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ADVISOR: DR. YEONG-SUNG LIN
NEAR OPTIMAL PROTCTION STRATEGIES AGAINST

TARGETED ATTACKS ON THE CORE NODE OF A NETWORK

With the rapid growth of network technologies, the Internet may well become the
single most important medium of the 21st century. Therefore, the issue of information
security has drawn increasing attention. In network attack and defense, attackers and
defenders constantly change their respective strategies. The situation is like the

balance between a lance and a targe.

In this thesis, we view the problem of security from the defender’s perspective.
Given that defense resources are limited, we propose an effective defense resource
allocation strategy that maximizes the attackers’ costs, and improves the protection of
the core node. The problem is analyzed as a mixed nonlinear integer programming
optimization problem. The solution approach is based on the Lagrangean relaxation
method, which effectively solves this complicated problem. Furthermore, we evaluate

the survivability of real network environment-like scale-free networks.

Key Words: Defense Resource Allocation Strategy, Information Security,
Lagrangean Relaxation Method, Network Attack and Defense, Optimization,

Scale-Free Networks, Survivability.
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Chapter 1 Introduction

1.1 Background

The 21st century is the so-called age of the Internet, which implies the Internet
has become an indispensable application in our daily lives. A substantial number of
Internet applications have been developed for our convenience, and they have had a
great impact on information communications worldwide, such that a network user can
communicate or obtain information unboundedly. However, the downside of this
phenomenon is that attackers can target organizations or individuals who connect to

the Internet and thereby obtain sensitive information because of its high availability.
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Figure 1-1 Trend of Incidents

With the rapid growth of the Internet, the realm of information security has

attracted more and more attention. In recent years, according to the report from CERT

1



[1], the number of incidents [2] has increased as Figure 1-1 shows. An incident
indicates a violation of security policy, such as an attack on a computer or an attempt
to gain unauthorized access to some data. Because of this trend, information security
has become increasingly important. A substantial number of techniques and
methodologies have been proposed to protect networks against malicious attacks.
Many researchers in the field of information security have focused on the behavior of
attackers and the defense methods of those under attack. From such research, we
know that attackers and defenders constantly change their respective strategies. Thus,
if defenders change their defense methods, attackers will change their strategies to
find new vulnerabilities to gain the same benefits. Moreover, defenders will modify
their defense methods in order to increase the difficulties of attacks, and then attackers

will react again. The situation is like the balance between a lance and a targe.

Another important research domain is network survivability, and a great deal of
research has been conducted on survivability. Initially, researchers focused on the
effect of random failures on networks, like large-scale power failures, and tested how
robust and dependable a network was. They have proposed many definitions,
techniques, and architectures to evaluate the survivability of networks. Therefore,
given the trend of improving information security, many researchers are paying

ever-increasing attention on combining survivability and information security.

Another way to evaluate the survivability of a network is to study its topology.
The scale-free network is attracting more and more attention from the domain of
network research. This topology structure follows the power-law distribution [3]. The

best practice of the scale-free network is the Internet. Most parts of the Internet
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operate normally when random failures happen; however, if the Internet suffered
intelligent attacks, its performance would be significantly impaired. These facts

motivate us to investigate how different topologies influence survivability.

The key asset of enterprises or organizations is their know-how. Usually, they
store their most valuable and sensitive knowledge in a network domain, called the
“core node”, which attackers try their hardest to compromise. However, enterprises or
organizations have finite information security budgets to purchase security products
or obtain expert advice to enhance network survivability. From a network operator’s
perspective, there are few guidelines on how to allocate security budgets effectively.
Thus, there is an urgent need for research in the field of combining survivability and

information security.

1.2 Motivation

Because of the critical importance of the core node, defenders and attackers
change their strategies to protect and compromise the node respectively. With limited
defense resources, defenders need to deploy the resources more effectively. However,
until now, there has only been limited theoretical research on the economic allocation
of defense resources. Therefore, we propose a mathematical model to formulate the
attack-defense behavior, and propose defense strategies to improve the protection of
the core node. The motivation of this thesis is to provide defenders with useful
defense resource allocation strategies, and that will make the cost of attacking the core

node unacceptable to the attacker.



1.3 Literature Survey

1.3.1 Survivability

The research of survivability has a long history, and a wealth definitions, models,
and architectures. The discipline of survivability can be classified into three categories,
performance, connectivity, and other measurements. With ever-increasing attention of
information security, many researchers have focused on the combination of
survivability and information security. Thus, in this thesis, the survivability is the

measurement of information security, which indicates the protection of the core node.

In [4], the author summarizes definitions of survivability, and we extract some
information security related ones. Therefore, we find that the general concept of
information security related survivability has!three parts: 1) the continuity of service
under an attack; 2) the provision of strategy ‘against an attack; 3) the ability to protect
the system from being compromised. In [5], the definition of survivability is the
capability of a system to fulfill its mission in a timely manner in the presence of
attacks, failures, or accidents, which satisfies part 1. In [6], the definition of
survivability is a property of a system, subsystem, equipment, process, or procedure
that provides a defined degree of assurance that the named entity will continue to
function during and after a natural or man-made disturbance; this also satisfies part 1,

too. In this thesis, we focus on part 2, thereby improving parts 1 and 3.

Along with the trends, a substantial number of models are proposed or modified

to evaluate the security related survivability. In [7], the authors summarize several



models to quantitatively evaluate the survivability. For example, the attack tree is a

graphical one, which consists of a goal, attack scenarios, and logic gates, as shown in

Figure 1-2.
Gy
Gy Gs Gs Gy

)
AND Leaf
—

Figure 1-2 Attack Tree Example

Gy denotes the goal, e.g., the crash of the system. The leaf node denotes the
attack scenario. Initially, we set the value to each attack scenario, so we can obtain the
value of Gy via logic gates. That is, if the probability is assigned to each leaf node,

one can finally obtain the probability of achieving the goal via the attack tree.

Another means of evaluating the survivability is the state-based model. In [8],
the authors propose an architecture to quantitatively analyze the survivability. The
survivability specification is a four-tuple, {£, R, P, M} where E is a definition of the
environment where the survivable system has to operate; R is a set of specifications of

tolerable forms of service for the system; P is a probability associated with each
5



member of the set R with the sum of these probabilities being one; M defines
precisely how and when the system is required to move from providing one form of
tolerable service to another. Therefore, we initialize specifications from R; to R,, with
its probability P. Thus, by applying the architecture, we can describe and evaluate the
survivability performance level for different scenarios, even under seriously abnormal
conditions. Furthermore, in [9], by applying this architecture, the author implemented

it by the Markov chain.

In addition, there is still much research about quantitative analysis of the
survivability. In [10], the author proposes a survivability function to measure the
performance when the network suffers a catastrophic disaster. The survivability
function is proposed to evaluate the expected percentage of total data flow delivered
after failure, even in the worst case scenario. In [11], researchers discuss issues and
approaches, such as application error recovery, and securing the survivability
mechanism, for developing survivable architectures. To concentrate on securing the
survivability mechanism, if the survivability mechanism were completely isolated, the
security of the survivability mechanism is possible. However, it is impossible, e.g.,
the firewall configuration on a web server may be changed by attackers via the
Internet. Therefore, the authors propose two approaches to solve this problem: 1)
one-way translation and diversity, and 2) securing the survivability mechanism. In the
summary, the authors summarize approaches then propose survivable architectures to

enhance the survivability and security of the system simultaneously.

To summarize the research of quantitative analysis in the discipline of

survivability, however, we find that to date there is a lack of a model to formulate the

6



attack-defense behavior. Therefore, the motivation of this thesis is to formulate
attack-defense behavior, then provide defenders with strategies to maximize the

protection of the core node.

1.3.2 Scale-Free Networks

In 1959, a well-known random graph model was proposed by Erdos and Renyi,
called the ER model [12]. The specification of the ER model is the links between
nodes are randomly placed. After the random placement of links, most nodes have
almost the same number of links. Therefore, there are few nodes with an extremely
large or small number of links. The probability P(k) denotes the probability a node
connected to k other nodes, and it follows the Poison distribution with a bell shape.
The random network is also called the exponential network because its P(k) is rapidly
reduced for large k. Figure 1-3 is an example of random networks [13], which

resemble the U.S. highway system.

j P gy
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Figure 1-3 Random Network Example

In 1988, Duncan Watts and Steve Strogatz proposed another type of random

network, called small-world model [14]. With randomly rewired links, the diameter of
7



the small-world network will be rapidly reduced. Many observations were based on
the small-world model, e.g., it was the basis of the popular notion of “six degrees of
separation”, which demonstrates the maximum number of hops between any two

people are six individuals.

