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Near Optimal Network Defense Resource Allocation Strategies for

the Minimization of Information Leakage

Dependency on the Internet is giving cyber criminals increasing opportunities to
steal information. Information theft, one of the most damaging cyber-crimes, not only
causes property damage and monetary loss to victims, it can also ruin their reputations.
As a result, research into developing defense strategies against information theft on

the Internet is a pressing need.

In this paper, we model an offence-defense scenario as a two-level mathematical
programming problem. In the inner problem, defined by the AS model, an attacker
allocates his limited attack power intelligently to the targeted network in order to steal
as much valuable information as possible. Meanwhile, in the outer problem, defined
by the DRAS model, the operator of the targeted network allocates limited defense
resources appropriately to minimize the damage incurred by information theft. The
Lagrangean relaxation-based algorithm is adopted to solve the AS problem, and a

subgradient-based algorithm is proposed to solve the DRAS problem.

Keywords: Information Theft, Lagrangean Relaxation, Mathematical
Programming, Network Attack and Defense, Network Survivability,

Optimization, Resource Allocation, Scale-free Networks
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Chapter 1 Introduction

1.1 Background

Because of the convenience and varied applications of the Internet, it has become
an indispensable part of people’s daily lives; however, increased dependence on the
medium has also given cyber criminals more opportunities to steal information.
Cyber-crime, which ranges from phishing and the use of botnets to information theft,
has the potential to seriously disrupt our lives and even endanger our property.
Therefore, the issue of how to deal with cyber-crime has become an urgent research

topic in the field of network security.

Among various cyber-crimes, information leakage is one of the most serious
threats because it jeopardizes network security and causes profound damage and loss.
According to the CSI/FBI Computer Crime and Security Survey (2005) [1], theft of
propriety information rates as one of the top three security incidents, resulting in
dramatic loss to U.S. corporations and government agencies. This year, the survey [2]
again indicated the great impact of information leakage. However, the loss and
damage caused by information leakage are not as direct and explicit as those caused
by DoS, DDoS, or viruses; instead, they are often only realized after the stolen
information has been exploited. Moreover, some victims are unaware of an attack
because the information stolen does not affect normal network operations. This

“silent” attack behavior may not attract the victim’s attention until the stolen



information is published or used, which could cause serious loss or damage to the
victim and ruin his/her reputation. Consequently, network security experts have

increased their efforts to develop strong countermeasures against information theft.

To prevent information theft by malicious attackers, network administrators and
organizations have invested large amounts of resources, including money, time, and
manpower, and deployed security hardware/software to strengthen their networks’
robustness against attacks. However, due to the imperfection of software
programming and communication protocols, malicious attackers always find ways to
exploit the vulnerabilities of the Internet and launch attacks to compromise it. Given
the inevitability of such attacks, perfect robustness of the Internet is unobtainable;
hence, in recent years, the concept of security has been gradually generalized as an

issue of survivability [3][4][5].

Typically, the states of network security are defined as safe or compromised [6].
However we believe that this binary concept is no longer sufficient to describe a
system’s states under malicious attack or random error conditions, because there is no
attack-proof or error-free system in the world, especially as most systems are in
unbounded environments [7]. The general concept of survivability describes how well
a system can sustain normal service under abnormal conditions [8], and it
complements the system states that are not covered by security. Thus, in this paper,
we are particularly interested in the so-called intermediate zone between the safe and

compromised states.

It is unfortunate that, despite the ongoing development of methods to strengthen
network survivability, there is no consensus about a precise definition of the concept
[9]. The most common definition [7] of survivability, proposed by Ellison et al. in

1999 [6], is: “the capability of a system to fulfill its mission, in a timely manner, in
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the presence of attacks, failures, or accidents”. Table 1-1 lists several different
definitions proposed by other researchers. Although the definitions are diverse, their
underlying concepts can be generalized as four basic components [9]: system, the
environment that provides services, the Internet for example; usage, the service
requested by users; minimum level of service, a set of functional specifications for
requested services, each of which has associated quality attributes and values; and
threats, including random errors (accidental threats), malicious attacks (intentional
threats), and catastrophic occurrences, such as natural disasters. Given the above
components of survivability, we can analyze a system’s survivability quantitatively.
The development and performance of previous quantitative analysis studies is

discussed in Section 1.3.1.



Table 1-1 Survivability Definition Summary

No. Researcher Definition Year Origin

Survivability is the degree to which essential
Deutsch and ~ functions are still available, even though {9gg [10]

Willis some part of the system is down.

Suppose the selected feature of the network is
quantified and denoted by x. Survivability S
is measured by the fraction of x that remains
after the considered disaster has happened.
The survivability can be characterized by

following functions:

e Expected survivability E[S] is the
expected survivability value s after the
disaster.

2 Liewand Lu s _ 1992 [11]
e  Worst-case survivability s% is the

minimum value of s under given disaster

types.

e r-percentile survivability s, 1is the
probability that s is no greater than 7%

of the total resources.

e  Zero survivability Py is the probability
that s 1s 0.

(1) The ability of a network to maintain or
restore an acceptable level of performance
during network failure conditions by applying

Louca, various restoration techniques.
3 Pitsillides, R

and Samaras (2) The mitigation or prevention of service
outage from potential network failures by

applying preventative techniques.

Survivability is the capability of a system
Ellison, (including networks and large-scale systems)
4  Fisher, and to fulfill its mission, in a timely manner, in 1999 [6]

Linger the presence of attacks, failures, or accidents.



Knight and

Sullivan

ANS
T1.523-2001
, Telecom
Glossary
2000
(revision of
Federal
Standard
1037C)

T1A1.2
Network
Survivability
Performance
Working
Group

Survivability is the ability [of a system] to
continue to provide one or more alternate
services (possibly degraded, less dependable,
or different) in a given operating environment
when various events cause damage to the

system or its operating environment.

Survivability is a property of a system,
subsystem, equipment, process, or procedure
that provides a defined degree of assurance
that the named entity will continue to
function during and after a natural or

man-made disturbance; e.g., a nuclear burst.

Note: For a given application, survivability
must be qualified by specifying the range of
conditions over which the entity will survive,
the  minimum  acceptable level or
post-disturbance, functionality, and the

maximum acceptable outage duration.

Suppose a measure of interest M has the
value my just before a failure happens. The
survivability behavior can be evaluated by the
following attributes:

e  m,is the value of M just after the failure

occurs.

e m, 1s the maximum difference between
the value of M and ma after the failure.

e m, is the restored value of M after some
time ¢,

e g is the time required for the system to

restore the value my.

2000

2000

2001

[31[4]

[13]

[8]




1.2 Motivation

Information leakage has been shown to be a serious threat to individuals,
organizations, or even nations [1]; moreover, it is also recognized that it will become
an increasingly critical security issue to organizations in the near future [2]. When
important sensitive information is stolen, it is not just a matter of privacy invasion; in
worst case scenarios, it may lead to property loss, financial ruin, and the loss of life if
national security is involved. Even so, people tend to ignore threats that do not have a
direct impact on their lives, and may gloss over the seriousness of such events when
they do occur. Yet, once an incident is revealed or the stolen information is used or
published, the damage and loss incurred may be inestimable. According to the 2005
Computer Crime and Security Survey by CSI/FBI [1], the average loss per U.S.
organization caused by theft of proprietary information increased from $168.5K in
2004 to $355.5K in 2005; however, this is just the tip of the iceberg. Given the
mushrooming losses resulting from information theft, an in-depth study of strategies

against such attacks is indeed a pressing need.

Furthermore, unlike attackers in the past, who intended to crash a whole network
or interrupt a system to stop it from providing normal services, attackers nowadays
tend to exploit the vulnerabilities of a system and steal information from it, without
necessarily crashing the system. Such information leakage often leads to huge damage
and loss to the system’s owner and the network operator. To prevent such occurrences,
network operators must invest some resources to enhance the robustness of the whole
network. However, resources are limited and, as already noted, it is impossible to
make a network entirely attack-proof. Thus, the question arises: How can a network
operator allocate his limited resources effectively, such that the extent of information

leakage can be minimized?



To answer this question, we must begin by understanding the factors that make a
network vulnerable. The resistance of each component against malicious attacks is
one of the keys to a network’s robustness. The stronger a component, the more effort
an attacker must expend to compromise it. However, components in the network are
not independent. On the AS (autonomous system) level of the Internet, a component’s
failure will lead to direct exposure of other components connected to it, and also
increase the probability that they will be attacked. In this scenario, the topological

structure of the network is an important factor that influences a network’s robustness.

Recent studies have demonstrated that the Internet and many complex networks
follow a power-law degree distribution, and are thus called scale-free networks [14].
Unfortunately, one of the main characteristics of scale-free networks is that they are
highly susceptible to malicious attacks; that is, a network will almost certainly fail
once a few of the most important components have been compromised [14]. Thus, the

protection of such components is essential.

Nevertheless, knowing the factors that affect a network’s resistance against
attacks only gives us a hint about how to allocate defense resources, rather than a
solution to the problem. In order to determine the best defense resource allocation
strategy, we must first consider the best attack strategy. As the saying goes: “know
your enemy, know yourself.” Only by understanding how the attacker devises his
strategy can the defender know how to protect the network. Therefore, in the
following chapters we not only discuss how a network operator can allocate his
defense budget optimally, but also how an attacker can adjust his strategies to steal as
much information as possible in order to cause maximum damage to the network

operator.

In addition, previous research shows that attempts to model attackers’ actions in
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an abstract, mathematical way and then predict the future actions of attackers based
on those models is a non-trivial and unsolved issue [15]. Accordingly, to resolve this
issue, we model the offense-defense game between an attacker and a network operator
as a two-level mathematical optimization problem, and solve it with our proposed
solution approaches. We also propose a new survivability measure that considers the

level of damage incurred by an attacker.

1.3 Literature Survey

In this section, we review previous works on the quantitative analysis of network

survivability and scale-free networks.

1.3.1 Quantitative Analysis of Network Survivability

Since the concept of survivability focuses on a system’s behavior after failures,
random errors or malicious attacks, good quantitative analysis measures for
evaluating a network’s post-failure survivability level are essential. Westmark [9]
generalized quantitative measurements of network survivability into three categories:
connectivity, performance, and function of other quality or cost measures. The first

two measures are discussed below.

Network connectivity is defined as the minimum number of nodes or links that
must be removed to disconnect an O-D (Origin-Destination) pair [13]. Generally, the
more nodes or links needed to disconnect any O-D pair in a network, the more
survivable the network will be. A network’s connectivity can be calculated by finding
the maximal amount of node-disjoint or edge-disjoint paths between each O-D pair in
the network. For instance, Louca et al. [12] improve the survivability of a network by
transforming it into a trellis graph and then find the K-best node-disjoint paths

between a given O-D pair. Their proposed algorithm ensures that if k& node-disjoint
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paths exist between an O-D pair, they can be found exactly, and the total cost of &
paths can be minimized. The algorithm can be applied to routing protocol designs to

make a network fault-tolerant and minimize the impact of component failure.

To understand the impact of component failure on the Internet, many researchers
have investigated the connectivity of the medium [14][16]. Different metrics are used
to evaluate connectivity; for example, the maximal size of connected components, the
average cluster size, the proportion of O-D pairs still connected, and the average
network diameter. These researchers observed the Internet under different types of
component failure scenarios, and found that node failure caused by malicious attacks
is the major cause of Internet failure. This phenomenon is due to the topological

structure of the Internet, which we discuss in the next section.

The second metric, network performance, is the level at which a network fulfills
its QoS (Quality of Service) function [13]. Because the objective of a network is to
provide satisfactory service, measures for analyzing network performance usually
focus on evaluating the service quality that may be affected by failures, such as the
number of functioning units, the number of connected nodes, the maximum traffic
capacity, blocking probability, throughput, and the service restoration time [5].
According to the T1A1.2 working group on network survivability performance [8],
the assessment of network survivability performance has two aspects: 1) the
assessment of the frequency that abnormal conditions occur; and 2) the measurement

of the impact of these conditions.

