, and an 

attacker can collect complete information about the targeted network once 

he has compromised several hub nodes. 

• Generally, scale-free networks are more susceptible than the other two 

topologies; grid networks are the least susceptible. This phenomenon results 

from the effects of the B1 and B2 strategies, since the susceptibility of all 

networks is the same under the B3 strategy. Moreover, it is also consistent 

with the findings of previous research that scale-free networks are more 



 

69 

vulnerable to malicious attacks. As most nodes in scale-free networks are 

connected to just a few hubs, the number of directly reachable target nodes 

increases enormously once the hubs have been taken. In contrast, the 

regular structure of a grid network makes it difficult for an attacker to reach 

valuable nodes arbitrarily, so grid networks are less susceptible to 

information theft. 

4.2 Computational Experiments with the DRAS Model 

4.2.1 Experiment Environment 

The proposed algorithms for the DRAS model are coded in Visual C++ and run 

on a PC with an INTELTM Pentium 4.3GHz CPU. The Iteration Counter Limit and 

Improve Counter Limit are set to 500 and 20 respectively. The step size scalar, θ, is 

initialized as 0.5 and is halved if the objective function value, ZIP 1, does not improve 

after the iterations up to the Improve Counter Limit. 

In the DRAS model, the attacker tries to steal as much information as possible 

under a certain defense budget allocation strategy. Thus, an initial budget allocation 

strategy must be provided before the first attack. From the results of the AS model, we 

conclude that the B3 allocation strategy is the best of the three given strategies. 

Therefore, the B3 strategy is adopted as the initial defense resource allocation strategy 

for the DRAS model. 

After each attack, the defender adjusts each node’s allotted budget according to 

the budget reallocation strategies. Here, three reallocation strategies are chosen to 

adjust each node’s budget. They are the same as the defense budget allocation 

strategies in the AS model. 
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Table 4-8 Experiment Parameter Settings for the DRAS Model 

Parameters of Adjusment_Procedure 

Parameters Value 
Iteration Counter Limit 500 
Improve Counter Limit 20 
Initial Scalar of Step Size θ 0.5 
Test Platform CPU: INTELTM Pentium 4.3GHz 

RAM: 1 GB 
OS: Microsoft Windows 2000 

Parameters of the DRAS Model 

Parameters Value 
Testing Topology Grid networks, Random networks, Scale-free 

networks 
Number of Nodes |N| 25, 49, 100 
Total Defense Budget B Equal to Number of Nodes 
Total Attack Budget A Equal to Total Defense Budget 
Damage Distribution Random distribution (D1), Degree-based 

distribution (D2), Uniform distribution (D3) 
Initial Budget Allocation Strategy Damage-based allocation (B3) 
Budget Reallocation Strategy Uniform allocation (B1), Degree-based 

allocation (B2), Damage-based allocation (B3)
Defense Capability ˆ ( )i ia b  ˆ ( )i ia b  = 2bi  + ε, bi is the budget allocated 

to node i, i N∀ ∈  

4.2.2 Experiment Results 

In the experiments, we use the survivability of the targeted network, which is 

determined by the equilibrium of the offense-defense scenario, to evaluate the 

performance of different defense resource reallocation strategies, Solutions to the 

DRAS model are transformed to the equilibrium survivability of the targeted network; 

the higher the survivability, the better the reallocation strategy. The Init. Surv. value 

represents the network survivability under the initial defense budget allocation 

strategy, and the value of Opt. Surv. is the equilibrium of the network’s survivability 
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resulting from the budget reallocation strategy. The improvement ratio of Opt. Surv. to 

Init. Surv. is calculated by Opt. Surv.-Init. Surv. 100%
Init. Surv

× . 

