
 

國立臺灣大學資訊管理學研究所碩士論文 

 

指導教授： 林永松 博士 

 

考慮單一核心節點攻擊下 

網路近似最佳化防護策略 

Near Optimal Protection Strategies 

against Targeted Attacks 

on the Core Node of a Network 

 

 

研究生： 林義倫 撰 

中華民國九十五年七月 



 

 



 

 

 

 

考慮單一核心節點攻擊下 

網路近似最佳化防護策略 

Near Optimal Protection Strategies 

against Targeted Attacks 

on the Core Node of a Network 

本 論 文 係 提 交 國 立 台 灣 大 學  

資 訊 管 理 學 研 究 所 作 為 完 成 碩 士  

學 位 所 需 條 件 之 一 部 份 　  

 

 

研究生： 林義倫 撰 

中華民國九十五年七月 



 

 



 

 

I

謝    詞 
回顧兩年來的日子，充滿了許多的回憶，也很高興，能夠在人生第一本論文

中，寫下我心中滿滿的感激。首先，我要感謝我的父親林耀川先生與張秀香女士，

你們的身教言教，讓我獲益良多。謝謝你們對於家庭的犧牲奉獻，讓我在求學之

路上能無後顧之憂地完成學業。 

謝謝我的指導老師林永松博士，謝謝您不論是在學業或是待人處事方面，都

給予學生莫大的指導與鼓勵。您嚴謹的治學態度，讓學生學習到學術研究的精煉

精神，也謝謝您的教導，讓學生能學習到許多關於人生的道理；謝謝口試委員孫

雅麗所長、林盈達博士、呂俊賢博士、趙啟超博士對於本論文所提出的寶貴意見，

使本論文能漸趨於完善；特別感謝博士班柏皓學長，在我人生中最黑暗，最需要

幫助的時候，您總是伸出您的援手，指引我曙光的方向，不論在學術研究領域以

及其他方面，都給予我莫大的幫助，真的很感激您；此外，謝謝博士班國維、演

福、政達學長，謝謝你們在這兩年來所給予我的鼓勵與幫助。 

謝謝建宏學長，在研究領域方面所給予我的啟發與幫助；謝謝琳智、書平、

孝澤、明源學長， 謝謝你們在我剛進入實驗室時給我的指導與鼓勵；謝謝我的

好伙伴們中蓮、孝穎、文政、弘翕、勇誠，謝謝你們陪我一起加油打氣，度過這

兩年來的時光，以及所發生的一切，這將會是我未來人生中永難忘懷的一段記

憶，真的很謝謝你們；謝謝學弟妹們雅芳、坤道、俊維、承賓、岦毅、翊恆、怡

孜，謝謝你們的幫忙以及歡笑，真的很謝謝你們，讓我能順利地完成口試；謝謝

怡靜與小米，在我人生最低潮的時候，陪我走過那一段特別的時光。最後，謝謝

上帝，賜給我無比的勇氣，來面對未來未知的挑戰。 

林 義 倫    謹 識 

于 臺 大 資 訊 管 理 研 究 所 

中 華 民 國 九 十 五 年 七 月 



 

 

II



 

 

III

論文摘要 

論文題目：考慮單一核心節點攻擊下網路近似最佳化防護策略 

作    者：林義倫          民國九十五年七月 

指導教授：林永松  博士 

隨著近年來網路科技的蓬勃發展，網際網路已成為 21世紀最重要的傳播媒

體，伴隨而來，資訊安全的議題也越形重要。我們發現，在網路攻防下，攻防雙

方都會依據對方的策略而改變自己的對策，就如矛與盾一般地相互抗衡。 

 在本篇論文中，我們以防守方的角度來思考，在有限的防禦資源限制下，提

出一個有效的防禦資源配置策略，來最大化攻擊者的攻擊成本，以提高核心節點

的防護能力。分析此問題，為一非線性混合整數規劃的數學最佳化問題，由於問

題本身高度的複雜性與困難度，所以我們以格拉蘭日鬆弛法為基礎的演算法來處

理此問題，並針對與真實網路環境相似之無尺度網路，進行其存活度分析與探討。 

關鍵詞：防禦資源配置策略、資訊安全、網路攻防、存活度、拉格蘭日鬆弛法、

最佳化、無尺度網路。 
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NEAR OPTIMAL PROTCTION STRATEGIES AGAINST 

TARGETED ATTACKS ON THE CORE NODE OF A NETWORK 

 With the rapid growth of network technologies, the Internet may well become the 

single most important medium of the 21st century. Therefore, the issue of information 

security has drawn increasing attention. In network attack and defense, attackers and 

defenders constantly change their respective strategies. The situation is like the 

balance between a lance and a targe. 

In this thesis, we view the problem of security from the defender’s perspective. 

Given that defense resources are limited, we propose an effective defense resource 

allocation strategy that maximizes the attackers’ costs, and improves the protection of 

the core node. The problem is analyzed as a mixed nonlinear integer programming 

optimization problem. The solution approach is based on the Lagrangean relaxation 

method, which effectively solves this complicated problem. Furthermore, we evaluate 

the survivability of real network environment-like scale-free networks.  

Key Words: Defense Resource Allocation Strategy, Information Security, 

Lagrangean Relaxation Method, Network Attack and Defense, Optimization, 

Scale-Free Networks, Survivability.  
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Chapter 1 Introduction 

1.1 Background 

The 21st century is the so-called age of the Internet, which implies the Internet 

has become an indispensable application in our daily lives. A substantial number of 

Internet applications have been developed for our convenience, and they have had a 

great impact on information communications worldwide, such that a network user can 

communicate or obtain information unboundedly. However, the downside of this 

phenomenon is that attackers can target organizations or individuals who connect to 

the Internet and thereby obtain sensitive information because of its high availability. 
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Figure 1-1 Trend of Incidents 

 With the rapid growth of the Internet, the realm of information security has 

attracted more and more attention. In recent years, according to the report from CERT 
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[1], the number of incidents [2] has increased as Figure 1-1 shows. An incident 

indicates a violation of security policy, such as an attack on a computer or an attempt 

to gain unauthorized access to some data. Because of this trend, information security 

has become increasingly important. A substantial number of techniques and 

methodologies have been proposed to protect networks against malicious attacks. 

Many researchers in the field of information security have focused on the behavior of 

attackers and the defense methods of those under attack. From such research, we 

know that attackers and defenders constantly change their respective strategies. Thus, 

if defenders change their defense methods, attackers will change their strategies to 

find new vulnerabilities to gain the same benefits. Moreover, defenders will modify 

their defense methods in order to increase the difficulties of attacks, and then attackers 

will react again. The situation is like the balance between a lance and a targe. 

Another important research domain is network survivability, and a great deal of 

research has been conducted on survivability. Initially, researchers focused on the 

effect of random failures on networks, like large-scale power failures, and tested how 

robust and dependable a network was. They have proposed many definitions, 

techniques, and architectures to evaluate the survivability of networks. Therefore, 

given the trend of improving information security, many researchers are paying 

ever-increasing attention on combining survivability and information security.  

Another way to evaluate the survivability of a network is to study its topology. 

The scale-free network is attracting more and more attention from the domain of 

network research. This topology structure follows the power-law distribution [3]. The 

best practice of the scale-free network is the Internet. Most parts of the Internet 
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operate normally when random failures happen; however, if the Internet suffered 

intelligent attacks, its performance would be significantly impaired. These facts 

motivate us to investigate how different topologies influence survivability. 

The key asset of enterprises or organizations is their know-how. Usually, they 

store their most valuable and sensitive knowledge in a network domain, called the 

“core node”, which attackers try their hardest to compromise. However, enterprises or 

organizations have finite information security budgets to purchase security products 

or obtain expert advice to enhance network survivability. From a network operator’s 

perspective, there are few guidelines on how to allocate security budgets effectively. 

Thus, there is an urgent need for research in the field of combining survivability and 

information security. 

1.2 Motivation 

Because of the critical importance of the core node, defenders and attackers 

change their strategies to protect and compromise the node respectively. With limited 

defense resources, defenders need to deploy the resources more effectively. However, 

until now, there has only been limited theoretical research on the economic allocation 

of defense resources. Therefore, we propose a mathematical model to formulate the 

attack-defense behavior, and propose defense strategies to improve the protection of 

the core node. The motivation of this thesis is to provide defenders with useful 

defense resource allocation strategies, and that will make the cost of attacking the core 

node unacceptable to the attacker. 
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1.3 Literature Survey 

1.3.1 Survivability 

The research of survivability has a long history, and a wealth definitions, models, 

and architectures. The discipline of survivability can be classified into three categories, 

performance, connectivity, and other measurements. With ever-increasing attention of 

information security, many researchers have focused on the combination of 

survivability and information security. Thus, in this thesis, the survivability is the 

measurement of information security, which indicates the protection of the core node. 

In [4], the author summarizes definitions of survivability, and we extract some 

information security related ones. Therefore, we find that the general concept of 

information security related survivability has three parts: 1) the continuity of service 

under an attack; 2) the provision of strategy against an attack; 3) the ability to protect 

the system from being compromised. In [5], the definition of survivability is the 

capability of a system to fulfill its mission in a timely manner in the presence of 

attacks, failures, or accidents, which satisfies part 1. In [6], the definition of 

survivability is a property of a system, subsystem, equipment, process, or procedure 

that provides a defined degree of assurance that the named entity will continue to 

function during and after a natural or man-made disturbance; this also satisfies part 1, 

too. In this thesis, we focus on part 2, thereby improving parts 1 and 3. 