Most research into network performance focuses on the first aspect of
performance assessment, and the most commonly used analysis technique is the
continuous time Markov chain (CTMC) [5][17]. Liu and Trivedi [5] modeled network

behavior as a truncated two-dimensional finite state system in which the state (i,j)

9



indicates there are i available trunks and j of them carry ongoing flows. The transition
between states is described by the arrival rate of service calls and the call holding rate.
If i is equal to j (i.e., all trunks are carrying traffic), the new requested service will be
blocked; hence, the performance of the network can be evaluated by the service

blocking rate Pyy.

Keshtgary et al. [17] constructed a hierarchical survivability model, also known
as a Markov chain model, which analyzes the availability of & disjoint paths between

a given O-D pair. Each state of the model is a compound state of path sets. For
example, state (PP,P) denotes that paths P and P; are working and path P, has

failed. The transition rate between states is the probability of path failure or path
restoration. In addition to the frequency of path failure, its impact is also analyzed. In
this research, a Markov reward model (MRM) is proposed to evaluate the loss and the
cost incurred by path failure and restoration. The total loss due to the unavailability of
a path or paths and the capacity constraints on alternate paths when the primary path
fails are defined as the susceptibility of the network; and the survivability of the

network is calculated as (1 — susceptibility).

In this paper, we focus on assessing the impact of malicious attacks. A novel
survivability metric, which evaluates network performance by considering the total
loss and damage resulting from information leakage, and the corresponding
susceptibility metric are defined. Moreover, instead of using CTMC to analyze
network survivability, we adopt mathematical programming with optimization
techniques to accurately model the offense-defense scenario. Generally, the state
transition in a Markov chain is two-way; however, only one-way transition exists in
our scenario, since stolen information can not be redeemed. Thus, CTMC analysis is

not really applicable in our research.
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1.3.2 Scale-free Networks

The Internet has been appropriately described as a network with a complex
topology, in which routers or domains are nodes, and connections between any two
routers or domains are links [18][19]. Although previous research into complex
networks showed that they can be described with the random graph model of Erdds
and Rényi (ER model), Albert et.al [20] suggested that such networks can actually be
divided into two major classes based on their connectivity distribution P(k), given the

probability that a node in the network is connected to k other nodes.

The first class of networks, exponential networks, is characterized by a P(k) that

peaks at an average <k> and decays exponentially for k> <k> , also referred to as

the Poisson distribution. The ER model and the small-world model of Watts and
Strogatz (WS model) are the most well-known examples of exponential networks [14].
In contrast, scale-free networks, which include the Internet at the AS level [18][19]
and the World Wide Web (WWW), proposed by Barabasi and Albert [20], are
characterized by a P(k) that decays as a power-law, i.e., P(k)~k", free of a
characteristic scale. If we plot the node degree and its cumulative distribution on a
log-log axis, a straight line with slope -y will be evident. Figures 1-1 and 1-2 are
visualizations of two classes of network, and Figure 1-3 illustrates an example of the

power-law distribution.
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Figure 1-2 Visualization of a Scale-free Network [14]
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Figure 1-3 An Example of Power-law Distribution [19]
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Albert et al. [14] observe that one of the major differences between exponential
networks and scale-free networks is the homogeneity of nodes. Exponential networks

result in homogeneous connectivity distribution, where each node has approximately

the same number of links, & z<k> Inhomogeneity of scale-free networks, on the

other hand, leads to the creation of highly connected nodes, which is practically

impossible in exponential networks.

The power-law distribution of scale-free networks is generalized from two
common characteristics of many real networks: growth and preferential attachment
[14][20]. Most large networks in the real world evolve over time, e.g., social networks,
citation networks, and the Internet. During a network’s growth, newly added nodes
are inclined to connect with existing nodes that have higher connectivity, which

makes them susceptible to attack.

Although the inhomogeneous connectivity distribution of scale-free networks is
more error-tolerant, it also has lower survivability against attacks [14]. The few
existing highly connected nodes become a so-called “Achilles’ heel”, because once
they have been compromised, information about the existence of most nodes in the
network will be exposed. Unfortunately, in contrast to the uniform probability for
each node in the case of random errors, nodes with higher connectivity, namely hubs,
are much more likely to be targeted by an attacker. For this reason, the impact of
random errors and that of malicious attacks on inhomogeneous scale-free networks
are very different. Once the position of hubs becomes known, a scale-free network

becomes highly susceptible to malicious attacks.

An even more serious problem, according to Park et al. [16], is that the Internet

is more vulnerable than general scale-free networks due to its stronger preferential
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attachment property, and the situation will get more serious over time. This
phenomenon was also demonstrated by Faloutsos et al. In 1998, they discovered that
the Internet’s topology, both at the router level and the AS level, follows a power-law
degree distribution [18]. In the following years, they continued to observe the
evolution of the Internet [19], and found that the “six degrees of separation” property
holds all the time. Similarly, Mahadevan et al.’s research [21] in 2006 also validated
the power-law degree distribution and “six degrees of separation” phenomenon of the
Internet AS-level topology. Since the size of the Internet grew from 3,000 nodes in
1998 to about 17,500 nodes in 2004, the findings implies that more and more nodes
will suffer because of the compromise of few critical hubs. This inference not only
supports the result of Park et al. but also highlights the urgent need for research into

defense mechanisms to protect the Internet against malicious attacks.

1.4 Proposed Approach

In this paper, we propose a min-max mathematical model to describe the defense
resource allocation strategy (DRAS) problem and the attack strategy (AS) problem
precisely. By solving this two-level model optimally, we not only know the maximal
potential damage that could be incurred under a certain defense budget allocation, but

also find the best budget allocation strategy for the network administrator.

First, we formulate the DRAS problem as a mixed integer and linear
programming (MILP) problem, where the problem objective is to minimize the
potential total information value obtained by an attacker, subject to the network
operator’s budget limit. The potential total loss is derived from the result of the AS
problem, which is formulated as another MILP problem. The objective of the AS

problem is to maximize the total damage caused by information theft, subject to the
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attacker’s budget limit. We then propose using the Lagrangean Relaxation method, in
conjunction with the subgradient method [22][23], to solve the AS problem. However,
to solve the DRAS problem, a subgradient-based heuristic is proposed to adjust the

defender’s budget allocation strategy according to attacker’s attack strategy.

A network’s survivability is evaluated by the percentage of un-stolen information
in the network. The higher the result, the more survivable the network is. In other
words, a network with zero survivability would be fully compromised if the attacker
allocates his attacker budget optimally. Comparisons of the survivability of networks
under different defense budget allocation strategies and different topologies are

presented in Chapter 4.

1.5 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, MILP
formulations of the DRAS and the AS/problems are proposed. In Chapter 3, solution
approaches to the AS problem and the DRAS problem are presented; in Section 3.1,
solution approaches based on Lagrangean Relaxation are proposed; in Section 3.2, a
solution approach to the DRAS problem based on the subgradient method is proposed.
In Chapter 4, the computational results of the AS problem and the DRAS problem are
presented. Finally, in Chapter 5, we present our conclusions and indicate possible

directions of future research.

15



16



Chapter 2 Problem Formulation of the DRAS and
AS Models

2.1 Problem Description

The problem we address is how a network operator should distribute a fixed
amount of budget to each component so that the maximal damage and loss incurred
by a potential attacker due to information leakage can be minimized. However, the
“battle” between a network operator and an attacker is not static. A smart attacker will
adjust his strategies dynamically to maximize the damage incurred, i.e., he will steal
as much information as possible, if he knows the defense resource allocation strategy
of the network operator and has sufficient attack power. It is therefore a challenge for
network operators to derive adequate defense strategies against constantly changing

attack strategies.

On the other hand, it is also difficult for an attacker to decide how to launch his
attack. Just like the network operator, the attacker only has limited resources.
Moreover, as it takes time and money to compromise a component, only part of the
network can be compromised. Therefore, the resources must be fully utilized so that
the attacker can gain the most valuable information and cause the maximum harm to

the network operator.

Of course, the amount of information an attacker can gain from the network may

differ when the defense resource allocation strategy changes. Hence, to evaluate the
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efficiency of a certain defense budget allocation strategy, we analyze the survivability
and the susceptibility of the network. The susceptibility metric, shown in the
following equation, is defined as the percentage of stolen information, calculated by
the percentage of the maximal damage incurred over the value of total information
held by all the nodes in the network. The corresponding survivability metric is defined
as the percentage of information not stolen, and which is a complement of the
susceptibility metric. The more valuable the information stolen by the attacker, the
lower the survivability of the network will be. Assume that d; is the value of
information contained by node i, where ieN. Then, the metrics of network
susceptibility and survivability can be presented as
>, d

Susceptlbllll‘y(%) — ([enodes thatgcompmmisei{ ) % 100% )

J

Jjeall nodes in the network

di
Survivability(%) = (1 - Susceptibility) = (1 =22 'h“t%e:mm” ”’mmz )x100% ,

J
Jjeall nodes in the network

respectively.

Using these metrics, we can evaluate the survivability of networks with different
topological structures under the same defense budget allocation strategy, and the

susceptibility of networks under different defense budget allocation strategies.

Note that the network we discuss here is the AS-level Internet. The Internet’s
topology is presented as an undirected graph, in which each node is a domain and

each edge represents the inter-domain connection.
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2.2 Problem Formulation of the DRAS Model

The evaluation of the robustness of a network under malicious attack is modeled
as an optimization problem, where the objective of an attacker is to maximize the total
damage incurred by compromising nodes in a network, while the defender tries to
minimize the total damage. In the DRAS model, we assume that, like the defender,
the attacker has complete information about the targeted network topology and the
defense strategy. Although it is nearly impossible for an attacker to know everything
about a network, we assume the worst case scenario for the network defender, so that
the research is comprehensive. Because information theft is the goal of the attack, we

only consider attacks on nodes, which are more common in the real world.

Initially, the attacker controls one node that connects directly to the targeted
network, and that node is viewed as the initial hop-site to reach other nodes. Since the
targeted network is at the AS level; the attacker cannot just attack any node directly.
Instead, he can only reach uncompromised nodes from their immediate neighbors,
which have already been compromised. Thus, the attacker needs to construct an attack

tree, 1.e., a tree consisting of compromised nodes and rooted at the initial hop-site.

To describe the attack procedures specifically, we adopt the following concept.
First, the attacker occupies an initial node, s (Figure 2-1). He then adds all neighbors
of s to the set of victim candidates (Figure 2-2). Next, he chooses a target from the
candidate set and compromises it if he can apply enough attack power to it. The
compromised node is used as a hop-site and its uncompromised neighbors are added
to the set of victim candidates for the next stage of the attack (Figures 2-3 and 2-4).
The attack ends when the total attack budget is consumed and an attack tree has been

constructed (Figure 2-5). Diagrams of the attack behavior are presented below.
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Figure 2-1 Initial State Figure 2-2 Probing Neighbors

Initially, the attacker is on node s. Add uncompromised neighbors of the initial

hop-site to the set of victim candidates.

-~

-
\

Figure 2-3 Attacking a Target Figure 2-4 Post-attack Network State
Compromising a node in the candidate set, and Continuing the attack until the attack resources
adding its uncompromised neighbors to the set. are completely exhausted.
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Attacker’s initial position s

Victim candidate

O
O Uncompromised node
-~
\/
@

Compromised node

—— Unreachable link
= == = Reachable link

= | ink on the attack tree

Figure 2-5 Attack Tree

The attack tree is constructed after the attack is

completed.

The effort needed to compromise a node depends on the resources allocated to
defend the node. Generally, the more defense resources a node has, the more robust it
is, i.e., the attacker must use more resources to compromise that node. However, a
node still has some defense capability even if no defense resources are allotted to it,
since the node or the component itself is a shell for protecting the information. On the
other hand, it should be noted that both the total defense and total attack resources are
limited by their given budgets; therefore, how to distribute those resources effectively
and intelligently is the objective of this work. The assumptions and description of the

DRAS model are given in Table 2-1.

Table 2-1 Problem Assumption and Description of the DRAS Model

Assumption

e The attacker’s objective is to maximize the total damage by constructing an

“attack tree” of the targeted network.

e The defender’s objective is to minimize the total damage by allocating a different

budget to each node in the network.
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e  Both the attacker and the defender have complete information about the network
topology.

e  Both the attacker and the defender have resource budget limitations.
e  Only node attacks are considered.

e  Only malicious attacks are considered.

e  Only AS-level networks are considered.

e A node is only subject to attack if a path exists from attacker’s position to that
node, and all the intermediate nodes on the path have been compromised.

e  Anode is compromised if the attack resources applied to the node are equal to or
more than the defense capability of the node.