However, with the rapid growth of the Internet, the small-world model doesn’t
meet the specifications of the Internet. There still exits small-world phenomenon [15],
but P(k) of the Internet follows the power-law distribution, where P(k)~k". It’s a noble
network, where a small ratio of nodes own a substantial number of links, called the
scale-free network [13]. The notion ‘“scale-free” indicates the scale of the tail
distribution of P(k) is unlimited; the scale is “free”. The scale-free network was the
newly observational network topology in recent years. Its strength is “the rich get
richer”, but that is also its Achilles’ heel. The rich get richer indicates when a new
node enters a network, it prefers to attach the node with a substantial number of links.
Therefore, the network will eventually dominated by several most-connected nodes.
However, this phenomenon also conducts risks. For the random network, because of
its democracy of the number of links, if attacks on its most-connected nodes happen,
the network will be remain robust because of its homogeneity. But for the scale-free
network, if it suffers attacks on its most-connected nodes, the network will be
separated into a number of fragmentations and isolations, and that is its so-called

Achilles’ heel, as shown by the red circles in Figure 1-4 [16].



Figure 1-4 Scale-Free Network Example

1.4 Proposed Approach

The problem is a mixed nonlinear integer programming optimization problem,
which can be effectively solved by using the Lagrangean relaxation method in
conjunction with optimization-based  heuristics. Furthermore, in this thesis, the
definition of survivability we propose is the degree of protection to the core node
against intelligent attacks. To quantitatively analyze the survivability, we propose a

novel survivability metric in the following:

The survivability metric = LR / LB, where LR denotes the attack costs conducted
by the proposed solution approach; and LB denotes the theoretical attack costs. The
survivability metric indicates a level of protection of the core node. The more the

survivability is, the better the protection of the core node is.
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Chapter 2 Problem Formulation

2.1 Protection Strategy for Defenders (PSD) Model

2.1.1 Problem Description and Assumptions

At the AS (Autonomous System) level, by node we mean a network domain, e.g.,
a set of subnets. Because the core node contains much sensitive and valuable
information, it has high strategic value. Thus, attackers target it to obtain the
information. In order to compromise the target node, attackers will find a path from
the start node to the core node, and compromise all intermediate nodes on the path to
the target. However, compromising a node costs attackers some resources, such as

time, money, and man-power.

From the defender’s perspective, if more defense resources are allocated to a
node, the protection of the node will be improved, and cost of attacking it will be
increased. However, defense resources are limited, defenders must adopt an efficient
resources allocation strategy that utilizes the resources effectively and economically,

and simultaneously maximizes the attacker’s costs.

In the worst case scenario, if an attacker can obtain the complete information
about a network and use it intelligently, he will find the path of minimal attack cost to
minimize the total cost of compromising the core node. Meanwhile, the defender will
try to maximize the attacker’s total necessary attack costs through different budget

allocations to each node. In response, the attacker will then determine another path

11



minimal attack cost to compromise the core node, as shown in Figure 2-1.

U

Figure 2-1 Network Attack and Defense Behavior

The red circle denotes the source and core node; the blue node denotes the node
the defender allocates defense resources to; and the red arrow indicates the attack path
from the source to the core node. In the left-hand graph, the defender allocates a
defense budget to the blue nodes. If ‘the attacker can obtain complete information
about the network, he will try to find the minimal attack cost path to compromise the
core node, and avoid passing through the ‘blue nodes. In the right-hand graph, to
maximize the attacker’s costs, the defender adopts another resource allocation strategy.
In response to the defender’s strategy, the attacker tries to determine another minimal
attack cost path to reach the target node. Our task is to derive an effective defense
resource allocation strategy against intelligent attacks, and prevent the core node from

being compromised.

12



Table 2-1 Problem Description of the PSD Model

Given:

1. Network topology
2. Total budget of the defender

3. The cost of compromising a node is a function of the node’s budget allocation

Objective:

To maximize the minimized total attack cost

Subject to:

1. Budget constraint of the defender

To determine:

1. The budget allocated to each node by the defender
2. Which nodes will be compromised by the attacker

3. Which routing path will be chosen to reach the core node

13




Table 2-2 Problem Assumptions of the PSD Model

Assumptions :

8.

9.

. The attacker is on node s.

Only one node (node ¢, the core node) is the target of attack.

A node i is the subject of the attack only if a path exists from node s to node i,
where all the intermediate nodes on the path have been compromised (they can be
viewed as hop sites for attacking the target).

If a,(b) attack cost or more is applied to node i, then the node will be
compromised.

Both the attacker and defender have complete information about the network.

The attacker will always find the best strategy to reach the objective.

The defender is subject to the total budget'constraint.

No link attacks are considered.

No random failures are considered.

10. The network is viewed at the AS level.

14




2.1.2 Notations

Given Parameters

Notation | Description

B Total budget of the defender

N The index set of nodes in the network

w The O-D pair (s, t)

P, The index set of candidate paths for O-D pair w

O pi The indicator function, which is 1 if node i is on path p, and 0 otherwise;

ieN,peP,

Decision Variables

Notation | Description

Vi 1 if node 7 is compromised, and O.otherwise; ieN

Xp 1 if path p is selected as the attack path, and 0 otherwise; pe P,
b; The budget allocated to protect node i; ie N

a;(b,) The attack cost applied against the budget of node i; ie N

15




2.1.3 Problem Formulation

Objective function:

max mxin Z&i(bi) Z x,0,

P ieN pePR,

subject to:

> b<B

ieN

0<h <B VieN

2%, =

PePp,

x,=0o0rl. VpePr,.

The objective function (IP 1) to maximize the minimized total applied attack cost,
where the defender manipulates the budget to maximize the value of the total applied
attack cost, while the attacker minimizes it by choosing which path to attack.
Constraint (1-1) is the total defense budget constraint for the defender. Constraint (1-2)
requires that the budget allocated to each node should be between zero and the total

budget B. Constraint (1-3) and Constraint (1-4) jointly enforce that exactly one path

will be chosen between the given O-D pair.
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2.1.4 Problem Reformulation

Objective function:

I’I%}Il - Zyiai (bi)

ieN
subject to:

Zyi&i (b)< Z5pidi b))

ieN ieN

Z xpépi <Y

Pep,

pr=1

peb,
x,= Oorl

y;,=0o0rl

> b<B

ieN

0<b <B

From the defender’s perspective, we want to maximize the total applied attack
cost through the budget allocation to each node. Therefore, we modify the objective
function (IP 1) in the form of minimizing the attacker’s negative attack cost (IP 2).
Constraint (2-1) requires that the selected path for the O-D pair should be the minimal
attack cost path. Constraint (2-2) is the relation between y;, x, and J,;.. We use y; to
replace the product of x, and J,;, summing over all candidate paths. The substitution
further simplifies the Lagrangean relaxation procedures. Constraint (2-3) and
Constraint (2-4) jointly enforce exactly that one path will be chosen between the
given O-D pair. Constraint (2-5) requires that each node is either compromised or not.

Constraint (2-6) is the total budget constraint. Constraint (2-7) requires that the budget

V peP,

VieN

VpePp,

YieN

VieNl.
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allocated to each node should be between zero and the total budget B.

2.2 Probabilistic Protection Strategy for Defenders
(PPSD) Model

2.2.1 Problem Description and Assumptions

Based on the PSD model, we further assume that there is a probability that each
node could be compromised under attack, and attacks on nodes are independent.
Therefore, from the attacker’s aspect, the probability of compromising the core node
successfully is a product of the compromise probability of each node on the attack

path between the given O-D pair.

From the defender’s perspective, if the defender allocates more defense
resources to a node, the compromise probability of the node will be reduced. With
limited defense resources, defenders need to adopt a strategy that allocates the defense
budget more effectively and economically, to minimize the probability of the core

node being compromised.

In the worst case scenario, if the attacker can obtain complete information about
the network and intelligent, he will try to find the most unreliable path to compromise
the core node, which indicates that the product of the compromise probability of each
node along the path is maximal. Meanwhile, the defender will try to make the network
more secure by allocating a different budget for each node to minimize the probability

that the core node will be compromised.
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Table 2-3 Problem Description of the PPSD Model

Given:

1. Network topology
2. Total budget of the defender
3. The probability that a node will be compromised is a function of its budget

allocation.

Objective:

To minimize the maximized compromise probability of the network

Subject to:

1. Budget constraint of the defender

To determine:

1. The budget allocated to each node by the defender
2. Which nodes will be attacked by the attacker

3. Which routing path will be chosen to reach the core node

19




Table 2-4 Problem Assumptions of the PPSD Model

Assumptions :

8.

9.

. The attacker is on node s.

Only one node (node ¢, the core node) is the target of attack.