Along with the trends, a substantial number of models are proposed or modified 

to evaluate the security related survivability. In [7], the authors summarize several 



 

 

5

models to quantitatively evaluate the survivability. For example, the attack tree is a 

graphical one, which consists of a goal, attack scenarios, and logic gates, as shown in 

Figure 1-2. 

 

Figure 1-2 Attack Tree Example 

G0 denotes the goal, e.g., the crash of the system. The leaf node denotes the 

attack scenario. Initially, we set the value to each attack scenario, so we can obtain the 

value of G0 via logic gates. That is, if the probability is assigned to each leaf node, 

one can finally obtain the probability of achieving the goal via the attack tree. 

Another means of evaluating the survivability is the state-based model. In [8], 

the authors propose an architecture to quantitatively analyze the survivability. The 

survivability specification is a four-tuple, {E, R, P, M} where E is a definition of the 

environment where the survivable system has to operate; R is a set of specifications of 

tolerable forms of service for the system; P is a probability associated with each 
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member of the set R with the sum of these probabilities being one; M defines 

precisely how and when the system is required to move from providing one form of 

tolerable service to another. Therefore, we initialize specifications from R1 to Rn, with 

its probability P. Thus, by applying the architecture, we can describe and evaluate the 

survivability performance level for different scenarios, even under seriously abnormal 

conditions. Furthermore, in [9], by applying this architecture, the author implemented 

it by the Markov chain. 

In addition, there is still much research about quantitative analysis of the 

survivability. In [10], the author proposes a survivability function to measure the 

performance when the network suffers a catastrophic disaster. The survivability 

function is proposed to evaluate the expected percentage of total data flow delivered 

after failure, even in the worst case scenario. In [11], researchers discuss issues and 

approaches, such as application error recovery, and securing the survivability 

mechanism, for developing survivable architectures. To concentrate on securing the 

survivability mechanism, if the survivability mechanism were completely isolated, the 

security of the survivability mechanism is possible. However, it is impossible, e.g., 

the firewall configuration on a web server may be changed by attackers via the 

Internet. Therefore, the authors propose two approaches to solve this problem: 1) 

one-way translation and diversity, and 2) securing the survivability mechanism. In the 

summary, the authors summarize approaches then propose survivable architectures to 

enhance the survivability and security of the system simultaneously. 

To summarize the research of quantitative analysis in the discipline of 

survivability, however, we find that to date there is a lack of a model to formulate the 
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attack-defense behavior. Therefore, the motivation of this thesis is to formulate 

attack-defense behavior, then provide defenders with strategies to maximize the 

protection of the core node. 

1.3.2 Scale-Free Networks 

In 1959, a well-known random graph model was proposed by Erdos and Renyi, 

called the ER model [12]. The specification of the ER model is the links between 

nodes are randomly placed. After the random placement of links, most nodes have 

almost the same number of links. Therefore, there are few nodes with an extremely 

large or small number of links. The probability P(k) denotes the probability a node 

connected to k other nodes, and it follows the Poison distribution with a bell shape. 

The random network is also called the exponential network because its P(k) is rapidly 

reduced for large k. Figure 1-3 is an example of random networks [13], which 

resemble the U.S. highway system. 

 

Figure 1-3 Random Network Example 

In 1988, Duncan Watts and Steve Strogatz proposed another type of random 

network, called small-world model [14]. With randomly rewired links, the diameter of 
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the small-world network will be rapidly reduced. Many observations were based on 

the small-world model, e.g., it was the basis of the popular notion of “six degrees of 

separation”, which demonstrates the maximum number of hops between any two 

people are six individuals. 

However, with the rapid growth of the Internet, the small-world model doesn’t 

meet the specifications of the Internet. There still exits small-world phenomenon [15], 

but P(k) of the Internet follows the power-law distribution, where P(k)~k-r. It’s a noble 

network, where a small ratio of nodes own a substantial number of links, called the 

scale-free network [13]. The notion “scale-free” indicates the scale of the tail 

distribution of P(k) is unlimited; the scale is “free”. The scale-free network was the 

newly observational network topology in recent years. Its strength is “the rich get 

richer”, but that is also its Achilles’ heel. The rich get richer indicates when a new 

node enters a network, it prefers to attach the node with a substantial number of links. 

Therefore, the network will eventually dominated by several most-connected nodes. 

However, this phenomenon also conducts risks. For the random network, because of 

its democracy of the number of links, if attacks on its most-connected nodes happen, 

the network will be remain robust because of its homogeneity. But for the scale-free 

network, if it suffers attacks on its most-connected nodes, the network will be 

separated into a number of fragmentations and isolations, and that is its so-called 

Achilles’ heel, as shown by the red circles in Figure 1-4 [16]. 



 

 

Figure 1-4 Scale-Free Network Example 

1.4 Proposed Approach 

 The problem is a mixed nonlinear integer programming optimization problem, 

which can be effectively solved by using the Lagrangean relaxation method in 

conjunction with optimization-based heuristics. Furthermore, in this thesis, the 

definition of survivability we propose is the degree of protection to the core node 

against intelligent attacks. To quantitatively analyze the survivability, we propose a 

novel survivability metric in the following: 

The survivability metric = LR / LB, where LR denotes the attack costs conducted 

by the proposed solution approach; and LB denotes the theoretical attack costs. The 

survivability metric indicates a level of protection of the core node. The more the 

survivability is, the better the protection of the core node is.  
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Chapter 2 Problem Formulation 

2.1 Protection Strategy for Defenders (PSD) Model 

2.1.1 Problem Description and Assumptions 

At the AS (Autonomous System) level, by node we mean a network domain, e.g., 

a set of subnets. Because the core node contains much sensitive and valuable 

information, it has high strategic value. Thus, attackers target it to obtain the 

information. In order to compromise the target node, attackers will find a path from 

the start node to the core node, and compromise all intermediate nodes on the path to 

the target. However, compromising a node costs attackers some resources, such as 

time, money, and man-power.  

From the defender’s perspective, if more defense resources are allocated to a 

node, the protection of the node will be improved, and cost of attacking it will be 

increased. However, defense resources are limited, defenders must adopt an efficient 

resources allocation strategy that utilizes the resources effectively and economically, 

and simultaneously maximizes the attacker’s costs. 

In the worst case scenario, if an attacker can obtain the complete information 

about a network and use it intelligently, he will find the path of minimal attack cost to 

minimize the total cost of compromising the core node. Meanwhile, the defender will 

try to maximize the attacker’s total necessary attack costs through different budget 

allocations to each node. In response, the attacker will then determine another path 



 

minimal attack cost to compromise the core node, as shown in Figure 2-1. 
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Figure 2-1 Network Attack and Defense Behavior 

 The red circle denotes the source and core node; the blue node denotes the node 

the defender allocates defense resources to; and the red arrow indicates the attack path 

from the source to the core node. In the left-hand graph, the defender allocates a 

defense budget to the blue nodes. If the attacker can obtain complete information 

about the network, he will try to find the minimal attack cost path to compromise the 

core node, and avoid passing through the blue nodes. In the right-hand graph, to 

maximize the attacker’s costs, the defender adopts another resource allocation strategy. 

In response to the defender’s strategy, the attacker tries to determine another minimal 

attack cost path to reach the target node. Our task is to derive an effective defense 

resource allocation strategy against intelligent attacks, and prevent the core node from 

being compromised. 
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Table 2-1 Problem Description of the PSD Model  

Given: 

1. Network topology 

2. Total budget of the defender 

3. The cost of compromising a node is a function of the node’s budget allocation 

Objective: 

To maximize the minimized total attack cost 

Subject to: 

1. Budget constraint of the defender 

To determine: 

1. The budget allocated to each node by the defender 

2. Which nodes will be compromised by the attacker 

3. Which routing path will be chosen to reach the core node 

 



 

Table 2-2 Problem Assumptions of the PSD Model 

Assumptions： 

1. The attacker is on node s. 

2. Only one node (node t, the core node) is the target of attack. 

3. A node i is the subject of the attack only if a path exists from node s to node i, 

where all the intermediate nodes on the path have been compromised (they can be 

viewed as hop sites for attacking the target). 

4. If  attack cost or more is applied to node i, then the node will be 

compromised. 

ˆ ( )i ia b

5. Both the attacker and defender have complete information about the network. 

6. The attacker will always find the best strategy to reach the objective. 

7. The defender is subject to the total budget constraint. 

8. No link attacks are considered.  

9. No random failures are considered. 

10. The network is viewed at the AS level. 
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2.1.2 Notations 

Given Parameters 

Notation Description 

B Total budget of the defender 

N  The index set of nodes in the network 

w The O-D pair (s, t) 

wP  The index set of candidate paths for O-D pair w 

δpi The indicator function, which is 1 if node i is on path p, and 0 otherwise;

  ,  wi N p P∈ ∈

Decision Variables 

Notation Description 

yi 1 if node i is compromised, and 0 otherwise; i N∈  

xp 1 if path p is selected as the attack path, and 0 otherwise; wp P∈  

bi The budget allocated to protect node i; i N∈  

ˆ ( )i ia b  The attack cost applied against the budget of node i; i N∈  
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2.1.3 Problem Formulation 

Objective function:   

ˆmax min ( )
pi

w

i i p pixb i N p P
a b x δ

∈ ∈
∑ ∑   (IP 1) 

subject to:   

i
i N

b B
∈

≤∑   (1-1) 

0 ib B≤ ≤   i N∀ ∈   (1-2) 

1
w

p
p P

x
∈

=∑   (1-3) 

0 1px or= . .wp P∀ ∈  (1-4) 

The objective function (IP 1) to maximize the minimized total applied attack cost, 

where the defender manipulates the budget to maximize the value of the total applied 

attack cost, while the attacker minimizes it by choosing which path to attack. 