Given
e  Defense resource budget B
e  Attack resource budget 4

e  Damage d; incurred by compromising node i, i.e., the value of information held

by node i
e  Attacker’s position s, which is connected to the target network
e  The network topology and the network size
Objective
e  To minimize the maximized total damage
Subject to
e The total defense cost must be no more than B
e The total attack cost must be no more than 4
e  The node to be attacked must be connected to the existing attack tree
To determine
e  Defender: budget allocation strategy

° Attacker: which nodes to attack
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We model the above problem as a min-max mathematical programming problem.

The parameters used in the model are defined in Table 2-2.

Table 2-2 Given Parameters of the DRAS Model

Given Parameters

Notion | Description

N The index set of all nodes in the network

The set of all O-D pairs, where the origin is node s and the destinations are

the nodes with positive d; , where i, se N

d; Damage incurred by compromising node i, where ie N

P, The index set of all candidate paths of an O-D pair w, where we W

A The total attack power

B The total defense budget

5 An indicator function, which is 1 if node i is on path p; and 0 otherwise
pi

(where ieN, pe P,,)

In this formulation, each node is given a positive d; value, which is the value of
the information it contains, and the damage incurred if it is compromised. The
attacker’s goal is to collect as much d; as possible. The defender knows all the given

parameters, but the attacker only has a priori knowledge of N, A4, and B.

The decision variables of the DRAS problem are listed in Table 2-3.

Table 2-3 Decision Variables of the DRAS Model

Decision Variables

Notion | Description

a; Attack power applied to node i, where ie N

bi Budget allocated to protect node i, where ie N

6,(b,) The threshold of the attack power required to compromise node i, i.e., the
defense capability of node i, where ie N

Vi 1 if node i is compromised; and 0 otherwise (where ie N)

Xp 1 if path p is selected as the attack path; and 0 otherwise (where pe P,)

The DRAS problem is then formulated as the following two-level MILP problem

(IP 1).
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Objective function:

lelzmblinmiixgdiyi (1P 1)

Subject to:

> > x,0, <(IN-1)y, VieN (IP 1.1)

welW peP,

dx, =y VieN,w=(s,i) (IP 1.2)

peP,

> x, <1 VweW (IP 1.3)

PEP,

x,=0o0rl VpeP ,weW (IP 1.4)

y,=0orl VieN (IP 1.5)

0<bh <B VieN (IP 1.6)

> b<B (IP 1.7)

ieN

0<a,<a,b) VieN (TP 1.8)

Y a <4 (IP 1.9)

ieN

a(b)y, <a, VieN. (IP 1.10)

Explanation of the mathematical formulation:

e  Objective function: The objective is to minimize the maximized total damage

Zdi v, . In the inner problem, an attacker tries to maximize the damage caused
ieN

to the targeted network by deciding which nodes to attack, i.e., the y; value of
each node i. In the outer problem, the defender tries to minimize the damage

caused by the attacker by allocating defense resources, b;,, to each node
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appropriately.

Constraint (IP 1.2) enforces that if a node is chosen for attack, i.e., y; = 1, the

attacker must find a path between his initial position s and the targeted node.

Constraint (IP 1.3) requires that if a node is chosen, the attack path for that node

should be the only one.

Constraint (IP 1.1) requires that a node can only transited by (|NV]-1) different
attack paths, since there exist at most (|V|-1) targets. This constraint ensures the
absence of a cycle on the attack tree, and also ensures that all nodes on each

attack path are compromised.

Constraints (IP 1.4) and (IP 1.5) limit the value of x, and y; to 0 or 1. Therefore,
Constraints (IP 1.1) ~ (IP 1.5) jointly enforce that if a node is chosen for attack,
there must be exactly onepath from the attacker’s initial position, s, to that node,
and each node on the path must have been compromised. These constraints are

jointly described as the “continuity constraints.”

Constraints (IP 1.6) and (IP 1.7) restrict the amount of defense resources, b;, that

can be allocated to each node i. The total allotted defense resources, Zbi ,
ieN

must not exceed the defense budget B.

Constraints (IP 1.8) and (IP 1.9) restrict the attack power a; that can be applied to
each node i. The attack power cannot exceed the node’s defense capability,

a,(b,) because it would be a waste of resources. Also, the total attack cost,

Z a, , must be less than the attack budget A4.

ieN

Finally, Constraint (IP 1.10) enforces that a node can only be compromised

successfully if attack power applied to it is greater than its defense capability.
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2.3 Problem Formulation of the AS Model

As noted earlier, it is extremely difficult to create a mathematical model that
would predict an attacker’s strategy. However, in the AS model we successfully
formulate an attacker’s behavior as an elegant mathematical optimization problem,
which is also the inner problem of the DRAS model. By resolving this problem, we
can predict the future actions of an intelligent attacker, and also design the best
defense budget allocation strategy for a network operator. After the AS problem has
been solved, its outcome is used as an input for the DRAS model to develop an

advanced budget allocation strategy.

The model assumptions and attack processes of the AS model are the same as
those of the DRAS model. We formulate the AS model as a mathematical

maximization programming problem. The parameters are defined in Table 2-4.

Table 2-4 Given Parameters of the AS Model

Given Parameters

Notion | Description

N The index set of all nodes in the network

The set of all O-D pairs, where the origin is node s; and the destinations are

the nodes with positive d; , where i, se N

d; Damage incurred by compromising node i, where ie N
P, The index set of all candidate paths of an O-D pair w, where we W
A The total attack power
6.(b) The threshold of the attack power required to compromise node i, i.e., the
defense capability of node i, where ie N
5 An indicator function, which is 1 if node i is on path p; and 0 otherwise
pi

(where ieN, pe P,)

Note that a,(b,), which is a decision variable in the DRAS problem, is a given
parameter in the AS problem. It is a function of b;, the allotted budget of node i, and

also the defense capability of the node. Node i can only be compromised if the
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attacker applies more attack power than a,(b,) to it.

The decision variables of the AS model and its formulation (IP 2) are given in

Table 2-5.

Table 2-5 Decision Variables of the AS Model

Decision Variables

Notion | Description

a; Attack power applied to node i, where ie N

Vi 1 if node i is compromised; and 0 otherwise (where ieN)

Xp 1 if path p is selected as the attack path; and 0 otherwise (where pe P,)

Objective function:

Zpy= dy =min-Y d.y, IP2
p2 = MaX ZN ¥, =min ZN‘, Y, (IP2)
Subject to:
> D x,0, <(IN-1)y VieN (IP2.1)
weW peP,
> x, =, VieN,w=(s,i) (IP 2.2)
Pep,
D x, <1 VweW (IP 2.3)
PeR,
x,=0orl VpeP ,weW (IP2.4)
y,=00rl VieN (IP 2.5)
0<a <a.(b) VieN (IP 2.6)
Ya <4 (IP 2.7)
ieN
a,(b)y, <a, VieN. (IP 2.8)

Explanation of the mathematical formulation:
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Objective function: The objective of the formulation is to maximize the total

value of the information stolen. The result of the objective function is also the
result of the inner problem in the DRAS model. For convenience, we transform
(IP 2) from a maximization problem into an equivalent minimization problem.

This does not affect the problem structure or the optimality conditions.

Constraints (IP 2.1) ~ (IP 2.5) are the same as Constraints (IP 1.1) ~ (IP1.5) in

the DRAS problem, and together form the “continuity constraints.”

Constraints (IP 2.6), (IP 2.7), and (IP 2.8) are equal to Constraints (IP 1.8), (IP

1.9), and (IP 1.10) of the DRAS problem.

The above formulation can be viewed as a 0-1 knapsack problem with continuity
constraints, where each node represents an item, and the node’s information
value and defense capability are the item’s profit and weight respectively. The
total attack budget 4 is the total capacity of the knapsack, and the attacker tries to

maximize the total profit up to the limit of the knapsack’s capacity.
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Chapter 3 Solution Approach
3.1 Solution Approach for the AS Model

3.1.1 Lagrangean Relaxation Method

The Lagrangean relaxation method was first used to solve large-scale
mathematical programming problems during the 1970s [24]. One of the method’s
basic concepts is “decomposition’’; which efficiently reduces the complexities and
difficulties of the primal problem. In fact, because of its efficiency and effectiveness
in deriving proper solutions to many complicated programming problems, Lagrangean
relaxation has become one of the most popular tools for solving optimization
problems. Its applications include integer programming, linear programming
combinatorial optimization, and non-linear programming problems. The method’s
performance is excellent, especially when dealing with large-scale mathematical

programming applications [23].

The foundation of the Lagrangean relaxation method is to “pull apart” models by
removing constraints and placing them in the objective function with associated

Lagrangean multipliers (). The concept was inspired by the observation that many
difficult integer programming problems arise from a relatively easy problem that is

complicated by a set of side constraints. The Lagrangean relaxation method exploits

this observation and creates a Lagrangean relaxation problem (LR ) in which the
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complicating constraints are relaxed to the objective function by multiplying the

corresponding  [23]. By transforming the primal problem (P) into a Lagrangean

relaxation problem (LR ), we can decompose the complex mathematical model into

several stand-alone subproblems, which can then be solved optimally by proper

algorithms.

In addition, the Lagrangean relaxation method can provide us with some hints

about obtaining the boundary of the objective function value. For a minimization

optimization problem, the objective value, Z,(u), of the (LR ) is always a lower

bound (LB) on the optimal solution of (P) [24]. In order to derive the tightest LB, we
try to tune u to make Z,(u) as large as possible, which is also known as the
Lagrangean dual problem. The Lagrangean dual problem can be solved in various

ways; the subgradient optimization technique is the most popular.

After resolving (LR ), we can examine the feasibility of the result for (P). If all

the constraints in (P) are satisfied by the outcome, a primal feasible solution is found;
otherwise, we need to develop proper heuristics to tune the infeasible solution to a
feasible one. Furthermore, Lagrangean multipliers () are also useful for adjusting
the original heuristic to a Lagrangean-based modified heuristic, which may result in a
better solution quality. Each feasible solution of (P) yields in an upper bound (UB) of
the optimal value of (P); thus, the optimal solution to the primal problem is
guaranteed to be within the Lagrangean LB and the primal feasible solution values.
Figure 3-1 illustrates the main concepts of the Lagrangean relaxation method, and a

detailed flow chart of Lagrangean relaxation method is presented in Figure 3-2.

In the following sections, we show how the AS problem is solved by the

Lagrangean relaxation method, which consists of a two-stage relaxation procedure.
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LB < Optimal Objective Function Value < UB

[ Primal Problem (P) ]

UuB
l T Adjust Lagrangean
LB Multiplier ()

Lagrangean

Lagrangean
Dual Problem

Relaxation

Problem (LR )

Subproblem o o o Subproblem

Optimal Solution Optimal Solution
Figure 3-1 Concepts of the Lagrangean Relaxation Method
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Initialization

o /* — Best known feasible solution value of (P) = Initial feasible solution
o 4° — Initial multiplier value =0
o k — teration count =0
o | — Improvement count =0
e LB — Lower bound of (P) =-00
e 1, — Initial step size coefficient =2.
I
v
Solve Lagrangean Relaxation
Problem

1. Solve each subproblem of
(LRﬂk ) optimally

A

2. Get decision variable x* and
optimal value Zp(u").

A 4

Get Primal Feasible Solution

Adjustment of Multiplier

o If x* is feasible in (P), the
resulting value is a UB of (P)
e If x* is not feasible in (P), tune it 2.

with proposed heuristics.

If i reaches the Improvement
Counter Limit, A=1/2,i=0
_AZ*-Z,(")
k 2
|45+
"= max (0, u* + # (Ax*+ b))
k=k+1.

Update Bounds

1.{ Z*=min (Z*, UB)

LB = max (LB, Zp(1"))

2. i=1i+11f LB does not change.
I

Check Termination

or

or

If (|Z* - LB|) / min (ILBJ, |Z%) < &

k reaches Iteration Counter Limit

A

Figure 3-2 Lagrangean Relaxation Method Procedure
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3.1.2 First-Stage Relaxation

In order to derive tighter UBs and LBs of the AS problem, we adopt a two-stage
Lagrangean relaxation procedure. In the first stage, we relax three constraints of (IP 2),
and construct a Lagrangean relaxation problem (LR 1). After solving (LR 1), the
resulting UB and LB are taken as the initial UB and LB, respectively, of (IP 2) in the

second stage, in which different constraints are relaxed.