A node i is the subject of the attack only if a path exists from node s to node i.
Both the attacker and defender have complete information about the network.
The attacker will always find the best strategy to reach the objective.

The defender is subject to the total budget constraint.

No link attacks are considered.

No random failures are considered.

Attacks on nodes are independent.

10. The network is viewed at the AS level.
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2.2.2 Notations

Given Parameters

Notation | Description

B Total budget of the defender

N The index set of nodes in the network

w The O-D pair (s, t)

P, The index set of candidate paths for O-D pair w

O pi The indicator function, which is 1 if node i is on path p, and 0 otherwise;

ieN,peP,

Decision Variables

Notation | Description

Vi 1 if node 7 is compromised, and O.otherwise; ieN

Xp 1 if path p is selected as the attack path, and 0 otherwise; pe P,
b; The budget allocated to protect node i; ie N

P(b) The probability of node i being compromised by an attack; ie N

21




2.2.3 Problem Formulation

Objective function:

min max [12@)> x,6, (IP 3)

P ieN pePR,

subject to:

> b<B (3-1)
ieN
0<b <B VieN (3-2)
> x, =1 (3-3)
peb,
x,=0orl. VpePp,. (3-4)

The objective function (IP 3) is to minimize the maximized probability of
compromising the core node, where the defender manipulates the budget to minimize
the product of the probability of compromise, while the attacker maximizes it by
choosing which path to attack. Constraint (3-1) is the total defense budget constraint
for the defender. Constraint (3-2) requires that the budget allocated to each node
should be between zero and the total budget B. Constraint (3-3) and Constraint (3-4)

jointly enforce that exactly one path is chosen between the given O-D pair.
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2.2.4 Problem Reformulation

Objective function:

min > In £(5,), (IP 4)

ieN

subject to:

Y —-InPR(b)y, <Y ~-InR(k)S,  VpePp, (4-1)
ieN ieN

Z x,0, <Y, VieN (4-2)
peb,

> x, =1 (4-3)
peb,

x,=00rl Vpepr, (4-4)
y,=0o0rl VieN (4-5)
2.b<B (4-6)
ieN

0<h<B VieN. (4-7)

To simplify this problem, we transform the compromise probability P«b;) of each
node i into the weight —InP,(b;). Therefore, from the defender’s perspective, the
objective function (IP 4) is to minimize the weight of compromising the core node.
Constraint (4-1) requires that the selected path for the O-D pair should be a minimal
weight path. Constraint (4-2) is the relation between y;, x,, and J,;. We use y; to replace
the product of x, and J,;, to sum over all candidate paths. Also, the substitution further
simplifies the Lagrangean relaxation procedures. Constraint (4-3) and Constraint (4-4)
jointly enforce that exactly one path is chosen between the given O-D pair. Constraint
(4-5) stated that each node could be attacked. Constraint (4-6) is the total budget

constraint. Constraint (4-7) requires that the budget allocated to each node should be
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between zero and the total budget B.
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Chapter 3 Solution Approach

3.1 Lagrangean Relaxation Method

In the 1970s, many solution ideas were proposed to solve complicated integer
programming problems [17]. One of them, called decomposition, states that many
hard integer programming problems can be viewed as a set of several easier
subproblems with side constraints, which are easier to solve. One well-known
decomposition solution approach is the Lagrangean relaxation method. In recent years,
Lagrangean relaxation has become one of the most popular tools for solving
optimization problems, such as integer programming, linear programming, nonlinear

programming, and combinational programming problems.

By applying the Lagrangean relaxation method [18], we can dismantle original
models by removing some constraints and placing them in the objective function with
associated multipliers. The new optimization problem with fewer constraints is called
the Lagrangean relaxation problem. For minimization problems, the optimal value of
the Lagrangean relaxation problem is always the lower bound of the original problem.
To obtain the best lower bound, we have to tune the multipliers of the Lagrangean
relaxation problem so that the optimal values of the Lagrangean relaxation
subproblems are as large as possible. We can solve these subproblems in a variety of

ways, of which the subgradient method would be the most popular technique [17][19].

The fundamental principles of the Lagrangean relaxation method are to

decompose the original problem into several easily solvable subproblems, each of
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which can be viewed as a standalone model. The solution approach permits us to
exploit a substantial number of well-known algorithms to solve each subproblem.
Therefore, we can locally optimize each subproblem, and then compose the

subproblems with the global optimization.

The Lagrangean relaxation method has two main advantages. First, because we
decompose the original complicated problem into several easily solvable subproblems,
and choose well-known algorithms to solve each subproblem, Lagrangean relaxation
is more flexible and the computational complexity of the original complicated
problem is significantly reduced [17][19][20]. Second, given the nature of the
Lagrangean relaxation method, it can help us obtain the bounds of the objective
function, and we can evaluate the solution quality for implementing primal feasible

solutions.

Figure 3-1 illustrates the general concepts of the Lagrangean relaxation method,

while Figure 3-2 illustrates the detailed procedures of the method.
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Figure 3-2 Procedures of the Lagrangean Relaxation Method

3.2 PSD Model

3.2.1 Solution Approach

We transform the reformulation of the PSD model into the following Lagrangean
relaxation problem (LR 1) by relaxing Constraints (2-1) and (2-2), with multipliers u’

and u° respectively. Furthermore, we assume that a,(b,) is equal to the concave

function In(b;+1), which indicates that the marginal attack cost of the node will be

reduced by the additional budget allocated to a node.

3.2.2 Lagrangean Relaxation

Zy ' u?)=min =y In(b, +)+ D u, > (y,=6,)In(b, + )+ D u’ (D x,6,-v) (LR 1)

Py e, i< Py
subject to:

> x, =1 (5-1)
pep,

x,=00rl VpePp, (5-2)
y,=0o0rl VYieN (5-3)
> b<B (5-4)
P

0<bh <B YVieNlN. (5-3)

We can decompose this optimization problem into the following two

independent subproblems.
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Subproblem 1-1 (related to decision variable x,)

min ) > u'x,8, (SUB 1-1)

ieN peP,

subject to:

D x, =1 (5-1)
PeP,
x,=00rl Vpepr,. (5-2)

(SUB 1-1) can be viewed as a shortest path problem with a node weight 'S i ¢

Because u’ is non-negative, we apply Dijkstra’s shortest path algorithm to optimally

solve (SUB 1-1). The time complexity is O(N).

Subproblem 1-2 (related to decision variables y;, b))

min () ub =1y, In(b,+1)= > Do, In(b,+1)-> u’y, (SUB 1-2)

PED,, ieN D py, e N ieN

subject to:

y,=0o0rl VieN (5-2)
> b<B (5-3)
ieN

0<bh <B VieN. (5-4)

(SUB 1-2) can be further decomposed into |N| subproblems. For each node i,
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min () u, —1)y, In(b,+1)— D u, 8, In(b, +1)—u}y,

PEDPy PED,,
subject to:

y,=0o0rl

> b<B

ieN

0<bh <B.
To optimally solve (SUB 1-2), we must consider the following three cases:
Case 1, z u; =1. For a node that is not on the selected path X, (5,; = 0), we

PEDPy

assign b; = 0. Furthermore, if uf of the node is more than zero, we assign y; = 1, and

0 otherwise. For a node that is on the selected path X, (J,; = 1), we assign y; = 1, b; =
B/P, where B denotes the total budget, and P denotes the number of nodes on the

selected path X,

Case 2, 0< z u; <1. Initially, we assign all nodes y; = 1. After applying

PEPy

calculus, if Pd<B, then for a node with J,; = 1, we assign b; = d; and for a node with

b p B+(N-P)Y u,
8, = 0, we assign b; =——=, where d = ol and N denotes the

N-P P=(D u,-1)(N-P)’

PEPy

number of nodes. If Pd > B, then for a node with J,; = 1, we assign b, = B/P; and for

a node with d,; = 0, we assign b; = 0. Furthermore, if uf of the node is equal to zero,

we assign y; = 0.
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Case 3, Z u; >1. For a node with J,; = 0, we assign b; = 0. Furthermore, if uf
PEPy,

of the node is more than zero, we assign y; = 1 and 0 otherwise. For nodes with J,, = 1,

initially, we assign y; = 1, and sort them in ascending order, depending on u’. Step

by step, we assign the first Q nodes in the order y; =0, where 0=0, 1,2, ..., P. If 0=
0 or P, we assign b; = B/P to all nodes in that order. If 0 < Q < 0, after applying

calculus, the proper value of b; for the first O elements in the order is

B+(P-0)1- Y u))

pep,

(P-0) D> u,+0

PEPy

, and we assign the value to e. If e < 0, we modify e to 0; if Qe

> B, then we modify e to B/Q. Therefore, we assign b; = e to the fist O nodes in the
B—Qe

( Z u; — l)z v, In(b, +1)— Z Zu;é'pi In(b, +1)— Zul.zyi after assigning proper

PED,, ieN pep, ieN ieN

to the other nodes in the order. We obtain

order, and assign b, =

values of b; and y; to each node. Therefore, we can obtain P+1 values of the above
function, and choose the minimal one to optimally solved (SUB 1-2). The time

complexity is O(IN]).