Constraint (1-1) is the total defense budget constraint for the defender. Constraint (1-2) 

requires that the budget allocated to each node should be between zero and the total 

budget B. Constraint (1-3) and Constraint (1-4) jointly enforce that exactly one path 

will be chosen between the given O-D pair.  
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2.1.4 Problem Reformulation 

Objective function:   

ˆmin ( )
i

i i ib i N
y a b

∈

−∑   (IP 2) 

subject to:   

ˆ ˆ( ) ( )i i i pi i i
i N i N

y a b a bδ
∈ ∈

≤∑ ∑  wp P∀ ∈   (2-1) 

w

p pi i
p P

x yδ
∈

≤∑  i N∀ ∈  (2-2) 

1
w

p
p P

x
∈

=∑   (2-3) 

0 1px or=  wp P∀ ∈  (2-4) 

0 1iy or=  i N∀ ∈  (2-5) 

i
i N

b B
∈

≤∑   (2-6) 

0 ib B≤ ≤  .i N∀ ∈  (2-7) 

From the defender’s perspective, we want to maximize the total applied attack 

cost through the budget allocation to each node. Therefore, we modify the objective 

function (IP 1) in the form of minimizing the attacker’s negative attack cost (IP 2). 

Constraint (2-1) requires that the selected path for the O-D pair should be the minimal 

attack cost path. Constraint (2-2) is the relation between yi, xp and δpi. We use yi to 

replace the product of xp and δpi, summing over all candidate paths. The substitution 

further simplifies the Lagrangean relaxation procedures. Constraint (2-3) and 

Constraint (2-4) jointly enforce exactly that one path will be chosen between the 

given O-D pair. Constraint (2-5) requires that each node is either compromised or not. 

Constraint (2-6) is the total budget constraint. Constraint (2-7) requires that the budget 
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allocated to each node should be between zero and the total budget B. 

2.2 Probabilistic Protection Strategy for Defenders 

(PPSD) Model 

2.2.1 Problem Description and Assumptions 

Based on the PSD model, we further assume that there is a probability that each 

node could be compromised under attack, and attacks on nodes are independent. 

Therefore, from the attacker’s aspect, the probability of compromising the core node 

successfully is a product of the compromise probability of each node on the attack 

path between the given O-D pair. 

From the defender’s perspective, if the defender allocates more defense 

resources to a node, the compromise probability of the node will be reduced. With 

limited defense resources, defenders need to adopt a strategy that allocates the defense 

budget more effectively and economically, to minimize the probability of the core 

node being compromised. 

In the worst case scenario, if the attacker can obtain complete information about 

the network and intelligent, he will try to find the most unreliable path to compromise 

the core node, which indicates that the product of the compromise probability of each 

node along the path is maximal. Meanwhile, the defender will try to make the network 

more secure by allocating a different budget for each node to minimize the probability 

that the core node will be compromised. 



 

 

19

Table 2-3 Problem Description of the PPSD Model  

Given: 

1. Network topology 

2. Total budget of the defender 

3. The probability that a node will be compromised is a function of its budget 

allocation. 

Objective: 

To minimize the maximized compromise probability of the network 

Subject to: 

1. Budget constraint of the defender 

To determine: 

1. The budget allocated to each node by the defender 

2. Which nodes will be attacked by the attacker 

3. Which routing path will be chosen to reach the core node 
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Table 2-4 Problem Assumptions of the PPSD Model 

Assumptions： 

1. The attacker is on node s. 

2. Only one node (node t, the core node) is the target of attack. 

3. A node i is the subject of the attack only if a path exists from node s to node i. 

4. Both the attacker and defender have complete information about the network. 

5. The attacker will always find the best strategy to reach the objective. 

6. The defender is subject to the total budget constraint. 

7. No link attacks are considered.  

8. No random failures are considered. 

9. Attacks on nodes are independent. 

10. The network is viewed at the AS level. 

 



 

2.2.2 Notations 

Given Parameters 

Notation Description 

B Total budget of the defender 

N  The index set of nodes in the network 

w The O-D pair (s, t) 

wP  The index set of candidate paths for O-D pair w 

δpi The indicator function, which is 1 if node i is on path p, and 0 otherwise;

 ,  wi N p P∈ ∈

Decision Variables 

Notation Description 

yi 1 if node i is compromised, and 0 otherwise; i N∈  

xp 1 if path p is selected as the attack path, and 0 otherwise; wp P∈  

bi The budget allocated to protect node i; i N∈  

( )i iP b  The probability of node i being compromised by an attack;  i N∈
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2.2.3 Problem Formulation 

Objective function:   

min max ( )
i p

w

i i p pib x p Pi N

P b x δ
∈∈
∑∏   (IP 3) 

subject to:   

i
i N

b B
∈

≤∑   (3-1) 

0 ib B≤ ≤   i N∀ ∈   (3-2) 

1
w

p
p P

x
∈

=∑   (3-3) 

0 1px or= . .wp P∀ ∈  (3-4) 

The objective function (IP 3) is to minimize the maximized probability of 

compromising the core node, where the defender manipulates the budget to minimize 

the product of the probability of compromise, while the attacker maximizes it by 

choosing which path to attack. Constraint (3-1) is the total defense budget constraint 

for the defender. Constraint (3-2) requires that the budget allocated to each node 

should be between zero and the total budget B. Constraint (3-3) and Constraint (3-4) 

jointly enforce that exactly one path is chosen between the given O-D pair.  
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2.2.4 Problem Reformulation 

Objective function:   

min ln ( )
i

i i ib i N
P b y

∈
∑   (IP 4) 

subject to:   

ln ( ) ln ( )i i i i i pi
i N i N

P b y P b δ
∈ ∈

− ≤ −∑ ∑  wp P∀ ∈   (4-1) 

w

p pi i
p P

x yδ
∈

≤∑  i N∀ ∈  (4-2) 

1
w

p
p P

x
∈

=∑   (4-3) 

0 1px or=  wp P∀ ∈  (4-4) 

0 1iy or=  i N∀ ∈  (4-5) 

i
i N

b B
∈

≤∑   (4-6) 

0 ib B≤ ≤  .i N∀ ∈  (4-7) 

To simplify this problem, we transform the compromise probability Pi(bi) of each 

node i into the weight –lnPi(bi). Therefore, from the defender’s perspective, the 

objective function (IP 4) is to minimize the weight of compromising the core node. 

Constraint (4-1) requires that the selected path for the O-D pair should be a minimal 

weight path. Constraint (4-2) is the relation between yi, xp and δpi. We use yi to replace 

the product of xp and δpi, to sum over all candidate paths. Also, the substitution further 

simplifies the Lagrangean relaxation procedures. Constraint (4-3) and Constraint (4-4) 

jointly enforce that exactly one path is chosen between the given O-D pair. Constraint 

(4-5) stated that each node could be attacked. Constraint (4-6) is the total budget 

constraint. Constraint (4-7) requires that the budget allocated to each node should be 
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between zero and the total budget B. 
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Chapter 3 Solution Approach 

3.1 Lagrangean Relaxation Method 

In the 1970s, many solution ideas were proposed to solve complicated integer 

programming problems [17]. One of them, called decomposition, states that many 

hard integer programming problems can be viewed as a set of several easier 

subproblems with side constraints, which are easier to solve. One well-known 

decomposition solution approach is the Lagrangean relaxation method. In recent years, 

Lagrangean relaxation has become one of the most popular tools for solving 

optimization problems, such as integer programming, linear programming, nonlinear 

programming, and combinational programming problems. 

By applying the Lagrangean relaxation method [18], we can dismantle original 

models by removing some constraints and placing them in the objective function with 

associated multipliers. The new optimization problem with fewer constraints is called 

the Lagrangean relaxation problem. For minimization problems, the optimal value of 

the Lagrangean relaxation problem is always the lower bound of the original problem. 

To obtain the best lower bound, we have to tune the multipliers of the Lagrangean 

relaxation problem so that the optimal values of the Lagrangean relaxation 

subproblems are as large as possible. We can solve these subproblems in a variety of 

ways, of which the subgradient method would be the most popular technique [17][19].  

The fundamental principles of the Lagrangean relaxation method are to 

decompose the original problem into several easily solvable subproblems, each of 
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which can be viewed as a standalone model. The solution approach permits us to 

exploit a substantial number of well-known algorithms to solve each subproblem. 

Therefore, we can locally optimize each subproblem, and then compose the 

subproblems with the global optimization. 

The Lagrangean relaxation method has two main advantages. First, because we 

decompose the original complicated problem into several easily solvable subproblems, 

and choose well-known algorithms to solve each subproblem, Lagrangean relaxation 

is more flexible and the computational complexity of the original complicated 

problem is significantly reduced [17][19][20]. Second, given the nature of the 

Lagrangean relaxation method, it can help us obtain the bounds of the objective 

function, and we can evaluate the solution quality for implementing primal feasible 

solutions. 