3.1.2.1 Lagrangean Relaxation

By applying the Lagrangean relaxation method, we transform the primal problem
(IP 2) into the following Lagrangean relaxation problem (LR 1), where Constraints
(IP 2.1), (IP 2.2), and (IP 2.8) are relaxed. With a vector of Lagrangean multipliers,

the Lagrangean relaxation problem of (IP.2) is transformed as follows.

Optimization problem:

ZD(/ulaﬂza/%):HEn -zdiyi +Z/’lil[z z X,0, _(|N|_1)yi]

ieN ieN weW peP,

+> LY x,—y1+ D il (b)y, —a] (LR D
N peR, v
Subject to:

> x,<l1 VweW (LR 1.1)
PePp,

x,=00rl VpeP ,weW (LR 1.2)
y,=0o0rl VieN (LR 1.3)
0<a <a,(b) VieN (LR 1.4)
Da<4 . (LR 1.5)
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The Lagrangean multipliers g, , 4, , and g, are the vectors of { '}, { g}, { ,uf }

respectively, in which 4 and g, are non-negative and the variable g, is

unrestricted. To solve (LR 1), we decompose it into three independent and easily

solvable optimization subproblems as shown below.

Subproblem 1.1 (related to decision variable xp)

Lo 11 (145 11,) = minz Z Z ,ul-lxp5p,- +Z Z ,Ul-zxp (Sub 1.1)
ieN weW peP, ieN pef
Subject to:
> x, <1 VweW (Sub 1.1.1)
peb,
x,=0orl VpeP ,weW. (Sub 1.1.2)

In this problem, we want to determine the value of x, individually for each O-D
pair. Note that Constraint (Sub 1.1.1) allows only one path to be chosen for an O-D

pair. As described in the notations, each O-D pair w originates from an attacker’s

position s and ends at one target node i, where ieN. Thus, z z ,ufxp can be
ieN peF;

transformed into » » s’x,+ > wlx,, in which )  ’x, can be ignored

welV peP, Pelisys Pefis s
since no path starts and ends at the same node. After the transformation, we can
further decompose (Sub 1.1) into |¥] independent subproblems. For each O-D pair w

=(s, 1), ieNand weW,

Zsp 1.0 (45 4,) = min Z (Z ﬂ_}ép/ +ll'l[2)xp (Sub 1.1%)
peP, jeN
Subject to:
> x, <1 YweW (Sub 1.1.1"
Pep,
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x,=00rl VpeP, ,weW. (Sub 1.1.2"

The algorithm for solving (Sub 1.1) is as follows:

Step 1: For each O-D pair we W, we find the minimum cost shortest path using

,u; as the node weight by Dijkstra’s minimum cost shortest path algorithm. The
total cost of a path is the sum of the weights of the nodes on that path.

Step 2: For each O-D pair we W, we set the x,, value of each path p to zero except
for the one already chosen to be the minimum cost shortest path for some O-D

pair w, since not more than one path can exist between them.

Step 3: For each O-D pair we W, we examine the sum of its minimum path cost

and the 4’ value of its destination node. If the resulting value is non-positive,

the x, value of the minimum cost shortest path p between the O-D pair is set to
one, because this is a minimization problem. The value of x, is set to zero if its

associated parameter is positive.

The time complexity of Dijkstra’s algorithm is O(JN]). Since the source of each
path is the same, Dijkstra’s algorithm only needs to be implemented once since its
outcome is the minimum cost shortest path tree; thus, the total time complexity of

(Sub 1.1) is O(INP).

Subproblem 1.2 (related to decision variable y;)

L 12 (W 115 )= miHZ(-di - ,Uil (|N| -1 _ﬂiz + ﬂ?&i b))y, (Sub 1.2)
ieN
Subject to:
y,=00rl VieN. (Sub 1.2.1)

(Sub 1.2) can be further decomposed into |V] independent sub problems, for which
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we must decide the y; value of each node ieN Since (Sub 1.2) is a minimization
problem, and the value of each y; is either zero or one, we can solve the problem by

examining the associated parameters of y; easily and optimally. For each node ie N, if
(-d, —u (|N|—1)—,u[2 +4£4,(b,)) is positive, the value of y; is set to zero so that the

value of this subproblem can be minimized. On the other hand, if the sum of the

parameters is non-negative, y; is set to one.
The time complexity of (Sub 1.2) is O(|N]).

Subproblem 1.3 (related to decision variable a;)

Zgy 1 5(45)=min Z(',Ui3 )a, (Sub 1.3)
ieN
Subject to:
0<a,<a,(b) VieN (Sub 1.3.1)
D a<A. (Sub 1.3.2)
ieN

By its nature, (Sub 1.3) is a fractional knapsack problem, in which the original
maximized positive profit is replaced by minimized negative loss. To solve (Sub 1.3)

optimally, we first sort each node ie N by the parameter of each a; and q; itself in

ascending order with (-4 ) as the primary key. Because of the non-negativity of £,

the parameter of each a@; will be non-positive. Next, we check the array of sorted

nodes from the left, and set the value of each a; to 4,(b,) . We stop once the sum of a;
reaches A, or there is insufficient space to set the next a; to to 4,(b,) . In such a case,
the next a; is set to (4 — the summation of a; that have already been given a value),

and the remainder are set to zero.

The time complexity of (Sub 1.3) is O(|N|2).
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3.1.2.2 The Dual Problem and the Subgradient Method

By solving the above subproblems optimally, the Lagrangean Relaxation
problem (LR 1) can also be solved optimally. According to the weak duality theorem
[24], for any set of the multipliers (g, 1,,44), Zy, (14, 1y, 44;) yields an LB on Zpo.
In the following, we construct a dual problem (D 1) to calculate the tightest LB and

solve it by the subgradient method [22][23].

Dual Problem (D 1)

Zy =max Zy, (44, fy, 1) (D 1)

Subject to: g, 1, 20.

Let a vector m be a subgradient of Z (4, 4,, ). Then, in iteration k£ of the

subgradient procedure, the multiplier vector " = (uf, 145, 145) is updated by

k+1 k Kl iy
u ' o=u" +t'm",

where

mk(ﬂlknu;mu;{):(z z xp5pi—(|N|_l)yi’ z xp—yi’di(bi)yi_af);

wel? peP, PR

and the step size, #*, is determined by

Z*p, 1s the best UB on the primal objective function value found by iteration k.
Note that A 1is a scalar between 0 and 2. It is usually initiated with the value of 2 and
halved if the best objective function value does not improve within a given iteration

count.
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3.1.2.3 Getting Primal Feasible Solutions

During first-stage Lagrangean relaxation, solutions to (LR 1) and their associated
Lagrangean multipliers are considered in order to obtain a primal feasible solution for
(IP 2). The concept of the proposed heuristic, denoted as Heuristic LR 1, is described

below.

Since an attacker’s objective is to construct an attack tree, where the total value
of the information gained is maximized, we develop the heuristic based on the greedy

method. In the first step, we assign each node i a different weight,

i

to zero if a; is equal to zero. This formula reflects the ratio of the attack cost to the

&i (bl) .

profit gained, i.e., P the denominator is squared to stress the influence of the

i

damage caused. Moreover, the formula also considers the hints obtained from the
solutions to (LR 1). If non-zero attack power is applied to a node when solving (LR 1),

the node is more likely to be chosen by the attacker when deriving primal feasible

solutions. |N | u reflects the penalty of inconsistency between x, and y;, where a

node is inclined to be targeted for attack if it has been chosen in (LR 1) but there is no
attack path to it. After assigning the nodes’ weights, we sort all nodes by their weights

in ascending order for further processing by the greedy algorithm.

To apply the greedy method, we start by “activating” the first 50% of the nodes,
starting from the node with the smallest weight. Note that a node can only be selected
for attack if it has been activated. Then, using Prim’s minimum cost spanning tree
algorithm, a greedy-based algorithm, we try to construct a minimum cost

sub-spanning tree with activated nodes from the attacker’s initial position, s. Note that
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the sub-spanning tree may not be complete, since the activated nodes may not form a

connected graph.

Once the sub-spanning tree has been constructed, we examine each activated
node in ascending order to see if it is on the sub-spanning tree, and if the total path
cost from s to the node is affordable for the attacker. If the answer is positive, the
node and all nodes on its path are compromised and added to the attack tree. Then the
defense capability of each attacked node is deducted from the attacker’s total
resources Next, the first half of the inactive nodes are activated, and Prim’s algorithm
is applied again to add new nodes to the previous sub-spanning tree. The procedure
for activating nodes, constructing the sub-spanning tree, and then constructing the
attack paths is repeated until the attacker does not have enough power to compromise
any other node. At this time, the total profit gained by the attacker is a feasible

solution to (IP 2).

The main idea of this heuristic arises from the attacker’s intention that
compromise nodes with smaller weights but moderate path costs for the most
beneficial results. Thus, only attack paths that are composed of activated nodes, i.e.

nodes with smaller weights, will be successfully constructed.

The total time complexity of Prim’s algorithm is O(|N|log|N]). To activate all

nodes in the network, the whole attack procedure needs to be repeated

(flog | N |1+1) times. Thus, the total computational complexity of this heuristic is

O(Nlog’IN)).
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Table 3-1 Heuristic_LR_1 Algorithm

//Initialization
FOR each node i {
6,(b) +|N| i’

@)y rdia )

weight = max(O0,

}

Sort all nodes by their weights in ascending order;

Add source s to attack_tree;

//Construction of the attack tree
WHILE (fotal attack cost < TOTAL ATTACK BUDGET AND there are still
uncompromised nodes) {
Activate the first half of inactive nodes;
Prim(); //construct the minimum cost sub-spanning tree rooted at s
FOR each activated and uncompromised node i {
path_cost of i = summation of defense capability of all nodes on i’s path;
IF (total_attack cost + path cost of i < TOTAL ATTACK BUDGET) {
Compromise node i and all nodes on i’s path, and add them to the
attack_tree;

total _attack cost+= path_cost of node i;

3.1.3 Second-Stage Relaxation

After the first-stage relaxation, we can get both a UB and a legitimate LB on the
objective value of (IP 2). However, in order to narrow the range between the UB and
LB, we need a second stage of relaxation to improve both the UB and LB. In the
second stage, the initial UB and the initial LB are the best UB and the best LB of the

first-stage relaxation respectively.
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3.1.3.1 Lagrangean Relaxation

By applying Lagrangean relaxation method, we transform the primal problem (IP
2) into the following Lagrangean relaxation problem (LR 2), where Constraints (IP
2.1), (IP 2.2), and (IP 2.7) are relaxed. With a vector of Lagrangean multipliers, the
Lagrangean relaxation problem of (IP 2) is transformed as follows.

Optimization problem:

Zp(v1,V3,v3) = min Ddy,+Y VDD x,6,—(N|-Dy]

ieN ieN welW peP,

(LR2)
+O VI x, =y 14V D a, - A]
ieN PEFR ;) ieN
Subject to:

D x, <1 Vwel (LR2.1)
pek,

x,=0orl VpeP ,weW (LR2.2)
y,=00rl VieN (LR2.3)
0<a,<a,(b) VieN (LR2.4)
a(b)y <a VieN. (LR2.5)

The Lagrangean multipliers v, , and v, are the vectors of { v/}, {v’}

respectively, in which v, is non-negative and the variable v, is unrestricted. The
Lagrangean multiplier v, is non-negative. To solve (LR 2), we decompose it into

three independent and easily solvable optimization subproblems, as shown below.
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Subproblem 2.1 (related to decision variable xp)

ZSubZAl(VDVZ):miHZ(Z Z Vx5, + Z vix,) (Sub 2.1)
ieN welW peP, pely ;)
Subject to:
> x, <1 VweW (Sub 2.1.1)
peh,
x,=0orl VpeP,weW. (Sub 2.1.2)

The subproblem is exactly the same as (Sub 1.1) in the first-stage relaxation; thus,

we can adopt the algorithm proposed in Section 3.2.1.1 to solve (Sub 2.1) optimally.
The time complexity of (Sub 2.1) is O(INP).

