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From either practical or theoretical viewpoint, wireless sensor network
(WSN) techniques are new and important research issues. Numbers of
interesting applications for WSNs have been investigated, e.g., surveillance,
target positioning, tracing, and health care. Sensor networks have been

forecasted to apply variously, both the civilian and military domains.

There are two important issues usually are concerned on WSNs design.
One is to construct a qualified WSN for applications to guarantee desired quality
of service (QoS). The other challenge is to prolong the network lifetime. From
application perspective, in order to improve the QoS supporting by WSNs, the
ability of environment surveillance, target positioning, or target tracking have to
be controlled carefully. Moreover, it is difficult to replace or recharge the
battery for numerous sensors in the most scenarios. Hence, how to prolong the

lifetime of WSNs also becomes a key challenge.

In this dissertation, we focus on the sensor deployment problem to support
environment surveillance and target positioning services from various

perspectives. Subsequently, we present each topic briefly as follows:

m  We address the homogeneous sensor placement problem for environment
surveillance and target positioning subject to the deployment budget. The

experimental results reveal that the proposed algorithm can’t only efficiently
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obtain a high-quality solution but also is effective, scalable, and robust.
Afterward, to investigate whether adjusting the sensing radius for individual
sensor will improve QoS for positioning services. The experimental results
indicate, when locations are given, using sensors with adjustable sensing

radius can actually get better QoS for positioning services.

The next topic focuses on supporting differentiated QoS for WSNs. The
work deals with the differentiated QoS requirements in WSNs. The goal of
the problem is either satisfied QoS requirement of all regions of interest
(ROIs) or minimized the QoS degradation for ROIs based on its’ level of
priority. The experimental results show when the given resource is scarce,
the sensor deployment approach with differentiated QoS requirements can
obtain better QoS solution than that with the uniform QoS requirement.
Furthermore, for a sensor field with placement limitations, using sensors
with adjustable radius can obtain higher level of QoS than adopting fixed

radius sensors.

The third topic focuses on the energy efficiency issue. We deploy K
independent sets of sensors (K covers) to monitoring a sensor field in turn
and locating targets together. The experimental results indicate that the
strategy is very effective for energy conservation. The average sensor
density of one cover is effectively reduced when radius and amount of
covers increase; even the deployment cost can be reduced to 9% of that
using the duplicate sensor deployment approach. Furthermore, using the
same deployment density for a single-cover sensor network, we can deploy
an energy-efficient sensor network such that the lifetime extends up to 3

times at least.

All of the problems are formulated as mathematical optimization models.

The senor placement problem for surveillance is analog to classic

set-cover/set-K-cover problem, which is NP-complete problem. Our problems

consider both environment surveillance and target positioning; it is therefore

more difficult than the set-cover/set-K-cover problem. Based on Lagrangean

relaxation method and simulated annealing method, we develop many heuristics
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to solve these optimization problems.

Keywords: Sensor deployment, target positioning, quality of positioning service,
Energy-Efficiency, Lagrangean Relaxation, Simulated Annealing, Mathematical

Modeling, Network Optimization.
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CHAPTER 1 INTRODUCTION

1.1 Overview

The evolutions in sensor technology and wireless communication have led
to the development of wireless sensor networks (WSNs) [QICO1]. WSNs will
affect phenomena sensing and monitoring in upcoming years. Many applications
of WSNs, such as surveillance [DCO3] [DCI02], target positioning [CIQO02]
[CLO4] [LCO5] [RSTO04] [RUPO3] [ZC03a] [ZCO03b], environment monitoring,
health care, and animal tracking; have been studied [CHS04].

A WSN comprises of a large number of tiny sensor nodes, which are
low-cost and low power. Numerous sensors are ad hoc deployed in the
interested area. These sensors collect physical information, process it and
forward the local information to the sink nodes. Hence, the back-ends can obtain
global views according to the information provided by the sensors [ASCO02a]
[ASCO02b]. The system responds for making appropriate decisions based on the
received information. Obviously, the quality of the information dominates the
final decision for the WSNs. Correct information can be obtained by
constructing a WSN with a high quality of service (QoS) through careful
planning in the sensor deployment phase. For instance, numbers of sensors are
deployed carefully to fully cover the whole sensor field such that any target,

which is at any position in the sensor field, can be detected by at least one sensor.



Then the sensor field is completely covered by the sensor network. Therefore,
the QoS of a WSN is one of the most important issues in sensor deployment

problem.

The quality of service of a WSN is influenced by the power efficiency,
deployment cost, deployment methods, and other physical limitations. A sensor
network can be deployed in two ways: random or controlled placement
[MKPO1]. When the environment is unknown, dangerous, or inhospitable,
sensors cannot be deployed manually. In such environments, the placement may
be relied on aircrafts, cannons, rocket, or missile. By this way, massive sensor
nodes will be randomly placed on anywhere of sensor field. On the contrary, if
the terrain of sensor field is predetermined, we can adopt the controlled
approach that deploys sensors by carefully planning to meet a desired quality of
service requirement. For instance, we can construct a WSN by carefully
planning in parking lots, schools, shopping malls, art galleries, or everywhere
we interested, to perform surveillance, target positioning, or target tracking
[LP0O6]. Obviously, to achieve the same quality of service requirement, the
random placement approach wastes more resources than the controlled

placement approach.

Recently, the emerging the mobile computing applications and trend of
user-centric services enable the requirements of location-based services,
personalized services, and user-aware services increase rapidly, for instance,
mobile learning and emergency rescue services [CCKO06] [DCTO05] [KKLO06]
[LCO6] [LXPOS5]. No doubt, localization capability is therefore one of the most
important technique for supporting these applications. In various localization
techniques, sensor-network-based positioning system can provide the indoor
localization services a simple and feasible solution. Hence, besides the

surveillance, this dissertation also focuses on target positioning services.

One of important applications for sensor network is target location, i.e.
target positioning, which refers to decide the position of target by cooperation of
sensors in a sensor network [CIQO1] [CIQO02]. Hence, the sensors must be

deployed carefully. Besides, the sensor network coverage has to cover the whole



sensor field, if the coverage areas of multiple sensors overlap, they may all
report a target in their respective zones. Based on the reports, location of the
target can be determined. If target in a zone (i.e. region) can be detected by a
unique set of sensors, the zone is denoted by distinguishable zone. The diameter
of a distinguishable zone dominates the accuracy of the target location. Some
papers use service points as reference points to replace zone/region for
positioning service. When sensor network determine a target being at a certain
service point, it means the target might occur on the region including the service

point.

Sensor localization is another import research issue in WSNs. The sensor
localization process refers to find the positions of all sensors in a sensor field
based on partial information, namely the exact locations of only a few sensors
(called anchor sensors) and the mutual distances between pairs of sensors that
are within radio distance [CKNO07] [WXO07]. Sensor localization problem differs

from target positioning problem; the latter is concerned in this dissertation.

The degree of coverage is one of the fundamental metrics that used to
quantify the QoS for a WSN which supports surveillance services [SS05]
[SSS03] [WXZ03]. The sensor deployment problem where subject to coverage,
has been transformed to the classical set-cover/set-k-cover problem (Appendix
A) [GJ79] [GTO02] [SPO1], which is NP-complete, has been studied intensely for
last decades [MPO03]. Both surveillance and target positioning ability are adopted
as the QoS parameters of the sensor placement problem in this dissertation.
Hence, the proposed problems are more difficult then the classical set-cover/set

k-cover problem.

On the other hand, due to cost and environment concerns, the battery of

sensor is not always rechargeable — particularly when the sensor network

operates in inhospitable or hostile fields. Once the sensors energy exhaust, the
sensors fail to perform their jobs, it will result in degradation of quality of
service on the sensor network. Therefore, how to design an energy-efficient

sensor network is really a major challenge.



While the sensor deployment process subjects to some resource constraints
(such as, the deployment budget as well as coverage requirement) and to achieve
some specific goals (for instance, minimizing the deployment cost, maximizing
the quality of service, or maximizing the lifetime) the sensor deployment can be
dealt as an optimization problem. In this dissertation, we formulate these sensor
deployment problems as mathematical optimization models. As well as many
effective algorithms based on Lagrangean relaxation and simulated annealing

meta-heuristics are proposed.

The dissertation significantly contributes to the target positioning and the
wireless sensor deployment research domain. Fist, we introduced the positioning
ability as the QoS parameter in WSNs from application perspective, as well as
proposed the error distance to measure the positioning ability. Next, a generic
framework for sensor deployment problem has been proposed to support the
differentiated quality of positioning service in WSNs. Third, an energy-efficient
sensor deployment scheme for target positioning has been proposed. Fourth, the
mathematical optimization models have been proposed to define each problem
strictly. Last, these combinatorial optimization problems are hard to solve. We
have successfully developed many | Lagrangean-relaxation-based and
simulated-annealing-based algorithms to cope with these hard problems and
presented detailed performance evaluations. Based on the research results, more
relative problems can be solved by the proposed methods with minor

modifications.



1.2 Research Scope

Recently, a lot of papers focused on the sensor deployment problems taking

account of various constraints and goals, and several solutions are proposed. To

clarify the research field, we attempt to categorize the researches according to

different dimensions.
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Figure 1.1: The classification of sensor deployment research.

In this section, we discuss the sensor placement problems from three

different dimensions, illustrated in Figure 1.1. First, the problem can be



categorized due to the placement method, which includes random and controlled
deployments. While the environment is unknown, the random deployment
approach is adopted. Conversely, if the terrain of sensor field is predetermined,
WSNs can be constructed by a deterministic way. Hence, the controlled

deployment approach is fit for a candidate solution.

In reference [ASCO02a], the authors define three phases for topology
maintenances and changes in WSNs, including pre-deployment/deployment,
post-deployment, and redeployment. We consider the timing for topology
constructing and maintenance as the second dimension, as well as define two
phases: pre-deployment and post-deployment phases. The algorithms might
execute before sensors are deployed by random or controlled manner. Hence the
sensor network topology is determined at the deploying time. We classify it the
pre-deployment phase algorithms. For example, according given parameters,
e.g., the topography of sensing field, sensing/communication abilities of sensor
nodes, and energy constraints, the random deployment algorithm may compute
the resource requirements and dropping locations to satisfy lifetime, coverage,
and connectivity constraints before scattering sensors [AS03] [GCBO06]. After
sensors are deployed, topology might be changed by nature or artificial ways.
As well as some sensor nodes are added or redeployed to sensor field. We call it
is post-deployment. For instance, according the given positions of sensors, the
algorithms determine the cover or role for each sensor to optimize the network
lifetime [VGDO06]. Moreover, after scattering mobile sensors, several papers
investigate the moving directions, distance, and final positions of each mobile

sensor to improve the coverage of sensor networks [ZCO03b].

The last dimension in the research framework considers whether all sensors
with the same abilities/duties. A number of papers take account of the
homogeneous sensors in the deployment problem. All of the sensors have the
same specification. Contrarily, numbers of papers consider the heterogeneous
sensors being deployed. For example, the two-tier sensor networks are
investigated frequently [XWHOS5]. The sensors in the lower tier account for

sensing and forwarding the information to its cluster node. In the upper tier, the



all cluster nodes compose a connected network, these clusters deliver the

information coming from the sensing nodes and the other clusters such that the

information can be sent to the base stations.

Table 1.1: Scope and problem definition of this dissertation.

Problem 1

Given parameters

Sensor field, set of service points, sensor cost, and detection range of
Sensor.

Constraints

Budget and complete coverage.

Objective Complete discrimination / minimizing the maximum error distance.
Outcomes Sensors’ location and power vectors.
Approaches Simulated annealing method and exhaustive search.

Problem 2

Given parameters

Sensor field, set of service points, number of sensors, location of each
sensor, and set of candidate detection ranges.

Constraints

Complete coverage.

Objective Complete discrimination / minimizing the maximum error distance.
Outcomes Detection range for each sensor and power vectors.
Approaches Simulated annealing method.

Problem 3

Given parameters

Sensor field, set of service points, deployment cost for each location,
and set of candidate detection ranges.

Constraints

Budget, complete coverage, and service priority for each region of

interest.
. Minimizing the weighted maximum error distance / maximizing the
Objective
level of QoS.
Outcomes Sensors’ location and detection range, and power vectors
Approaches Lagrangean relaxation method and simulated annealing method

Problem 4

Given parameters

Sensor field, set of service points, sensor cost, detection radius of
sensor, and number of covers.

Constraints

Complete coverage constaint for each cover and complete

discrimination constraint for the whole sensor network.

Objective Minimizing the deployment cost.

Outcomes Sensors’ location, members of each cover, and power vectors.
Lagrangean relaxation method, simulated annealing method and

Approaches

CPLEX.




In this dissertation, we study several sensor deployment problems
(summarized in Table 1.1), which belong to both single and multiple categories.
Mathematical formulations are used to model these problems. Based on the
proposed mathematical models, Lagrangean relaxation and simulated annealing

methods are adopted to solve the sensor deployment problems.

In this dissertation, we consider that the sensor field is divided into grid
points at which sensors are carefully deployed. This approach is called as

grid-based placement.

A grid-based sensor field can be represented as a collection of two- or
three-dimensional grid points [DCI02]. A set of sensors can be deployed on the
grid points to monitor the sensor field. The grid point, which requires the
surveillance or positioning service, is also called service point. In this
dissertation, we consider the detection model of a sensor to be a 0/1 coverage
model. The coverage is assumed to be full (1) if the distance between the service
point and the sensor is less than the detection radius of the sensor. Otherwise,
the coverage is assumed to be non-effective (0). If any service point in a sensor
field can be detected by at least one sensor, we call the field is completely
covered, as shown in Figure 1.2. In this context, a target can be detected at any

place in the field.

Radius=1
o o °
.6 7 8 19 4.
PY S | “Sensor
1 g2 Ce1afas”

V. 7

Sensor’s coverage

Figure 1.2: A complete covered and discriminated sensor field.



A power vector is defined for each service point to indicate whether
sensors can cover a service point in a field. As shown in Figure 1.2 the power
vector of service point 8 is (0, 0, 1, 1, 0, 0) corresponding to sensor 4, 6, 7, 9, 10,
and 12. In a completely covered sensor field, when each service point has a
unique power vector, we note the sensor field is completely discriminated, as
shown in Figure 1.2. In this case, as soon as a target occurs in a grid of the
sensor field, it can be located by the back-end according to the power vector of

the service point.

In Chapter 3, two sensor-placement problems for positioning targets are
discussed. The first problem, given the topography of sensor field, deployment
budget, and uniform detection radius of sensors, we determine the position of
each sensor to obtain a completely covered/discriminated sensor field when
deployment budget is adequate, and to optimize the positioning accuracy when
deployment budget is scarce. We classify the research is a pre-deployment
algorithm using controlled placement approach to obtain a homogeneous sensor

network.

The second problem in Chapter 3, given the location of each sensor by
randomly scattering, we design a algorithm to adjust the detection radius of
individual sensor such that the quality of positioning service is optimized. We
classify the research is a pre-deployment problem using random deployment

approach to obtain a heterogeneous sensor network.