Figure 3-1 illustrates the general concepts of the Lagrangean relaxation method, 

while Figure 3-2 illustrates the detailed procedures of the method. 
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Figure 3-1 Illustration of the Lagrangean Relaxation Method 
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Figure 3-2 Procedures of the Lagrangean Relaxation Method 

3.2 PSD Model 

3.2.1 Solution Approach 

We transform the reformulation of the PSD model into the following Lagrangean 

relaxation problem (LR 1) by relaxing Constraints (2-1) and (2-2), with multipliers u1 

and u2 respectively. Furthermore, we assume that  is equal to the concave 

function ln(bi+1), which indicates that the marginal attack cost of the node will be 

reduced by the additional budget allocated to a node. 

ˆ ( )i ia b

3.2.2 Lagrangean Relaxation 
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p pi i
1 2 1 2

1( , ) min ln( 1) ( ) ln( 1) ( )
w w

D i i p i pi i i
i N p p i N i N p P

Z u u y b u y b u x yδ δ
∈ ∈ ∈ ∈ ∈

= − + + − + + −∑ ∑ ∑ ∑ ∑  (LR 1) 

subject to:   

1
w

p
p P

x
∈

=∑   (5-1) 

0 1px or=  wp P∀ ∈  (5-2) 

0 1iy or=  i N∀ ∈  (5-3) 

i
i N

b B
∈

≤∑   (5-4) 

0 ib B≤ ≤  .i N∀ ∈  (5-5) 

We can decompose this optimization problem into the following two 

independent subproblems. 



 

Subproblem 1-1 (related to decision variable xp) 

2min
w

i p pi
i N p P

u x δ
∈ ∈
∑ ∑   (SUB 1-1)

subject to:  

1
w

p
p P

x
∈

=∑   (5-1)

0 1px or=  .wp P∀ ∈  (5-2)

 (SUB 1-1) can be viewed as a shortest path problem with a node weight 2
i piu δ . 

Because  is non-negative, we apply Dijkstra’s shortest path algorithm to optimally 

solve (SUB 1-1). The time complexity is O(|N|2). 

2
iu

Subproblem 1-2 (related to decision variables yi, bi) 

1 1min ( 1) ln( 1) ln( 1)
w w

p i i p pi i
p p i N p p i N i N

u y b u b uδ
∈ ∈ ∈ ∈ ∈

− + − + −∑ ∑ ∑ ∑ ∑ 2
i iy  (SUB 1-2)

subject to:  

0 1iy or=  i N∀ ∈  (5-2)

i
i N

b B
∈

≤∑   (5-3)

0 ib B≤ ≤  .i N∀ ∈  (5-4)

(SUB 1-2) can be further decomposed into |N| subproblems. For each node i, 
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2
iy

1 1
w

p
p p

u
∈

≤ <

1 1min ( 1) ln( 1) ln( 1)
w w

p i i p pi i i
p p p p

u y b u b uδ
∈ ∈

− + − + −∑ ∑  

subject to:  

0 1iy or=   

i
i N

b B
∈

≤∑   

0 .ib B≤ ≤   

To optimally solve (SUB 1-2), we must consider the following three cases: 

Case 1, . For a node that is not on the selected path Xp (δpi = 0), we 

assign bi = 0. Furthermore, if  of the node is more than zero, we assign yi = 1, and 

0 otherwise. For a node that is on the selected path Xp (δpi = 1), we assign yi = 1, bi = 

B/P, where B denotes the total budget, and P denotes the number of nodes on the 

selected path Xp. 

1 1
w

p
p p

u
∈

=∑

2
iu

Case 2, 0 ∑ . Initially, we assign all nodes yi = 1. After applying 

calculus, if Pd<B, then for a node with δpi = 1, we assign bi = d; and for a node with 

δpi = 0, we assign bi =
B Py
N P
−
−

, where 

1

1

( )

( 1)(
w

w

p
p p

p
p p

B N P u
d

P u N
∈

∈

+ −
=

)P− − −

∑
∑

, and N denotes the 

number of nodes. If , then for a node with δpi = 1, we assign bi = B/P; and for 

a node with δpi = 0, we assign bi = 0. Furthermore, if  of the node is equal to zero, 

we assign yi = 0. 

Pd B≥

2
iu



 

Case 3, . For a node with δpi = 0, we assign bi = 0. Furthermore, if  

of the node is more than zero, we assign yi = 1 and 0 otherwise. For nodes with δpi = 1, 

initially, we assign yi = 1, and sort them in ascending order, depending on . Step 

by step, we assign the first Q nodes in the order yi = 0, where Q = 0, 1, 2, …, P. If Q = 

0 or P, we assign bi = B/P to all nodes in that order. If 0 < Q < 0, after applying 

calculus, the proper value of bi for the first Q elements in the order is 

1 1
w

p
p p

u
∈

>∑ 2
iu

2
iu

1

1

( )(1

( )
w

w

p
p p

p
p p

)B P Q u

P Q u Q
∈

∈

+ − −

− +

∑
∑

, and we assign the value to e. If e < 0, we modify e to 0; if Qe 

> B, then we modify e to B/Q. Therefore, we assign bi = e to the fist Q nodes in the 

order, and assign i
B Qeb
P Q
−

=
−

 to the other nodes in the order. We obtain 

after assigning proper 

values of bi and yi to each node. Therefore, we can obtain P+1 values of the above 

function, and choose the minimal one to optimally solved (SUB 1-2). The time 

complexity is O(|N|2). 

1 1( 1) ln( 1) ln( 1)
w w

p i i p pi i
p p i N p p i N i N

u y b u b uδ
∈ ∈ ∈ ∈ ∈

− + − + −∑ ∑ ∑ ∑ ∑ 2
i iy

3.2.3 The Dual Problem and the Subgradient Method 

 Based on the weak Lagrangean duality theorem [21], the objective value of 

1 2
1( , )DZ u u  is a lower bound of 2IPZ . Therefore, we construct the following dual 

problem (D1) and obtain the tightest lower bound by applying the subgradient method 

[21]. 
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Dual Problem (D1): 

1 2
1 1max ( , )D DZ Z u u=  

subject to: 

1 2, 0u u ≥ .  

Let the vector S be the subgradient of 1 2
1( , )DZ u u . Then, in iteration k of the 

subgradient optimization procedure, the multiplier vector  is updated 

by . The step size αk is determined by 

1 2( ,k km u u= )k

k1 1k k km m Sα+ += + 2 1
2

( )
|| ||

k k
IP D

k

Z Z m
S

ρ − , where 

 is the best primal objective function value obtained by iteration k, and ρ is a 

constant where 

2
k

IPZ

0 2ρ≤ ≤ . 

3.2.4 Getting Primal Feasible Solution 

To obtain a heuristic that solves the problem, information provided by 

multipliers is very helpful. In this problem, the multiplier vector  is adjusted by 

the function  for each node i, which implies the importance of each 

node i. This gives a hint about how to allocate the budget.  

2
iu

ˆ( ) ( )i pi i i
i N

y a bδ
∈

−∑

In addition, we construct a minimal defense region to improve the solution 

quality. First, we obtain the minimal number of nodes that need to be compromised by 

applying Dijkstra’s shortest path algorithm. Then, by applying a labeling process, we 

obtain an initial defense region. However, as some nodes of the outer layer may be 

unnecessary, we remove them from the region. Finally, we obtain the minimal 



 

 

33

defense region, and allocate bi, where 
2

2~
total 

i
i i

i

ub r
u

= . If a node has , and it is 

not in the minimal defense region, we allocate its budget to the source and destination 

node without allocating any budget to the node. 

0ir >

The tuning process allocates the epsilon budget from the source and core node to 

the other nodes in the minimal defense region. Then, we test if the objective function 

value is less than the previous state. If it is, we continue the tuning process until the 

objective function value is no less than the previous state. The time complexity of the 

heuristic is O(|N|2).  

Table 3-1 Heuristic for the PSD Model 

Step 1.  Construct a minimal defense region by applying the labeling and the 

removal processes. The labeling process is based on a breadth-first search, 

and the removal process tests whether each outer layer node is necessary or 

not.  

Step 2. Allocate bi to each node, where 
2

2~ ,  
total 

i
i i

i

u i N
u

b r = ∈ . If a node has 

, and it is not in the minimal defense region, allocate its budget to the 

source and destination node without allocating any budget to the node.  

0ir >

Step 3. Tune the epsilon budget from the source and core node to the other nodes 

in the minimal defense region. If the objective function value is less than 

the previous state, we continue the tuning process recursively. 

 



 

3.3 PPSD Model 

3.3.1 Solution Approach 

We can transform the reformulation of the PPSD model into the following 

Lagrangean relaxation problem (LR 2) by relaxing Constraints (4-1) and (4-2), with 

multipliers u1 and u2 respectively. Furthermore, we assume that  follows an 

exponential distribution with λ, which indicates that the compromise probability will 

be rapidly reduced by the additional budget allocation to a node. 