3.2.3 The Dual Problem and the Subgradient Method

Based on the weak Lagrangean duality theorem [21], the objective value of

Z,,(u',u*) is a lower bound of Z,,. Therefore, we construct the following dual

problem (D1) and obtain the tightest lower bound by applying the subgradient method

[21].
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Dual Problem (D1):
Z, =max Z, (u',u’)

subject to:

Let the vector S be the subgradient of Z, (u',u”). Then, in iteration k of the

subgradient optimization procedure, the multiplier vector m" = (u",u*") is updated

Z]sz —Zp (mk)
| S*IP

1

by m""! =m"' +a"S*. The step size o' is determined by p

Z,," is the best primal objective function value obtained by iteration k, and p is a

constant where 0< p<2.

3.2.4 Getting Primal Feasible Solution

To obtain a heuristic that solves the problem, information provided by
multipliers is very helpful. In this problem, the multiplier vector u’ is adjusted by

the function Z( y; —6,)a,(b,) for each node i, which implies the importance of each
ieN

node i. This gives a hint about how to allocate the budget.

In addition, we construct a minimal defense region to improve the solution
quality. First, we obtain the minimal number of nodes that need to be compromised by
applying Dijkstra’s shortest path algorithm. Then, by applying a labeling process, we
obtain an initial defense region. However, as some nodes of the outer layer may be

unnecessary, we remove them from the region. Finally, we obtain the minimal
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2

defense region, and allocate b;, where b, ~r =————.Ifanode has 7, >0, and it is

total u’

not in the minimal defense region, we allocate its budget to the source and destination

node without allocating any budget to the node.

The tuning process allocates the epsilon budget from the source and core node to

the other nodes in the minimal defense region. Then, we test if the objective function

value is less than the previous state. If it is, we continue the tuning process until the

objective function value is no less than the previous state. The time complexity of the

heuristic is O(N)).

Table 3-1 Heuristic for the PSD Model

Step 1.

Step 2.

Step 3.

Construct a minimal defense region by applying the labeling and the
removal processes. The labeling process is based on a breadth-first search,
and the removal process tests whether each outer layer node is necessary or

not.

2

Allocate b; to each node, where b, ~r, =u—"2, ieN. If a node has
total u;

r. >0, and it is not in the minimal defense region, allocate its budget to the

source and destination node without allocating any budget to the node.

Tune the epsilon budget from the source and core node to the other nodes
in the minimal defense region. If the objective function value is less than

the previous state, we continue the tuning process recursively.
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3.3 PPSD Model

3.3.1 Solution Approach

We can transform the reformulation of the PPSD model into the following

Lagrangean relaxation problem (LR 2) by relaxing Constraints (4-1) and (4-2), with

multipliers u’ and u’ respectively. Furthermore, we assume that P(b,) follows an
exponential distribution with A, which indicates that the compromise probability will

be rapidly reduced by the additional budget allocation to a node.

3.3.2 Lagrangean Relaxation

Z,, =min Zlnle’]‘biyi + Z uLZlnie*b"(ép[ —y[)+2ui2(z x,0,, = ¥;) (LR 2)
ieN PEP,, ieN ieN peP,

subject to:

> x, =1 (6-1)

peb,

x,=00rl VpePp, (6-2)

y,=00rl VieN (6-3)

> b<B (6-4)

ieN

0<b <B VieN. (6-5)

We can decompose this optimization problem into the following two

independent subproblems.
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Subproblem 2-1 (related to decision variable x,)

min ) > u'x,8, (SUB 2-1)

ieN peP,

subject to:

D x, =1 (6-1)
PePp,
x,=00rl Vpepr,. (6-2)

(SUB 2-1) can be viewed as a shortest path problem with a node weight 'S i ¢

Because u’ is non-negative, we apply Dijkstra’s shortest path algorithm to optimally

solve (SUB 2-1). The time complexity is O(N).

Subproblem 2-2 (related to decision variables y;, b;)

min (1- ) u))> Inde ™y + Y u) Y Inde 5= u’y, (SUB 2-2)

PEP,, ieN PED,, ieN ieN

subject to:

y,=0o0rl VieN (6-2)
> b<B (6-3)
ieN

0<bh <B VieN. (6-4)

(SUB 2-2) can be further decomposed into |N| subproblems. For each node i,
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min (1- ) u))Inde ™y, + > u Inde™s, —u’y,

PEP,, PEPy,
subject to:

y,=0orl

> b<B

ieN

0<bh <B.
To optimally solve (SUB 2-2), we have to consider the following three cases:

Case 1, z u; =1. For a node that is not on the selected path X, (5,; = 0), we

PEDPy

assign b; = 0. Furthermore, if u’ of the node is more than zero, we assign y; = 1 and

0 otherwise. For a node that is on the selected path X, (d,; = 1), we assign y; = 1, and
record its A. Therefore, we assign b; = B to the node with the maximal A, and assign

the other nodes b; = 0.

Case 2, 0< z u; <I. Initially, we assign all nodes y; = 1. For a node with J,; =
PEDy

0, we record the value (Z u; —1)A; and for a node with J,; = 1, we record the value
PEDy

—A. Therefore we assign b; = B to the node with minimal value, and b, = 0 to the

other nodes.

Case 3, Z u; >1. For a node with J,; = 0, we assign b; = 0. Furthermore, if
DPEPD,,

(1- > u))InA—u} of the node is less than zero, we assign y; = 1, and 0 otherwise.
PED,,
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1 2
(1-> u)inA—u
For a node with J,; = 1, we compute the critical point C.P.=—2" JIf

(- u)A

PEDPy

C.P.<0, we record the value — Z u;}t ;if C.P.> B, we record the value -4; and if

PEPy,

=Y wAB+(D u, —)InA+u;

0<C.P.< B, we record the value —% L E; . After recording

the values of all nodes with d,; = 1. We assign b; = B to the node with minimal value,
and b; = 0 to the other nodes. For the node with minimal value, if its value is equal
to —A, we assign ); = 1, and 0 otherwise. For the other nodes with J,; = 1, if

Z u; InA<InA-u’, we assign y; = 0, and 1 otherwise. After assigning appropriate
PED,,

values of b;, y; to each node, we can optimally solve (SUB 2-2). The time complexity

is O(|N]).
3.3.3 The Dual Problem and the Subgradient Method

Based on the weak Lagrangean duality theorem [21], the objective value of

Z,,(u',u”) is a lower bound of Z,,. Therefore, we construct the following dual

problem (D2) and obtain the tightest lower bound by applying the subgradient method

[21].

Dual Problem (D2):
Z,, =max Z,,(u',u’)
subject to:

1 2
u,u->0.
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Let the vector S be the subgradient of Z,,(u',u”). Then, in iteration k of the

subgradient optimization procedure, the multiplier vector m"* = (u'*,u**) is updated

Z/P4k —Zp, (mk)
ISP

by m*' =m*' +a*S* . The step size a* is determined by p , where

Z,," is the best primal objective function value obtained by iteration k, and p is a

constant where 0< p<2.

3.3.4 Getting Primal Feasible Solution

Based on the getting primal feasible solution for the PSD model, we construct a

minimal defense region to improve the solution quality. Then we adopt the multiplier

2

vector u; as a hint to allocate b;, where b, ~r, =——/—_ If a node with 7 >0 is

total u;

not in the minimal defense region, we allocate its budget to the source or destination

node, depending on which one has the bigger /.

The tuning process extracts the epsilon budget from the source or core node that
has the bigger /, and allocates it to the nodes in the minimal defense region, one by
one. Then we can determine which of the nodes we allocated the epsilon budget to
will result in the most negative effect of the objective value. If the value of the
objective function is less than the previous state, we continue the tuning process until

that value is no less than the previous state.

After finishing the tuning process, we compare the objective function’s value
with another heuristic that is based on the primal variable ;. By applying the LR
method, we can obtain the value of the primal variable b; for each node. Therefore, we

can derive a primal-based heuristic, which allocates the budget to each node
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according to the value of the primal variable »; when we solve (SUB 2-2). Then we

compare the primal-based heuristic with the original heuristic, and obtain the minimal

objective value of the heuristics. The time complexity of the entire heuristic is O(|N]).