In Chapter 4, continuing from Chapter 3, we deal with the sensor
deployment problem for supporting differentiated QoS of target positioning. The
QoS requirement and level of priority for each region of interest (ROI) in sensor
field is given. The locations and detection radius of sensors are decision
variables [WY04]. When the given resource is adequate, the objective of the
problem is to satisfy the QoS requirements of each ROI. When the given
resource is scarce, the objective is to minimize the QoS degradation based on
the level of service priority for each ROI. We classify the research is a
pre-deployment algorithm using controlled placement approach to obtain a

heterogeneous sensor network. Finally, in Chapter 5, we address the



energy-efficient sensor network deployment problem. We consider deploying K
independent sets of sensors to monitoring the sensor field in turn and locating
the target together. With this strategy, the duty cycle of each sensor is only 1/K
and the lifetime of the sensor network will be extended up to K times. The
objective of the problem is to minimize the deployment cost, where the position
and cover of each sensor are decision variables. We classify the research is a
pre-deployment algorithm using controlled placement approach to obtain a

homogeneous sensor network.
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CHAPTER 2 RESEARCH
BACKGROUND

2.1 Related Work

In this section, we present the background and related work about sensor
placement problem, including: coverage, QoS in WSNs, target location, and

sensor deployment.

2.1.1 Coverage

The coverage model and location of all sensors determine the whole
network coverage in sensor field. As pointed out in [CW06] [MKPO1], sensor
coverage concept is a measure of the quality of service (QoS) of the sensing
function and is subject to a wide range of interpretations due to a large variety of
sensors and applications. On the other hand, network coverage can be
considered as a collective measure of the quality of service provided by sensors

at different geographical locations.

2.1.1.1 Coverage Models

The most commonly used sensor coverage model is a sensing disk model.

All points within a disk centered at sensor are considered to be covered by the

11



sensor. In the literature of WSNs, however, many papers assume a fixed sensing
range and an isotropic detection capability of sensor, i.e., a disk coverage model
[Wan06]. The detection ability within coverage of a sensor can be classified as
the 0/1 coverage model (binary model), the probabilistic coverage model, and

the information coverage model.

A. Binary Model (0/1 Model)

In many cases, the coverage model is simplified as 0/1 model [CIQCO02]
[MPO3]. The coverage is assumed to be full (1) if the distance between the
service point and the sensor is less than the detection radius of the sensor, as
Figure 2.1 shown. Otherwise, the coverage is assumed to be non-effective (0).
For instance, a sensor with camera captures photos around its nearby
environment. If an object can be recognized from images, it means the object
being covered by the sensor. The resolution threshold determines the detection

radius of sensor.

Detection probability
P( d) A
1
O »
Distance (d)

Figure 2.1: Binary (0/1) detection model.
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B. Probabilistic Models

(1) Probabilistic Model 1

Several papers [DC03] [NKJ05] adopt probabilistic models, which assume
the probability of sensing is function of the distance between sensors and events.
Dhillon and Chakrabarty assume that the probability of detection of a target by a
sensor varies exponentially with the distance between the target and the sensor
[DCO02] [DCO03]. The model is shown in Figure 2.2. A target at distance d from a

sensor is detected by the sensor with probability

p(d) = ™. @2.1)

Pd)=¢™

Figure 2.2: Probabilistic detection model.

(2) Probabilistic Model 2

Assume sensor s; has detection radius ». For any point P, the Euclidean
distance between s; and P is denoted as d(s;, P). Zou and Chakrabarty [ZC03a]
[ZCO03b] present the probability-based sensor detection model as Figure 2.3. The

coverage of sensor s;, c(s;), is represented as follows:

13



0, ifr+r <d(s,P),
c(s) =1, ifr, >|r—d(s,, P)
L, ifr-r2d(s,P),

: (2.2)

, where r,, r. < r, is a measure of the uncertainty in sensor detection.

a=d(s;,,P)—(r—r,) . Parameters A and [ are used to measure detection

probability when a target is at distance greater than (» — r,) but within a distance
(r + r.) from the sensor. The probabilistic sensor detection model is shown in
Figure 2.3. Different values of parameters A and S yield different translations
reflected by different detection probabilities, which can be viewed as the
characteristics of various types of physical sensors. This model reflects the

behavior of range sensing devices such as infrared and ultrasound sensors.

Detection probability

o 1 = s 4 5 s 7 s s
Distance d(sf., P) between sensor and grid point

Figure 2.3: Probabilistic detection model.

(3) Probabilistic Model 3

To capture the real world sensing characteristics of sensor nodes, Ahmed et

14



al. [AKJO5] assume that the signal propagation from a target to a sensor node
follows a probabilistic model. This assumption is only valid for certain kind of

sensors e.g. radio, acoustic, seismic etc.

This model is based on the path loss log normal shadowing model, it can be
extended to incorporate different signal decay models e.g. acoustic signal model
for acoustic sensors. The probability of detection of a target by a sensor
decreases exponentially with increase in distance between the target and the
sensor. Using the log-normal shadowing model, the path loss PL (in dB) at a
distance d is given as follows [Rap96]:

0

PL(d) = PL(d0)+10-n-log[dij+Xa (2.3)

, where,
dy = Reference distance,
n = Path loss component, indicating the rate at which the path loss
increases with distance,
Xo = Zero-mean Gaussian distributed random variable (in dB) with

o-variance (shadowing, also in:dB),

PL(d,) =Mean path loss at reference distance d.

Equation (2.3) captures various environmental factors resulting in different
received signal values at different locations although the distance between the

target and sensor is the same. Parameters n and Xo can be measured
experimentally. Similarly, PL(d,) can be measured experimentally for given

event and sensor characteristics or can be calculated using free space path loss

model.

Each sensor has a receive threshold value y that describes the minimum
signal strength that can be correctly decoded at the sensor. The probability that
the received signal level at a sensor will be above this receive threshold, y, is

given by Equation (2.6), requiring Q-function to compute probability involving

15



the Gaussian process. The Q-function is defined as Equation (2.4).

0= exp(- e (24)
, where

0()=1-0(-2) 2.5)

PiPi(d) > /)= 0F ) (2.6)

For a given transmit power and receive threshold value, we can calculate
the probability of receiving a signal above the receive threshold value, y, at a
given distance using Equations (2.6) and (2.4). Figure 2.4 shows the decrease in

detection probability example for a sensor [AKJO05].

N
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2 \\\
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Distance of Target from Seneor (m)

Figure 2.4: Change in detection probability with
distance.

(4) Probabilistic Model 4

Liu and Towsley [HAO7] [LT04] adopt the following general sensing

16



model (Equation (2.7)), which has been widely used in several papers, and is
reasonable for radio, acoustic and seismic signals, as Figure 2.5 shown [LT04].

For a sensor s, the sensing signal at an arbitrary point p is given by:

a

S(s,p)=1d(s,p)’
0 otherwise

A<d(s,p)<B 2.7

, where a is the energy emitted by events occurring at point p; d(s, p) is the
Euclidean distance between sensor s and point p; parameters A and B define the
range of a sensor’s sensing capability. The sensing signal decays according to a
power law with exponent f. The value of the decaying exponent is assumed to
be known (or estimated via experiments). For radio signal sensing, the exponent

typically ranges from 2.0 to 5.0.

=

Probability of Sensing

=

ry Distance, x

Figure 2.5: Probabilistic sensing model.

Liu and Towsley define the all-sensor field intensity of an arbitrary point p,

1,, to be the sum of the sensing signals of all sensors (s1, 52, ...) at p, 1.e.,

L-3Sen-Y oty 8



We say that a point p is covered if the all-sensor field intensity at p is
greater than or equal to some threshold, 6, i.e., I, > 0. The set of points that are
covered according to the above definition is called the covered region. Similarly,

the complement of the covered region is called the vacant region.

C. Information Coverage Model

Recently, Wang et al. [Wan06] calls the disk coverage model as physical
model, as well as propose a concept of information coverage based on signal
estimation theory [WWSO05]. Suppose that an event with parameter & occurs on
a space point with the Euclidean distance d to a sensor s; and 6. For example, 6
can be the seismic/acoustic amplitude of a tank. We further assume that the
parameter € decays with distance, and at distance d it is 8/ d“, where a > 0 is
the decay exponent. The measurement of the parameter, x;, at a sensor may also

be corrupted by an additive noise, 1. Thus,

xk:a%+nk, k=E7 K (2.9)

k

A parameter estimator, e.g., a best linear unbiased estimator, can be used to

estimate @ based on the measurement x,, k=1, 2, ..., K. Let O and =0-0
denote the estimate and the estimation error, respectively. If an estimation error
is small, not only the event/target can be claimed to be detected but also the
event/target parameter can be obtained within a certain confidence level. Wang

et al. define information exposure as the probability that the absolute value of

the estimation is less than or equal to a predefined constant 4, i.e. Prﬂ@’; ‘ < A} ,

to measure how well a point is monitored. When it is equal to or larger than a

predefined thresholde (0 < e <1), i.e. Pr”@;‘ < A} > ¢, this point is said to be
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information covered (or (K, g)-covered) by these K sensors. The information
coverage model can be reduced to a sensing disk model if only (1, &) coverage is
considered for an isotropic sensor. When higher order information coverage is
considered, e.g., (K = 2, &) coverage, the area covered by these K sensors is no
longer a simple union of these K sensors’ sensing disks but larger than that.
Figure 2.6 illustrates the area that can be (3, &)/(4, ¢)-covered with that
physically covered when placing sensors at the vertices of a regular
triangle/square. It is seen that higher order information coverage increases the

area can be covered [Wan 06].

be

=

Physical coverage ) (3. ¢) Information coverage
Physical coverage ) " ...] In!lnrmaﬁoncouaraﬁe .

Figure 2.6: Comparison physical and information
coverage.

2.1.1.2 Coverage Problems

This section, we survey the main issues of coverage in sensor networks,
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including: area coverage, point/target coverage, barrier coverage,
energy-efficient area coverage, energy-efficient point/target coverage,

set-k-cover problem, and k-coverage problem.

Cardei et al. defines three types of coverage problems in sensor networks
[CW04] [CWLPO5]: (1) area coverage, (2) point/target coverage, and (3)
barrier coverage. As Figure 2.7 shown, area coverage considers the ratio of
coverage in whole sensor field [CW06]. Hence complete coverage becomes one
of metric of design. Point/target coverage concerns whether the given points are
covered. The barrier coverage considers whether existing one path through

sensor field such that targets should/shouldn’t be detected.

Cardei and Wu [CWO06] survey the various energy-efficient coverage
papers. They classify the literatures as two types: energy-efficient area coverage

and energy-efficient point coverage.

Ty ib)

Figure 2.7: (a) Area coverage and (b) Point coverage.

(1) Energy-efficient Area Coverage

Consider a large number of sensors are deployed randomly for area

monitoring. The goal of the issue is to achieve an energy-efficient design that
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maintains area coverage. As the large number of sensors is deployed to perform
monitoring tasks, several papers [CMCO02] [SPO1] divide these sensor nodes into
disjoint sets, such that every set can individually perform the area monitoring
tasks. These sets are then activated successively, and while the current sensor set
is active, all other nodes are in a low-energy sleep mode. The goal of this
approach is to determine a maximum number of disjoint sets, as this has a direct
impact on conserving sensor energy resources as well as on prolonging the
network lifetime. The problem is indicated as set-k-cover problem in sensor

networks.

(2) Energy-efficient Point/Target Coverage

As Figure 2.7(b) shown, a set of sensors are randomly deployed, the aim of
point coverage problem is to cover a set of points (small square nodes) in a

sensor field.

Cardei and Du [CDO05] address the point coverage problem in which a
limited number of points (targets) with known locations need to be monitored. A
large number of sensors are dispersed randomly in close proximity to the targets
and send the monitored information to a central processing node. The
requirement is that every target must be monitored at all times by at least one
sensor, assuming that every sensor is able to monitor all targets within its

sensing range.

One method for extending the sensor network lifetime through energy
resource preservation is the division of the set of sensors into disjoint sets such
that every set completely covers all targets. These disjoint sets are activated
successively, such that at any moment in time only one set is active. As all
targets are monitored by every sensor set, the goal of this approach is to
determine a maximum number of disjoint sets, so that the time interval between

two activations for any given sensor is longer.

In order to considering fault tolerance, several papers investigate
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k-coverage in sensor networks design [CW04] [VGDO06] [ZDG04]. K-coverage
means that each point or target in the sensor field is within the sensing range of
at least k active sensors. With k-coverage, the network still works even when

any k-1 sensors fail at the same time.

2.1.2 QoS in WSNs

Since WSN has a wide variety of applications, it also has many different
QoS parameters. Wang, Liu and Yin refer to OSI 7-Layer to defined the QoS
parameters for each function layer [WLY06]. We list the QoS parameters
[WLYO06], shown as Table 2.1.

Table 2.1: QoS parameters and function layers.

Function layer QoS parameters

System = lifetime, response time, data novelty,

Application Layer detection probability, data reliability, and data
resolution.

Transport Layer Reliability, bandwidth, latency, and cost.
Path latency, routing maintenance, congestion

Network Layer probability, routing robustness, and energy
efficiency.

Network diameter, network capacity, average path

Connectivit .. ;.
. Y cost, connectivity robustness, and connectivity
Maintenance Layer )
maintenance
Coverage Coverage percentage, coverage reliability, coverage
Maintenance Layer robustness, and coverage maintenance.

Communication range, throughput, transmission

MAC Layer reliability, and energy efficiency,

The capabilities of wireless unit, processor unit and

Physical Layer sensing unit

In this dissertation, we take account of positioning accuracy, which is one
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kind of data qualities. Hence, we consider that positioning accuracy belongs to

application layer QoS parameter.

Meguerdichian et al. [CW06] [MKPO1] noted that the coverage of WSN is
a measure of the quality of service/surveillance (QoS) of the sensing function.
The objective of sensor deployment is to achieve complete coverage, such that

each location in the sensor field is within the sensing range of at least one sensor

[LCOS5].

Maleki and Pedram have defined Quality of Monitoring (QoM) as the
average of spatial distortion in the reconstructed signal at base stations. They
then solved the sensor deployment problem subject to the QoM and network

lifetime constraints [MPO0S5].

In some cases, sensor field dose not require complete sensing coverage.
Yan, He and Stankovic propose the concept of differentiated surveillance
service of sensor networks [YHSO03]. The authors consider the sensor network,
which provides differentiated surveillance service for various target areas with
different degrees of security requirements. They developed an adaptable
energy-efficient sensing coverage protocol to support differentiated surveillance

by sensor networks.

Lu et al. propose a real-time communication architecture, RAP, use
velocity monotonic scheduling to prioritize real-time traffic in MAC layer

[LBA02].

For providing the target positioning and tracking service, this work refers
to the positioning accuracy as the QoS parameter hereinafter. Moreover, the
concept of differentiated QoS is also considered to provide weighted

discrimination requirement for each ROI in a sensor field.

2.1.3 Energy Efficiency

Energy optimization problems in sensor networks include reducing power
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consumption of sensor nodes and extending overall sensor network lifetime. The
energy-efficiency is a QoS parameter in each network function layer.
Consequently, a lot of research groups are engaged in developing
energy-efficient hardware architecture, system software or network protocols to

lengthen system lifetime in various aspects [EGH99].

The main components of a sensor node include sensor, data processor, and
communication subsystem. Recent studies have demonstrated that data
communication is the main consumer of energy in sensor networks. Therefore,
several projects have been performed to design power-efficient integrated
sensors [PK00] and low-power, low-cost transceiver technologies of sensor node

[PMEO0O].

Moreover, link layer techniques usually consider the reliability constraints.
The power-efficient MAC protocols minimize the number of times for packet
retransmissions, thus reducing the power consumed at both the transmitter and

receiver [RSP02] [YHEO2].