Subproblem 2.2 (related to decision variable y;, a;)

Zayar (Vv vy)=min Y (d, —vi(N| =D =P )y, +v* Y a, (Sub 2.2)
ieN ieN
Subject to:
y,=00rl VieN (Sub 2.2.1)
0<a <a/(b) VieN (Sub 2.2.2)
a.(b)y, <a, VieN. (Sub 2.2.3)

This problem contains two decision variables, y;and a;, which are bound by
Constraint (Sub 2.2.3). Their restricted relation is illustrated in Table 3-1. From Table
3-1, we can conclude that if only one variable is set to non-zero, the other can be set
to a value other than zero. (Sub 2.2) can be further decomposed into |N] independent

subproblems.
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Table 3-2 Relation between y; and a (b))

yi’s Value a;’s Value
0 [0, a,(b)]
1 a,(b)

As y; and a; are independent of each other, we discuss them separately. First, the
value of each y; can be determined by the sum of its associated parameters, where ie N.
If the sum of the corresponding parameters of y; is positive, it is set to zero; otherwise,

it is allowed to be set to one.

Next, we consider g, Since this is a minimization problem, and v’ is a
non-negative multiplier, it can only be minimized by setting all a@; to zero. However,
due to the relation between a; and y;, a; must be set to a,(b,) if y;’s value is one. As a
result, we need to consider the parameters of both @; and y; when determining the

value of a;.

For each node ie N whose y; is already set to zero, its  a,(b,) is also set to zero to

comply with the limitations. For the other nodes, we examine the sum of the

associated parameters of y;and (v’ xZai ). If the outcome is non-positive, the value
ieN

of y; is set to one determinately, and the value of a; is set to a,(b,) .

The time complexity of (Sub 2.2) is O(|N]).

3.1.3.2 The Dual Problem and the Subgradient Method

By solving above subproblems optimally, the Lagrangean Relaxation problem
(LR 2) can also be solved optimally. According to the weak duality theorem [24], for

any set of the multipliers (v,,v,,v;), Z,,(v,,v,,v;) yields an LB on Zp,. In the

following, we construct a dual problem (D 2) to calculate the tightest LB and solve it

by the subgradient method [22][23].
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Dual Problem (D 2),
Z,=max Z,(v,,v,,V;) (D 2)

Subject to: v,,v,20.

Let a vector m be a subgradient of Z,(v,,v,,v;). Then, in iteration k of the

subgradient procedure, the multiplier vector v* = (v{,vy,v}) is updated by

k+1 k k__k
VT =y m"

where

mk(vfa‘/;{’vz.k):(z zxp5pi_(|N|_l)yn z xp_yi’zai_A);

weW peP, PR, ieN
. k - .
and the step size, t', is determined by
7 s =)
P2 D

Zw:—oo)
k
]

=1

Z*p, 1s the best UB on the primal objective function value found by iteration k.
Note that A4 1is a scalar between 0 and 2. Usually, it is initiated with the value of 2
and halved if the best objective function value does not improve within a given

iteration count.

3.1.3.3 Getting Primal Feasible Solutions

To improve the solution quality of (IP 2), a heuristic is designed and
implemented during the process of solving (LR 2), as in first-stage relaxation. In this
heuristic, solutions to (LR 2) are adjusted to a feasible solution to (IP 2). The basic

concept of the heuristic, denoted as Heuristic LR 2, is described below.

In the problem assumption of the AS model, if a node is chosen to be

compromised, the attacker must construct an attack path originating from the source s
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and ending at the targeted node. The union of all attack paths forms an attack tree.
Based on this idea, we can utilize the solutions of (SUB 2.1), which is related to
variable x,. If the value of x, is one, an attack path is constructed, and all nodes on the
path are targeted. By taking the union of constructed attack paths, we can form an
attack tree. If the total attack budget of the attack tree does not exceed the attacker’s
total budget, the total profit of the tree is a feasible solution to (IP 2), and the tree can
be further expanded. Otherwise, we apply a recovery mechanism that recovers some

of the compromised nodes. As shown in Section 4.1, the weight of each node is

a,(b) +|N|u}

determined by max(0, >
d) +d/a,

).

In the first case, i.e., the total attack cost is less than the attacker’s budget, the
attack tree can be constructed a second time by using the remainder of the total attack
budget. We start by building a spanning tree with Prim’s algorithm, while retaining
the original attack tree. Next, all the nodes that were not on the original attack tree are
examined in ascending order according their weights. These nodes and all untaken
nodes on their paths are then compromised if the attacker has sufficient budget. The

total value gained by the attacker is a feasible solution to (IP 2).

In the second case, i.e., the total attack cost exceeds the attack budget, we
recover the leaf node with the largest weight among all leaf nodes on the attack tree,
and retrieve the attack budget. The recovery continues until the total attack cost is less
than the total attack budget. Then, the total profit earned from the new attack tree is a

feasible solution to (IP 2).

The time complexity of the first case is O(|V]log|N]), and that of the second case

is O(IN]%); therefore, the total computational complexity of this heuristic is O(N]).
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Table 3-3 Heuristic_LR_2 Algorithm

//Initialization
FOR each node i {
6,(b) +|N| i’

weight = max(0, ) +dla

);

//Take the union of attack paths
FOR each attack path p{ //i.e., paths whose value of x,, is 1
Each node i on p is added to the attack_tree;

total_attack cost += defense_power of node i

//Reconstruction of the attack tree
IF (total _attack cost < TOTAL ATTACK BUDGET) {
Prim(); //construct the minimum cost spanning tree on the basis of the attack tree
WHILE (total attack cost < TOTAL ATTACK BUDGET AND there are still
uncompromised nodes) {
Find node i, which is uncompromised AND whose weight is the smallest
among all uncompromised nodes;
path_cost of i = summation of defense capability of all nodes on i’s path;
IF (total_attack cost + path cost of i < TOTAL ATTACK BUDGET) {
Compromise node i and all nodes on i’s path, and add them to the
attack_tree;

total_attack cost += path_cost of node i;

//Recovery of compromised nodes
ELSE {
WHILE (total_attack cost> TOTAL ATTACK BUDGET) {
Find node i, which is a leaf node of the attack tree AND whose weight is the
largest among all /leaf” nodes;
Recover node i and remove it from the attack tree;

total _attack cost — defense _power of node i,

46




3.1.4 Summary of the Solution Approach for the AS Model

3.1.4.1 Lagrangean Relaxation-based Algorithm

We propose a Lagrangean relaxation-based algorithm to solve the AS model and
denote it as LR. This algorithm is based on the mathematical formulation of the AS
model, i.e., (IP 2), as shown in Section 2.3. The relaxed problems are then solved
optimally, as described in Sections 3.1.2 and 3.1.3, to get a LB for the primal problem.
Next two heuristics are adopted to derive feasible solutions to the primal problem in
Section 3.1.4, and a subgradient method is used to update the Lagrangean multipliers.
As shown in Figure 3-2, the LR procedure is repeated iteratively until the stop
condition is fulfilled. The time complexity of each iteration is O(|N|log’|N]). Table 3-4

describes the complete LR algorithm for solving (IP 2).

Table 3:4 LR Algorithm

//Objective: maximize the total value of the information collected, i.e., min (—Zp»)
//Initialization of multipliers, as discussed in Section 3.1.5.2
Initialize the Lagrangean multiplier vectors (z,u,,4;) and (v,,v,) to be zero

vectors;
Initialize the Lagrangean multiplier v, tobe d, /a, (b,);

UB=0; LB=-TOTAL DAMAGE OF NETWORK;//LB = —z d,
ieN

improvement counter = ()

A=12; //step size coefficient

Init Budget Allocation Strategy();

//Main LR procedure
FOR iteration =1 TO ITERATION COUNTER LIMIT {
IF iteration < (ITERATION_COUNTER_LIMIT / 2) {
Solve (Sub 1.1);
Solve (Sub 1.2);
Solve (Sub 1.3);
Z*po=—Heuristic LR 1(); //due to the transformation of objective function
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}
ELSE {

Solve (Sub 2.1);
Solve (Sub 2.2);

Z*po =—Heuristic LR 2();//due to the transformation of objective function

}

Calculate Zp;

//Update bounds
IF (Zp>LB) {
LB = Zp;
improvement_counter = 0;
}
ELSE {
improvement _counter ++;
}
IF (Z*1p, <UB) {
UB = Z*p2;

//Update step size and Lagrangean multipliers

IF improvement counter = IMPROVEMENT COUNTER LIMIT {
improvement counter = 0);
A=112;

}

Update Step Size();

Update Lagrangean Multiplier();

3.1.4.2 Initial Multiplier Determination

In order to derive the tightest LB on Zp ,, we must adjust the Lagrangean

multipliers in dual problems (D 1) and (D 2) to maximize the objective function value
of corresponding Lagrangean relaxation problems (LR 1) and (LR 2). Because the
number of iterations in the LR procedure is limited, the initial value of the

Lagrangean multipliers must be determined accurately, or the final LB will not
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converge at a desirable point in time.

Usually the initial values of the Lagrangean multipliers are set to zero [22]; thus,

the initial values of 4, ,, and g, in the first-stage relaxation are all zero. In the
second-stage relaxation, different constraints are relaxed; however, multipliers
v, and v, are the same as 4, and u, due to the equality of their corresponding
relaxed constraints.  Therefore, the value of g andgy, at iteration

(UITERATION COUNTER LIMIT) / 2 can be considered as the initial values of

v, and v,,asif g and g, are still being used in the second-stage relaxation.

Specifically, the initial value of v, issetto d,/a,(b,), where m is the critical
item and m e N . When solving a fractional knapsack problem by the greedy method,
only part of the critical item m is included in the knapsack. Since the AS model can be
viewed as a 0-1 knapsack problem with continuity constraints, we can refer to
Martello and Toth’s research on 0-1 knapsack problems [26]. Following their research,
the best LB for the objective function value of the AS model without continuity
constraints can be obtained byv, =d, /a, (b, ). This approach is used in the design of

the computational experiments, and the quality of LB is effectively improved.

3.2 Solution Approach for the DRAS Model

The outcome of the AS model indicates the result of the best attack strategy
under a certain defense budget allocation strategy. As noted earlier, the main objective
of the DRAS model is to minimize the total damage caused by an attacker when
he/she tries to compromise a network. Thus, the optimal solution of the AS model can
be used as the input of the DRAS model, in which we adjust the budget allocation
strategy according to the current attack strategy. After the adjustment, we solve the AS

model again and obtain another attack strategy corresponding to the new defense
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budget allocation strategy. The interaction between attack strategies and defense

strategies continues until a balance is reached.

The adjustment of the defense budget allocation strategy is based on the concept
of the subgradient method, which adjusts each node’s allotted budget according to the
current step size. First, we examine the state of each node after the attack. If the node
is undamaged, it implies that budget allocated to this node is too much or the reward
of attacking this node is unprofitable. Either way, it suggests that the node has too
much defense budget. Therefore, we deduct a small proportion of the budget from the
uncompromised nodes, and allocate it to compromised nodes. The percentage
deducted is equal to the step size coefficient, and is halved if the optimal solution of

the DRAS model does not improve within a certain number of iterations.

Note that the exact amount of resources deducted from each node is different.
Generally, the more times a node is used as a hop-site, the more important it is, since
every time it is exploited, another node is compromised and extra damage is caused
by the attacker. Thus, only small amount of budget is deducted from nodes that have
been exploited frequently, even if they are not compromised under a certain defense
resource allocation strategy. Furthermore, we propose an impact factor to normalize

the number of times a node has been used as a hop-site. The factor is calculated

by —, where w; is the average frequency that node i has been used as a hop-site,

max

and Wy 1s the potential maximal w;, which is equal to the average number of nodes
compromised during each attack. The higher the impact factor of a node, the lower the

amount of resources that will be deducted from it, even if it is not attacked.

The complete heuristic for solving the DRAS model, denoted as

Heuristic DRAS, and the core algorithm of the adjustment procedure, denoted
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Adjustment Procedure, are presented below. The computational complexity of the

Adjustment Procedure is O(|N)).