Table 3-2 Heuristic for the PPSD Model

Step 1.

Step 2.

Step 3.

Step 4.

Construct a minimal defense region by applying the labeling and the
removal process. The labeling process is based on a breadth-first search,

and the removal process tests whether each outer layer node is necessary.

2

Allocate b; to each node, where b, ~r, = ad —,ie N. If a node with
total u

i

r.>0 1s not in the minimal defense region, we allocate its budget to the

source or destination node, depending on which one has the bigger A.

Tune the epsilon budget from the source and core node to the node in the
minimal defense region, which has the most negative effect of the objective
value. If the value of the objective function value is less than the previous

state, we continue the tuning process recursively.

Compare with the primal-based heuristic, which allocates the budget to
each node according to the value of the primal variable b; Then we

determine the minimal objective value of the heuristics.
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Chapter 4 Computational Experiments
4.1 Computational Experiments on the PSD Model

4.1.1 Experiment Environments

The algorithm we propose is written in C, and implemented on a notebook with
an INTEL™ Pentium-M 1.5GHz environment; the other experimental parameters are
shown in Table 4-1. In this model, to present a homogenous network, we assume that
a,(b,) is the same for each node. The LR denotes the attack costs of the algorithm we
propose, and the LB indicates the theoretical attack costs

In addition, we propose two simple and one primal-based algorithms to compare
the attack costs of different defense resource allocation strategies. Simple algorithm 1

allocates b; uniformly, and the SA1! denotes the attack costs of the algorithm. In

Links of a node

simple algorithm 2, the allocation of b; is proportionate to the ratio -
Total Links

and the SA2 denotes the attack costs of simple algorithm 2. In the primal-based
algorithm, the budget allocation for each node is according to the value of primal

variable b;, which is obtained by solving (SUB 1-2). HE3 denotes the attack costs of
LB-LR

the primal-based heuristic. In addition, the gap is computed by *100% ; the

survivability factor is calculated by %; and the improvement ratio is calculated by

LR-Attack Costs of an Algorithm
Attack Costs of an Algorithm

*100% ; Finally, we transform the objective value

into being positive by obtaining the absolute value of it for easy illustration.
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Table 4-1 Experimental Parameter Settings for the PSD Model

Parameter Value
Number of Nodes 16~361
Number of Links 60~1440
Network Topology Grid, Random, and Scale-Free Networks
Number of Iterations 2000
Improvement Counter 100
Initial Scalar of Step Size | 1

Initial Upper Bound

The 1st Getting Primal Feasible Solution

Test Platform

CPU: INTEL™ Pentium-M 1.5GHz
RAM: 768MB

OS: Microsoft Windows XP

4.1.2 Experiment Results

In Figure 4-1, the attack costs determined by our proposed algorithm are always
higher than those of the other algorithms. In the large networks, the differences are
particularly significant. In addition, the proposed algorithm provides a stable level of
protection for the core node, even in different-sized networks and topologies. Figure
4-2 shows the survivability factor of scale-free networks. The survivability factor of
the proposed algorithm is consistently higher than that of the other algorithms. Thus,

by applying the proposed algorithm, the core node will be more robust and secure.
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After experimenting with the proposed algorithm in different-sized network
topologies, we find the interesting phenomenon illustrated in Figure 4-3. When the
network size is large, the attack costs in grid networks are higher than those in random
and scale-free networks. To determine the reason for this phenomenon, we initially
select an O-D pair in a network at random, and apply Dijkstra’s shortest path

algorithm to determine the minimal number of nodes that must be compromised

Figure 4-2 Survivability of Scale-Free Networks
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between the O-D pair. We execute the above process one hundred times and draw the
probability distribution of the average number of nodes that must be compromised
between an O-D pair. We observe that the average number of nodes that must be
compromised in a grid network is much more than in a random or scale-free network,
as shown in Figure 4-4. This is due to the small-world phenomenon. Therefore, we
can conclude that the depths of defense are the important factor about survivability.

The detail experiment results are summarized in Table 4-2.
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Figure 4-3 Experiment Results for Different Network Topologies
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Figure 4-4 Average Number of Nodes Must be Compromised Distribution
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Table 4-2 Experiment Results for the PSD Model

Imp. Imp. Imp.
No. of Gap . . .

Topology Nod LB LR %) Surv.| SA1 | Ratio to | SA2 | Ratio to| HE3 | Ratio to

odes

° SA1 (%) SA2 (%) HE3 (%)
16 | 623 | 489 | 27.37 | 0.79 |2.63 | 85.84 |2.67| 83.12 | 3.62 | 3537
49 |12.18 | 8.40 | 45.05 | 0.69 | 3.60 | 132.92 | 3.46 | 142.54 | 543 | 54.65
Grid

100 | 16.80 | 10.96 | 53.26 | 0.65 | 4.02 | 172.70 [ 3.99 | 174.73 | 6.37 | 72.13
Networks

225 136.08 | 17.14 (110.51|0.48 | 790 | 116.92 | 8.22 | 108.55 | 9.38 | 82.77

361 |46.51|21.29 (118.51(0.46|9.15| 132.65 | 9.48 | 124.45 | 10.79 | 97.26

16 | 574 | 487 | 17.99 | 0.85]222| 11945 |2.40 | 102.49 | 3.97 | 22.53

49 | 9.36 | 7.84 | 19.34 | 0.84 | 2.36 | 232.78 | 2.52 | 211.70 | 5.53 | 41.90
Random

100 | 15.50 | 10.71 | 44.70 | 0.69 | 3.33 | 221.96 | 3.53 | 203.68 | 6.76 | 58.37
Networks

225 121.30(14.22 | 49.82 | 0.67 | 3.47 | 310.31 | 3.84 | 270.24 | 8.40 | 69.21

361 |25.65|15.43 | 66.22 | 0.60 | 3.60 | 328.21 |4.29 | 260.06 | 8.52 | 81.19

16 | 5.56 | 5.00 | 11.31'| 090 [ 2.08 | 140.36 | 2.20 | 127.00 | 3.79 | 31.83

49 | 9.90 | 8.56 | 15.65 [0.86 | 2.50 | 242,94 |2.66 | 221.13 | 542 | 57.82
Scale-Free

100 | 12.74 | 10.85 | 17.41 | 0.85|2.63 | 311.93 | 3.58 | 203.13 | 6.79 | 59.81
Networks

225 | 17.32113.65| 26.86 | 0.79 | 2.63 | 418.34 | 3.74 | 265.27 | 8.30 | 64.57

361 |20.77 | 15.66 | 32.62 | 0.75 | 3.05 | 413.47 | 4.47 | 250.35 | 9.11 | 71.97

45




4.2 Computational Experiments on the PPSD Model

4.2.1 Experiment Environments

The algorithm we propose is written in C, and implemented on a PC with an
INTEL™ Pentium-4 2.0GHz environment, and the other experimental parameters are
shown in Table 4-3. In this model, to present a heterogeneous network, we assume

that P«(b,) is different for each node.

In the PPSD model scenario 1, by the 20/80 rule, we assume that 20% of the nodes
in the network are more important than the other 80%. Therefore, we assume that
P(b;) for these 20% nodes follows an exponential distribution with the smaller A(4;),
and the other 80% of nodes follow an exponential distribution with the larger A(4).
Note that the A represents the initial compromise probability of each node. In the
PPSD model scenario 2, we assume that P(b;) for an O-D pair follows an exponential
distribution with a randomly selected 4 between [0, 0.5]. Because the source node and
the core node are important, we assume that the O-D pair has a certain level of
protection initially. For the other nodes, we assume that P,(b;) follows an exponential
distribution with a randomly selected A between [0, 1]. The LR denotes the attack
costs of the proposed algorithm, and the other symbols are still the same as we have

mentioned in the section 4.1.1.
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Table 4-3 Experimental Parameter Settings for the PPSD Model

Parameter Value
Number of Nodes 16~361
Number of Links 60~1440
Network Topology Grid, Random, and Scale-Free Networks

Set of (41, 42)

(0.1, 0.2), (0.1, 0.3), (0.1, 0.4);
(0.2, 0.4), (0.2, 0.6), (0.2, 0.8);

(0.3, 0.5), (0.3, 0.7), (0.3, 0.9)

Number of Iterations 2000
Improvement Counter 50
Initial Scalar of Step Size | 1

Initial Upper Bound

The 1st Getting Primal Feasible Solution

Test Platform

CPU: INTEL™ Pentium-4 2.0GHz
RAM: 1GB

OS: Microsoft Windows 2000
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4.2.2 Experiment Results