( )i iP b

3.3.2 Lagrangean Relaxation 

1 2
2 min ln ln ( ) ( )

w w

bi bi
D i p pi i i p pi

i N p p i N i N p P
iZ e y u e y u x yλ λλ λ δ− −

∈ ∈ ∈ ∈ ∈

= + − +∑ ∑ ∑ ∑ ∑ δ −  (LR 2) 

subject to:   

1
w

p
p P

x
∈

=∑   (6-1) 

0 1px or=  wp P∀ ∈  (6-2) 

0 1iy or=  i N∀ ∈  (6-3) 

i
i N

b B
∈

≤∑   (6-4) 

0 ib B≤ ≤  i N∀ ∈ . (6-5) 

We can decompose this optimization problem into the following two 

independent subproblems.  
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Subproblem 2-1 (related to decision variable xp) 

2min
w

i p pi
i N p P

u x δ
∈ ∈
∑ ∑   (SUB 2-1)

subject to:  

1
w

p
p P

x
∈

=∑   (6-1)

0 1px or=  .wp P∀ ∈  (6-2)

 (SUB 2-1) can be viewed as a shortest path problem with a node weight 2
i piu δ . 

Because  is non-negative, we apply Dijkstra’s shortest path algorithm to optimally 

solve (SUB 2-1). The time complexity is O(|N|2). 

2
iu

Subproblem 2-2 (related to decision variables yi, bi) 

1 1min (1 ) ln ln
w w

bi bi
p i p

p p i N p p i N i N
u e y u e uλ λλ λ δ− −

∈ ∈ ∈ ∈ ∈

− +∑ ∑ ∑ ∑ ∑ 2
i iy−  (SUB 2-2)

subject to:  

0 1iy or=  i N∀ ∈  (6-2)

i
i N

b B
∈

≤∑   (6-3)

0 ib B≤ ≤  .i N∀ ∈  (6-4)

(SUB 2-2) can be further decomposed into |N| subproblems. For each node i, 
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2
i iy−

10 1
w

p
p p

u
∈

≤ <

1 1min (1 ) ln ln
w w

bi bi
p i p pi

p p p p
u e y u e uλ λλ λ δ− −

∈ ∈

− +∑ ∑  

subject to:  

0 1iy or=   

i
i N

b B
∈

≤∑   

0 .ib B≤ ≤   

To optimally solve (SUB 2-2), we have to consider the following three cases: 

Case 1, . For a node that is not on the selected path Xp (δpi = 0), we 

assign bi = 0. Furthermore, if  of the node is more than zero, we assign yi = 1 and 

0 otherwise. For a node that is on the selected path Xp (δpi = 1), we assign yi = 1, and 

record its λ. Therefore, we assign bi = B to the node with the maximal λ, and assign 

the other nodes bi = 0. 

1 1
w

p
p p

u
∈

=∑

2
iu

Case 2, ∑ . Initially, we assign all nodes yi = 1. For a node with δpi = 

0, we record the value 1(
w

p
p p

u 1)λ
∈

−∑ ; and for a node with δpi = 1, we record the value 

λ− . Therefore we assign bi = B to the node with minimal value, and bi = 0 to the 

other nodes. 

 Case 3, . For a node with δpi = 0, we assign bi = 0. Furthermore, if 

 of the node is less than zero, we assign yi = 1, and 0 otherwise. 

1 1
w

p
p p

u
∈

>∑
1(1 ) ln

w

p
p p

u λ
∈

− ∑ 2
iu−
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For a node with δpi = 1, we compute the critical point 

1 2

1

(1 ) ln
. .

(1 )
w

w

p i
p p

p
p p

u u
C P

u

λ

λ
∈

∈

− −
=

−

∑
∑

. If 

, we record the value . . 0C P < 1

w

p
p p

u λ
∈

−∑  ; if , we record the value -λ; and if 

, we record the value 

. .C P B≥

0 . .C P B≤ <

1 1( 1) ln
w w

p p
p p p p

u B u u2
i

B

λ λ
∈ ∈

− + − +∑ ∑
. After recording 

the values of all nodes with δpi = 1. We assign bi = B to the node with minimal value, 

and bi = 0 to the other nodes. For the node with minimal value, if its value is equal 

to –λ, we assign yi = 1, and 0 otherwise. For the other nodes with δpi = 1, if 

, we assign yi = 0, and 1 otherwise. After assigning appropriate 

values of bi, yi to each node, we can optimally solve (SUB 2-2). The time complexity 

is O(|N|). 

1 ln ln
w

p
p p

u λ λ
∈

< −∑ 2
iu

3.3.3 The Dual Problem and the Subgradient Method 

 Based on the weak Lagrangean duality theorem [21], the objective value of 

1 2
2 ( , )DZ u u  is a lower bound of 4IPZ . Therefore, we construct the following dual 

problem (D2) and obtain the tightest lower bound by applying the subgradient method 

[21]. 

Dual Problem (D2): 

1 2
2 2max ( , )D DZ Z u u=  

subject to: 

1 2, 0u u ≥ .  



 

Let the vector S be the subgradient of 1 2
2 ( , )DZ u u . Then, in iteration k of the 

subgradient optimization procedure, the multiplier vector  is updated 

by . The step size αk is determined by 

1 2( ,k km u u= )k

k1 1k k km m Sα+ += + 4 2
2

( )
|| ||

k k
IP D

k

Z Z m
S

ρ − , where 

 is the best primal objective function value obtained by iteration k, and ρ is a 

constant where 

4
k

IPZ

0 2ρ≤ ≤ . 

3.3.4 Getting Primal Feasible Solution 

Based on the getting primal feasible solution for the PSD model, we construct a 

minimal defense region to improve the solution quality. Then we adopt the multiplier 

vector  as a hint to allocate bi, where 2
iu

2

2~
total 

i
i i

i

ub r
u

= . If a node with  is 

not in the minimal defense region, we allocate its budget to the source or destination 

node, depending on which one has the bigger λ. 

0ir >

 The tuning process extracts the epsilon budget from the source or core node that 

has the bigger λ, and allocates it to the nodes in the minimal defense region, one by 

one. Then we can determine which of the nodes we allocated the epsilon budget to 

will result in the most negative effect of the objective value. If the value of the 

objective function is less than the previous state, we continue the tuning process until 

that value is no less than the previous state.  

After finishing the tuning process, we compare the objective function’s value 

with another heuristic that is based on the primal variable bi. By applying the LR 

method, we can obtain the value of the primal variable bi for each node. Therefore, we 

can derive a primal-based heuristic, which allocates the budget to each node 
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according to the value of the primal variable bi when we solve (SUB 2-2). Then we 

compare the primal-based heuristic with the original heuristic, and obtain the minimal 

objective value of the heuristics. The time complexity of the entire heuristic is O(|N|3). 

 Table 3-2 Heuristic for the PPSD Model 

Step 1.  Construct a minimal defense region by applying the labeling and the 

removal process. The labeling process is based on a breadth-first search, 

and the removal process tests whether each outer layer node is necessary.  

Step 2. Allocate bi to each node, where 
2

2~ ,
total 

i
i i

i

ub r i N
u

= ∈ . If a node with

 is not in the minimal defense region, we allocate its budget to the 

source or destination node, depending on which one has the bigger λ.  

0ir >

Step 3. Tune the epsilon budget from the source and core node to the node in the 

minimal defense region, which has the most negative effect of the objective 

value. If the value of the objective function value is less than the previous 

state, we continue the tuning process recursively. 

Step 4. Compare with the primal-based heuristic, which allocates the budget to 

each node according to the value of the primal variable bi. Then we 

determine the minimal objective value of the heuristics. 
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Chapter 4 Computational Experiments 

4.1 Computational Experiments on the PSD Model 

4.1.1 Experiment Environments 

 The algorithm we propose is written in C, and implemented on a notebook with 

an INTELTM Pentium-M 1.5GHz environment; the other experimental parameters are 

shown in Table 4-1. In this model, to present a homogenous network, we assume that 

 is the same for each node. The LR denotes the attack costs of the algorithm we 

propose, and the LB indicates the theoretical attack costs 

ˆ ( )i ia b

 In addition, we propose two simple and one primal-based algorithms to compare 

the attack costs of different defense resource allocation strategies. Simple algorithm 1  

allocates bi uniformly, and the SA1 denotes the attack costs of the algorithm. In   

simple algorithm 2, the allocation of bi is proportionate to the ratio Links of a node
Total Links

, 

and the SA2 denotes the attack costs of simple algorithm 2. In the primal-based 

algorithm, the budget allocation for each node is according to the value of primal 

variable bi, which is obtained by solving (SUB 1-2). HE3 denotes the attack costs of 

the primal-based heuristic. In addition, the gap is computed by LB-LR *100%
LR

; the 

survivability factor is calculated by LR
LB

; and the improvement ratio is calculated by 

LR-Attack Costs of an Algorithm *100%
Attack Costs of an Algorithm

; Finally, we transform the objective value 

into being positive by obtaining the absolute value of it for easy illustration. 
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Table 4-1 Experimental Parameter Settings for the PSD Model 

Parameter Value 

Number of Nodes 16~361 

Number of Links 60~1440 

Network Topology Grid, Random, and Scale-Free Networks 

Number of Iterations 2000 

Improvement Counter 100 

Initial Scalar of Step Size 1 

Initial Upper Bound The 1st Getting Primal Feasible Solution 

Test Platform CPU: INTELTM Pentium-M 1.5GHz 

RAM: 768MB 

OS: Microsoft Windows XP 

4.1.2 Experiment Results 

 In Figure 4-1, the attack costs determined by our proposed algorithm are always 

higher than those of the other algorithms. In the large networks, the differences are 

particularly significant. In addition, the proposed algorithm provides a stable level of 

protection for the core node, even in different-sized networks and topologies. Figure 

4-2 shows the survivability factor of scale-free networks. The survivability factor of 

the proposed algorithm is consistently higher than that of the other algorithms. Thus, 

by applying the proposed algorithm, the core node will be more robust and secure. 
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Figure 4-1 Experiment Results for Grid Networks 
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Figure 4-2 Survivability of Scale-Free Networks 

After experimenting with the proposed algorithm in different-sized network 

topologies, we find the interesting phenomenon illustrated in Figure 4-3. When the 

network size is large, the attack costs in grid networks are higher than those in random 

and scale-free networks. To determine the reason for this phenomenon, we initially 

select an O-D pair in a network at random, and apply Dijkstra’s shortest path 

algorithm to determine the minimal number of nodes that must be compromised 
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between the O-D pair. We execute the above process one hundred times and draw the 

probability distribution of the average number of nodes that must be compromised 

between an O-D pair. We observe that the average number of nodes that must be 

compromised in a grid network is much more than in a random or scale-free network, 

as shown in Figure 4-4. This is due to the small-world phenomenon. Therefore, we 

can conclude that the depths of defense are the important factor about survivability. 