Table 3-5 Heuristic DRAS Algorithm

//Objective: minimize the maximized total damage, i.e., min max Zp |

//Initialization

Init Budget Allocation Strategy();

UB = —LR(); //the return value of LR() is negative due to the objective function
transformation in the AS model

improvement _counter = ()

improvement _stage counter = 0;

0= 0.5; //initial step size coefficient

//Main Heuristic DRAS procedure

FOR iteration =1 TO ITERATION _COUNTER LIMIT {
Adjustment Procedure(0); //as shown in Table 3-6
Z*p1 = —LR();

//Update UB
IF (Z*p, <UB) {
UB =Z*p1;
improvement_counter = 0;
}
ELSE {

improvement _counter ++;

//Update step size

IF improvement counter = IMPROVEMENT COUNTER LIMIT {
improvement_counter = 0;
improvement _stage counter ++;
0=20/2;
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Table 3-6 Adjustment_Procedure Algorithm

//Initialization
total defense cost = 0;
FOR each node i {
IF (node i is uncompromised) {

b, =b, (I—H(I—i)); /Ib; 1s the defense budget of node i, w; is the average
w

max

number of times node i is used as a hop-site
}
total defense cost += b;;

}
collection = TOTAL DEFENSE BUDGET — total defense cost

//Reallocation of defense budget
FOR each node i {
IF (node i is compromised) {
b; += collection * Budget Reallocation Strategy(); //reallocate spare budget to

compromised node according to reallocation strategy
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Chapter 4 Computational Experiments

4.1 Computational Experiments with the AS Model

To demonstrate that our proposed heuristics are effective we implement the

following two simple algorithms for comparison purposes.

4.1.1 Simple Algorithm 1

The concept of simple algorithm 1 is derived from the heuristic of first-stage
Lagrangean relaxation shown in Section 3.1.4.1. Hence, simple algorithm 1 also
adopts the concept of the greedy method whereby the node with smallest weight is

activated first and is a priority attack target if its path cost is acceptable. However,

a.(b,)
. 2 ’

unlike the proposed heuristic, we use as the weight of each node i in the

network. The pseudo code of simple algorithm 1, denoted as SA;, is presented below.

Table 4-1 SA; Algorithm

//Initialization

FOR each node i {
&i (bl) .
@)’

1

weight =

}

Sort all nodes by their weight in ascending order;

Add source s to the attack tree;

//Construction of attack tree
WHILE (fotal attack cost < TOTAL ATTACK BUDGET AND there are still

uncompromised nodes) {
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Activate the first half of inactivated nodes;
Prim(); //construct the minimum cost spanning tree rooted at s
FOR each activated and uncompromised node i {
IF (total_attack cost + path_cost of i < TOTAL_ATTACK_BUDGET) {
Compromise node i and all nodes on i’s path, and add them to the
attack_tree;

total_attack cost += path_cost of node i,

4.1.2 Simple Algorithm 2

The concept of simple algorithm 2 is derived from the idea that nodes with
smaller weights have a higher priority to be attacked. Here, we adopt Prim’s algorithm
to predetermine the path from s to each node. Then, the uncompromised node with the

smallest weight is targeted, and its attack path is constructed if the attacker has

a.(b)
‘ 2

sufficient attack power. As in simple algorithm 1, we use as the weight of

each node i in the network. The pseudo code of simple algorithm 2, denoted by SA,,

is presented below.

Table 4-2 SA, Algorithm

//Initialization

FOR each node i {
&i (bl) .
)’

weight =

}

Add source s to the attack tree;

Prim(); //construct the minimum cost spanning tree rooted at s
WHILE (total attack cost < TOTAL ATTACK BUDGET AND there are still
uncompromised nodes) {
Find node i, which is uncompromised AND whose weight is the smallest among
all uncompromised nodes;
IF (total_attack cost+ path cost of i < TOTAL ATTACK BUDGET) {
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Compromise node i and all nodes on i’s path, and add them to the attack tree;

total_attack cost += path_cost of node i,

4.1.3 Simple Algorithm 3

We assume that the attacker has complete information about the targeted network
in the problem description, and design several heuristics based on this concept.
However, it is also important to compare the difference between the performance of
an attacker with complete information and an attacker with incomplete information.
Thus, in this simple algorithm, we focus on the scenario where the attacker is only
aware of the existence of uncompromised nodes through their compromised

neighbors.

a,(b,)

First, the weight of each node is set to e

as in the two other simple

i

algorithms. After assigning the node weights, we construct an attack tree from the
attacker’s initial position, s, by the greedy method. Initially, we create a victim
candidate set consisting of nodes directly connected to s, and include the node with
minimal weight in the set of the attack tree. The defense capability of the node should
be deducted from attacker’s total energy budget. Next, we probe all the neighbors of
the node just attacked and add them to the set if they have not been included in the
attack tree already. This probing and attacking procedure is repeated until the attacker
does not have enough power to compromise another node. The total computational
complexity of this heuristic is O(|N]?); however, it can be reduced to O(|N|log|N)) if a
heap is used to maintain the victim candidate set. The core of simple algorithm 3,

denoted by SA;, is described in Table 4-3.

55




Table 4-3 SA; Algorithm

//Initialization

FOR each node i {
weight = &) (biz) ;
)

}

Add source s to the attack tree;

//Construction of Attack Tree
WHILE (fotal attack cost < TOTAL ATTACK BUDGET AND there are still
uncompromised nodes) {

Find node i, whose weight is the smallest among all other nodes’ weight in
victim_candidate_set AND  whose defense capability 1is less than
(TOTAL ATTACK BUDGET — total_attack cost);

Compromise node i and add it to the attack_tree;

total_attack cost += defense_power of node i;

Update victim_candidate_set;

4.1.4 Experiment Environment

The proposed algorithms for the AS model are coded in Visual C++ and run on a
PC with an INTEL™ Pentium 4.3GHz CPU. The Iteration Counter Limit and
Improve Counter Limit are set to 2000 and 80 respectively; the first-stage relaxation
process and the relevant primal algorithm are implemented in iterations 1~1000, and
the second-stage relaxation process and the relevant primal algorithm are
implemented in iterations 1001~2000. The step size scalar, A, is initialized as 2 and is
halved if the objective function value, Zp, does not improve after iterations up to the

Improve Counter Limit.

We adopt three kinds of network topology as attack targets. The first type is a
grid network, which is a square area composed of kxk nodes; the second is a random

network, in which each node is connected to several nodes arbitrarily, and the average
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degree of each node is set to four, like the grid topologies; and the third is a scale-free
network, in which each newly added node connects to two different nodes in the

network.

To observe the effect of different information value distribution patterns, we
design three kinds of damage distribution mechanisms. The first is random
distribution, in which the value of information held by a node is randomly decided;
the second is degree-based distribution, in which the higher the degree of a node, the
greater the loss that is incurred by an attack; the third is uniform distribution, in which

each failed node causes the same amount of damage.

We also design different budget allocation strategies to determine which budget
allocation strategy is more effective under different circumstances. The first strategy
is uniform budget allocation, whereby each node is allotted the same defense budget;
the second is degree-based budget allocation, which allocates the budget according to
the percentage of a node’s degree over the total degree of the network; the third is
damage-based allocation, whereby each node’s budget is allocated according to the

damage incurred if it is compromised.

As to the function of defense capability, g,(b,), for simplicity, we define it as a
linear function. In order to ensure cost-effectiveness, the resulting defense capability
must be more than the defense budget invested, or the investment is will not profitable.

Here, the cost-benefit ratio is 1:2.

The parameters and scenarios used in our experiments are detailed below.
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Table 4-4 Experiment Parameter Settings for the AS Model

Parameters of LR

Parameters Value
Iteration Counter Limit 2000
Improve Counter Limit 80
Initial UB 0
Initial Multiplier Value
s 113 =0,

Initial Scalar of Step Size 4
Test Platform

1001 _ 1000 . 1001 _ 1000
Vio =Y, =4,

V31001 = dm /&m (bm )9

where m is the critical item and m e N

2

CPU: INTEL™ Pentium 4.3GHz
RAM: 1 GB

OS: Microsoft Windows 2000

Parameters of the AS Model

Parameters

Value

Testing Topology

Number of Nodes |V
Total Defense Budget B
Total Attack Budget 4

Damage Distribution

Budget Allocation Strategy

Defense Capability a,(b,)

Grid networks, Random networks, Scale-free
networks

49, 100, 400, 900

Equal to Number of Nodes

Equal to Total Defense Budget

Random distribution (D;), Degree-based
distribution (D), Uniform distribution (Dj3)
Uniform allocation (B;), Degree-based
allocation (B,), Damage-based allocation (B3)
a(b) =2b; + ¢, b;is the budget allocated
tonodei, Vie N

4.1.5 Experiment Results

To compare attack behavior under different scenarios, we use the network

susceptibility metric to evaluate the degree to which the attacker’s objective is

achieved Also, for clarity, solutions to the AS model and simple algorithms are
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transformed to the susceptibility of the targeted network after attack; the greater the
susceptibility, the more successful the attack. The LR value means the susceptibility
calculated by the optimal feasible solution derived by the Lagrangean relaxation
process; The LB value is a lower bound on LR obtained from (LR 1) and (LR 2); and
SA;, SA,, and SA; are the susceptibilities obtained from simple algorithms 1, 2, and 3

respectively. To evaluate the quality of LR, we calculate the gap between LR and LB

by %x 100% . In addition, the improvement ratio of LR to SA;, SA,, and SA;
— - LR -SA
is calculated by Mx 100%, %x 100% , and $x 100% .

1 2 3

59



Table 4-5 Experiment Results of Small Networks (|N| = 49)

Improve- Improve- Improve-
Network Damage Budget LR Gap ment ment ment
Topology Distribution Allocation| (%) (%) Ratioto Ratioto Ratioto
SA1(%)  SA2(%) SA3(%)
Bl 69.41 7.80 2.95 2.51 4.32
D1 B2 5545 3.56 0.00 3.16 0.00
B3 4792 3.32 0.00 0.00 0.00
Grid Bl 7031  6.08 5.54 8.79 5.61
ri

D2 B2 49.27 0.61 0.75 1.50 0.75

Networks
B3 56.25 0.43 1.54 1.54 0.00
Bl 49.65 0.12 0.10 0.50 0.22
D3 B2 49.27 0.61 0.75 1.50 0.75
B3 4792 332 0.00 0.00 0.00
Bl W22 ViadnQ ] 1.52 4.84 1.18
D1 B2 622,34 0.16 3.05 0.00
B3 4792 13.32 0.00 0.00 0.00
Bl 72.86  8.77 4.90 5.58 4.35

Random
D2 B2 4928 0.82 0.00 0.00 0.00

Networks
B3 60.83 10.00 431 9.80 7.41
Bl 49.68 0.08 0.16 0.24 0.07
D3 B2 49.28  0.82 0.00 0.00 0.00
B3 4792 332 0.00 0.00 0.00
Bl 69.54 471 2.06 4.30 2.18
D1 B2 71.18 1.72 0.00 5.73 0.00
B3 4792 332 0.00 0.00 0.00
Bl 69.47 18.68 10.53 17.24 5.23

Scale-free
D2 B2 49.63  0.39 0.65 0.43 0.22

Networks
B3 62.08 20.96 6.49 26.31 3.55
B1 49.66 0.07 0.07 0.38 0.15
D3 B2 49.63  0.39 0.65 0.43 0.22
B3 4792 3.32 0.00 0.00 0.00
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Table 4-5 Experiment Results of Medium-sized Networks (|N| = 100)

Improve- Improve- Improve-
Network Damage Budget LR Gap ment ment ment
Topology Distribution Allocation| (%) (%) Ratioto Ratioto Ratioto
SA1(%) SA2(%) SA;(%)
Bl 7136 497 8.98 3.01 5.45
D1 B2 5470 0.71 0.00 0.21 0.00
B3 4949  0.52 0.00 0.00 0.00
Grid Bl 71.23 5.29 8.99 3.61 6.80
ri
D2 B2 49.72 0.12 0.23 0.23 0.23
Networks
B3 54.55 0.39 0.00 0.00 0.00
Bl 49.82 0.06 0.06 0.05 0.03
D3 B2 4972  0.12 0.23 0.23 0.23
B3 4949 0.52 0.00 0.00 0.00
Bl 432 2325 1.76 4.28 2.57
D1 B2 67.80  0.38 0.00 3.03 0.07
B3 49.49 - 0.52 0.00 0.00 0.00
Bl 74.56  9.58 4.84 6.45 7.77
Random
D2 B2 49.70 0.28 0.00 0.00 0.00
Networks
B3 61.21 9.99 343 8.24 4.16
Bl 49.84 0.03 0.04 0.10 0.03
D3 B2 49.70  0.28 0.00 0.00 0.00
B3 4949 0.52 0.00 0.00 0.00
Bl 71.18 2.75 0.53 7.10 2.70
D1 B2 74.14  0.21 0.00 6.56 0.00
B3 4949 0.52 0.00 0.00 0.00
Bl 72.07 16.01 9.44 19.46 5.08
Scale-free
D2 B2 49.77  0.25 0.10 0.21 0.10
Networks
B3 63.84 19.25 6.03 23.12 0.65
Bl 49.84 0.03 0.03 0.07 0.05
D3 B2 49.77  0.25 0.10 0.21 0.10
B3 4949  0.52 0.00 0.00 0.00
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Table 4-6 Experiment Results of Large Networks (JN| = 400)