In the PPSD model scenario 1, for comparison with other two simple algorithms,
the proposed algorithm incurs much higher attack costs, and maintains a high level of

protection in different-sized network topologies, as shown in Figures 4-5 and 4-6.
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Figure 4-5 Experiment Results for the PPSD Model Scenario 1 in Grid Networks
(41=0.1, 4,=0.2)
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Figure 4-6 Survivability of the PPSD Model Scenario 1 in Random Networks
(41=0.1, 4,=0.2)
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In the PPSD model scenario 1, if we assume that the similar A;, 4, to the more
important nodes and other nodes respectively, the network is similar to a
homogeneous network. Therefore, the depths of defense have a strong influence on
the attack costs. In grid networks, the attacker has to compromise more nodes than in
the other two network topologies, which increases his attack costs. The phenomenon

is significant, especially if the network size is large, as shown in Figure 4-7.
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Figure 4-7 Experiment Results for the PPSD Model Scenario 1 in Different

Network Topologies (4,=0.1, 1,=0.2)

However, if 1, is different from A,, we must consider more about the node
characteristics, such as the importance and the P,(b;) function of each node. For
example, a node with a substantial number of links that provides short cuts from the
source node to the destination node is very important in a scale-free network. If the
node is vulnerable (especially with a bigger A), we should allocate the defense
resources to reduce the risk of the node being compromised, which would improve the

protection of the core node. In a random network, we focus on the vulnerable nodes
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that have short cuts to the core node, and allocate the defense resources so that the
protection of the core node is improved. Because the effects of the node
characteristics are more than those of the depths of defense, the attack costs in
scale-free networks are higher than those in the other two network topologies,
especially if the network size is large, as shown in Figure 4-8. After testing several
combinations of A; and 1,, we observe that if the difference between A; and A, is
significant, the defender has to consider more about the node characteristics, instead
of the depths of defense. The more the difference between 4, and 4, is, the more the

impact of node characteristics, as shown in Figure 4-9, Figure 4-10.
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Figure 4-8 Experiment Results for the PPSD Model Scenario 1 in Different
Network Topologies (4,=0.1, 1,=0.4)
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Figure 4-9 Experiment Results for the PPSD Model Scenario 1 in Different
Network Topologies (4,=0.2, 1,=0.4)
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Figure 4-10 Experiment Results for the PPSD Model Scenario 1 in Different
Network Topologies (1,=0.2, 1,=0.8)

In the PPSD model scenario 2, we assume that the O-D pair initially has a certain
level of protection, and the other nodes have random protection. In different-sized
network and topologies, the proposed algorithm incurs more attack costs and
maintains a higher level of survivability than that of the other algorithms, as shown in

Figure 4-11 and Figure 4-12.

Considering both the depths of defense and node characteristics, the attack costs
of the proposed algorithm are approximately equal in different-sized networks and
topologies, as shown in Figure 4-13. This implies the proposed protection strategy is
very adaptive, and we can obtain almost the same effects even in different network

sizes and topologies.
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Figure 4-11 Experiment Results for the PPSD Model Scenario 2 in Scale-Free
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Figure 4-12 Survivability of the PPSD Model Scenario 2 in Random Networks
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Figure 4-13 Experiment Results for the PPSD Model Scenario 2 in Different
Network Topologies
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Table 4-4 Experiment Results for the PPSD Model Scenario 1 (4,=0.1, 41,=0.2)

16 | 11.05 | 9.81 | 12.63 |0.89 | 8.42 | 16.49 | 843 | 16.40

49 | 20.18 | 14.86 | 35.81 |0.74 | 10.83 | 37.17 |10.83 | 37.18
Grid

100 | 34.47 | 23.61 | 46.02 | 0.68 | 16.26 | 4520 |16.39 | 44.06
Networks

225 | 69.56 | 40.50 | 71.72 | 0.58 | 24.22 | 67.22 |24.18 | 67.50

361 | 10431 | 55.46 | 88.08 | 0.53|30.61| 81.17 |30.75| 80.34

16 | 971 | 9.12 | 646 |0.94| 7.21 | 2649 | 7.22 | 26.32

49 | 15.87 | 13.18 | 2046 |0.83 | 7.21 | 82.66 | 7.35 | 79.18
Random

100 | 29.55 | 20.35 | 45.19 | 0.69 | 9.15 | 122.47 | 9.34 | 117.95
Networks 5 oL

225 | 52.37 | 31.54 | 66.03 | 0.60 | 10.23 | 208.23 | 10.57 | 198.36

361 | 85.57 | 46.55 13?.’81*5“(5\.54 1046 | 344.85 | 10.71 | 334.67

| B I |
o IV | IR

16 | 881 | 829 | H.nf- 0.94 | 625 | 32.64 | 633 | 30.94

49 | 17.74 | 12.86 | 37.93 |0.72 | 8.18 | 57.23 | 8.74 | 47.18
Scale-Free

100 | 28.95 | 19.12 | 51.43 [0.66 | 8.90 | 114.69 | 9.53 | 100.63
Networks

225 | 56.68 | 32.37 | 75.12 | 0.57 | 10.47 | 209.10 | 11.61 | 178.81

361 | 85.76 | 45.48 | 88.58 | 0.53 | 10.71 | 324.72 | 11.86 | 283.56
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Table 4-5 Experiment Results for the PPSD Model Scenario 1 (4,=0.1, 41,=0.3)

16 | 11.84 | 9.68 | 22.22 |0.82| 7.81 | 23.95 | 7.82 | 23.84

49 | 23.94 | 15.38 | 55.68 |0.64 | 9.98 | 54.15 | 9.98 | 54.16
Grid

100 | 40.60 | 22.80 | 78.09 0.56 | 14.49 | 57.34 |14.68 | 55.34
Networks

225 | 88.11 | 38.64 | 128.03 | 0.44 | 21.11 | 83.07 |21.05| 83.58

361 | 135.63 | 52.13 | 160.16 | 0.38 | 26.58 | 96.14 |26.79 | 94.61

16 | 1070 | 9.20 | 16.31 [0.86 | 6.97 | 31.96 | 6.99 | 31.58

49 | 19.50 | 14.39 | 35.55 |0.74 | 6.97 | 106.42 | 7.16 | 100.94
Random

100 | 38.67 | 21.62 | 78.90 | 0.56 | 8.41 | 156.87 | 8.69 | 148.75
Networks 5 oL

225 | 69.56 | 31.10 | 123.66|0.45 | 9:32 | 233.79 | 9.81 | 216.96

361 | 120.77 | 49.35 11.41'4'17'2"”0'\.41 9.91 | 397.75 | 10.26 | 381.01

| B I |
& LY [ o

16 | 974 | 848 | st 0.87 | 6.01 | 41.09 | 6.12 | 38.51

49 | 22.02 | 1339 | 6440 [0.61 | 7.69 | 74.11 | 852 | 57.12
Scale-Free

100 | 38.31 | 21.56 | 77.73 [0.56 | 8.29 | 159.92 | 9.20 | 134.20
Networks

225 | 78.65 | 35.63 | 120.75 | 0.45 | 9.68 | 268.20 | 11.28 | 215.79

361 | 120.76 | 50.73 | 138.03 | 0.42 | 10.04 | 405.53 | 11.38 | 346.02
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Table 4-6 Experiment Results for the PPSD Model Scenario 1 (4,=0.1, 41,=0.4)

16 | 1285 | 9.76 | 31.58 |0.76| 7.44 | 3125 | 7.44 | 31.13

49 | 28.04 | 15.93 | 76.04 | 0.57 | 9.45 | 68.52 | 9.45 | 68.54
Grid

100 | 47.34 | 22.23 | 113.00 | 0.47 | 13.40 | 65.86 |13.65| 62.87
Networks

225 | 108.11 | 38.11 | 183.68|0.35[19.19 | 98.56 |19.12| 99.36

361 | 168.33 | 50.46 | 233.60 | 0.30 [24.10 | 109.35 |24.38 | 106.97

16 | 11.63 | 9.28 | 2539 |0.80| 6.82 | 36.02 | 6.85 | 35.43

49 | 23.19 | 15.70 | 47.73 | 0.68 | 6.82 | 130.20 | 7.06 | 122.38
Random

100 | 48.04 | 23.37 [105.51 [0.49 | 7.96 | 193.50 | 8.32 | 180.80
Networks 5 oL

225 | 86.89 | 32.01 |171.40 [0.37 | 8:75 | 265.70 | 9.38 | 241.25

361 | 15652 | 5218 1]&{9?9'3’”(5\.33 9.58 | 444.89 |10.02 | 420.70

| B I |
ol IV | IR

16 | 10.78 | 8.66 | ?1:1.52 0.80 | 5.86 | 47.76 | 6.00 | 44.26

49 | 2629 | 14.45 | 81.99 0.55| 739 | 95.44 | 8.49 | 70.06
Scale-Free

100 | 47.64 | 24.05 | 98.13 | 0.50 | 7.92 | 203.68 | 9.12 | 163.77
Networks

225 | 100.66 | 40.37 | 149.36|0.40 | 9.19 | 339.34 | 11.23 | 259.60

361 | 156.68 | 59.93 | 161.44 | 0.38 | 9.62 | 522.76 | 11.05 | 442.15
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Table 4-7 Experiment Results for the PPSD Model Scenario 1 (A,=0.2, A,=0.4)