Furthermore, several power-aware routing protocols have been developed
for sensor networks. Almost all of these routing protocols considered energy
efficiency as the ultimate objective for maximizing network lifetime [LAROI1]

[SRO2].

From sensors self-organization perspective, some studies have investigated
the possibility of partitioning the sensors into many clusters (or covers) such that

every sensor cluster provides sufficient service quality [AGP04] [CTLO5].

2.1.4 Target Location

Several location systems have been proposed and realized. For instance, the
satellite-based Global Positioning System (GPS) is common outdoor location
system. However, GPS is not useful in indoor, dense, or harsh environments

[RSTO4].
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A. Location Techniques

Hightower and Borriello present three main techniques for location-sensing,
including: triangulation, scene analysis, and proximity. Location systems may
employ them individually or in mixing [HBO1]. We illustrate the classification

in Figure 2.8.

Location-sensing

/v\

Triangulation Proximity Scene
Detecting Monitoring Observing
Angulation | | Lateration physical wireless cellular automatic ID
contact access points systems
Direct measurement Time-of-fligh Attenuation

Figure 2.8: The classification of location sensing techniques.
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Figure 2.9: Triangulation location-sensing technique.
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The triangulation location-sensing technique uses the geometric properties
of triangles to compute object locations. Triangulation is divisible into two
sub-categories: lateration, using distance measurements, and angulation, using

primarily angle or bearing measurements.

Lateration computes the position of an object by measuring its distance
from multiple reference positions. For instance, calculating an object’s position
in two dimensions requires distance measurements from 3 non-collinear points

as shown in Figure 2.9 [HBO1].

In general, there are three approaches to measuring the distances required

by the lateration technique.

1. Direct measurement: distance measurement using a physical action or

movement.

2. Time-of-flight: it measures distance from an object to a specific point by
emitting signal with known velocity (for example, ultrasound, light, or
radio) and measuring the traveling time between the object and point P to

calculate the distance.

3. Attenuation: the intensity of an emitted signal decreases as the distance
from the emission source increases. Given an attenuation function, it is
possible to estimate the distance between an object and source by

measuring the strength of the emission when it returns to source.

Angulation technique is shown in Figure 2.10 [HBO1], two dimensional
angulation requires two angle measurements and one length measurement such
as the distance between the reference points. Sometimes, angulation technique

adopts a constant reference vector (e.g. magnetic north) as 0°.

The scene analysis location-sensing technique uses features of a scene
observed from a particular vantage point to draw conclusions about the location
of the observer or of objects in the scene. Usually, the observed scenes are

simplified to obtain features that are easy to represent and compare (e.g., the
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shape of horizon silhouettes as seen by a vehicle mounted camera). In static
scene analysis, observed features are looked up in a predefined dataset that maps
them to object locations. In contrast, differential scene analysis tracks the
difference between successive scenes to estimate location. Differences in the
scenes will correspond to movements of the observer and if features in the
scenes are known to be at specific positions, the observer can compute its own

position relative to them.

Angle 1 "J_d,_~”'.
@) o Leneh

Figure 2.10: An example of 2D angulation technique.

A proximity location-sensing technique determines target location when it
is “near” a known location. The object's presence is sensed using a physical
phenomenon with limited range. There are three general approaches to sensing

proximity:

1. Detecting physical contact: detecting physical contact with an object is
the most basic sort of proximity sensing. Technologies for sensing
physical contact include pressure sensors, touch sensors, and capacitive
field detectors. Touch Mouse and Contact systems are implemented by

this approach.

2. Monitoring wireless cellular access points: monitoring when a mobile

device is in range of one or more access points in a wireless cellular
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network is another implementation of the proximity location technique.
Examples of such systems include the Active Badge Location System
and the Xerox ParcTAB System, both using diffuse infrared cells in an
office environment, and the Carnegie Mellon Wireless Andrew using a

campus-wide 802.11 wireless radio network.

3. Observing automatic ID systems: a third implementation of the
proximity location-sensing technique uses automatic identification
systems such as credit card point-of-sale terminals, computer login
histories, electronic card lock logs, and identification tags such as
electronic highway e-toll systems, RFID system, etc. While detection
devices scan the label, interrogate the tag, or monitor the transaction, the

location of the mobile object can be inferred.

In reference paper [RST04], base on wave frequency, the authors classify
the indoor location systems into three categories: infrared, ultrasound, and

radio.

1. Infrared: The Active' Badget location system first adopts infrared
technique to design an indoor location detection system [RSTUO4]. This
system provides each person with a badge that periodically emits a
unique ID using diffused IR that is received by one of several receivers
scattered throughout a building. Badge location is then resolved by
proximity to the nearest receiver. In harsh settings, however, the
communication environment can be very dynamic, as people move about,
smoke or other impurities fill the air, or walls collapse. In such settings,
proximity to a single receiver is not sufficiently robust or flexible to

provide reliable location detection.

2. Ultrasound: Ultrasound based systems also provide location detection
based on proximity, but improve accuracy by measuring ultrasound
time-of-flight with respect to a reference RF signal. Systems such as the

Active Bat or MIT’s Cricket compare the arrival time of the two signals
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from various known sensors in order to calculate a listener’s location. As
with the infrared based schemes, current ultrasound based systems are
not designed for robustness, since line-of-sight paths may get obstructed
or altered in the face of changing room dynamics. In addition, these

systems are particularly sensitive to the possible destruction of sensors.

3. Radio: Radio waves provide a powerful means of location detection
because of their ability to penetrate many types of surfaces and objects,
and due to their range, scalability, and maintenance benefits. Rather than
using differences in arrival time, as done by ultrasound systems, radio
based location detection systems determine location based on received
signal strength, predicated on a known signal-to-noise ratio (SNR).
RADAR system pre-computes an SNR map for a building. A vector of
signal strengths received at various base-stations is compared with this
map to determine position. Other radio based systems include SpotON

and Nibble,

These systems determine| location according to the signal strength and a
known signal-to-noise ratio (SNR). Hence, the sensitivity for environmental
conditions is very significant; quality of positioning is injured by interference
frequently. In addition, these location detection systems work well for their
designed purposes, but cannot handle significant changes in communications

paths or building topology.

Bulusu et al. suggest placing multiple beacons (reference points) in a
positioned field with overlapping regions of coverage and transmitting periodic
beacon signals. Targets can be localized to the centroid of their proximate

reference points [BHEOO].

B. Identifying Codes

In paper [KCL98], identifying codes first are proposed as a means for
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uniquely identifying malfunctioning processors in multiprocessor systems. Such
a system can be modeled as a graph G = (V, E), where V is the set of processors
and £ the set of links between processors. Assume that at most one of the
processors is malfunctioning. For testing the system and locating the faulty
processor, some processors (which constitute the code) will be selected and
assigned the task of testing their neighborhood. Whenever a selected processor
(i.e. a codeword) detects a fault, it sends an alarm signal. Hence, the set of
detecting processors must be selected carefully to uniquely locate the
malfunctioning processor based only on the information which one of the

codewords gave the alarm.

Therefore, it is important to obtain results on the complexity of this issue.
Given an undirected graph G and integer r (r-cover for each vertex), Charon et
al. [CHLO3] have proved the decision problem of the existence of an
r-identifying code of size at most £ codewords in G, is NP-complete for any r.
Due to definition of NP-hard, the corresponding optimization problem, i.e.,

minimizing size of identifying code, is NP-hard.

C. Using Identifying Codes to Target Location Problem

Several researchers adopt concept of identifying codes (i.e., power vectors

in this dissertation) to construct location systems.

(1) C1Q Approach

In papers [CIQO01] [CIQO02], the authors propose farget location problem in
sensor networks. The sensor field is presented as a (two or three dimensional)
grid of points; target location refers to the problem of pinpointing a target at a
grid point at any point in time. If the coverage areas of multiple sensors overlap,
they may all report detecting a target, then the precise location of the target can
be determined by overlap of these sensor’s detection zones. If every grid point in

the sensor field is covered by a unique subset of sensors, we can easily
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determine the target occurring and its location according to the set of reporting

SENsors.
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Figure 2.11: Sensor placement based on the coding theory.

Chakrabarty et al. [CIQ02] solve the problem of placing sensors for unique
target identification by the theory of identifying codes [KCL98], is called CIQ
approach in this dissertation. They first build a primitive block which is
completely discriminable by sensors on the block. Each grid point on the field
has a unique identifying code which is composed by the reporting messages of
these sensors. Then, a larger sensor field can be constructed by tiling primitive
blocks on the sensor field. For example, as shown in Figure 2.11(a), a primitive
block which contains 13 grid points is deployed 5 sensors with sensing radius 1
on it. A 13 by 13 sensor field is tiled by the primitive block and the field is
therefore completely discriminable sensor. Figure 2.11(b) illustrates an 8 by 8
sensor field which is a primitive block is composed by 35 sensors. It can be used

to build any 8n by 8n sensor field (Vne Z,n>1) directly. However, this

placement manner can only use in regular sensor field and fixed sensor detection
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radius. In additional, the grid points in boundary of sensor fields do not take into
consideration. In Figure 2.11(a), there are 4 uncovered grid points, to achieve
completely discriminable, it requires to deployed additional sensors for the
sensor field. It will harm the applicability of the approach, especially in irregular

sensor fields.

(2) ID-CODE Algorithm

Ray et al. apply identifying code theory to design a location system in
sensor networks [RST04]. They divide a continuous sensor field into a finite set
of locatable regions represented by a designated point (It is called a service
point in the dissertation). FEach designated point can be identified
unambiguously. The system operates in location service mode and periodically
broadcasts ID packets from designed sensors. An observer can determine her

location due to the unique collection of received ID packets.
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Figure 2.12: The location system proposed by Ray et al.

The sensor network design procedure is as follows. A set of designated
points is selected for a given field. Then, based on physical point connectivity, a
corresponding graph can be obtained. The vertices are designed points and

connectivity between any two points determines whether edge exists. For
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example, the points set P = {a, b, ¢, d, e, f, g} on a floor plan is depicted in
Figure 2.12(a). Figure 2.12(b) shows the connectivity among these points

represented by the arrows.
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Figure 2.13: Performance of various heuristics for
|V|=128 vertices graphs.

Ray et al. propose ID-CODE algorithm to deploy sensors and build an
identifying code for the given graph as shown in Figure 2.12(d). First, every
vertex is deployed a sensor, as a codeword. At each loop of ID-CODE algorithm,
one of codeword is checked whether it can be deleted and results in identifying
code. The authors suggest three predetermined sequences to visit vertices:
random, descending, and ascending orders. The simplest approach is to visit all
vertices in random order. If the average degree of vertices in the graph is low,
the good codewords are likely to have high degree such that the number of
codewords required to cover all the vertices is reduced. Hence, the authors
propose visit the vertices by descending order. On the contrary, if the average
degree of vertices in the graph is high, the good codewords are likely to have
lower degree. Hence, the authors propose visit the vertices by ascending order.
The performance of ID-CODE algorithm depends on the sequence of vertices.

Therefore, the authors propose a hybrid heuristic for ordering. When the average
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degree of graph is greater than half the number of vertices, the descending order
of degree is used. Otherwise, the ascending order is used in ID CODE

algorithm.

Figure 2.12(c) and (d) illustrate the sensors deployment, and the
corresponding graph. Four sensors are placed at codewords a, b, ¢, and d.
Therefore, each vertex has unique identifying code, e.g., ID(a)={a, b}, ID(b)={a,
b, c}, ID(c)={b, c}, ID(d)={d}, ID(e)={c, d}, ID(f)={b, d}, and ID(g)={a, d}.

Figure 2.13 shows the size of identifying code of various visiting order in

|[V|=128 vertices graphs with various average degree [RUPO03].

(3) Power Vectors

A number of papers investigate the sensor placement problems with grid
based sensor field [CIQO1] [DCO02] [LRS05] [SSS03]. A grid-based sensor field
can be represented as a collection of two- or three-dimensional grid points. In
this dissertation, we adopt grid based placement method. A set of sensors can be

deployed on the grid points to monitor the sensor field.

L~ Grid point
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Figure 2.14: Grid-based sensor field and power code.

If any grid point in a sensor field can be detected by at least one sensor, we
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call the field is completely covered, as shown in Figure 2.14. In this context, a

target can be detected at any place in the field [CL04] [LCO5].

A power vector, which is analog to identifying code, is defined for each
grid point to indicate whether sensors can cover a service point in a field. As
shown in Figure 2.14, the power vector of service point 8 is (0, 0, 1, 1, 0, 0)
corresponding to sensor 4, 6, 7, 9, 10, and 12. In a completely covered sensor
field, when each service point has a unique power vector, we note the sensor
field is completely discriminated, as shown in Figure 2.14. In this case, as soon
as a target occurs in a grid of the sensor field, it can be located by the back-end

according to the power vector of the grid.

2.1.5 Sensor Deployment

Sensor deployment is a key step for sensor network designs, which greatly
influences the effectiveness of networks. In general, there are three deployment
objectives are major concerned in the sensor deployment phase: reducing the
deployment cost, improving quality of surveillance, and prolonging the network
[IMPOS5]. Moreover, there are several factors have to be take account into the
sensor placement problem, for instance, the placement methods, the nature of
the terrain, types of sensors, network coverage, connectivity, fault tolerance,
network architecture, etc. Form perspective of deployment method, we divide
related works into two categories: random and controlled deployment methods.
In the rest of this subsection, we will review related literatures from this

perspective.

A. Random Deployment

(1) To Determine the Drop Strategy

Typically, a WSN used for environmental monitoring is designed to
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provide a certain level of QoS, which essentially measures the degree of
spatio-temporal accuracy required by the particular application. In paper
[LRSO05], Leoncini et al. focus on degree of coverage (DoC), which evaluates
the percentage of a given region sensed by a set of connected sensors. The DoC,
as well as other QoS measures provided by a sensor network, depends on the
number and positions of the sensors used to monitor the area, and thus on the
deployment strategy. In situations where manual deployment is not feasible,
random distribution is typical alternative, which drops sensors from a moving
vehicle, such as an airplane. Hence, the human operator can only control the

sensor drop point(s).

Leoncini et al. consider the following network planning problem. Given a
sensor field and a certain DoC requirement, the spatial distribution of the
sensors released at a drop point is modeled by a certain probability density
function F. Leoncini et al. consider the problem of determining the optimal drop
strategy, 1.e. the strategy such that the DoC requirement is satisfied, and the total
number of deployed nodes is minimized. They assume the candidate drop points
are arranged in grids of arbitrary side. Further, we assume that probability
density function F is the normal distribution. Through analysis and simulation,

they can identify the optimal deployment strategy.

(2) To Determine the Critical Sensor Density

An important problem in random distributed sensor networks is to estimate
the number of sensors required to achieve complete coverage for a desired
region. In [ASO3], Adlakha and Srivastava address the problem finding the
critical density of sensors for complete coverage by presenting analytical result.
They adopt exposure coverage model, that the sensor detects the change in the
signal strength over time. In addition, the integrator model be used, i.e., when
the total signal energy or exposure exceeds a threshold, the sensor states the
target is detected. The authors also model the properties of target as an object

moving with constant speed for a distance. Through analysis, they derive an
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equation for an effective sensor radius. Then, using this effective radius, they

can estimate the critical density for complete coverage in sensor field.