Table 4-9 Experiment Results of Extra-small Networks (|N| = 25) 

Network 
Topology 

Damage 
Distribution 

Init. Surv. 
(%) 

Budget 
Allocation

Opt. Surv. 
(%) 

Imp. Ratio of 
Opt. Surv. (%) 

B1 51.15 0.80 
B2 52.49 2.16 D1 50.75 
B3 54.17 0.00 
B1 50.95 0.40 
B2 52.76 2.70 D2 51.44 
B3 54.17 0.00 
B1 51.70 1.93 
B2 52.76 2.70 

Grid 
Networks 

D3 54.17 
B3 54.17 0.00 
B1 51.42 1.45 
B2 52.16 1.69 D1 50.71 
B3 54.17 0.00 
B1 51.07 0.74 
B2 52.56 2.51 D2 51.33 
B3 54.17 0.00 
B1 52.17 2.96 
B2 52.56 2.51 

Random 
Networks 

D3 54.17 
B3 54.17 0.00 
B1 51.79 2.16 

B2 53.25 4.58 D1 50.72 

B3 54.17 0.00 

B1 50.96 0.47 

B2 55.03 8.22 D2 51.00 

B3 54.17 0.00 

B1 51.61 1.80 

B2 55.03 8.22 

Scale-free 
Networks 

D3 54.17 

B3 54.17 0.00 
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Table 4-10 Experiment Results of Small Networks (|N| = 49) 

Network 
Topology 

Damage 
Distribution 

Init. Surv. 
(%) 

Budget 
Allocation

Opt. Surv. 
(%) 

Imp. Ratio of 
Opt. Surv. (%) 

B1 50.49 0.27 
B2 51.03 0.49 D1 50.36 
B3 52.08 0.00 
B1 50.50 0.28 
B2 51.03 0.49 D2 50.79 
B3 52.08 0.00 
B1 50.69 0.67 
B2 51.03 0.49 

Grid 
Networks 

D3 52.08 
B3 52.08 0.00 
B1 50.66 0.67 
B2 51.63 1.85 D1 50.33 
B3 52.08 0.00 
B1 50.48 0.31 
B2 51.50 1.58 D2 50.72 
B3 52.08 0.00 
B1 51.37 2.10 
B2 51.50 1.58 

Random 
Networks 

D3 52.08 
B3 52.08 0.00 
B1 50.51 0.35 

B2 51.41 2.04 D1 50.34 

B3 52.08 0.00 

B1 50.94 1.20 

B2 52.25 3.81 D2 50.36 

B3 52.08 0.00 

B1 50.72 0.77 

B2 52.25 3.81 

Scale-free 
Networks 

D3 52.08 

B3 52.08 0.00 
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Table 4-11 Experiment Results of Medium-sized Networks (|N| = 100) 

Network 
Topology 

Damage 
Distribution 

Init. Surv. 
(%) 

Budget 
Allocation

Opt. Surv. 
(%) 

Imp. Ratio of 
Opt. Surv. (%) 

B1 50.18 0.01 
B2 50.42 0.11 D1 50.17 
B3 50.51 0.00 
B1 50.17 0.00 
B2 50.48 0.23 D2 50.36 
B3 50.51 0.00 
B1 50.27 0.19 
B2 50.48 0.23 

Grid 
Networks 

D3 50.51 
B3 50.51 0.00 
B1 50.54 0.76 
B2 50.67 0.70 D1 50.16 
B3 50.51 0.00 
B1 50.16 0.00 
B2 51.22 1.81 D2 50.32 
B3 50.51 0.00 
B1 51.03 1.76 
B2 51.22 1.81 

Random 
Networks 

D3 50.51 
B3 50.51 0.00 
B1 50.16 0.00 

B2 50.61 0.77 D1 50.16 

B3 50.51 0.00 

B1 50.47 0.62 

B2 52.17 3.90 D2 50.22 

B3 50.51 0.00 

B1 50.45 0.59 

B2 52.17 3.90 

Scale-free 
Networks 

D3 50.51 

B3 50.51 0.00 
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Figure 4-6 Survivability of Extra-small Networks under Different Scenarios (|N| = 25) 
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 Figure 4-7 Survivability of Small Networks under Different Scenarios (|N| = 49) 
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Figure 4-8 Survivability of Medium-sized Networks under Different Scenarios (|N| = 100) 
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4.2.3 Discussion of Results 

Figures 4-6 ~ 4-8 display the equilibrium survivability of the targeted networks 

under different topology types, numbers of nodes, and damage distribution patterns. 