16 | 11.54 | 8.50 | 35.67 |0.74 | 6.25 | 36.03 | 6.26 | 35.74

49 | 26.38 | 15.98 | 65.02 | 0.61 | 8.03 | 99.09 | 8.03 | 99.13
Grid

100 | 46.93 | 25.60 | 83.30 | 0.55| 11.98 | 113.75 | 12.22| 109.58
Networks

225 |105.89 | 49.77 | 112.77 | 0.47 | 17.77 | 180.08 | 17.69 | 181.37

361 | 165.34 | 71.01 | 132.83 | 0.43 | 22.44 | 216.44 |22.72 | 21251

16 | 1038 | 8.69 | 19.53 |0.84| 540 | 61.02 | 542 | 60.43

49 | 2251 | 16.62 | 3545 |0.74 | 5.40 | 207.97 | 5.68 | 192.77
Random

100 | 46.51 | 28.23 | 64.78 | 0.61| 6.78 | 316.44 | 7.16 | 294.34
Networks 5

225 | 89.58 | 49.11 | 82.40 | 0.55 | 7.57 | 548.98 | 8.11 | 505.85

361 | 154.10 | 78.26 ]3’6‘.8@”{)&51 17:80 | 903.69 | 8.29 | 844.35

| i | |
TR I IR

16 | 971 | 7.68 ‘il6.4’7 0.79.| 4.67 | 6437 | 4.83 | 58.84

49 | 24.81 | 14.99 | 65.51 | 0.60 | 6.09 | 146.27 | 7.20 | 108.15
Scale-Free

100 | 46.24 | 25.86 | 78.82 | 0.56 | 6.61 | 291.03 | 7.84 | 229.68
Networks

225 | 98.72 | 50.10 | 97.04 | 0.51 | 7.77 | 545.25 | 9.88 | 407.29

361 | 154.63 | 76.07 | 103.29 | 0.49 | 7.96 | 855.32 | 9.57 | 694.84
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Table 4-8 Experiment Results for the PPSD Model Scenario 1 (A;=0.2, A,=0.6)

16 | 1398 | 838 | 6678 |0.60 | 5.84 | 4354 | 585 | 4321

49 | 3504 | 1662 | 110.88 | 047 | 7.45 | 122.95 | 7.45 | 123.00
Grid

100 | 60.95 | 2523 | 141.55 | 0.41 | 10.79 | 133.97 | 1113 | 126.64
Networks

225 | 147.08 | 47.94 [206.76 | 0.33 | 15.67 | 20590 | 15.56 | 208.22

361 |232.84 | 68.74 23872030 | 19.73 | 24842 |20.15| 241.18

16 | 1252 | 888 | 41.00 |0.71| 523 | 69.69 | 527 | 68.40

49 | 3002 | 1917 | 56.62 | 0.64| 523 | 26643 | 5.61 | 241.61
Random

100 | 65.62 | 30.95 | 112.05|0.47 | 628 | 39238 | 6.83 | 352.76
Networks 5

205 | 124.61 | 4847 |157.11 | 039 695 | 597.22 | 7.72 | 527.73

361 | 22549 | 83.95 11'?8‘.6"‘0:!@)137 1743 | 103021 | 8.12 | 934.14

| i | |

16 | 1197 | 822 HS'GO 069 451 | 8244 | 473 | 73.82

49 | 3401 | 1633 {10826 048 | 5.76 | 183.63 | 7.13 | 129.02
Scale-Free

100 | 6537 | 3113 | 109.98 | 0.48 | 620 | 401.95 | 7.7 | 300.59
Networks

225 [ 142.83 | 57.34 | 149.10 [ 0.40 | 723 | 692.99 | 9.92 | 478.00

361 22623 | 89.28 | 153.40 (039 | 7.51 | 1088.73 | 9.43 | 846.78
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Table 4-9 Experiment Results for the PPSD Model Scenario 1 (A;=0.2, A,=0.8)

16 | 1648 | 8.62 | 9122 (052 5.67 | 52.15 | 5.68 | 51.79

49 | 44.04 | 17.47 |152.14 | 0.40 | 7.21 | 14232 | 7.21 | 142.37
Grid

100 | 75.69 | 24.64 [207.13|0.33|10.28 | 139.80 | 10.71 | 130.06
Networks

225 |189.37 | 4832 |291.91 | 0.26 | 14.78 | 226.96 | 14.62 | 230.41

361 |301.64 | 67.45 | 347.24|0.22 | 18.57 | 263.16 | 19.13 | 252.63

16 | 1471 | 9.17 | 60.45 [0.62| 5.16 | 77.61 | 522 | 75.57

49 | 37.48 | 21.77 | 72.18 | 0.58 | 5.16 | 321.72 | 5.64 | 285.84
Random

100 | 84.84 | 34.78 |143.89 | 0.41 | 6.07 | 472.64 | 6.79 | 411.96
Networks 5

225 | 159.92 | 52.45 [204.88 | 0.33 | 6.69 | 684.25 | 7.63 | 587.20

361 |296.79 | 90.91 L[Zé.éi:'si:i)Bl 17:27 | 115055 | 8.16 | 1014.15

| i | |

16 | 1429 | 8.86 ‘%1.33 0.62| 444 | 99.64 | 472 | 87.63

49 | 43.15 | 18.90 | 12828 | 0.44 | 5.62 | 236.46 | 7.22 | 161.82
Scale-Free

100 | 84.78 | 3634 [133.26 [ 0.43 | 6.03 | 503.03 | 7.83 | 364.14
Networks

225 |187.12 | 65.97 | 183.64 | 0.35 | 7.00 | 842.05 | 9.93 | 564.53

361 |297.63 | 100.19 | 197.07 | 0.34 | 7.32 | 1269.19 | 9.54 | 950.73
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Table 4-10 Experiment Results for the PPSD Model Scenario 1 (A;=0.3, 1,=0.5)

16 11.83 | 874 | 35.28 [ 0.74| 5.39 | 62.11 | 541 | 61.51
49 | 29.68 | 19.24 | 54.27 | 0.65| 6.95 | 176.79 | 6.95 | 176.89
Grid

100 | 54.44 | 30.59 | 77.99 | 0.56 | 10.53 | 190.47 | 10.77 | 184.06
Networks

225 | 12481 | 61.77 | 102.07 | 0.49 | 15.78 | 291.44 | 15.64 | 294.97

361 | 197.19| 92.03 | 114.26 | 0.47 | 19.96 | 361.06 | 20.32 | 352.99

16 10.83 | 9.04 | 19.86 | 0.83 | 4.56 | 97.98 | 4.58 | 97.11

49 | 26.26 | 20.19 | 30.04 | 0.77 | 4.56 | 34237 | 4.93 | 309.20
Random

100 | 55.13 | 35.99 | 53.17 | 0.65| 5.87 | 513.01 | 6.36 | 466.24
Networks 5

225 [ 11049 | 6840 | 61.54 [0.62[ 659 | 938.32 | 7.17 | 854.39

361 | 188.53 | 111.45 ]cfé‘.léi!biw 1666 | 1573.54| 7.29 | 1427.86

| i | |
TR I IR

16 | 1032 | 8.08 | H7.7'6 0.78| 3.96 | 103.93 | 4.18 | 93.49

49 | 28.56 | 18.51 | 54.26 | 0.65| 5.22 | 254.78 | 6.49 | 185.45
Scale-Free

100 | 54.74 | 33.73 | 62.30 | 0.62 | 5.70 | 492.26 | 7.06 | 377.53
Networks

225 | 119.60 | 69.51 | 72.06 | 0.58 | 6.71 | 935.64 | 9.28 | 648.78

361 | 189.16 | 108.85 | 73.79 | 0.58 | 6.84 | 1492.24 | 8.72 | 1147.55
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Table 4-11 Experiment Results for the PPSD Model Scenario 1 (A,=0.3, A,=0.7)