(3) Heterogeneous Sensor Networks

Mhatre et al. consider two types of sensors [MRKO0S5]: cluster header and
sensor node. They assume the nodes are organized as a collect of clusters.
Cluster heads perform data aggregation for the sensors in the cluster. Sensors are
responsible for sensing and relaying data to the nearest cluster head. An aircraft
(i.e. a mobile sink) visits the sensor field periodically and gathers data from all
of the sensors. Each visiting of the aircraft triggers a sensing and data gathering
cycle on the ground during which every sensor node sends a packet to its cluster
head and the cluster head directly sends aggregated data to aircraft. The authors
also model the cost functions for cluster and sensor node, they consider both
hardware and battery cost. Under the coverage and connectivity constraints, the
aim of this paper is to determine the sensor deployment parameters such that the

network lifetime is enlarged.

(4) Energy Efficiency

Using random deployment, usually a large number of excess sensors are
scattered in a monitor field for satisfying quality of surveillance. Many

researchers use these redundant sensors to prolong the network lifetime.

Slijepcevic and Potkonjak [SPO1] propose a heuristic to organize the
sensors into mutually exclusive sets where each set can completely cover the
sensor field. These sets of sensors work in turn. Any moment, only one of these
sets is active and the other sets operate at sleeping mode. Generally, “mutually
exclusive sets of sensors” is also denoted as “cover”. The goal of this work is to
maximize the number of covers. They present the problem as set k-cover
problem, and propose a heuristic approach for solving the set k-cover problem.
In [AGP04], the requirement of complete coverage of cover is relaxed. Abrams

et al. design three algorithms to maximize the number of covers.
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(5) Target Coverage

Cardei et al. [CWLO5] address the target coverage problem in random
deployment sensor networks. They consider a large number of sensors with
adjustable sensing radius that are randomly deployed to monitor targets. The
authors define the Adjustable Range Set Covers (AR-SC) problem. By the
property that sensors have adjustable sensing ranges, the objective is to
maximize the number of covers and to reduce the radius associated with each
sensor, such that targets can be covered by each cover [CWLO05]. The authors
first introduce the mathematical model for AR-SC problem as the integer
programming model, and then propose efficient heuristics by greedy approach to

solve it.

(6) Incremental Sensor Deployment

Vieira et al. [VVBO04] propose an efficient algorithm for incremental
deployment of nodes. A number of sensors randomly deployed in sensor field,
suppose amount of sensor, the location and energy level of each sensor are
known, the paper discuss what is the: minimum number of new sensors that
should be added so that it does not lose any covering area? Where should be the
new sensors placed? The authors propose algorithm which improves the

coverage iteratively for solving the problem [VVB04].

(7) Mobility

Random scattering approach can not always achieve effective coverage,
especially if the sensors are overly clustered. There is a small concentration of
sensors in certain parts of the sensor field. In [ZC03a], a lot of mobile sensors
are scattered in sensor field, Zou and Chakrabarty propose a virtual force
algorithm as a sensor placement strategy to improve coverage after initial
random deployment. The coverage is extended under the constraint of reducing

energy consumption for moving.
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B. Controlled Deployment

(1) Grid-based Deployment

Dhillon et al. [DC02] [DCO03] consider the probabilistic detection model,
and propose two polynomial-time sensor placement algorithms to address the
homogeneous sensor placement problem. The authors represent the sensor field
as a collect of grid points. When a target enters to the sensor field, it will be
detected by a set of sensors. They proposed an algorithm optimizes coverage
under constraints of a threshold of detection probability and terrain properties.
Based on relative measures of security and tactical importance, the preferential

coverage of grid points is also modeled in the work.

Dhillon et al. [DC02] adopt the probabilistic detection model, which is
illustrated in Section 2.1.1, Equation (2.1). The authors assume that knowledge
of the terrain is given, e.g, through satellite imagery. Hence, obstacles and the
detection probability for each grid point are known. They develop two
polynomial-time sensor placement | algorithms, MAX NIN COV and
MAX AVG _COV, to minimize the number of sensors, and to determine the
location of each sensor such that every grid point satisfy the given coverage
threshold [DCO02]. However, the algorithms can construct a sensor network to

support surveillance-only service.
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Figure 2.15: Sensor placements for 4 by 4 sensor field. (a) m=1, (b)
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39



Chakrabarty et al. [CIQO1] [CIQ02] formulate the heterogeneous sensor
placement problem in terms of cost minimization under coverage constraints.
They first formulate the optimization problem as an integer programming model
and then solve problem using the /psolve package. Given the sensor field, two
types of sensors (with different cost and radius), parameter m > 1, they
determine the sensors’ location such that number of sensor is minimized and
each grid point is covered by at least m sensors. The placement examples are
shown in Figure 2.15. They also propose a divide-and-conquer approach to cope
with the large size problem. In addition, the authors developed sensor placement
approaches based on identifying code theorem in graph theory to construct a
sensor network providing target location service, which is reviewed in Section

2.1.4.

(2) Well-known Placement Patterns
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Figure 2.16: Four common regular patterns of
deployment. (a) Hexagon. (b)
Square. (¢) Rhombus. (d)
Triangular lattice.
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A number of papers adopt the well-known manners about placing disks on
the vertices of a triangular lattice or at the centers of regular hexagons, as
illustrated in Figure 2.16 [BKX06] [ZH04]. Triangular lattice is optimal pattern
in terms of the number of disks needed to achieve full coverage of a plane
[BKX06] [ZH04]. On the problem of achieving both coverage and connectivity
at the same time, a few results are known in the literature [BKX06]. First, when
the communication range r. is at least twice of the sensing range r; (i.e., 7. > 2ry),

then coverage of a region implies connectivity in the sensor network [XWZ05].
Second, while r, > \/grs , then deploying sensors in the triangular lattice pattern

provides both coverage and connectivity. And the deployment is optimal in
terms of the number of sensors needed. Third, when r. = ry, a strip-based

deployment pattern is near optimal [IKBOS5].
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Figure 2.17: Strip-based deployment
pattern to achieve coverage and
2-connectivity.

In [BKXO06], Bai et al. propose and prove the asymptotic optimality of a
deployment pattern to achieve both coverage and 2-connectivity for all values of
re | re. In Figure 2.17, the light-filled dots show the sensor locations that form

the horizontal strip, while the dark-filled dots form the two vertical strips. Here,

a=min{r,\3r} and B=r +.r’ —(a*/4) . The vertical strip of sensors may
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be removed when 7, /7, >/3. The authors also show that the strip based

deployment pattern is not only near-optimal but asymptotically optimal for

achieving both full coverage and 1-connectivity. Moreover, its optimality holds
not only for (7. / v, ) =1 but for all r /7, <\/§ . They find the ideal ratio

between the communication radius and detection radius for sensors. In Figure

2.18, the light-filled dots show the sensor locations that form the horizontal strip,

while the dark-filled dots form the one vertical strip. Here, « :min{rc,\/grs}

and fB=r +r’—(a*/4).
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Figure 2.18: Strip-based deployment that is
optimal for achieving coverage
with 1-connectivity.

(3) Subject to Connectivity and Data Distortion

Ganesan et al. [GCBO06] consider the problem of deploying a finite number
of sensor nodes in a sensor field, and determine the communication architecture
among the nodes of the corresponding network. They assume single sink node is
responsible for gathering the data from sensors. The authors interest in the

relation between the data reconstruction distortion that results from the node
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placement, and the power requirements of data gathering from the sensors. The
important goal is to minimize the total energy consumption of data gathering

under the sensing distortion constraints [GCBO06].

Based on multi-hop forwarding scheme, a routing tree rooted at the sink is
built to connect the sensor nodes, and transmit data along the tree [GCBO6].
Two kinds of coding schemes include: joint entropy coding with explicit
communication and Slepian-Wolf. These coding schemes have tradeoff between
computation and communication. The former offers simple coding computation
and the latter offers larger communication gains. Ganesan et al. [GCBO06] use
energy related cost function as objective and consider radius limitation,
coverage, and distortion constraints. Due to performance evaluation, the
placement outperforms the random placement scheme in terms of power

efficiency.

(4) Flat/Hierarchical Architecture

Both flat and hierarchical architectures are commonly adopted for
designing a sensor network. Generally speaking, homogeneous sensors are
deployed under flat architecture, as well as each sensor takes on collecting data
and forwarding it to sinks by multi-hop communication. Hierarchical network
architectures use heterogeneous sensors, the networks consists two (or more)
layers of sensors. The first layer of wireless sensor network includes several
clusters of sensors, which connect to a fixed cluster head. The second layer is a
collection of cluster heads, which have more energy and powerful capabilities.
These cluster heads with connectivity aggregate data and forward compressed
data to sinks. Hierarchical architectures greatly improve the performance of the
overall system in terms of throughput, reliability, lifetime, and flexibility

[IMPO5].

In [IMPOS], Iranli et al. discuss the impact of hierarchical network
architectures on network lifetime. Given number of cluster heads and total

energy budget, the authors address cluster heads deployment, clustering, an
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energy allocation to cluster heads such that the network lifetime is maximized.
They consider both collinear and planar deployment, and the experimental

results showed that 2-level WSN architecture outperforms the flat architecture in

terms of lifetime.

(5) Others

Table 2.2: Classification of literatures for the sensor deployment problem.

R/C E cr)gt/ Eg{gﬂ;{ Papers Goals Considerations
R Pre- Homo- [AS03] Min sensor density | Coverage
R Pre- Homo- [LRS05] | Min sensor density | Coverage,
sensor distribution
R Pre- Hetero- [MRKO0S5] | Min cost Two type of sensors,
Coverage and connectivity
R Post- Homo- [AGP04] | Energy-efficiency | k-cover
[SPO1]
R Post- Hetero- [CWLO05] | Max number of | adjustable sensing ranges
[DVZ06] | covers reduce radius
C Pre- Homo- [DCO3] Min number of | Coverage threshold
[DCI0O2] | sensors Grid based method
C Pre- Homo- [CIQ02] | Min number of | Coverage
Hetero- sensors Target location
C Pre- Homo- [RST04] | Min number of | Identifying code
sensors Target location
Robust
C Pre- Homo- [CCZ05] | Number of sensor | Lifetime/cost
C Pre- Homo- [BKX06] | Number of sensor | Coverage, 2-connectivity
C Pre- Homo- [GCBO6] | Energy efficiency | Data distortion,
connectivity
C Post- Homo- [ZC03a] | Coverage Mobile sensors
[2C03b] Target location
C Post- Hetero- | [XWHO0S5] | Min cost Add relay nodes
Lifetime
Connectivity
Sensing/ Relay nodes
R/C | Post- Homo- [VVB04] | Coverage Incremental deployment
R/C | Post- Homo- [KGG06] | Min number of | Coverage
sensor Communication efficiency
R/C | Post- Hetero- [IMPO5] | Number of cluster | Lifetime, Two-level

In [KGGO6], the paper proposes the problem that the sensors are dropped

randomly. And the probabilistic models for sensor data quality and
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communication cost are collected. The proposed algorithm attempts to add the
minimal sensors or redeploy the existing sensors subject to coverage and

communication efficiency.

Chen et al. [CCZ05] define new performance metric, called lifetime per
unit cost. They address the sensor deployment problem to optimize the number
of sensors, determine the sensor placement for maximizing the lifetime per unit
cost. They propose greedy strategy and numerical approximation to solving the

problem.

To obtain the profile of sensor deployment research, in Table 2.2, we
arrange the previous survey papers and classify based on the proposed research

scope in Section 1.2.
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2.2 Lagrangean Relaxation Method

Optimization plays an important role in many application fields. In
engineering, for instance, design tasks are routinely cast as optimization
problems and algorithms are applied to search for parameters. Actually,
optimization techniques could be widely used to address a number of problems
found in computer networks, such as traffic routing challenges that have
recently emerged with the arrival of connection-oriented architectures. In this
dissertation, sensor deployment problems are modeled as optimization problems
that are computationally hard and for which no polynomial-time algorithm is

known.

Lagrangean methods were originally used in both scheduling and general
integer programming problems. However, it has become one of the best tools for
solving optimization problems like integer programming, linear programming
combinatorial optimization, and non-linear programming [Fis81] [Fis85]
[Geo74]. Adopting Lagrangean relaxation as our approach has the following

advantages:

1. The approach is very flexible, since it is often possible to divide and
conquer models in several ways and properly apply Lagrangean

relaxation to each subproblem.

2. In decomposing problems, Lagrangean relaxation solves primal
problems as individual components. Consequently, the solution
approach permits us to exploit any known methodology or algorithm

to solve the problem.

3. We can use Lagrangean relaxation methods to devise effective
heuristic solutions to solve complex combinatorial optimization

problems and integer problems.
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Lagrangean relaxation also permits us to remove constraints from the
original problem and place them in the objective function with associated
Lagrangean multipliers instead. The optimal value of the relaxed problem is
always a lower bound (for minimization problems) on the objective function
value of the problem. By adjusting the multiplier of Lagrangean relaxation, we
can obtain the upper and lower bounds of the problem. Although the Lagrangean
multiplier problem can be solved in a variety of ways, the subgradient

optimization technique is probably the most popular approach.

We now present an example of an optimization problem (P). By relaxing
constraint Ax=b, the original primal problem (P) is transformed into an LR
problem, where Zp(u) < Zp. In other words, the solution of (LR) is a lower

bound of the primal problem (P).
Zp = min cx (P)

subject to:

X in integral.

Zp(u) = min cx + u(Ax-b) (LR)

subject to:

X in integral.

With respect to the optimization problem (LR), we denote 7= (i, °, ...) >
0 as the vector of Lagrangean multipliers with respect to relaxed constraints.
According to the weak Lagrangean duality theorem, for any 7> 0, the objective

value of Zp(n) is a lower bound (LB) of Zp. Thus, the dual problem (D) is
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constructed to calculate the tightest LB by adjusting multipliers, subject to 7> 0.
Then, the sub-gradient method is used to solve the dual problem [HWC74]. Let

the vector g be a sub-gradient of Zp(7) at 7> 0. In iteration k of the sub-gradient

optimization procedure, the multiplier vector is updated by 7**' = z* +*g*. The
* 2 kS .
step size, t*, is determined by #* =A(Z,-Z, (7r")/”ng ), where Z, is an

upper bound (UB) of the primal objective function value after iteration k; and A
is a constant, where0 < 4 < 2. To calculate the UB of (P), an algorithm to find
primal feasible solutions must be developed. The maximum number of iterations
and the improvement counter for the problem are decided on a case-by-case
basis. We present our experiment settings in Chapter 4 and 5. The parameter 4
adopted in the sub-gradient method is initialized to be 2, which is halved when
the dual objective function value does not improve for improvement counter

iterations.
ZD = max ZD (72') (D)

To better describe how the dual problem is solved, the detailed concept

adapted from [Fis81] is illustrated in Figure 2.19.

Z,(u)
A

heuristic
UB

7,

w=cx2+u(Ax-b) w=cxtu( Axt-b)

w=cox FuAx -1y

heuristi

uk o uk+l

Figure 2.19: The concept of the dual problem.
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The overall procedure of the LR approach is shown in Figure 2.20, but the
algorithms to find primal feasible solutions must still be developed. After
optimally solving the dual problem (D), we get a set of decision variables.
However, this solution is not feasible for the primal problem, since some of
constraints are not satisfied. Thus, minor modifications of the decision variables
must be made to get a primal feasible solution for problem (P). Generally
speaking, the UB of problem (P) is the better primal solution, while the solution
of problem (D) guarantees the LB of problem (P). Iteratively, by solving the
Lagrangean dual problem and getting a primal feasible solution, we get the LB
and UB, respectively. So, the error gap between UB and LB, computed by
(UB-LB)/LB*100%, illustrates the optimality of the solution. The smaller the
gap computed, the better the optimality achieved.