The detail experiment results are summarized in Table 4-2. 
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Figure 4-3 Experiment Results for Different Network Topologies 
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Figure 4-4 Average Number of Nodes Must be Compromised Distribution 
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Table 4-2 Experiment Results for the PSD Model 

Topology 
No. of 
Nodes 

LB LR 
Gap 
(%) 

Surv. SA1
Imp. 

Ratio to 
SA1 (%)

SA2
Imp. 

Ratio to 
SA2 (%) 

HE3 
Imp. 

Ratio to 
HE3 (%)

16 6.23  4.89  27.37 0.79 2.63 85.84 2.67 83.12  3.62  35.37 

49 12.18 8.40  45.05 0.69 3.60 132.92 3.46 142.54  5.43  54.65 

100 16.80 10.96 53.26 0.65 4.02 172.70 3.99 174.73  6.37  72.13 

225 36.08 17.14 110.51 0.48 7.90 116.92 8.22 108.55  9.38  82.77 

Grid 

Networks 

361 46.51 21.29 118.51 0.46 9.15 132.65 9.48 124.45  10.79 97.26 

16 5.74  4.87  17.99 0.85 2.22 119.45 2.40 102.49  3.97  22.53 

49 9.36  7.84  19.34 0.84 2.36 232.78 2.52 211.70  5.53  41.90 

100 15.50 10.71 44.70 0.69 3.33 221.96 3.53 203.68  6.76  58.37 

225 21.30 14.22 49.82 0.67 3.47 310.31 3.84 270.24  8.40  69.21 

Random 

Networks 

361 25.65 15.43 66.22 0.60 3.60 328.21 4.29 260.06  8.52  81.19 

16 5.56  5.00  11.31 0.90 2.08 140.36 2.20 127.00  3.79  31.83 

49 9.90  8.56  15.65 0.86 2.50 242.94 2.66 221.13  5.42  57.82 

100 12.74 10.85 17.41 0.85 2.63 311.93 3.58 203.13  6.79  59.81 

225 17.32 13.65 26.86 0.79 2.63 418.34 3.74 265.27  8.30  64.57 

Scale-Free 

Networks 

361 20.77 15.66 32.62 0.75 3.05 413.47 4.47 250.35  9.11  71.97 
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4.2 Computational Experiments on the PPSD Model 

4.2.1 Experiment Environments 

The algorithm we propose is written in C, and implemented on a PC with an 

INTELTM Pentium-4 2.0GHz environment, and the other experimental parameters are 

shown in Table 4-3. In this model, to present a heterogeneous network, we assume 

that Pi(bi) is different for each node.  

In the PPSD model scenario 1, by the 20/80 rule, we assume that 20% of the nodes 

in the network are more important than the other 80%. Therefore, we assume that 

Pi(bi) for these 20% nodes follows an exponential distribution with the smaller λ(λ1), 

and the other 80% of nodes follow an exponential distribution with the larger λ(λ2). 

Note that the λ represents the initial compromise probability of each node. In the 

PPSD model scenario 2, we assume that Pi(bi) for an O-D pair follows an exponential 

distribution with a randomly selected λ between [0, 0.5]. Because the source node and 

the core node are important, we assume that the O-D pair has a certain level of 

protection initially. For the other nodes, we assume that Pi(bi) follows an exponential 

distribution with a randomly selected λ between [0, 1]. The LR denotes the attack 

costs of the proposed algorithm, and the other symbols are still the same as we have 

mentioned in the section 4.1.1. 
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Table 4-3 Experimental Parameter Settings for the PPSD Model 

Parameter Value 

Number of Nodes 16~361 

Number of Links 60~1440 

Network Topology Grid, Random, and Scale-Free Networks 

Set of (λ1, λ2) (0.1, 0.2), (0.1, 0.3), (0.1, 0.4);  

(0.2, 0.4), (0.2, 0.6), (0.2, 0.8);  

(0.3, 0.5), (0.3, 0.7), (0.3, 0.9) 

Number of Iterations 2000 

Improvement Counter 50 

Initial Scalar of Step Size 1 

Initial Upper Bound The 1st Getting Primal Feasible Solution 

Test Platform CPU: INTELTM Pentium-4 2.0GHz 

RAM: 1GB 

OS: Microsoft Windows 2000 
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4.2.2 Experiment Results 

In the PPSD model scenario 1, for comparison with other two simple algorithms, 

the proposed algorithm incurs much higher attack costs, and maintains a high level of 

protection in different-sized network topologies, as shown in Figures 4-5 and 4-6. 
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Figure 4-5 Experiment Results for the PPSD Model Scenario 1 in Grid Networks 
(λ1=0.1, λ2=0.2) 
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Figure 4-6 Survivability of the PPSD Model Scenario 1 in Random Networks 
(λ1=0.1, λ2=0.2) 
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In the PPSD model scenario 1, if we assume that the similar λ1, λ2 to the more 

important nodes and other nodes respectively, the network is similar to a 

homogeneous network. Therefore, the depths of defense  have a strong influence on 

the attack costs. In grid networks, the attacker has to compromise more nodes than in 

the other two network topologies, which increases his attack costs. The phenomenon 

is significant, especially if the network size is large, as shown in Figure 4-7.  
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Figure 4-7 Experiment Results for the PPSD Model Scenario 1 in Different 

Network Topologies (λ1=0.1, λ2=0.2) 

However, if λ1 is different from λ2, we must consider more about the node 

characteristics, such as the importance and the Pi(bi) function of each node. For 

example, a node with a substantial number of links that provides short cuts from the 

source node to the destination node is very important in a scale-free network. If the 

node is vulnerable (especially with a bigger λ), we should allocate the defense 

resources to reduce the risk of the node being compromised, which would improve the 

protection of the core node. In a random network, we focus on the vulnerable nodes 
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that have short cuts to the core node, and allocate the defense resources so that the 

protection of the core node is improved. Because the effects of the node 

characteristics are more than those of the depths of defense, the attack costs in 

scale-free networks are higher than those in the other two network topologies, 

especially if the network size is large, as shown in Figure 4-8. After testing several 

combinations of λ1 and λ2, we observe that if the difference between λ1 and λ2 is 

significant, the defender has to consider more about the node characteristics, instead 

of the depths of defense. The more the difference between λ1 and λ2 is, the more the 

impact of node characteristics, as shown in Figure 4-9, Figure 4-10. 
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Figure 4-8 Experiment Results for the PPSD Model Scenario 1 in Different 

Network Topologies (λ1=0.1, λ2=0.4) 
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Figure 4-9 Experiment Results for the PPSD Model Scenario 1 in Different 

Network Topologies (λ1=0.2, λ2=0.4) 
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Figure 4-10 Experiment Results for the PPSD Model Scenario 1 in Different 
Network Topologies (λ1=0.2, λ2=0.8) 

In the PPSD model scenario 2, we assume that the O-D pair initially has a certain 

level of protection, and the other nodes have random protection. In different-sized 

network and topologies, the proposed algorithm incurs more attack costs and 

maintains a higher level of survivability than that of the other algorithms, as shown in 

Figure 4-11 and Figure 4-12. 

Considering both the depths of defense and node characteristics, the attack costs 

of the proposed algorithm are approximately equal in different-sized networks and 

topologies, as shown in Figure 4-13. This implies the proposed protection strategy is 

very adaptive, and we can obtain almost the same effects even in different network 

sizes and topologies.  
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Figure 4-11 Experiment Results for the PPSD Model Scenario 2 in Scale-Free 

Networks  
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Figure 4-12 Survivability of the PPSD Model Scenario 2 in Random Networks   
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Figure 4-13 Experiment Results for the PPSD Model Scenario 2 in Different 

Network Topologies 
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Table 4-4 Experiment Results for the PPSD Model Scenario 1 (λ1=0.1, λ2=0.2) 

Topology 
No. of 
Nodes 

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%)

SA2 
Imp. 