16 | 1441 | 836 | 7231 (058 5.12 | 6325 | 5.14 | 62.62

49 | 3854 | 18.93 |103.57 | 0.49 | 6.57 | 18822 | 6.57 | 188.33
Grid

100 | 68.73 | 30.34 |126.56 | 0.44 | 9.74 | 211.53 | 10.07 | 201.20
Networks

225 |166.83 | 60.68 | 174.92 | 0.36 | 14.39 | 321.78 | 14.20 | 327.28

361 |265.42 | 90.52 | 193.21|0.34 | 18.16 | 398.48 | 18.65 | 385.34

16 | 13.03 | 929 | 4024 [0.71 | 4.45 | 108.60 | 4.49 | 106.74

49 | 33.83 | 2234 | 5140 | 0.66 | 4.45 | 401.53 | 4.92 | 353.67
Random

100 | 74.38 | 38.78 | 91.81 | 0.52| 5.54 | 599.46 | 6.20 | 525.55
Networks 5

225 | 145.46 | 67.88 11430 [ 0.47 | 6.18 | 998.67 | 6.95 | 876.36

361 |259.77 | 11373 11'?5;.4*51i 0,44 | 641 | 167321 | 7.25 | 1468.95

| i | |

16 | 12.64 | 826 H3.0f4 0.65| 3.85 | 114.33 | 4.13 | 100.07

49 | 37.64 | 18.88 | 99.43 | 0.50 | 5.00 | 277.54 | 6.51 | 189.82
Scale-Free

100 | 74.15 | 35.89 |106.61 | 0.48 | 5.42 | 561.87 | 7.08 | 406.58
Networks

225 |163.86 | 72.03 | 127.48 | 0.44 | 636 | 1033.13 | 9.29 | 675.56

361 |260.66 | 111.65 | 133.47 | 0.43 | 6.54 | 1608.23 | 8.76 | 1174.39
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Table 4-12 Experiment Results for the PPSD Model Scenario 1 (A;=0.3, 1,=0.9)

16 17.02 | 8.14 |109.060.48| 5.02 | 6224 | 5.04 | 61.60
49 4763 | 1926 | 147281040 | 6.42 | 199.83 | 6.42 | 199.95
Grid

100 | 83.67 | 29.53 | 183.28 | 0.35| 9.44 | 212.85 | 9.85 | 199.73
Networks

225 1209.44 | 60.19 | 24796 |0.29 | 13.86 | 334.15 | 13.59 | 342.90

361 |333.86| 89.76 | 27196 |0.27 | 17.48 | 413.43 | 18.11 | 395.64

16 1529 | 9.60 | 59.21 [0.63| 4.41 | 117.57 | 447 | 114.65

49 4135 | 2495 | 65.72 [ 0.60| 4.41 | 465.32 | 4.98 | 400.66
Random

100 | 93.84 | 41.70 1|2'5",04 044 | 542 | 669.21 | 6.25 | 567.61
Networks 5

225 |180.99 67:5:5 1-'67_.91 _(_)_.37._ __6._‘02 1021.41 | 6.96 | 870.82

361 |331.77 121.|3O ]1|7352 :'9137 1632 | 1818.81 | 7.36 | 1548.85

| ! | !

16 14.98 8".94II-._ ‘(%7.6’1 060 381 134.46 | 4.15 | 115.51

49 4693 | 20.37 ""13(_).39 (,').43:' 492 | 31424 | 6.59 | 209.21
Scale-Free

100 | 93.66 | 41.42 | 126.13|0.44 | 5.32 | 678.68 | 7.16 | 478.52
Networks

225 1208.01| 79.83 | 160.55|0.38 | 6.22 | 1182.77 | 9.35 | 753.90

361 [332.48 |121.77|173.05|0.37 | 6.42 | 1795.79 | 8.97 | 1256.87
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Table 4-13 Experiment Results for the PPSD Model Scenario 2

16 | 1442 | 10.16 | 41.94 | 0.70 | 6.48 | 56.73 | 6.76 | 50.25

49 | 36.52 | 21.35 | 71.08 [0.58 | 6.92 | 208.31 | 7.00 | 205.13
Grid

100 | 88.08 | 44.82 | 96.52 [0.51 | 10.07 | 345.24 [10.33 | 333.77
Networks

225 | 177.25| 84.61 | 109.49 | 0.48 | 8.92 | 848.95 | 9.07 | 832.54

361 |329.29 | 143.17 | 129.99 | 0.43 | 15.84 | 804.07 | 16.18 | 784.67

16 | 11.79 | 9.65 | 22.24 |0.82| 5.05 | 91.03 | 5.07 | 90.12

49 | 3578 | 26.84 | 33.29 |0.75 | 6.47 | 315.02 | 6.60 | 306.45
Random

100 | 69.09 | 39.65 | 74.25 | 0.57 | 6.06 | 553.77 | 6.36 | 523.22
Networks 5 oL

225 | 159.10 | 84.18 | 89.00 | 0.53 | 8:25 | 919.80 | 8.97 | 838.00

361 |275.29 | 136.34 1]({119'2”"(5\.50 7.86 | 1634.07 | 8.18 | 1565.90

| B I |
ol IV | IR

16 | 1156 | 10.08 | Hm} 0.87 | 445 | 12651 | 4.65 | 117.01

49 | 36.98 | 2432 | 52,05 |0.66 | 5.72 | 325.06 | 6.56 | 270.59
Scale-Free

100 | 57.41 | 36.36 | 57.90 [0.63 | 6.61 | 450.19 | 7.60 | 378.44
Networks

225 | 153.33 | 88.17 | 73.90 | 0.58 | 6.49 | 1258.63 | 8.70 | 912.94

361 |284.94 | 154.44 | 84.50 | 0.54 | 7.86 | 1865.08 | 11.22 | 1277.05
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Chapter S Conclusion

5-1 Summary

In this thesis, we clearly formulate the attack-defense behavior, and propose an
effective and adaptive defense resource allocation strategy. It works very well, even in
different-sized networks and topologies. In addition, we propose a survivability factor
to quantitatively analyze the protection of the network. The higher the factor, the

more protection the network has.

In a homogeneous network, the most important issue for the defender to allocate
the budget is the depth of defense. Because the grid network doesn’t have the short
cuts, the attacker has to compromise more nodes than in an attack on random or
scale-free network. Therefore, the defender can obtain more depths of defense to
deploy the defense resources, while the attacker has to overcome more obstacles
established by the defender. The defense in depth protection strategy conducts that the
attack costs in a grid network are higher than in random and the scale-free networks,

especially if the network size is large.

However, if the network is heterogeneous, the defender should pay more
attention to the node characteristics. In random and scale-free networks, we focus on
the nodes that provide short cuts and are vulnerable. We then allocate the budgets to
them to improve the protection of the core node. It conducts that the attack costs in
scale-free network are higher than in gird and random networks, especially if the
network size is large. The more the differences between nodes are, the more impacts

of node characteristics. The proposed solution approach is very effective and adaptive
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in different scenarios.

In addition, by applying the proposed protection strategy, we can obtain a
threshold of the attack cost a,. Therefore, if we know the probability distribution of
the total attack power A of the attacker, we can obtain another novel survivability

factor, which is equal to P(4|A>a;).

5-2 Future Work

Until now, there has been little research on the functions a,(b,), P«b;). In our
experiments, we assume that a,(b,) follows a concave function In(b+1), and Pi(b,)
follows an exponential distribution with different 1. The a (b)) and P(b;) functions

will be an interesting research topic in the future.

In this thesis, we only consider single core node. However, enterprises and
organizations may have more than one core node to protect. For example, a bank with
many branches may store its transaction data in different places. Therefore, in the
future, we may consider multiple core nodes, and propose a good solution approach

for defenders to allocate their defense resources.

A vulnerable choke point can be viewed as another important node in a network.
In the PPSD model, if a choke point exists and is vulnerable, the best protection
strategy is to allocate the budget to that node. Therefore, finding vulnerable choke
points is a very interesting topic in the future. In Figure 5-1, the pink node denotes

the vulnerable choke point.

64



Figure 5-1 Choke Point Example

The total attack power distribution is another interesting research topic that we
know very little about. If we can learn more about it, we may adopt it and propose a

more effective protection strategy to help defenders against attacks.

In addition, game theory could be considered. In this thesis, we formulate the
attack-defense behavior as a mathematical model. However, with the rapid
development of game theory, we may adopt it to solve network attack-defense

problems in the future.

In this thesis, the network topology is given. However, if the defender can decide
how to construct the network, it will be more helpful for him to develop the protection
strategy against targeted attacks. For example, if the defender can construct a linear
defense region, with deep depths of defense. Therefore, the attacker has to overcome
more obstacles than other network topologies. However, the availability of the
network is limited, e.g., the delay of the network is significant because the packet has
to cross much more hops. The network structure is another aspect we could consider,

and it is a trade-off between availability and security.
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