Initialization

v

LR Stop
Condition

Get Dual Solution

v

Get Primal Solution

v

Update Bounds

L

Update
Parameters and
Multipliers

Figure 2.20: The overall procedure of the LR approach.
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In reference [Fis85] [Fis81], Fisher either provides a guide to use
Lagrangean relaxation, or describes several instances in which Lagrangean
relaxation method has been used to solve many well-known hard problems. In

this section, we only list partial instances in Table 2.3.

According to the definition of NP-hard [NNO04], the optimization problem
corresponding to any NP-complete (decision) problem is NP-hard. Hence, the
optimization problems corresponding to the well known NP-complete problems
listed in Table 2.3 are NP-hard. From Table 2.3, we can claim that Lagrangean

relaxation approach can be used for solving NP-hard problem.

Table 2.3: Applications of Lagrangian Relaxation.

Problem Complexity Researchers
TSP (Traveling Salesman Problem) NP-hard | Bazarra & Goode
[BG77]
Scheduling

n/m weighted tardiness NP-hard | Fisher [Fis73]

One machine weighted tardiness NP-hard | Fisher [Fis76]
GAP (Generalized Assignment NP-hard | Fisher & Shapiro
Problem) [FS74]

Set Covering NP-hard | Etcheberry [Etc77]
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2.3 Simulated Annealing Method

Simulated annealing (SA) approach is a generic and probabilistic
meta-heuristic for solving the difficult optimization problems. It can solve the
combinatorial optimization problems in large search space, namely can find
good approximated solutions to the global optimums by randomized heuristic. In
1983, Kirkpatrick, Gelatt, and Vecchi first invented the approach [KGMS3].
Afterward, Eglese arranged the previous researchers’ studies about simulated

annealing and proposed more complete discussions [Egl90].

The idea of the meta-heuristic refers to the annealing technique in
metallurgy. Initially, the material is heated to a higher energy state and the
structure of atoms is unstuck. The cooling procedure has to be controlled to
yield crystal, such that the structure of atoms is tighter and internal energy is
lower. The annealing temperature decreases slowly to give atoms more chances
for finding configuration with lower internal energy. If cooling is not slow
enough, the material may crystallize with defect. Hence, the material is not on

an approximated lowest energy state.

For a minimization problem, each feasible solution and corresponding
objective value of the problem are analog to a state of material and internal
energy on the state. Therefore, the goal of minimization, i.e. getting a feasible
solution with global minimum possible, can be analog to yield crystal and

decrease defects.

Initially, the SA heuristic selects an initial feasible solution randomly. Then,
the following loop of SA heuristic is executed repeatedly. At each state, the
heuristic selects a new state x;;;, which is neighbor of current state x;, and
probabilistically decides whether changing current state to the new state or not.
The neighbors of each state are dependent on the solution structure of problem,;
usually it is determined by the user. The transition probability p=exp(-AE/T) is

a function of energy difference AE=FE(x;+1)—E(x;) between new state and
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current state, and of parameter 7 called temperature. For a minimization
problem, when AE < (), it means the objective value of new state is lower than or
equal to current state’s, the transition probability p > 1. Contrarily, 4E > 0
means the new state has a higher objective value than current state’s, the
transition probability p < 1. To prevent to find a local minimum, the heuristic
should have chance to accept the worse new state. Initially, temperature 7=T) is
high so that the probability p for accepting the worse solution will be relatively
high. On a fixed temperature, 7=T7;, the algorithm executes (7;) iterations at
least. The cooling ratio & < 1, such that the next temperature 7;;; is lower than

T, and T

,=axT . The number of iterations on temperature 7;:; is

r(T,,)=pBxr(T)), parameter [ is greater than one. Hence the number of

iterations on fixed temperature should increase slowly, while temperature
decreases. The heuristic controls temperature 7 decreasing slowly, the
probability p for accepting the worse solution will reduce, even approaches to
zero. When the temperature is lower than the frozen temperature, 7, the system

is frozen, that is, obtaining an approximated optimum solution.

Algorithm 2.1: The skeleton of the SA heuristic.

1. Select an energy function E(x);
2. Select an initial temperature 7;,>0, and 7=Ty;
3. Select initial number of repetitions on initial temperature, (79);
4. Set repetition counter =0;
5. Repeat
6. Set repetition counter n=0;
7. Repeat
8. Generate new state x;;, a neighbor of x;;
9. Calculate AE=E(x;+1)—E(x));
10. If AE <0 then x=x;+s;
11. else if random (0,1) < exp(—AE/T;) then x=x;;
12. n=n+l;
13. Until n=r(T));
14. t=t+1;
15.  T=axI, r(T)=pxrT,);
16. Until stopping criterion, 7;< Tyis true.
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To obtain a good approximated optimum solution, users should carefully
design cooling schedule, which includes initial temperature 7, cooling ratio, ,
number of iteration #(7), and stopping criterion. We rewrite the generic heuristic

as listed in Algorithm 2.1.
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CHAPTER 3 SENSOR PLACEMENT
ALGORITHMS FOR ACHIEVING
COMPLETE COVERAGE AND
DISCRIMINATION

3.1 Overview

Sensor placement strategy depends on the WSN’s application. To support
surveillance, the network coverage is one of key issues. Furthermore,
positioning accuracy must be regarded in sensor deployment phase when WSNs

support target location services.

In this chapter, we intend to solve two problems. Both problems have the
same goal, which is to optimize the positioning accuracy supporting by sensor
networks. First, we solve controlled sensor placement problem under budget and
coverage limitations. Next, we consider the random manner, and determine the

radius for each sensor such that the positioning accuracy can be improved.
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3.2 Problem Description

A grid-based sensor field can be represented as a collection of two- or
three-dimensional grid points [DCI02]. A set of sensors can be deployed on the
grid points to monitor the sensor field. The grid point, which requires the
surveillance or positioning service, is also called service point. In this chapter,
we consider the detection model of a sensor to be a 0/1 coverage model. The
coverage is assumed to be full (1) if the distance between the service point and
the sensor is less than the detection radius of the sensor. Otherwise, the coverage
is assumed to be non-effective (0). If any service point in a sensor field can be
detected by at least one sensor, we call the field is completely covered, as shown

in Figure 3.1. In this context, a target can be detected at any place in the field.

Radius = 1

%, | .~Grid point

‘Sensor

Sensor’s coverage

Figure 3.1: A complete covered and discriminated sensor field.

A power vector is defined for each service point to indicate whether
sensors can cover a service point in a field. As shown in Figure 3.1 the power
vector of service point 8 is (0, 0, 1, 1, 0, 0) corresponding to sensor 4, 6, 7, 9, 10,

and 12. In a completely covered sensor field, when each service point has a

56



unique power vector, we note the sensor field is completely discriminated, as
shown in Figure 3.1. In this case, as soon as a target occurs in a grid of the
sensor field, it can be located by the back-end according to the power vector of

the service point.

Sometimes, due to some resource limitations, a completely discriminated
sensor field cannot be constructed. Consequently, these may lead to wrong
determinations, whenever a target occurs at any one of the service points.
Positioning accuracy, therefore, becomes a major consideration in solving the
problem. Error distance is one of the most natural criteria to measure
positioning accuracy. The error distance of two indistinguishable service points
is defined as the Euclidean distance between them. Hence, when complete
discrimination is impossible, the goal of this problem is to minimize the

maximum error distance, that is, to optimize the positioning accuracy.
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3.3 Sensor Placement Problem for Achieving

Complete Coverage and Discrimination

3.3.1 Mathematical Model

The sensor placement problem is formulated herein as a combinatorial
optimization problem. Depends on the cost limitation, the formulation can plan a
completely discriminable sensor network or a discriminable sensor network with
a minimum error distance. If the minimum Hamming distance of the power
vectors associated with any pair of grid points doesn’t equal to zero, the sensor
network is completely discriminable. Otherwise, it leads to an error distance for
the target positioning. Hence, the objective of the formulation is to minimize the
maximum error distance for the sensor network. The problem is, therefore,

defined as a min-max model.

Given Parameters:

: Index set of service points in the sensor field.

A

B :Index set of the sensors’ candidate locations.
C  :Index set of sensor cost.

G : Budget limitation.

K  :Alarge number.

1. : Detection radius of sensor located at %k, k € B.
d,j : Euclidean distance between location i and j, 7, j € 4.

¢, :The cost of the sensor allocated at location & ; k € B, ¢;,eC.

Decision Variables:

V, =(VisVis- V) 2 A power vector of location i, where vy is 1 if the target at
location i can be detected by the sensor at position k& and
0 otherwise, i€A, keB.
Wi : 1, if a sensor is allocated at location & and O otherwise,
keB.
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Objective Function:

Z

p31 = Min max

d,
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v vijed ]+ K Z (Vi = Vi )

subject to:
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3.1)
(3.2)
(3.3)

(3.4)

(3.5)

(3.6)

0, objective function (IP3.1) introduces a penalty

and Z (vik—vjk)2 >0, Zps; introduces a penalty

VkeB

d;/(1+ K ) which approaches zero.

Constraints (3.1), (3.2), and (3.3) require the relationship between sensor

transmission radius 7 and detection distance dj. If a target appears at service

point i and the service point is inside the coverage of sensor £, the target should

be detected by the sensor if it is available. Constraint (3.4) states that the total

deployment cost of sensors must limited by cost G. Constraint (3.5) is the

complete coverage limitation. It guarantees that any service point in the field

will be covered by at least one sensor. Constraint (3.6) is an integer constraint.

3.3.2 Algorithm

Simulated annealing (SA) is a highly reliable method for solving hard
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combinatorial optimization problems. The concept of SA is applied to derive an

efficient method for solving the problem approximately.

Algorithm 3.1: Simulated-annealing-based pseudo code for sensor placement.

0NN UL AW~

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Deploy sensors on all grid points; E,jy <— 00, Epiné— Eoja.
t < ty, b < by.
While¢>1¢# do

Repeat Steps (5)~(27) b times.

If budget constraint is satisfied then goto Step (17).
Configure a new deployment by removing a sensor randomly.
If coverage constraint is violated then goto Step (16).
Calculate E,,.,, and AE= E,.,, — E,1.

Generate a random number p, 0< p <1.

If exp(—AE/t) < p then goto Step (16).

Accept the new deployment; E,jy<— Epey-

If E,.;, < E,iq then goto Step (4).

Ein < Eq 5 save the new configuration as the best solution.
If E,.;, is a desired solution then goto Step (30).

Goto Step(4).

Recover the action in step (6);

Configure a new deployment by moving one sensor’s location
randomly.

If coverage constraint is violated then goto Step (26).
Calculate E,.,, and AE= E e, — Eoa.

Generate a random number p, 0< p <1.

If exp(—AE/f) < p then goto Step (26).

Accept the new deployment; E,j; < Epey-

If £, < E,iq then goto Step (4).

Ein< Eoiq 5 save the new configuration as the best solution.
If E,.inis a desired solution then goto Step (30).

Recover the action in step (17).

End_repeat

t « txa, b < bxp.

End_while
Zip3.1¢Enin.

Here, the cooling schedule of the algorithm is stated briefly. Initially, we

assume the sensors are deployed at all grid points. In each loop, an attempt is

made to remove one sensor if the cost constraint is not met. Otherwise, an

attempt is made to move a sensor to another randomly chosen position.
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Moreover, the stopping criterion is modified to improve efficiency. Besides
reaching the frozen temperature #, when both complete coverage and
discrimination are achieved, that is Z;;=1/AI+ K ), the procedure will also be
stopped. The solution with complete coverage and discrimination may not be

optimal. However, the solution is the desired solution to this problem.

Algorithm 3.1 shows a pseudo code of the algorithm. The energy, E, is

defined as follows:

d.
E = max —— l
ﬁi’]f:EA 1+ K z (Vi _ij)z 3.7)

VkeB

3.3.3 Computational Results

This section presents the computational results. First, the performance of
the proposed algorithm is evaluated when small sensor fields are deployed. The
purpose of the experiment is 'to examine whether the algorithm can find the
optimal solution under a minimum cost constraint. Then, the performance
results in the case of larger sensor fields are presented under various cost

constraints.

The parameters of the cooling schedule are = 0.75 and = 1.3. The initial
values of by and ¢ are 5n and 0.1, respectively; and n is the amount of grids in
the sensor field. The frozen temperature, ¢, is set to #,/30. K is 10000 and the

cost of sensor, ¢;, V1< i< n, is set to one.

As all sensors have same cost, the cost constraint, Constraint (3.4), can be
expressed as a limit on the number of sensors. This section uses a normalized

term, sensor density, in the constraint. Sensor density is defined as follows:

Sensor density (%) = (Z Vi /n) *100%

VkeB
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A. Experiment |

Experiment I evaluates the performance of the proposed algorithm for
smaller rectangular sensor fields that have no more than 30 grid points. The

results are compared with those obtained in an exhaustive search.

First, we find a minimum sensor density for a complete covered and
discriminated sensor field. Then, an attempt is made to obtain the same result by

using the proposed algorithm under a sensor density constraint.

Table 3.1 shows the results. In all cases, the proposed algorithm achieves
the same deployment of sensor fields with a minimum sensor density. The
required sensor density ranges between 40% and 45%, except for the case of the
4x3 rectangular sensor field. The exhaustive search for the 10x3 sensor field
exceeds 65 minutes. However, the proposed algorithm finds the solution in 0.1

second.

Table 3.1: Comparison between exhaustive search and the SA algorithm.

Area # of sensors Sensor density | Area # offsensors Sensor density
Opt. | SA Opt. | SA
3x3 4 4 44.44% 6x4 10 10 41.67%
4x3 6 6 50.00% 6x5 12 12 40.00%
4x4 7 7 43.75% 7x3 9 9 42.86%
5x3 6 6 40.00% Tx4 12 12 42.86%
5x4 8 8 40.00% 8x3 10 10 41.67%
5x5 10 10 40.00% 9x3 11 11 40.74%
6x3 8 8 44.44% 10x3 12 12 40.00%

B. Experiment Il

In this experiment, two larger sensor fields with 10x10 and 30x30 grid

points are considered. The radius of the sensor is one. The values of Zjp;; are
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determined by various sensor densities. The results obtained by the proposed
algorithm are compared with the best solution obtained by the random
placement approach. The best solution that has a minimum objective value is

found in 1000 arbitrarily generated solutions.

The time needed to compute 1000 arbitrary solutions for the 30 by 30
sensor field with 70% sensor density is 700 seconds. There are only a couple of
minutes for the proposed algorithm. Figure 3.2 and Figure 3.3 show that the
required density for the desired solution obtained using the proposed algorithm
ranges from 40% to 45%. This result is consistent with Table 3.1. In contrast,
the random placement approach is associated with a relatively high density
(54% and 69% for Figure 3.2 and Figure 3.3, respectively). The proposed

algorithm is, therefore, very effective and scalable.