From the figures, we can make several observations: 

• “The rich get richer, and the poor get poorer” is the best reallocation 

strategy for scale-free networks under the D2 distribution. For scale-free 

networks, the initial survivability of the D2 scenario under the B3 strategy 

is low. However, by applying the B3 strategy repeatedly, the equilibrium 

survivability of the D2 scenario outperforms that of the other scenarios; 

moreover, this case becomes the most robust among all the experimental 

scenarios. Since the importance of nodes depends on their degree, the result 

confirms the findings of previous research [14][16] that the protection of 

hubs in scale-free networks must be enhanced.  

• The survivability of networks under the D3 distribution can not be 

improved by defense budget adjustment procedure. As noted in Section 

4.1.6, the initial network survivability of the D3 scenario is the highest 

among three damage distribution patterns; however, no improvement is 

made after the resource adjustment procedure. One possible reason is that 

the nodes are equal in importance; thus, the key-node-oriented reallocation 

of the defense budget is meaningless. 

• In most scenarios, the B3 defense resource reallocation strategy can 

enhance network survivability more than the B1 and B2 strategies. This 

phenomenon is most obvious in random networks under D1 distribution. 

Once again, “the rich get richer, and the poor get poorer” proves to be the 
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best defense budget allocation strategy, since we allocate defense resources 

according to the value of the information held by each node initially, and 

then reallocate the resources repeatedly. 

• In Section 4.1.6, we observe that grid networks are the most robust among 

three testing topologies generally. However, after applying our proposed 

defense resource reallocation strategy, the equilibrium survivability of 

random networks and scale-free networks transcend that of grid networks. 

This implies that random networks and scale-free can be very robust as long 

as right defense strategies are applied. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

The ubiquitous nature of the Internet has made it a nest of cyber-crimes, which 

render the concept of “completely secure systems and networks” obsolete, and incur 

inestimable damage and loss to victims. Information theft is one of the most damaging 

cyber-crimes, yet it is easily missed because its attack behavior does not alert victims, 

but makes them unwitting accomplices instead. Thus, network operators not only 

need to protect their networks against information theft, but must also prevent their 

networks from being used as hop-sites. 

In this thesis we have addressed the attack-defense scenario in terms of 

information theft, where an attacker attempts to steal information from a targeted 

network and maximize his gained profit, while the operator of the network tries to 

minimize the impact of attacks through a proper defense resource allocation strategy. 

Both the attack strategy and the defense resource allocation strategy must be adjusted 

repeatedly to maintain equilibrium. 

The key contribution of this research is the development of mathematical models 

of AS and DRAS. We successfully model the interaction between attackers and 

defenders in the real world into well-formulated mathematical models, which are then 

solved by the proposed heuristics. This is a breakthrough in the topic of network 

attacks since previous research seldom modeled real-world attack behavior in this 
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way [15]. Through mathematical forms, we can induce generic results and apply them 

to similar real-world scenarios that were only addressed by individual case studies in 

the past. 

The novel network survivability and susceptibility metrics represent another 

contribution of this thesis. In order to evaluate the performance of different attack 

strategies and defense resource allocation strategies, we have proposed two 

complementary metrics: susceptibility and survivability. The metrics reflect the 

amount of profit gained by an attacker, so that both the attacker and the defender can 

gauge the survivability of the targeted network, and can adjust their strategies 

accordingly. 

We have also studied several different network topologies and observed their 

susceptibility against information theft under different defense resource allocation 

strategies. We then adjusted the defense strategies to improve their survivability. The 

experiment results show that grid networks are the least susceptible to information 

theft, while scale-free network are the most susceptible. However, through a proper 

defense resource allocation strategy, the differences in survivability of different 

topologies can be reduced. Most importantly, we have developed an engineering 

guideline for the network defender. Its states that the best defense resource allocation 

strategy is the one based on the concept: “the rich get richer, and the poor get poorer.” 
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5.2 Future Work 

In the following, we highlight several issues and concepts that could be studied 

further. 

• Function of Defense Capability 

In this research, we adopt a linear defense capability function, ˆ ( )i ia b  

= 2bi  + ε, in the computational experiments. However, a concave function 

is more reasonable when addressing the relation between the defense budget 

and the defense capability. According to the “Law of Diminishing Marginal 

Utility”, the marginal benefit, i.e., the additional defense capability derived 

from an additional unit of defense budget, declines as the defense budget 

increases. Thus, concave functions, e.g. log functions, may describe the real 

situation more accurately. 