Ratio to 
SA2 (%)

16 11.05  9.81 12.63 0.89 8.42 16.49 8.43  16.40 

49 20.18  14.86 35.81 0.74 10.83 37.17 10.83 37.18 

100 34.47  23.61 46.02 0.68 16.26 45.20 16.39 44.06 

225 69.56  40.50 71.72 0.58 24.22 67.22 24.18 67.50 

Grid 

Networks 

361 104.31 55.46 88.08 0.53 30.61 81.17 30.75 80.34 

16 9.71  9.12 6.46 0.94 7.21 26.49 7.22  26.32 

49 15.87  13.18 20.46 0.83 7.21 82.66 7.35  79.18 

100 29.55  20.35 45.19 0.69 9.15 122.47  9.34  117.95 

225 52.37  31.54 66.03 0.60 10.23 208.23  10.57 198.36 

Random 

Networks 

361 85.57  46.55 83.81 0.54 10.46 344.85  10.71 334.67 

16 8.81  8.29 6.17 0.94 6.25 32.64 6.33  30.94 

49 17.74  12.86 37.93 0.72 8.18 57.23 8.74  47.18 

100 28.95  19.12 51.43 0.66 8.90 114.69  9.53  100.63 

225 56.68  32.37 75.12 0.57 10.47 209.10  11.61 178.81 

Scale-Free 

Networks 

361 85.76  45.48 88.58 0.53 10.71 324.72  11.86 283.56 
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Table 4-5 Experiment Results for the PPSD Model Scenario 1 (λ1=0.1, λ2=0.3) 

Topology 
No. of 
Nodes 

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%)

SA2 
Imp. 

Ratio to 
SA2 (%)

16 11.84  9.68 22.22 0.82 7.81 23.95 7.82  23.84 

49 23.94  15.38 55.68 0.64 9.98 54.15 9.98  54.16 

100 40.60  22.80 78.09 0.56 14.49 57.34 14.68 55.34 

225 88.11  38.64 128.03 0.44 21.11 83.07 21.05 83.58 

Grid 

Networks 

361 135.63 52.13 160.16 0.38 26.58 96.14 26.79 94.61 

16 10.70  9.20 16.31 0.86 6.97 31.96 6.99  31.58 

49 19.50  14.39 35.55 0.74 6.97 106.42  7.16  100.94 

100 38.67  21.62 78.90 0.56 8.41 156.87  8.69  148.75 

225 69.56  31.10 123.66 0.45 9.32 233.79  9.81  216.96 

Random 

Networks 

361 120.77 49.35 144.72 0.41 9.91 397.75  10.26 381.01 

16 9.74  8.48 14.95 0.87 6.01 41.09 6.12  38.51 

49 22.02  13.39 64.40 0.61 7.69 74.11 8.52  57.12 

100 38.31  21.56 77.73 0.56 8.29 159.92  9.20  134.20 

225 78.65  35.63 120.75 0.45 9.68 268.20  11.28 215.79 

Scale-Free 

Networks 

361 120.76 50.73 138.03 0.42 10.04 405.53  11.38 346.02 
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Table 4-6 Experiment Results for the PPSD Model Scenario 1 (λ1=0.1, λ2=0.4) 

Topology 
No. of 
Nodes 

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%)

SA2 
Imp. 

Ratio to 
SA2 (%)

16 12.85  9.76 31.58 0.76 7.44 31.25 7.44  31.13 

49 28.04  15.93 76.04 0.57 9.45 68.52 9.45  68.54 

100 47.34  22.23 113.00 0.47 13.40 65.86 13.65 62.87 

225 108.11 38.11 183.68 0.35 19.19 98.56 19.12 99.36 

Grid 

Networks 

361 168.33 50.46 233.60 0.30 24.10 109.35  24.38 106.97 

16 11.63  9.28 25.39 0.80 6.82 36.02 6.85  35.43 

49 23.19  15.70 47.73 0.68 6.82 130.20  7.06  122.38 

100 48.04  23.37 105.51 0.49 7.96 193.50  8.32  180.80 

225 86.89  32.01 171.40 0.37 8.75 265.70  9.38  241.25 

Random 

Networks 

361 156.52 52.18 199.93 0.33 9.58 444.89  10.02 420.70 

16 10.78  8.66 24.52 0.80 5.86 47.76 6.00  44.26 

49 26.29  14.45 81.99 0.55 7.39 95.44 8.49  70.06 

100 47.64  24.05 98.13 0.50 7.92 203.68  9.12  163.77 

225 100.66 40.37 149.36 0.40 9.19 339.34  11.23 259.60 

Scale-Free 

Networks 

361 156.68 59.93 161.44 0.38 9.62 522.76  11.05 442.15 
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Table 4-7 Experiment Results for the PPSD Model Scenario 1 (λ1=0.2, λ2=0.4) 

Topology 
No. of 
Nodes

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%) 

SA2 
Imp. 

Ratio to 
SA2 (%)

16 11.54  8.50 35.67 0.74 6.25 36.03  6.26  35.74 

49 26.38  15.98 65.02 0.61 8.03 99.09  8.03  99.13 

100 46.93  25.60 83.30 0.55 11.98 113.75  12.22 109.58 

225 105.89 49.77 112.77 0.47 17.77 180.08  17.69 181.37 

Grid 

Networks 

361 165.34 71.01 132.83 0.43 22.44 216.44  22.72 212.51 

16 10.38  8.69 19.53 0.84 5.40 61.02  5.42  60.43 

49 22.51  16.62 35.45 0.74 5.40 207.97  5.68  192.77 

100 46.51  28.23 64.78 0.61 6.78 316.44  7.16  294.34 

225 89.58  49.11 82.40 0.55 7.57 548.98  8.11  505.85 

Random 

Networks 

361 154.10 78.26 96.89 0.51 7.80 903.69  8.29  844.35 

16 9.71  7.68 26.47 0.79 4.67 64.37  4.83  58.84 

49 24.81  14.99 65.51 0.60 6.09 146.27  7.20  108.15 

100 46.24  25.86 78.82 0.56 6.61 291.03  7.84  229.68 

225 98.72  50.10 97.04 0.51 7.77 545.25  9.88  407.29 

Scale-Free 

Networks 

361 154.63 76.07 103.29 0.49 7.96 855.32  9.57  694.84 
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Table 4-8 Experiment Results for the PPSD Model Scenario 1 (λ1=0.2, λ2=0.6) 

Topology 
No. of 
Nodes

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%) 

SA2 
Imp. 

Ratio to 
SA2 (%)

16 13.98  8.38 66.78 0.60 5.84 43.54  5.85  43.21 

49 35.04  16.62 110.88 0.47 7.45 122.95  7.45  123.00 

100 60.95  25.23 141.55 0.41 10.79 133.97  11.13 126.64 

225 147.08 47.94 206.76 0.33 15.67 205.90  15.56 208.22 

Grid 

Networks 

361 232.84 68.74 238.72 0.30 19.73 248.42  20.15 241.18 

16 12.52  8.88 41.00 0.71 5.23 69.69  5.27  68.40 

49 30.02  19.17 56.62 0.64 5.23 266.43  5.61  241.61 

100 65.62  30.95 112.05 0.47 6.28 392.38  6.83  352.76 

225 124.61 48.47 157.11 0.39 6.95 597.22  7.72  527.73 

Random 

Networks 

361 225.49 83.95 168.60 0.37 7.43 1030.21 8.12  934.14 

16 11.97  8.22 45.60 0.69 4.51 82.44  4.73  73.82 

49 34.01  16.33 108.26 0.48 5.76 183.63  7.13  129.02 

100 65.37  31.13 109.98 0.48 6.20 401.95  7.77  300.59 

225 142.83 57.34 149.10 0.40 7.23 692.99  9.92  478.00 

Scale-Free 

Networks 

361 226.23 89.28 153.40 0.39 7.51 1088.73 9.43  846.78 
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Table 4-9 Experiment Results for the PPSD Model Scenario 1 (λ1=0.2, λ2=0.8) 

Topology 
No. of 
Nodes

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%) 

SA2 
Imp. 

Ratio to 
SA2 (%)

16 16.48  8.62 91.22 0.52 5.67 52.15  5.68  51.79 

49 44.04  17.47 152.14 0.40 7.21 142.32  7.21  142.37 

100 75.69  24.64 207.13 0.33 10.28 139.80  10.71 130.06 

225 189.37 48.32 291.91 0.26 14.78 226.96  14.62 230.41 

Grid 

Networks 

361 301.64 67.45 347.24 0.22 18.57 263.16  19.13 252.63 

16 14.71  9.17 60.45 0.62 5.16 77.61  5.22  75.57 

49 37.48  21.77 72.18 0.58 5.16 321.72  5.64  285.84 

100 84.84  34.78 143.89 0.41 6.07 472.64  6.79  411.96 

225 159.92 52.45 204.88 0.33 6.69 684.25  7.63  587.20 

Random 

Networks 

361 296.79 90.91 226.45 0.31 7.27 1150.55 8.16  1014.15 

16 14.29  8.86 61.33 0.62 4.44 99.64  4.72  87.63 

49 43.15  18.90 128.28 0.44 5.62 236.46  7.22  161.82 

100 84.78  36.34 133.26 0.43 6.03 503.03  7.83  364.14 

225 187.12 65.97 183.64 0.35 7.00 842.05  9.93  564.53 

Scale-Free 

Networks 

361 297.63 100.19 197.07 0.34 7.32 1269.19 9.54  950.73 
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Table 4-10 Experiment Results for the PPSD Model Scenario 1 (λ1=0.3, λ2=0.5) 

Topology 
No. of 
Nodes

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%) 

SA2 
Imp. 