1.5

—a—SA
—e— Random

1.0+

0.5
0.0 LXO’”’F
T T T T T T T T

20 25 30 35 40 45 50 55 60

Error distance

Sensor Density (%)

Figure 3.2: Error distance vs. sensor density. (10x10, R=1)

The proposed algorithm can achieve completely covered placement at a
very low sensor density. The minimum required sensor densities in Figure 3.2
and Figure 3.3 are only 25% and 24% respectively. The results are very close to
the theoretical lower bound. (When the sensor radius is 1, a sensor can cover 5
grid points. Hence, the lower bound of the sensor density for complete coverage

is 20%). However, with the random placement approach, the required density
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for a completely covered placement is very high (44% and 63% for Figure 3.2
and Figure 3.3, respectively). The results show that the probability of finding the
feasible solution using the random placement approach is very low when the

sensor field area increases.
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Figure 3.3: Error distance vs. sensor density. (30x30, R=1)

Figure 3.4 and Figure 3.5 show the required density for the case of radius 2.
The desired solution obtained by the proposed algorithm ranges from 25% to
30%. In contrast, the random placement approach is associated with a relatively
high density (40% and 52% for Figure 3.4 and Figure 3.5, respectively). The

results confirm that the proposed algorithm is very effective and scalable again.

The minimum required sensor densities to achieve complete covered
placement for the SA algorithm in Figure 3.4 and Figure 3.5 are only 10% and
11% respectively. The results are very close to the theoretical lower bound.
(When the sensor radius is 2, a sensor can cover 13 grid points. Hence, the lower
bound of the sensor density for complete coverage is 7.69%). However, with the

random placement approach, it requires very high density for a complete
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covered placement (40% and 52% for Figure 3.4 and Figure 3.5, respectively).
The results show that the random placement approach becomes more difficult to

get feasible solutions when the area of the sensor field increases.
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Figure 3.4: Error distance vs. sensor density. (10x10, R=2)
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Figure 3.5: Error distance vs. sensor density. (30x30, R=2)

From Figures 3.2 to 3.5 indicate that the placement of sensors by the

proposed algorithm has a minimum error distance, 1, when the sensor density is
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insufficient. The random placement approach cannot achieve the same result.

3.3.4 Concluding Remarks

This section considers the sensor placement problem for locating targets
under cost constraints. We first formulate this problem as a min-max
mathematical optimization model where the positioning accuracy is the
objective. Then, the simulated annealing-based algorithm is developed to solve
the optimization problem. The experimental results show that the proposed
algorithm can efficiently obtain a high-quality solution. Additionally, the

proposed algorithm is very effective, scalable, and robust.
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3.4 Consider Adjustable Detection Radius on

Random Sensor Placement Problem

Several papers about sensor deployment consider the sensors to be
scattered in the sensor field, and locations of sensors are determined randomly.
Hence, determining the number of sensors for achieving ratio of coverage is one
of important issues in pre-deployment phase. It motivates us to investigate
whether the positioning accuracy can be improved by adjusting detection radius
of each sensor when the location of each sensor is given by random manner.
This section, we develop another simulated annealing algorithm and many sets

of experiments to study the problem.

3.4.1 Simulated Annealing Based Algorithm

In this section, the cooling schedule of the algorithm is stated briefly. In
this study, the set of candidate radius, R, as well as the number of sensors, VN, are
given. Initially, all the sensors are randomly deployed in sensor field. We
separate those samples, whose configurations satisfy complete coverage, as well

as to determine radius of each sensor by the proposed algorithm.

Algorithm 3.2 shows a pseudo code of the simulated-annealing-based
algorithm. The energy function is still Equation (3.7), which means the

maximum error distance.

Initially, sensors are randomly deployed under the number limitation. The
radius of all sensors is set to an initial radius, which belongs to the candidate
radius set, R. If the configuration still doesn’t satisfy the coverage constraint, it

should be abandoned.

In each loop, the solution configuration is randomly altered by one of

following two actions: increasing one sensor’s radius, or reducing one sensor’s
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radius. Each action only changes the status of one sensor. The solution with the
minimum energy is saved as the best found solution. The terminate condition of
the algorithm is either reaching the frozen temperature #r or getting the desired
solution, i.e. complete discrimination. The energy of best found solution, Z,;,
can be used to verify whether the latter condition is reached or not. When Z,;,
<1, the solution configuration is a completed discriminated sensor network, the
algorithm should be terminated. Otherwise, the proposed algorithm will
determine the new detection radius of each sensor to minimize the maximal

error distance of the configuration until the terminated temperature is satisfied.

Algorithm 3.2: The pseudo code of simulated annealing algorithm.

—

According to the budget, randomly deploy sensors in the sensor field.

2. The detection radius of all sensors is set to the initial radius, which
belongs to R.

3. If the initial configuration doesn’t satisfy the complete coverage constraint
then goto step (23).

4.  Calculate initial energy E,4, Enin<—Ei4; save the initial configuration as the

best solution.

5. If the initial configuration is a desired solution, E,;, < 1, then goto step
(22).

6. t<ty,b<by.

7. Whilet>t¢ do

8. Repeat step (9)~(19) b times.

9. Randomly choose one of sensors; alter its radius by increasing or
decreasing one unit.

10. If coverage constraint is violated then recover the action in step (9);
goto Step (19).

11. Calculate E,.,, for the new configuration.

12. Evaluate the difference in energy between the two configurations,
AE « Enew_Eold~

13. Generate a random number p, 0 <p < 1.

14. If exp(—AE/f) < p then recover the action in step (9) ; goto Step (19).

15. Accept the new solution; Eyy < E,ey.

16. If E,.in < E,q then goto Step (19).

17. E..in < E,iz; save current configuration as the best solution.

18. If the best solution is a desired solution, E,,;, < 1, then goto step (22).

19. End_repeat
20. b<«bx*p t<«t+a

21. End_while
22. Zip < Ein.
23. End
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3.4.2 Computational Results

This section presents the results of experiments. The experiments include
two steps: Stepl, the initial configurations are deployed by random approach,
and we observe the average ratio of coverage and discrimination. Step 2, the

radii are adjusted by the proposed algorithm as well as we evaluate the results.

We develop many sets of experiments with varied number of sensors and
initial radius. The parameters of the cooling schedule are o=0.7, /~1.3. The
initial value of by and #y are 2000 and 1.0, respectively. The frozen temperature ¢
is #/2000. Furthermore, the sensor field is 150 (10 by 15) service points. Sensor

cost, ¢j, is set to one, and the set of candidate radius R is {1, 2, ..., 8}.

A. Random Placement

We randomly scatter lots of sensors in a sensor field with 150 service
points. Let radius 7 ranging from 5 to 8 length units; and we calculate the
objective values of the configurations satisfying complete coverage by initial
radius. Each experiment with| specific' number of sensors and initial uniform
radius repeats 1000 times, and the statistical results are shown in Figures 2 to 5.
The sensor density, d, which equals the number of sensors divided by the
number of service points (d=N/|A|), is replaced the number of sensor to clearly

show the results in Figures 3.6 to 3.9.

Figure 3.6 shows the average objectives decrease monotonously when the
sensor density increases. The ideal uniform radius is 5, 6, or 7, whose average
objectives are lower than radius 8.

Figure 3.7 depicts the best found objective in 1000 samples. The radius 8 is
still the worst one, when sensor density is about 60%, the completely
discriminated configuration just probably occurs. Therefore, due to Figures 3.6

and 3.7, radii 5, 6, and 7 are still ideal choices for minimizing the maximum

error distance by random placement.
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Figure 3.6: Average error distance of the random approach.
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Figure 3.7: Minimum error distance of the random approach.

Figure 3.8 shows the probability of achieving complete coverage for varied
sensor density. It is reasonable that the probability of achieving complete
coverage will increase if the detection radius increases. But, with adequate
sensor density, over 40%, the complete coverage almost can be achieved with
100% probability for each kind of radius. For achieving complete coverage,

using uniform radius 5 is not a good choice.
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Figure 3.8: Probability to achieve complete coverage.
(Random approach)

Figure 3.9 depicts the probability of completely discriminated
configuration for varied sensor density by random deployment. For achieving

complete discrimination, radius 6 is the best choice in the candidate radius set.
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Figure 3.9: Probability to achieve complete discrimination.
(Random approach)

Synthetically, the radius 8 is the best choice for coverage. In addition,

radius 5 and 6 are ideal choices for minimizing average error distance and
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maximizing probability of discrimination, respectively. Radius 5 is worse than
radii 6 and 7 for satisfying coverage constraint. We will adopt radius 5 as the
initial radius of random deployed configuration to check the coverage constraint.
And we keep the samples with complete coverage to adjust individual radius in

the next experiment.
B. Adjusting Radii

Subsequently, for each kind of sensor density, we randomly select 100
configurations with complete coverage to test Algorithm 3.2. The simulated
annealing based algorithm generates new configurations with various radii. A lot
of statistical data are obtained, including average objective values, probability of
complete discrimination, and the best found solution. The statistic results are
compared with random placement with uniform radius 5, and are depicted from

Figures 3.10 to 3.12.

Figure 3.10 shows the average objective values for random placement with
uniform radius 5, and adjusting radii by Algorithm 3.2. Obviously, after radii are
adjusted, the average objective values are reduced about 50%. The average
objective value of original configurations will be lower than 1 when the given of
sensor density is over 65%. After the radii are adjusted, the average objective

will be lower than 1 when the given sensor density is over 40%.
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Figure 3.10: Average error distance.
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Figure 3.11 depicts the best found case for initial uniform radius 5 and
varied radii determined by Algorithm 3.2. The best objective value of original
configurations will be lower than 1 with 50% sensor density. After the radii are
adjusted, the best objective will be lower than 1 when the sensor density is over

30%.
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Figure 3.11; Minimum error distance.
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Figure 3.12: Probability to achieve complete discrimination.
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Figure 3.12 shows the probability of the complete discrimination of
original configurations with uniform radius 5 and various radii by adjusting. The
latter can obtain probability of complete discrimination approaching 100% with
45% sensor density. But probability of complete discrimination for initial
random configurations with uniform radius doesn’t over 80% until given 80%

sensor density.

Synthesizing the previous results, we can claim the proposed adjusting
radius algorithm is very effective for reducing the maximum error distance and
improving the probability of complete discrimination for the original sensor

networks, which are deployed by random approach.
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3.5 Concluding Remarks

This chapter considers two issues: 1, sensor placement problem for locating
target under cost constraints, 2, by adjusting individual radius, target positioning

ability of sensor networks is improved.

We first formulate problem one as a min-max mathematical optimization
model where the positioning accuracy is the objective. Then, the simulated
annealing-based algorithm, Algorithm 3.1, is developed to solve the
optimization problem. The experimental results show that the proposed
algorithm can efficiently obtain a high-quality solution. Additionally, the

proposed algorithm is very effective, scalable, and robust.

Next, we consider given sensor network by random placement with
uniform radius initially. By statistical approach, we observe that neither smaller
nor larger candidate radius set is an ideal choice for getting completely covered
and discriminated sensor networks. The experimental results for the random
deployment are analog to our previous work, which focuses on controlled

deployment to determine the position of each sensor.

Subsequently, we develop a simulated-annealing-based algorithm,
Algorithm 3.2, to determine radius for each sensor. The objective is to improve
target positioning ability of the sensor networks. The experiment results show
that the proposed algorithm is very effective for reducing the maximum error

distance and improving the probability of complete discrimination.
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CHAPTER 4 SENSOR PLACEMENT
PROBLEM FOR DIFFERENTIATED
QUALITY OF POSITIONING AND
SURVEILLANCE SERVICES

4.1 Overview

In this chapter, surveillance and target positioning ability are adopted as the
QoS parameters for the sensor placement problem. Different levels of QoS
require different deployment schemes and amount of resources. For example, in
a surveillance-only service, a target anywhere in the sensor field has to be
watched by at least one sensor node. However, WSN can deploy more sensor
nodes for a target positioning service than for a surveillance-only service.

Previous studies focus on how to deploy a WSN that can provide the same level
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of QoS for the entire sensor field [CL04] [LCO05]. The WSN should ideally
provide a uniform QoS service throughout the sensor field. However, in practice,
a differentiated quality of positioning service (i.e., differentiated QoS) for
different regions in a sensor field is likely to be needed. Some important regions,
called regions of interest (ROI), require a high accuracy positioning service.
Conversely, some regions only need surveillance service. Providing a uniform
QoS to comply the QoS requirement for all regions of the field leads to a high

resource consumption.

This study presents a generic framework for the sensor placement problem
to support differentiated QoS for WSNs. We assume that the terrain of a sensor
field is predetermined; hence, sensors with an adjustable sensing radius are
deployed at candidate locations to meet a certain QoS requirement. The field has
some placement limitations — sensors may be difficult or impossible to place at
some locations (e.g., lakes or wetlands) in the field. Furthermore, the field can
be divided into several regions. Each of which can have different levels of QoS
requirements and service priority. All the QoS requirements can be satisfied if
sufficient resources are ‘available. If resources are scarce, then the QoS

requirements of regions with higher service priority are satisfied first.

The main parameter of QoS for the target positioning service is the
positioning accuracy. Our previous studies define a sensor field as completely
discriminable, which is the best positioning accuracy for a sensor field, if each
service point in the field has a unique power code. In contrast, if multiple
service points with the same power code, it incurs a positioning error. The
positioning accuracy is defined in terms of the error distance, i.e., the distance
between two service points with the same power code. Thus, a farther error

distance means a worse positioning accuracy in a WSN.

Wang, Liu, and Yin refer to OSI 7-Layer to define the QoS parameters for
each function layer [WLY06]. Due to their recommendation, in this dissertation
we take account of positioning accuracy, which is one kind of data quality.
Hence, we consider positioning accuracy belong to application layer QoS

parameter.
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Yan, He and Stankovic proposed the concept of differentiated surveillance
service of sensor networks [YHSO03]. They developed an adaptable
energy-efficient sensing coverage protocol to support differentiated surveillance

by sensor networks.

For providing the target positioning, this work refers to the positioning
accuracy as the QoS parameter hereinafter. Moreover, the concept of
differentiated QoS is also considered to provide weighted discrimination

requirement for each ROI in a sensor field.

This study formulates the proposed problem as a nonlinear integer
programming problem, where the objective function is the minimization of the
maximum error distance subject to complete coverage and deployment budget
constraints. The problem is NP-complete for arbitrary sensor fields. Three
heuristics are proposed to determine the location and detection radius for each

sensor, such that the positioning accuracy i1s maximized.

This study differs from prior works in the following ways. First, this study
presents a generic framework and a corresponding mathematical model for the
sensor placement problem. Second, the positioning accuracy is defined as a QoS
parameter in WSN. Third, the sensors detection radius is considered as decision
variables in the sensor deployment problem. To the best of our knowledge, no
other studies have discussed QoS in WSN about positioning accuracy or

differentiating positioning accuracy services up to date.
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4.2 Problem Description

4.2.1 The Framework

This study assumes that the terrain of sensor field is predetermined, and
that the sensor deployment problem is addressed by the controlled approach. In
other words, sensors are placed by a prior planning to satisfy a particular QoS
requirement. As shown in Figure 4.1, the sensor field can be represented as a
collection of two-dimensional grid points, which are the candidate locations for

sensors as well as the service points for the positioning service.
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Figure 4.1: A map of museum. (A sensor field with 150 service points)

This study applies the 0/1 detection model for sensors. In this model, the
coverage indicator bit of the sensor for a service point is set to 1 if its sensing
radius can cover a service point, and 0 otherwise. Then, a power code, which is
constructed by all coverage indicator bits of sensors, can be used to represent
each service point. A service point with a unique power code is exactly
positioning. Otherwise, the error distance of positioning is the maximum

distance between those service points with the same power code.
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For generality, a terrain of sensor field could have some placement
limitations. That is, for all of the positions in the sensor field, the suitability for
each placing sensor is unlikely. In most cases, sensors are expensive to place at
many locations, and impossible in others, e.g. lakes or wetlands. Additionally,
some locations might require surveillance and positioning services, but not be

suitable for placing sensors.