• Discussion of Special Cases 

During the computational experiment phase, we observed several 

abnormal results in the DRAS model. These results indicate that there may 

be better defense resource allocation strategies when a few “choke points” 

exist in a network. The survivability of this kind of network improves 

substantially if the choke points are well-defended, and exceeds the average 

survivability of networks without choke points. This is because the choke 

points are the gates to other nodes in the network, and the other nodes can 

not be compromised unless the choke points have been taken. Thus, 

reinforced defense of these nodes would not only stop the attacker, but 

would also consume a huge amount of the attacker’s budget. However, how 

identifying the most important choke points of a network is still a 
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challenging issue and we hope to study this area thoroughly in the future. 

• Secret Sharing Scheme Concept 

In our problem description, we assumed that once a node has been 

compromised, the attacker can get all the valuable information held by that 

node. However, in network security research, the concept of a “secret 

sharing scheme” is often used. Under the scheme, each node contains a 

fragment of important and sensitive information, which is useless unless all 

the fragments of information about the secret can be retrieved. Therefore, 

several nodes form a group that keep a secret, which only be stolen if all 

members of the group are compromised. 

Extending the DRAS model, we can model the concept of the secret 

sharing scheme as the following formulation, denoted by (IP 3). Most of the 

notations used in the formulation are the same as those in the DRAS model; 

extra notations are listed in Table 5-1. 

Table 5-1 Extra Notations Used in (IP 3) 

Given Parameters 
Notion Description 
G The index set of all sensitive information groups in the network 
sg Damage incurred by compromising all members of group g, where g∈ G 

σgi 
An indicator function, which is 1 if node i is in sensitive information group 
g, and 0 otherwise (where i∈N, g∈ G) 

Decision Variable 
Notion Description 

zg 
1 if all members of group g are compromised, and 0 otherwise (where g∈ 
G) 
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Objective function: 

 IP 3 , ,
= min max

i i i g
i i g gb y a z i N g G

Z d y s z
∈ ∈

+∑ ∑     (IP 3) 

Subject to:  

( )1
w

p pi i
w W p P

x N yδ
∈ ∈

≤ −∑ ∑    i N∀ ∈          (IP 3.1) 
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p i
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∈

=∑      , ( , )i N w s i∀ ∈ =        (IP 3.2) 

 1
w

p
p P

x
∈

≤∑       w W∀ ∈          (IP 3.3) 

0 1px or=       ,wp P w W∀ ∈ ∈        (IP 3.4) 

0 1iy or=       i N∀ ∈          (IP 3.5) 

0 ib B≤ ≤       i N∀ ∈          (IP 3.6) 

i
i N

b B
∈

≤∑                    (IP 3.7) 

ˆ0 ( )i i ia a b≤ ≤      i N∀ ∈          (IP 3.8) 

i
i N
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∈
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ˆ ( )i i i ia b y a≤      i N∀ ∈         (IP 3.10) 
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Explanation of the mathematical formulation:  

• Objective function: The objective is to minimize the maximized total damage 

incurred by compromising single nodes, i i
i N

d y
∈
∑ , and extra damage incurred by 

compromising all members in some sensitive information group, g g
g G

s z
∈
∑ . In the 

inner problem, an attacker tries to maximize the damage to the targeted network 

by deciding which nodes or groups to attack, i.e., the yi value of each node i and 

the zg value of each group g. In the outer problem, the defender tries to minimize 

the damage caused by the attacker by allocating the defense resources, bi, to each 

node appropriately. 

• Constraints (IP 3.1) ~ (IP 3.10) are the same as Constraints (IP 1.1) ~ (IP 1.10) in 

the DRAS model. 

• Constraints (IP 3.11) and (IP 3.12) state that a sensitive group g can only be 

compromised if all members of the group have been taken by the attacker. 

In this research, we have modeled real-world offense-defense scenarios of 

information leakage/theft. None the less, the future research issues mentioned above 

have the potential to substantially improve the accuracy and practicability of our 

models. Thus, follow-up research will be conducted, and more supplements will be 

added to enhance our models in the future. 
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