Improve- Improve- Improve-
Network Damage Budget LR Gap ment ment ment
Topology Distribution Allocation| (%) (%) Ratioto Ratioto Ratioto
SA;1 (%) SA2(%) SA3;(%)
Bl 71.72 4.90 8.45 1.71 5.81
D1 B2 5247 0.15 0.00 0.00 0.00
B3 4987 0.13 0.00 0.00 0.00
) Bl 7145 5.74 8.86 0.77 5.79
Grid

D2 B2 4993 0.03 0.11 0.11 0.11

Networks
B3 52.38 0.08 0.00 0.00 0.00
Bl 4996 0.01 0.01 0.01 0.01
D3 B2 4993 0.03 0.11 0.11 0.11
B3 4987 0.13 0.00 0.00 0.00
Bl 72.30 3.08 1.57 4.10 1.52
D1 B2 68.22  0.09 0.00 341 0.02
B3 49,87+ 0.13 0.00 0.00 0.00
Bl 71.65 10.23 8.26 4.30 2.59

Random
D2 B2 4991 0.11 0.00 0.00 0.00

Networks
B3 61.00 10.28 2.20 5.56 3.95
Bl 4996 0.01 0.00 0.01 0.00
D3 B2 4991 0.11 0.00 0.00 0.00
B3 4987 0.13 0.00 0.00 0.00
Bl 72.61 2.53 1.07 6.00 2.22
D1 B2 74.59  0.05 0.00 8.12 0.00
B3 4987 0.14 0.00 0.00 0.00
Bl 71.61 21.34 9.65 16.99 0.22

Scale-free
D2 B2 4995  0.05 0.03 0.05 0.05

Networks
B3 64.11 22.70 2.17 34.34 0.08
Bl 4996 0.01 0.00 0.01 0.00
D3 B2 4995  0.05 0.03 0.05 0.05
B3 4987 0.14 0.00 0.00 0.00
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Table 4-7 Experiment Results of Extra-large Networks (|[N| = 900)

Improve- Improve- Improve-
Network Damage Budget LR Gap ment ment ment
Topology Distribution Allocation| (%) (%) Ratioto Ratioto Ratioto
SA;1 (%) SA2(%) SA3;(%)
Bl 71.94 3.76 8.61 0.91 4.07
D1 B2 51.66 0.07 0.00 0.00 0.00
B3 4994 0.09 0.00 0.00 0.00
) Bl 71.81 4.23 8.98 1.11 3.77
Grid
D2 B2 4997 0.01 0.05 0.05 0.05
Networks
B3 51.61 0.04 0.00 0.00 0.00
Bl 4998 0.01 0.01 0.00 0.00
D3 B2 4997 0.01 0.05 0.05 0.05
B3 4994 0.09 0.00 0.00 0.00
Bl 72.88 3.08 0.18 3.84 2.09
D1 B2 69.12  0.05 0.02 3.25 0.01
B3 4994 - 0.06 0.00 0.00 0.00
Bl 72.18 10.64 4.86 4.29 3.13
Random
D2 B2 4997 0.03 0.00 0.00 0.00
Networks
B3 60.85 11.88 2.02 4.63 3.21
Bl 4998 0.01 0.00 0.00 0.00
D3 B2 4997 0.03 0.00 0.00 0.00
B3 4994 0.06 0.00 0.00 0.00
Bl 72.64 2.79 0.98 541 2.27
D1 B2 7471  0.02 0.00 8.02 0.00
B3 4994 0.31 0.00 0.00 0.00
Bl 72.26 20.25 1.62 24 .82 1.27
Scale-free
D2 B2 49.98  0.02 0.00 0.03 0.02
Networks
B3 64.29 23.96 3.89 36.48 0.24
Bl 4998 0.01 0.00 0.00 0.00
D3 B2 4998 0.02 0.00 0.03 0.02
B3 4994 0.31 0.00 0.00 0.00
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Figure 4-1 Susceptibility of Small Networks under Different Scenarios (|N| = 49)
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Figure 4-2 Susceptibility of Medium-sized Networks under Different Scenarios ([N| = 100)
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Figure 4-3 Susceptibility of Large Networks under Different Scenarios (JN| = 400)
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Figure 4-4 Susceptibility of Extra-large Networks under Different Scenarios (JN| = 900)

50.00
52.00
54.00
56.00
58.00
60.00
62.00
64.00

Susceptibility (%)

Number of Nodes
Grid Networks Random Networks | Scale-free Networks

49 ‘ 100 ‘ 400‘ 900 | 49 ‘ 100 ‘ 400 ‘ 900 | 49 ‘ 100 ‘ 400 ‘ 900

—o—SAl

% — e D\D—D/” —8—SA2
| s N, I

B 0\0\0__0 —o—ILB

Figure 4-5 Susceptibility of Different Network Sizes and Topologies

4.1.6 Discussion of Results

Figures 4-1 to 4-4 show the susceptibility of the targeted network under different

topology types, numbers of nodes, and damage distribution patterns. From these

figures, we observe:

e Networks with budget allocation strategy B3 are the most robust and

therefore the most difficult for an attacker to compromise. This finding is

consistent with the common idea that defense resources should be allocated

according to the importance of each node. According to this result, the
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budget allocation strategy B2 under damage distribution D2 and B3 under

D2 can achieve the same effect as B3.

For grid networks, the network susceptibility of the B1 and B2 strategies is
close, and the gap between them decreases with the growth of the networks.
This is due to one of the main features of grid networks — the degree of each
node is four, except for nodes on edges. The larger the network size, the
more the average degree of a grid network will approach four. Thus, the
difference between B1 and B2 disappears as the network grows and most

nodes in the network have the same degree.

Under the scenarios of the D1 allocation pattern, the B1 and B2 strategies
make the targeted network highly susceptible to attack. Because the
information value of each node is decided randomly, the two divergent

strategies can not protect important nodes effectively.

Networks under the D3 scenario have the lowest susceptibility among the
three damage distribution patterns. Although wrong defense budget
allocation strategies still cause high network susceptibility, generally
speaking, the network susceptibility of the D3 pattern is lower than that of
the D1 and D2 patterns. This result indicates that a network is more robust
if “all nodes are created equal,” because the attacker can not target nodes
selectively, and the number of nodes that are compromised directly decides

the maximum total profit.

The degree distribution of a network’s topology affects the network’s
susceptibility. Take the B1 strategy under the D2 distribution pattern for

example. In this scenario, the susceptibility of grid networks is the lowest,
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and that of scale-free networks is the highest among the three network
topologies. Due to the uniform degree of each node in a grid network, the
results of Bl and B2 are similar; however the node degrees in random
networks are irregular, so the strategy of treating each node equally fails to
reflect the discrepancy between the nodes. The situation is more serious in
scale-free networks because the power-law degree distribution induces
tremendous divergence between the average degree and the actual degree of

each node.

Figure 4-5 compares the solution quality of the proposed Lagrangean
relaxation-based algorithm with simple algorithms 1, 2, and 3, and demonstrates the
gap between LRs and LBs. The value of each point on the figure is the average
susceptibility of different damage distribution patterns and different defense budget
allocation strategies under same network size and topology. From the figure, we

observe several trends.

e  Our proposed heuristic outperforms the three simple algorithms in all cases.
From Figure 4-5, we observe that, while the three simple algorithms
perform well in some network topologies, our attack strategy always causes
the highest network susceptibility in all three topologies. This indicates that
our proposed Lagrangean relaxation-based algorithm is not only capable of
solving the AS model, but it is also applicable to various types of network
topology. The gaps between LRs and LBs are small, which shows that our

proposed approach can derive a near-optimal solution to the AS model.

e Simple algorithm 2 performs very well in grid networks, but fails in
scale-free networks. The main property of the algorithm is that the attacker

decides the target first, and then finds an attack path to reach that node. This
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strategy is useful when there are multiple paths between the source and the
target because the attacker can make a detour when encountering nodes with
high defense capability. However, in the case of scale-free networks, the
connectivity between nodes is maintained by a few hubs, that is, very few
paths exist between the source and the target. Therefore, the attacker can not
avoid the nodes with the highest cost when constructing an attack path to

the target node, so the attack budget is consumed rapidly.

Simple algorithm 3 performs reasonably well in all types of network,
especially scale-free networks. Theoretically, the solution quality of this
algorithm should be worse than that of the other algorithms because of its
local-information-awareness property. However, the results show that there
is only a small gap between attack strategies with complete information and
those with local information, One possible reason is that when an attacker
has too much information, he may not be able to utilize fully to develop the
perfect attack strategy. On the other hand, attack strategies based on local
information can generate almost the same susceptibility as that caused by
strategies with complete information in scale-free networks. This is because
the “six degrees of separation” property holds in scale-free networks, and an
attacker can collect complete information about the targeted network once

he has compromised several hub nodes.

Generally, scale-free networks are more susceptible than the other two
topologies; grid networks are the least susceptible. This phenomenon results
from the effects of the B1 and B2 strategies, since the susceptibility of all
networks is the same under the B3 strategy. Moreover, it is also consistent

with the findings of previous research that scale-free networks are more
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vulnerable to malicious attacks. As most nodes in scale-free networks are
connected to just a few hubs, the number of directly reachable target nodes
increases enormously once the hubs have been taken. In contrast, the
regular structure of a grid network makes it difficult for an attacker to reach
valuable nodes arbitrarily, so grid networks are less susceptible to

information theft.

4.2 Computational Experiments with the DRAS Model

4.2.1 Experiment Environment

The proposed algorithms for the DRAS model are coded in Visual C++ and run
on a PC with an INTEL™ Pentium 4.3GHz CPU. The Iteration Counter Limit and
Improve Counter Limit are set to 500 and 20 respectively. The step size scalar, 6, is
initialized as 0.5 and is halved if the objective function value, Zjp |, does not improve

after the iterations up to the Improve Counter Limit.

In the DRAS model, the attacker tries to steal as much information as possible
under a certain defense budget allocation strategy. Thus, an initial budget allocation
strategy must be provided before the first attack. From the results of the AS model, we
conclude that the B3 allocation strategy is the best of the three given strategies.

Therefore, the B3 strategy is adopted as the initial defense resource allocation strategy

for the DRAS model.

After each attack, the defender adjusts each node’s allotted budget according to
the budget reallocation strategies. Here, three reallocation strategies are chosen to
adjust each node’s budget. They are the same as the defense budget allocation

strategies in the AS model.
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Table 4-8 Experiment Parameter Settings for the DRAS Model

Parameters of Adjusment_Procedure

Parameters Value

Iteration Counter Limit 500

Improve Counter Limit 20

Initial Scalar of Step Size 6 0.5

Test Platform CPU: INTEL™ Pentium 4.3GHz
RAM: 1 GB

OS: Microsoft Windows 2000

Parameters of the DRAS Model

Parameters

Value

Testing Topology

Number of Nodes |V
Total Defense Budget B
Total Attack Budget 4

Damage Distribution

Initial Budget Allocation Strategy
Budget Reallocation Strategy

Defense Capability a,(b,)

Grid networks, Random networks, Scale-free
networks

25,49, 100

Equal to Number of Nodes

Equal to Total Defense Budget

Random | distribution (D;), Degree-based
distribution (D3), Uniform distribution (D)
Damage-based allocation (B3)

Uniform ' allocation (B;), Degree-based
allocation (B;), Damage-based allocation (B5)
a(b) = 2b; + ¢, b;is the budget allocated
tonodei, Vie N

4.2.2 Experiment Results

In the experiments, we use the survivability of the targeted network, which is

determined by the equilibrium of the offense-defense scenario, to evaluate the

performance of different defense resource reallocation strategies, Solutions to the

DRAS model are transformed to the equilibrium survivability of the targeted network;

the higher the survivability, the better the reallocation strategy. The Init. Surv. value

represents the network survivability under the initial defense budget allocation

strategy, and the value of Opt. Surv. is the equilibrium of the network’s survivability
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resulting from the budget reallocation strategy. The improvement ratio of Opt. Surv. to

Opt. Surv.-Init. Surv.