Intuitively, we can adopt sensors with large sensing radii which can be used
to overcome the placement limitation. However, the use of such sensors affects
the positioning accuracy for positioning service. Therefore, this study adopts
sensors with adjustable sensing radius and takes the radius of a sensor as one of
decision variables for deploying a WSN. This study explores the relationship
between the best discrimination resolution of a sensor field and the sensing

radius of sensors.

This study provides a differentiated QoS instead of a uniform QoS. The
sensor field can be considered as a set of disjoint ROIs that each of them has a
different type of QoS. A ROI is an irregular region, which comprises a set of
adjacent service points. Three types of QoS are provided for the sensor

placement problem as follows:

> Completely discriminable: each service point in an ROI can
be positioned individually. This is the best QoS provided by
a WSN.

> Discriminable: a service point can be positioned in an ROI
but with a constant error distance. In this type of QoS, a
lower error distance indicates a better QoS.

> Surveillance-only: all service points can be sensed by
sensors, but cannot be discriminated. In this chapter, it is the

basic QoS type.

When the resource is limited, the most important ROIs need to have the

highest priorities to achieve their QoS requirements. Therefore, except for the
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QoS type, each ROI can specify its service priority in the sensor placement
phase. The QoS requirement of ROIs with the highest-level priority can be
satisfied first if resources are limited. If the resources are still not exhausted,
then the requirement of the ROIs with the second-level priority can be satisfied,
and so on. The QoS requirement of ROIs with lower-level priority is degraded if
the WSN lacks resources. However, all ROIs have to support the

surveillance-only service.

The proposed sensor placement framework can be stated briefly as follow.
In a sensor field with placement limitations, a WSN is constructed to support the
differentiated service for all ROIs in the field. The WSN is constructed by
deploying finite sensors at candidate locations, and adjusting the sensing radius
of each sensor. The goal of the framework is either to satisfy QoS requirement
for all ROIs, or to minimize QoS degradation for each ROI based on its level of

priority.

4.2.2 An Example

Figure 4.1 illustrates a map of a museum which needs a WSN to support
the security and guide system. For this purpose, the WSN has to provide
surveillance and positioning information to the security and guide system in

order to provide the location-based service.

The monitoring area of the museum includes the main building and the
grass surrounding the main building. Five exhibition areas, denoted by area A, B,
C, D, and E, are arranged inside the museum. Area F is the grass field. When a
visitor enters the monitoring area, the WSN has to obtain the information rapidly,
1.e. the surveillance function. Moreover, while visitors reach exhibit areas, the

WSN responds to locate the position of the visitors, i.e. the positioning function.

A WSN that can provide the positioning service for the whole monitoring
area of the museum is constructed based on the scenario. Moreover, three

priority classes, high, medium, and low, are assigned to each monitoring area to
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denote its importance. First, area A is the most important area, so it has a high
service priority. Next, the other exhibition areas, B, C, D, and E, have medium

service priorities. Third, area F has a low service priority.

According to the above settings, the QoS is separated into four levels, 1-4,
as shown in Table 4.1. The best positioning quality, level 4 QoS, is satisfied if
the given resource is adequate. Conversely, if the given resource is scarce, the
QoS guaranteed for the ROI with lower service priority will be degraded to
lower level of QoS, Level 1-3 QoS, according to its service priority. In this
scenario, Level 4 QoS is also called Uniform QoS because that all of the service

points are discriminated, i.e. they have the same QoS.

Table 4.1: The QoS supported for ROIs in the museum example.

Level of QoS QoS supported for ROIs

Completely discriminable: None.
Discriminable: ROI A.
Surveillance-only: ROIs B, C, D, E, and F.

[ J
[ J
[
e Completely discriminable: ROI A.
2 e Discriminable: ROIs B, C, D, and E.
[ J
[ J
[ J
[ J

Surveillance-only: ROI F.

Completely discriminable: ROIs A, B, C, D, and E.
Discriminable: ROI F.

Completely discriminable: ROIs A, B, C, D, E, and F.
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4.3 Mathematical Model

This section presents a mathematical model for the proposed sensor
placement problem. Since the proposed problem supports the differentiated
services as well as the prioritized service, the mathematical model of the
problem becomes quite intractable. This study introduces a discrimination
weight to simplify the model. A discrimination weight is a positive real number,
which denotes the priority of discrimination for service points i and j. An ROI
with a larger discrimination weight has a higher priority to obtain guaranteed
QoS. In this context, the objective of the proposed problem is to minimize the

weighted error distance for all pairs of service points.
A. Given Parameters and Decision Parameters

The notations used to model the problem are listed as follows.

Given Parameters:

A : Index set of the service points in the sensor field.

B : Index set of the sensor’s candidate locations, BCA.
C  :Set of the kinds of cost for sensor

W : Set of the discrimination weight

R : Set of candidate detection radiuses for sensor

d;  : Euclidean distance between location i and J; i, jeA.
cr : The cost of sensor located at position k; ke B, c,eC.

Cmin . The minimum cost of sensors.

G : The budget limitation for sensors.

N : The maximum number of sensors, N=G/Cp .
wy; @ Discrimination weight, ijed, w;eW.

K  :Alarger number
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Decision Variables:
Vi : 1, if a sensor is allocated at position k, and 0 otherwise, ke B.

vi=(Vi,Via, ...,vir) . A power vector of location i, where vy is 1 if the target at
location i can be detected by the sensor at position k and 0
otherwise, i€A, keB.

T : Detection radius of sensor located at &, keB.

B. Original Model

The original problem (IP4.1) is presented as follows.

7 ~ w;d;
= min max ————-
rpaq = M vijet 1+ K Z v, _ij)z (IP4.1)
" VkeB
subject to:
VikdikS YT VieA, keB, izk 4.1
d,
> Vied, keB, i#k (4.2)
k
Vid= Yk VkeANB (4.3)
¢y, <G
V;B e (4'4)
2 vzl Vied (4.5)
VkeB
2 V<N Vied (4.6)
VkeB
r.e R VkeB 4.7)
vi=0 or 1 VieAkeB (4.8)
yk:O orl Vie A,k eB. (49)

The objective of Problem IP4.1 is to minimize the maximum weighted

. : . . b= (v —v,)
error distance for any pair of service points. Suppose that ~ J

presents the Hamming distance of two power vectors belonging to two service

points i and j respectively. If the power vectors are distinct, then the weighted
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error distance between service points i and j, i.e. (w,-jdl-j/(lJrK b)), approaches
zero. In contrast, if the power vectors are the same, then the weighted error
distance between service points i and j is w;d;;, which is greater than or equal to
wj. Constraint (4.1) requires the power vector (vi) of a service point which
locates on the outside of the sensor coverage to be zero. Constraint (4.2) requires
that the power vector (vi) of service points located on the interior of sensor
detection range is 1. Constraint (4.3) requires the coverage to be full for the
service point on which sensor is located. Constraint (4.4) requires that the
budget to be limited. Constraint (4.5) is the completed coverage requirement.
Constraint (4.6) requires the amount of sensors to monitor service point i.
Constraint (4.7) requires that the detection radius of sensors belong to set R.

Constraints (4.8) and (4.9) are integer constraints.

Subsequently, we discuss how to determine the values of weights and

constant K, two propositions are obtained and presented as follows.

Proposition 4.1: If the diameter of the| sensor field is D, and the
discrimination weights are wj;, ws, ..., w; , and
wiwy<...<wj. Then w;;>Dw; for any two adjacent

weights w; and w; ;.

Proof:
Some groups of service points all have the same power code.

Among these groups, the pair of service points with the highest
discrimination weight and the furthest distance has the maximum
weighted error distance (the worst positioning accuracy). In this sensor
network, the weighted error distance S of any pair of service points,
which has discrimination weight w;;; and one unit length apart, should

be smaller than Dw;.

Proposition 4.2: If the diameter of sensor field is D; the detection range
is , and the discrimination weights are wy, wa, ..., Wy,

and w;<w,< ...<wy, then the constant K must satisfy
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constraints as follows.
1. If 2r>D, then w;> (w,-D)/(1+K),
2. If 2r<D, then w;/>max {w,(2r)/(1+ K ),
(wp-D)/(14+2 K )}.
Proof:

The minimum value of weighted error distance for
indistinguishable service points is w;, which must be greater than the
weighted error distance for each pair of discriminated service points,
(wrdy)/(1+ K Z(v,-—v_,-)z). The maximum value of (w;d;)/(1+ K Z(vl-—vj)z)

1s first discussed.

For 2r>D

The furthest distance between any pair of discriminated service

points is D. The closest distance between two discriminated power codes
is 1. Hence, the maximum value of (wrdy)/(1+ K Z(vi—vj)z) is
(wD)/(1+ K ). Therefore, the constraint, w; > (w;-D)/(1+K ), must be

satisfied for K .

For 2r<D

The two discriminated service points with furthest distance D
cannot possibly be covered with the same sensors while the detection
radius of the sensor is less than the diameter of the sensor field. Hence,

the distance between their power codes is at least 2, and

(wirdy)/(1+ K Z(vi—v;)?) is (wi-D)/(1+2 K ).

Conversely, consider the case of two discriminated service points
covered by at least one sensor. The further distance between them is 27,

and the minimum distance between their power codes is 1. In this case,

the value of (wy-dy)/(1+ K Z(vi—v;)?) is (wi-2r)/(1+ K ).

Therefore, both (wy-D)/(142K) and (w,-2r)/(1+K ) must be less

than w;. [

87



4.4 Lagrangean Relaxation Approach

4.4.1 Equivalent Model

The original model is a nonlinear combinatorial problem, and is therefore

hard to solve directly. Hence, an equivalent model is developed. The

transformation method is also presented in this section.

An equivalent formulation of problem (IP4.1) is given by (IP4.2) below.

Define

S, = max

wijdij

Z (Vi _ij)2

VkeB

, and rewrite the objective function as follows.

subject to:

=minS,
v

Vi, jeA,i#]

S is lower bound of S ;
S is upper bound of S, .
VieA, keB, ik

Vied, keB, izk

YkeANB

VieAd
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(IP4.2)

(4.11)

(4.12)
(4.1)
(4.2)
(4.3)

(4.4)

(4.5)



> v <N Vied (4.6)

VkeB

e R YVkeB 4.7)
vu=0 or 1 VieA,keB (4.8)
yk:() or 1 Vie A,k eB (49)

maximum weighted error distance S. The theoretic upper and lower bounds are

Constraint (4.11) is added to stipulate the upper and lower bound of the

then discussed.

Proposition 4.3: Theoretic upper bound of S, S , 1s at w;,D, where wy,

denotes the highest discrimination weight, and D is the
smaller value of the diameter of a sensor field and the

maximum detection range of sensors.

Proof:

If the sensor field is not completely discriminable, then a pair of
service points on the field that has the farthest distance D and the same
power vectors can be found. The value of D is not greater than the

diameter of the field and the maximum detection range of the sensors.

Hence, S is bounded by wpD. [

Proposition 4.4: Theoretic lower bound of S, S, is at w/(1+D,K)

where wy is the lowest discrimination weight, and D,
represents the maximum Hamming distance of power
vectors for all service points. If »n is the maximum
number of sensors that can cover a service point, then

Dj=max{2n, N}.
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4.4.2 Transformation

Problem (IP4.2) is still very hard to solve, since Constraint (4.11) is
nonlinear. Instead of solving Problem (IP4.2) directly, the cutting plane method

is applied to transform Constraint (4.11) to a linear Constraint (4.13).

An auxiliary variable #; 1s introduced, where #;;=vivjr. Table 4.2 shows the
truth table for variables v, vjx and ¢;. The possible values for the three variables
only exist in four integer vertices, p1, p2, p3, and p4, of the polyhedron, which

are depicted in Figure 4.2. The four planes constructing the polyhedron are

presented as following.

Vir-1, lijO
Vik-t ykZO

Vik+ Vik ~ti<1

5420

Table 4.2: Truth table for variables v, vir, and #.

VijeA, i#, keB
VijeA, i#, keB
VijeA, i#, keB
VijeA, i#j, keB

Vik Vik Lijk

0 0 0

0 1 0

1 0 0

1 1 1

A tijk
P
P2 » Vik
P3
Vik

Figure 4.2: Relationship between vy,
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The auxiliary variable #; is employed to replace vivi. Equation (4.11) can
thus be transformed to linear Equation (4.22). The transformation is described as

follows.

2_ 2 2
Vi — ij) = Vi 2Vikvjk TV

=V =2vvu tvy, U,y =0orl)
Let Lk = ViV

2 _
= (v — ij) =Vt Ve~ Ztijk

According to the cutting plane method, Constraints (4.13)~(4.17) must be
added to require relationship between vy, v, , and 7. Constraint (4.13) requires
that the number of sensors that can cover both points (i and ) cannot be over the

total number of sensors. Hence, the nonlinear combinatorial Problem (IP4.1) is

transformed to an equivalent linear combinatorial Problem (IP4.3).

Zypy; =min S, (IP4.3)

subject to:

. 1+ KD (v +vy = 285,)
—< vkeb VijeA,i# (4.11)
Sv Wi/'dt/

— S is lower bound of S ;
§<8,<8§ =, (4.12)
S'1s upper bound of S, .

VikdikS Vi Vied, keB, i#zk 4.1)
d,
P Vied, keB, izk (4.2)

k
Vii= Vi VkeANB (4.3)

¢y, <G

v;B KTk (4.4)
2 Vi 1 Vied (4.5)
VkeB

2 v SN Vied (4.6)
VkeB
r.e R VkeB 4.7)
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vi=0 or 1 VieAkeB (4.8)

yi=0or 1 Vie AkeB (4.9)
2y <N Vijed, iz 4.13)
VkeB
Vi-ls20 Vijed, i+, keB (4.14)
Vik-tii1=0 VijeAd, i#, ke B (4.15)
Vikt Vik ~Lip<1 VijeA, i#, ke B (4.16)
tiix=0 or 1 VijeA, i#, keB (4.17)

4.4.3 Relaxation

This section presents the algorithm for solving the proposed sensor
placement problem. An algorithm based upon Lagrangean relaxation is
considered. Lagrangean relaxation is an approach for obtaining lower bounds
(for minimization problems) as well as good solutions in integer programming
problems. A Lagrangean relaxation is obtained by identifying in the primal
problem and a set of complicated constraints whose removal will simplify the
solving procedure of the primal problem. Each of the complicated constraints is
multiplied by a multiplier and added to objective function. The mechanism is
known as dualizing the complicated constraints [Fis81] [Fis85] [Geo74]
[HWC74].