Ratio to 
SA2 (%)

16 11.83  8.74 35.28 0.74 5.39 62.11  5.41  61.51 

49 29.68  19.24 54.27 0.65 6.95 176.79  6.95  176.89 

100 54.44  30.59 77.99 0.56 10.53 190.47  10.77 184.06 

225 124.81 61.77 102.07 0.49 15.78 291.44  15.64 294.97 

Grid 

Networks 

361 197.19 92.03 114.26 0.47 19.96 361.06  20.32 352.99 

16 10.83  9.04 19.86 0.83 4.56 97.98  4.58  97.11 

49 26.26  20.19 30.04 0.77 4.56 342.37  4.93  309.20 

100 55.13  35.99 53.17 0.65 5.87 513.01  6.36  466.24 

225 110.49 68.40 61.54 0.62 6.59 938.32  7.17  854.39 

Random 

Networks 

361 188.53 111.45 69.16 0.59 6.66 1573.54 7.29  1427.86 

16 10.32  8.08 27.76 0.78 3.96 103.93  4.18  93.49 

49 28.56  18.51 54.26 0.65 5.22 254.78  6.49  185.45 

100 54.74  33.73 62.30 0.62 5.70 492.26  7.06  377.53 

225 119.60 69.51 72.06 0.58 6.71 935.64  9.28  648.78 

Scale-Free 

Networks 

361 189.16 108.85 73.79 0.58 6.84 1492.24 8.72  1147.55 
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Table 4-11 Experiment Results for the PPSD Model Scenario 1 (λ1=0.3, λ2=0.7) 

Topology 
No. of 
Nodes

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%) 

SA2 
Imp. 

Ratio to 
SA2 (%)

16 14.41  8.36 72.31 0.58 5.12 63.25  5.14  62.62 

49 38.54  18.93 103.57 0.49 6.57 188.22  6.57  188.33 

100 68.73  30.34 126.56 0.44 9.74 211.53  10.07 201.20 

225 166.83 60.68 174.92 0.36 14.39 321.78  14.20 327.28 

Grid 

Networks 

361 265.42 90.52 193.21 0.34 18.16 398.48  18.65 385.34 

16 13.03  9.29 40.24 0.71 4.45 108.60  4.49  106.74 

49 33.83  22.34 51.40 0.66 4.45 401.53  4.92  353.67 

100 74.38  38.78 91.81 0.52 5.54 599.46  6.20  525.55 

225 145.46 67.88 114.30 0.47 6.18 998.67  6.95  876.36 

Random 

Networks 

361 259.77 113.73 128.41 0.44 6.41 1673.21 7.25  1468.95 

16 12.64  8.26 53.04 0.65 3.85 114.33  4.13  100.07 

49 37.64  18.88 99.43 0.50 5.00 277.54  6.51  189.82 

100 74.15  35.89 106.61 0.48 5.42 561.87  7.08  406.58 

225 163.86 72.03 127.48 0.44 6.36 1033.13 9.29  675.56 

Scale-Free 

Networks 

361 260.66 111.65 133.47 0.43 6.54 1608.23 8.76  1174.39 
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Table 4-12 Experiment Results for the PPSD Model Scenario 1 (λ1=0.3, λ2=0.9) 

Topology 
No. of 
Nodes

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%) 

SA2 
Imp. 

Ratio to 
SA2 (%)

16 17.02  8.14 109.06 0.48 5.02 62.24  5.04  61.60 

49 47.63  19.26 147.28 0.40 6.42 199.83  6.42  199.95 

100 83.67  29.53 183.28 0.35 9.44 212.85  9.85  199.73 

225 209.44 60.19 247.96 0.29 13.86 334.15  13.59 342.90 

Grid 

Networks 

361 333.86 89.76 271.96 0.27 17.48 413.43  18.11 395.64 

16 15.29  9.60 59.21 0.63 4.41 117.57  4.47  114.65 

49 41.35  24.95 65.72 0.60 4.41 465.32  4.98  400.66 

100 93.84  41.70 125.04 0.44 5.42 669.21  6.25  567.61 

225 180.99 67.55 167.91 0.37 6.02 1021.41 6.96  870.82 

Random 

Networks 

361 331.77 121.30 173.52 0.37 6.32 1818.81 7.36  1548.85 

16 14.98  8.94 67.61 0.60 3.81 134.46  4.15  115.51 

49 46.93  20.37 130.39 0.43 4.92 314.24  6.59  209.21 

100 93.66  41.42 126.13 0.44 5.32 678.68  7.16  478.52 

225 208.01 79.83 160.55 0.38 6.22 1182.77 9.35  753.90 

Scale-Free 

Networks 

361 332.48 121.77 173.05 0.37 6.42 1795.79 8.97  1256.87 
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Table 4-13 Experiment Results for the PPSD Model Scenario 2 

Topology 
No. of 
Nodes 

LB LR Gap (%) Surv. SA1
Imp. 

Ratio to 
SA1 (%)

SA2 
Imp. 

Ratio to 
SA2 (%)

16 14.42  10.16 41.94 0.70 6.48 56.73 6.76  50.25 

49 36.52  21.35 71.08 0.58 6.92 208.31  7.00  205.13 

100 88.08  44.82 96.52 0.51 10.07 345.24  10.33 333.77 

225 177.25 84.61 109.49 0.48 8.92 848.95  9.07  832.54 

Grid 

Networks 

361 329.29 143.17 129.99 0.43 15.84 804.07  16.18 784.67 

16 11.79  9.65 22.24 0.82 5.05 91.03 5.07  90.12 

49 35.78  26.84 33.29 0.75 6.47 315.02  6.60  306.45 

100 69.09  39.65 74.25 0.57 6.06 553.77  6.36  523.22 

225 159.10 84.18 89.00 0.53 8.25 919.80  8.97  838.00 

Random 

Networks 

361 275.29 136.34 101.92 0.50 7.86 1634.07 8.18  1565.90 

16 11.56  10.08 14.63 0.87 4.45 126.51  4.65  117.01 

49 36.98  24.32 52.05 0.66 5.72 325.06  6.56  270.59 

100 57.41  36.36 57.90 0.63 6.61 450.19  7.60  378.44 

225 153.33 88.17 73.90 0.58 6.49 1258.63 8.70  912.94 

Scale-Free 

Networks 

361 284.94 154.44 84.50 0.54 7.86 1865.08 11.22 1277.05 
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Chapter 5 Conclusion 

5-1 Summary 

In this thesis, we clearly formulate the attack-defense behavior, and propose an 

effective and adaptive defense resource allocation strategy. It works very well, even in 

different-sized networks and topologies. In addition, we propose a survivability factor 

to quantitatively analyze the protection of the network. The higher the factor, the 

more protection the network has. 

In a homogeneous network, the most important issue for the defender to allocate 

the budget is the depth of defense. Because the grid network doesn’t have the short 

cuts, the attacker has to compromise more nodes than in an attack on random or 

scale-free network. Therefore, the defender can obtain more depths of defense to 

deploy the defense resources, while the attacker has to overcome more obstacles 

established by the defender. The defense in depth protection strategy conducts that the 

attack costs in a grid network are higher than in random and the scale-free networks, 

especially if the network size is large.  

However, if the network is heterogeneous, the defender should pay more 

attention to the node characteristics. In random and scale-free networks, we focus on 

the nodes that provide short cuts and are vulnerable. We then allocate the budgets to 

them to improve the protection of the core node. It conducts that the attack costs in 

scale-free network are higher than in gird and random networks, especially if the 

network size is large. The more the differences between nodes are, the more impacts 

of node characteristics. The proposed solution approach is very effective and adaptive 
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ˆ ( )i ia b

in different scenarios. 

In addition, by applying the proposed protection strategy, we can obtain a 

threshold of the attack cost at. Therefore, if we know the probability distribution of 

the total attack power A of the attacker, we can obtain another novel survivability 

factor, which is equal to P(A|A>at). 

5-2 Future Work 

Until now, there has been little research on the functions , Pi(bi). In our 

experiments, we assume that  follows a concave function ln(bi+1), and Pi(bi) 

follows an exponential distribution with different λ. The  and Pi(bi) functions 

will be an interesting research topic in the future. 

ˆ ( )i ia b

ˆ ( )i ia b

In this thesis, we only consider single core node. However, enterprises and 

organizations may have more than one core node to protect. For example, a bank with 

many branches may store its transaction data in different places. Therefore, in the 

future, we may consider multiple core nodes, and propose a good solution approach 

for defenders to allocate their defense resources. 

A vulnerable choke point can be viewed as another important node in a network. 

In the PPSD model, if a choke point exists and is vulnerable, the best protection 

strategy is to allocate the budget to that node. Therefore, finding vulnerable choke 

points is a very interesting topic in the future. In Figure 5-1, the pink node denotes 

the vulnerable choke point. 
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Figure 5-1 Choke Point Example 

The total attack power distribution is another interesting research topic that we 

know very little about. If we can learn m

In addition, game theory could be considered. In this thesis, we formulate the 

attack-defen

In this thesis, the network topology is given. However, if the defender can decide 

how to construct the network, 

ore about it, we may adopt it and propose a 

more effective protection strategy to help defenders against attacks. 

se behavior as a mathematical model. However, with the rapid 

development of game theory, we may adopt it to solve network attack-defense 

problems in the future. 

it will be more helpful for him to develop the protection 

strategy against targeted attacks. For example, if the defender can construct a linear 

defense region, with deep depths of defense. Therefore, the attacker has to overcome 

more obstacles than other network topologies. However, the availability of the 

network is limited, e.g., the delay of the network is significant because the packet has 

to cross much more hops. The network structure is another aspect we could consider, 

and it is a trade-off between availability and security. 
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