Init. Surv. is calculated by x100% .

Init. Surv

Table 4-9 Experiment Results of Extra-small Networks (|N| = 25)

Network Damage Init. Surv. | Budget Opt. Surv. Imp. Ratio of
Topology Distribution (%) Allocation (%) Opt. Surv. (%)
Bl 51.15 0.80
D1 50.75 B2 52.49 2.16
B3 54.17 0.00
Grid Bl 50.95 0.40
D2 51.44 B2 52.76 2.70
Networks
B3 54.17 0.00
Bl 51.70 1.93
D3 54.17 B2 52.76 2.70
B3 54.17 0.00
Bl 51.42 1.45
D1 50.71 B2 52.16 1.69
B3 54.17 0.00
Bl 51.07 0.74
Random
D2 51.33 B2 52.56 2.51
Networks
B3 54.17 0.00
Bl 52.17 2.96
D3 54.17 B2 52.56 2.51
B3 54.17 0.00
Bl 51.79 2.16
D1 50.72 B2 53.25 4.58
B3 54.17 0.00
Bl 50.96 0.47
Scale-free
D2 51.00 B2 55.03 8.22
Networks
B3 54.17 0.00
Bl 51.61 1.80
D3 S4.17 B2 55.03 8.22
B3 54.17 0.00
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Table 4-10 Experiment Results of Small Networks (|N| = 49)

Network Damage Init. Surv. | Budget Opt. Surv. Imp. Ratio of
Topology Distribution (%) Allocation (%) Opt. Surv. (%)
Bl 50.49 0.27
D1 50.36 B2 51.03 0.49
B3 52.08 0.00
Grid Bl 50.50 0.28
D2 50.79 B2 51.03 0.49
Networks
B3 52.08 0.00
Bl 50.69 0.67
D3 52.08 B2 51.03 0.49
B3 52.08 0.00
Bl 50.66 0.67
D1 50.33 B2 51.63 1.85
B3 52.08 0.00
Random Bl 50.48 0.31
D2 50.72 B2 51.50 1.58
Networks
B3 52.08 0.00
Bl 51.37 2.10
D3 52.08 B2 51.50 1.58
B3 52.08 0.00
Bl 50.51 0.35
D1 50.34 B2 51.41 2.04
B3 52.08 0.00
Bl 50.94 1.20
Scale-free
D2 50.36 B2 52.25 3.81
Networks
B3 52.08 0.00
Bl 50.72 0.77
D3 52.08 B2 52.25 3.81
B3 52.08 0.00
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Table 4-11 Experiment Results of Medium-sized Networks (JN| = 100)

Network Damage Init. Surv. | Budget Opt. Surv. Imp. Ratio of
Topology Distribution (%) Allocation (%) Opt. Surv. (%)
Bl 50.18 0.01
D1 50.17 B2 50.42 0.11
B3 50.51 0.00
Grid Bl 50.17 0.00
D2 50.36 B2 50.48 0.23
Networks
B3 50.51 0.00
Bl 50.27 0.19
D3 50.51 B2 50.48 0.23
B3 50.51 0.00
Bl 50.54 0.76
D1 50.16 B2 50.67 0.70
B3 50.51 0.00
Random Bl 50.16 0.00
D2 50.32 B2 51.22 1.81
Networks
B3 50.51 0.00
Bl 51.03 1.76
D3 50.51 B2 51.22 1.81
B3 50.51 0.00
Bl 50.16 0.00
D1 50.16 B2 50.61 0.77
B3 50.51 0.00
Bl 50.47 0.62
Scale-free
D2 50.22 B2 52.17 3.90
Networks
B3 50.51 0.00
Bl 50.45 0.59
D3 50.51 B2 52.17 3.90
B3 50.51 0.00
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4.2.3 Discussion of Results

Figures 4-6 ~ 4-8 display the equilibrium survivability of the targeted networks
under different topology types, numbers of nodes, and damage distribution patterns.

From the figures, we can make several observations:

e  “The rich get richer, and the poor get poorer” is the best reallocation
strategy for scale-free networks under the D2 distribution. For scale-free
networks, the initial survivability of the D2 scenario under the B3 strategy
is low. However, by applying the B3 strategy repeatedly, the equilibrium
survivability of the D2 scenario outperforms that of the other scenarios;
moreover, this case becomes the most robust among all the experimental
scenarios. Since the importance of nodes depends on their degree, the result
confirms the findings of previous research [14][16] that the protection of

hubs in scale-free networks must be enhanced.

e The survivability of networks under the D3 distribution can not be
improved by defense budget adjustment procedure. As noted in Section
4.1.6, the initial network survivability of the D3 scenario is the highest
among three damage distribution patterns; however, no improvement is
made after the resource adjustment procedure. One possible reason is that
the nodes are equal in importance; thus, the key-node-oriented reallocation

of the defense budget is meaningless.

e In most scenarios, the B3 defense resource reallocation strategy can
enhance network survivability more than the B1 and B2 strategies. This
phenomenon is most obvious in random networks under D1 distribution.

Once again, “the rich get richer, and the poor get poorer” proves to be the
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best defense budget allocation strategy, since we allocate defense resources
according to the value of the information held by each node initially, and

then reallocate the resources repeatedly.

In Section 4.1.6, we observe that grid networks are the most robust among
three testing topologies generally. However, after applying our proposed
defense resource reallocation strategy, the equilibrium survivability of
random networks and scale-free networks transcend that of grid networks.
This implies that random networks and scale-free can be very robust as long

as right defense strategies are applied.
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

The ubiquitous nature of the Internet has made it a nest of cyber-crimes, which
render the concept of “completely secure systems and networks” obsolete, and incur
inestimable damage and loss to victims. Information theft is one of the most damaging
cyber-crimes, yet it is easily missed because its attack behavior does not alert victims,
but makes them unwitting accomplices instead. Thus, network operators not only
need to protect their networks against information theft, but must also prevent their

networks from being used as hop-sites.

In this thesis we have addressed the attack-defense scenario in terms of
information theft, where an attacker attempts to steal information from a targeted
network and maximize his gained profit, while the operator of the network tries to
minimize the impact of attacks through a proper defense resource allocation strategy.
Both the attack strategy and the defense resource allocation strategy must be adjusted

repeatedly to maintain equilibrium.

The key contribution of this research is the development of mathematical models
of AS and DRAS. We successfully model the interaction between attackers and
defenders in the real world into well-formulated mathematical models, which are then
solved by the proposed heuristics. This is a breakthrough in the topic of network

attacks since previous research seldom modeled real-world attack behavior in this
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way [15]. Through mathematical forms, we can induce generic results and apply them
to similar real-world scenarios that were only addressed by individual case studies in

the past.

The novel network survivability and susceptibility metrics represent another
contribution of this thesis. In order to evaluate the performance of different attack
strategies and defense resource allocation strategies, we have proposed two
complementary metrics: susceptibility and survivability. The metrics reflect the
amount of profit gained by an attacker, so that both the attacker and the defender can
gauge the survivability of the targeted network, and can adjust their strategies

accordingly.

We have also studied several different network topologies and observed their
susceptibility against information theft under different defense resource allocation
strategies. We then adjusted the defense strategies to improve their survivability. The
experiment results show that grid networks are the least susceptible to information
theft, while scale-free network are the most susceptible. However, through a proper
defense resource allocation strategy, the differences in survivability of different
topologies can be reduced. Most importantly, we have developed an engineering
guideline for the network defender. Its states that the best defense resource allocation

strategy is the one based on the concept: “the rich get richer, and the poor get poorer.”
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5.2 Future Work

In the following, we highlight several issues and concepts that could be studied

further.

Function of Defense Capability

In this research, we adopt a linear defense capability function, a,(b,)
=2b; + &, in the computational experiments. However, a concave function
is more reasonable when addressing the relation between the defense budget
and the defense capability. According to the “Law of Diminishing Marginal
Utility”, the marginal benefit, i.e., the additional defense capability derived
from an additional unit of defense budget, declines as the defense budget
increases. Thus, concave functions, e.g. log functions, may describe the real

situation more accurately.

Discussion of Special Cases

During the computational experiment phase, we observed several
abnormal results in the DRAS model. These results indicate that there may
be better defense resource allocation strategies when a few “choke points”
exist in a network. The survivability of this kind of network improves
substantially if the choke points are well-defended, and exceeds the average
survivability of networks without choke points. This is because the choke
points are the gates to other nodes in the network, and the other nodes can
not be compromised unless the choke points have been taken. Thus,
reinforced defense of these nodes would not only stop the attacker, but
would also consume a huge amount of the attacker’s budget. However, how

identifying the most important choke points of a network is still a
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challenging issue and we hope to study this area thoroughly in the future.

Secret Sharing Scheme Concept

In our problem description, we assumed that once a node has been
compromised, the attacker can get all the valuable information held by that
node. However, in network security research, the concept of a “secret
sharing scheme” is often used. Under the scheme, each node contains a
fragment of important and sensitive information, which is useless unless all
the fragments of information about the secret can be retrieved. Therefore,
several nodes form a group that keep a secret, which only be stolen if all

members of the group are compromised.

Extending the DRAS model, we can model the concept of the secret
sharing scheme as the following formulation, denoted by (IP 3). Most of the
notations used in the formulation are the same as those in the DRAS model;

extra notations are listed in Table 5-1.

Table 5-1 Extra Notations Used in (IP 3)

Given Parameters

Notion | Description

G The index set of all sensitive information groups in the network

Sq Damage incurred by compromising all members of group g, where ge G
An indicator function, which is 1 if node i is in sensitive information group

G g, and 0 otherwise (where ieN, ge G)

Decision Variable

Notion | Description

i 1 if all members of group g are compromised, and 0 otherwise (where ge

g

G)
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Objective function:

ZIP3=n1}7iny1)1‘1a)Z( Zdiyi+2sgzg (IP3)
TPt jeN geG
Subject to:
> D x,0, <(IN-1)y, VieN (IP 3.1)
weW peP,
> x, =, VieN,w=(s,i) (IP 3.2)
Pep,
> x, <1 VweW (IP 3.3)
Pep,
x,=0orl VpeP ,weW (IP 3.4)
y,=00rl VieN (IP 3.5)
0<h <B YVieN (IP 3.6)
> b<B (IP 3.7)
ieN
0<a <a.(h) VieN (IP 3.8)
D a,<4 (IP 3.9)
ieN
a(b)y <a VieN (IP 3.10)
z,=0orl VgeG (IP 3.11)
D 0,2, <Y 0., VgeG. (IP 3.12)
ieN ieN
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Explanation of the mathematical formulation:

Objective function: The objective is to minimize the maximized total damage

incurred by compromising single nodes,Zdi ¥, , and extra damage incurred by
ieN

compromising all members in some sensitive information group, Z s,Z, - In the
geG

inner problem, an attacker tries to maximize the damage to the targeted network
by deciding which nodes or groups to attack, i.e., the y; value of each node i and
the z, value of each group g. In the outer problem, the defender tries to minimize
the damage caused by the attacker by allocating the defense resources, b;, to each

node appropriately.

Constraints (IP 3.1) ~ (IP 3.10) are the same as Constraints (IP 1.1) ~ (IP 1.10) in

the DRAS model.

Constraints (IP 3.11) and (IP 3.12) state|that a sensitive group g can only be

compromised if all members of the group have been taken by the attacker.

In this research, we have modeled real-world offense-defense scenarios of

information leakage/theft. None the less, the future research issues mentioned above

have the potential to substantially improve the accuracy and practicability of our

models. Thus, follow-up research will be conducted, and more supplements will be

added to enhance our models in the future.
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