A. Relaxation

By Lagrangean relaxation, we dualize Constraints (4.1), (4.2), (4.3), (4.11),
(4.14), (4.15), and (4.16) of Problem (IP4.3), as well as get the following

Lagrangean relaxation problem.
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Problem (LR4.1):

1 1+K§ (vl.k+vjk—2ti].k)
1 2 3 4 5 6 7 . 1
Z, (u,uuw,u’u,u’,u’)y=mins S + u.| —— ke
° e s d
Vied Vjed v w4,
i#]

d
+ Z Z “ii (Vikdik _J’k’”k)‘*' Z Z ”?k [J’k ~Vik _r_lk]+ Z Z ”:k (Vik _J’k)
’

VieA VkeB VieA VkeB VkeB VkeB
Ji#k Ji#k
5 6
DIDIDNACESDED IO NP WAL
ViedA VjeAVkeB ViedAVjeAVkeB
i#j i#j
7
YD uh vy vy —t =1 (LR4.1)
Vied VjeAVkeB
i#j

subject to:
— S is lower bound of S ;
§<§ <8 =, (4.11)
S'1s upper bound of S, .
v, <G
v;B k7 k i (4.4)
2 izl Vield (4.5)
VkeB
2 VSN Vied (4.6)
VkeB
r.e R VkeB 4.7)
vu=0 or 1 VieAdkeB (4.8)
yi=0 or 1 ViedkeB (4.9)
Dty <N Vijed, iz (4.13)
VkeB
t;ix=0 or 1 VijeA, i#, keB (4.17)

The multipliers u’, u’, ..., u” are the vectors of {u] }, {u;}, ..., {u),}

respectively. Besides Constraint (4.3) with multiplier { u, }, the other

Constraints are dulized such that the corresponding multipliers, u' , uz, o, u6,
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and u are nonnegative.

The dual Problem (LR4.1) is rewritten to Equation (LR4.2), where the

constant terms are omitted.

Z, 't ut ol ut ) = m1nS+ZZu——

ij S
VieAVjeAd Vied VjeA
Ji# ] J#E ]

>, >, >y,

J ijk
_ | VkeB | VkeB | VkeB
KY >u i, -KY >lu, i, el IO i,

VieAVjeA VieAVjeAd i VieAVjeA
RED RES) RED)
2 2 3 3
+ Z Z upd, vy — Z z Uy Vi z Z Up Vi — z Z Uy Vi
VieAVkeB VieAVkeB VieAVkeB VieAVkeB
Jizk J#k Jizk Jizk

IR ”‘+Z DMV = DVt Y, 2L D Uy

VieAVkeB k VkeAd VkeB VkeB VkeB VieAVjeAVkeB
Ji#zk RE)

SDIDIPNARD ISV DS “gk’v'k D IDI DI

VieAVjeAVkeB VieAVjeANkeB VieAVjeAYVkeB
J#] i# i#j
7 b 7
SDIDIDNTAEDIDIDITATED I NP IETAM
VieAVjeAVkeB VieAVjeAVkeB VieAVjeAVkeB
A% Ji# ] Ji# ]

> D u, (LR4.2)

VieAVjeAVkeB
A# ]

, where the constant term is

VzeAV]EA z VieAVjeAVkeB
J#] ]

B. Decomposition

According to Lagrangean relaxation approach, Problem (LR4.2) will be
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decomposed into four mutually independent and easily solvable subproblems.
Each sub-problem only involves one or two decision variables and must be
optimal solved. Note that, the constant part is excluded from the objective
function in the subproblems but will be considered in the lower bound

computation.
Subproblem 1: for S,

SU341(”) min| S, +ZZu

ij
VieAVjeAd S
JA# ]

(SUB4.1)

subject to:

[t
IN
t”
IA
|

(4.11)

To optimal solve the subproblem, the right hand side of Equation (SUB4.1)

will be differentiated respected to variable S. Let new equation equals to zero

and get the optimal solution of variable §, S,, = z z ulll .

VieA VjeA
i#j

If S<S,,<Sthen let Zy,, =2 /\;ﬁ;{u}j . Otherwise, S and S are
icANje
i#]

substituted for S to get ZSUB41(u ) and ZSUBM(u}].). We can get optimal

l

solution such that Zg,,, (4')=min S+Z z % , S+ZZ S

Vied VjeA VieAVjed 2
l¢] 1¢]

Subproblem 2: for y; and ry

Zgypa, (0’ u*) = min _Z Z Upli v + Z Z Uy Vy

VieA VkeB VieA VkeB
Ji#k Ji#k

DI D N I (SUB4.2)

VieAVkeB VkeB YkeB
J#k
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Equation (SUB4.2) is rewritten to (SUB4.2a), as follows.

2 3 4
Zgupay (U u”u’)

d.
s 2 3 3 Y
=min E E ((—ul_krk +ul.k)yk —u, —r’

j— > upy, | (SUB4.2q)

VkeB jka k VkeB
subject to:
P (44)
e R YVkeB 4.7)
=0 or 1 VieAkeB. (4.9)

Subproblem 2 comprises [B| problems. For each sensor &, we let b,(r,)

represent the function (SUB 4.2a) while y, =1.

Vied VkeB
Ji#k

d.
R (e R S
k

Then, we calculate b; for each r4, which is belong to set R, as well as find
the best r; such that by is the minimum denoted by by . Next, from the set of
unallocated sensors, we iteratively choose sensor & with the minimal by, to be
set. The cost of sensor £ must be accumulated. While adding the cost of sensor &

will exceed the total deployment cost G, the procedure must be stopped.

Subproblem 3: for vi

1 2 3 4 5 6 7N . 72 1 VkeB
Zpas s u”u,u’,u’,u’,u’)=min| —K E E ulj—d
VieA VjeA Wi/' i
J# ] o
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Z
_Kz z ul et — -t z z uzkdzkvzk z Z uzkvzk + z Z ukkvkk

VieA VjeAd VieAVkeB VieAVkeB VkeK VkeB
J#E] RED S RED S
5 6 7
DIDIDNTAED ISP IIATED D NP I AN
VieAVjeAVkeB VieAVjeAVkeB VieAVjeAVkeB
J#E] RES RES

DI IR (SUB4.3)

VieAVjeAVkeB
A7

To simplify Equation (SUB4.3), variable vy should be eliminated from
Equation (SUB4.3). For each term with the variable vy, index j substitutes for i
contrariwise. Consequently, the equivalent subproblem (SUB4.3a) replaces

Equation (SUBA4.3).

1 1
uy 3 Vi w Y Vi

1.2 3 4 5 6 1 . ot
ZSUB4.3 (u u,u,u u,u . ,u ) = min —K z z _. VkeB K z z VkeB
W d wudﬁ

VieA VjeAd VieA VjeAd
] i# ]
2 3 4 5
+ Z Z Uy Vi = Z Z “ikviﬁz Z UaVie — Z Z Z W Vi
VieAVkeB VieAVkeB VieB VkeB VieAVjeAVkeB
Jizk Jizk J#]

_Z Z Z uffﬂzﬁZ Z Z UV +Z Z Z UV

VieAVjeAVkeB VieAVjeAVkeB VieAVjeAVkeB
JE] JA#E] JE]
1 1
ul.. Ku
Ji 5
—min Y1 3| = 1S~y bl +1d
d ijk J y
Vied | VkeB Vjed ,J w;a ;
l#]
+ wd, —uw )+ ur v (SUB4.3a)
ik ™" ik ik ik ik :
VkeB VkeB
J#k Ji=k
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subject to:

Z v 21 YieAd

VkeB

Z Vi <N YieAd

VkeB

vi=0 or 1 Vied, keB

(4.5)

(4.6)

(4.8)

Subproblem 3 comprises |AxB| problems. For each service point i, we

calculate the coefficient of each variable vy, and sort them in non-decreasing

order. Iteratively, if the minimal one of the coefficient v is a positive number,

we set the corresponding v to be zero. Otherwise, the corresponding vy is

assigned to 1 under the number of sensors constraint. Additionally, for each

service point, the coverage constraint must be satisfied also. If no any v is 1 for

service point i, the v with the minimum coefficient will be set.

Subproblem 4: for #;

i ik

SUB44(” u’,u’,u ) min ZKZ Zul VkEB. +Z Z Zuuk ijk

VieAVjeA ,] VieAVjeAVkeB
REF ) REF)

YD DUl =D D D il (SUB4.4)

VjeAVjeAVkeB VieAVjeAVkeB
RES J#E]

Subproblem (SUB4.4) comprises |AxAXxB| problems. It is rewritten to

Subproblem (SUB4.4a) as follows.
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Vied Vjed VkeB\ W@
AE]

2Ku,,
Zsupas(' s’ ,u’,u’) =min Z Z Z ( Lt + g, —u;kJ t;, (SUB4.4a)

subject to:
>t <N VijeA, i (4.13)
VkeB
£3=0 or 1 Vijed, i#j, keB (4.17)

Subproblem (SUB4.4a) can be solved easily. First, the coefficient is
calculated for each #;. Then we sort the coefficients in non-decreasing order. If
the coefficient for #j is non-positive, fj is assigned to 1. Otherwise, #;; is zero.
However, the number of #;; which is set one can’t exceed the maximal number

of sensors.

C. Lower bound

In each iteration, after every subproblem is optimally solved, the objective
value of the dual problem, Zp, is a lower bound of original problem. It can be
obtained by summarizing the objective values of all subproblem and the

constant part as the following equation.
1 2 3 4 5 6 7\
Z), (” SU LU LU U LU U ) =Zsupar + Lsupar t Zsusaz + Lsupas

u

1
ij 7

+ _Z Z - Z Z Z Uy
d vl

viedvjed Wil Vied Vjed VkeB

Ji# ] ‘ JdE]

According to the weak Lagrangean duality theorem [Fis81] [Fis85], the

2.3 4.5 6 7 -
aouuunu'), 1s a

optimal objective value of the dual problem (LR), Zp(u',u
lower bound on primal problem (IP4.3). Z;py 3 is subject to (u',u’,u’,u’,u’,u")>0.

Therefore, we can obtain the lower bound by
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1 2 3 4 5 6 7
Z, = max Z (u,uu,u o, u,u) (DI1)
b (ul u? 0 0 )=0 b ’ ’ ’ ’ ’ ’

Several methods can be used for solving Equation (D1) to get the highest
lower bound. One of the most popular methods is the subgradient method. Let a

(A]* + |A|B| + |A|[B| + |A|IB| + |A]’|B| + |A]’B| + |A]’|B|) vector g represent a

. 1 2 3 4 5 6 7
subgradient of Zp(u', w, w, u, w, u, u) We denote

(1 .2 3 4 5 6 7 RT .
ﬂ—(ui/.,uik,uik,uik,uijk,uijk,uiik) as the vector of Lagrangean multipliers with

respect to relaxed constraints. In iteration m of subgradient optimization

1_ ﬂ_m_’_egmgm.

procedure, the multiplier 7" is updated by 7™

*

AZ sz —Zp(7"))
2
&7

The step size £™ is determined by &" =

, where Z *1p4. 3 represents an upper bound on the primal objective value, obtained

by applying a heuristic to (IP4.3), and A is a scalar satisfying 0<A<2.

4.4.4 Getting Primal Feasible Solutions

After optimally solving each Lagrangean relaxation problem, a set of
decision variables can be found. Since some constraints are relaxed, the
solutions of Lagrangean relaxation might be infeasible for the primal problem.
Hence, an efficient heuristic algorithm which adjusts the dual solutions to obtain
the feasible solutions for the primal problem (IP4.3) must be developed. By
increasing the number of iterations, the better primal feasible solution is an
upper bound (UB) on the primal problem (IP4.3), while the dual problem
provides the lower bound (LB) of the primal problem (IP4.3).

Algorithm 4.1
Step 1: Initialize the decision variables, y, vir, and 74.

Step 1.1: Before the fifth iteration, initial decision variables y; are
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determined by sub-problem (SUB4.2) on Lagrangean
relaxation problem. For each sensor, the five recent history
solutions are recorded. After the fifth iteration, we can
randomly determine whether decision variables y; should be
one by the placement probability for the sensor k£ in history

record.

Step 1.2: Check Constraints (4.1), (4.2), and (4.3), for each sensor k. For

each service point i, let v3=0 if dz>maximal radius. Add sensor

k if vy=1 and dy<maximal radius, for each service point i.

Step 1.3: Determine the radius ry if sensor £ is allocated. For each sensor

Step 1.4:

k, find the farthest distance between sensor £ and the service
points with vz=1 to determine the radius 7;.
The decision variables v; can be obtained by the decision

variables yy .

Step 2: To satisfy the coverage and cost constraint, the sensors might be

added, deleted or changed the radius.

Step 2.1:

Step 2.2:

Step 2.3:

If the coverage constraint is violated, “Change Radius” or
“Add Sensor” procedure will be executed. Randomly select a
sensor if the increase of radius for the sensor can improve
coverage, the radius will be changed. If the operation of
change radius is not suitable, the other operation, “Add
Sensor”, can be tried. The sensor that can cover the most
uncovered service points will be added with a proper radius
until the coverage constraint is satisfied.

If the budget constraint is violated, “Delete Sensor” procedure
can be applied. Remove a sensor away from the sensor field
randomly, if the coverage of the sensor field is not changed.
The operation is executed until the budget constraint is
satisfied.

Running the previous two steps until both the coverage and

budget constraint are satisfied.
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Step 3: For each sensor, the operations “Change Position” and “Modify

Radius” are tried in order to improve the discrimination resolution.

4.4.5 Computational Results

Three sets of experiments were conducted to evaluate the performance of
the proposed algorithm under various settings for the numbers of priority class,
amount of resources, placement limitation, topology area, and detection radius.
The proposed algorithms were coded in C in the Microsoft Visual C++ 6.0
development environment. All the experiments were performed on a Pentium
IV-3.0GHz PC running Microsoft Windows XP Pro. The performance metrics

were assessed in terms of the solution quality and computation time.

A. Experiment I

The first experiment was designed to observe the solution qualities of the
proposed algorithm. In this experiment, the system parameters, namely
placement limitation and topology area were fixed while the amount of
resources, detection radius, and numbers of priority class were variant
parameters. The sensor field topology was based on the previous museum
example, as shown in Figure 4.1. The sensor field was a 10x15 rectangular field,
and was divided into seven different ROIs. The QoS and service priority for
these ROIs are the same as the example. The candidate sensing-radius of sensor
is either fixed or varying between 1 and 8 units of length. The parameters about
LR algorithm include: 0<A<2, improvement counter is 40, and number of

iterations is 1500.

For the differential positioning accuracy, the set of discrimination weights
was set to {0.1, 5, 100}. The discrimination weight between any two service

points on ROI A was set to the high weight, w;=100. The discrimination weight
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between any two service points, which both on ROIs B, C, D, or E, was set to
the medium weight, w,=5. The weights between any two service points, which
both are on ROI F was set to the low weight wi=0.1. The weight between any
pair of service points on different ROIs was set to the highest weight, w;=100.
The diameter of the sensor field was set to D=16. The sensor cost of each
location, ¢, is one. The parameters w;, w,, and w;, were adopted according to

Proposition 4.1. Parameter K = 20000 follows Proposition 4.2.

To contrast the differentiated QoS and uniform QoS, we design another set
of experiments for uniform QoS. All of service points in the sensor field, shown
in Figure 4.1, require the same discrimination weight. Let w;=100 for all 7, ;.
When objective value is less than 100, the sensor field is completed

discriminated. Otherwise, it is discriminated with error distance (Z;p,3/100).

70

] —a— Uniform QoS
60 =\ —e— Level 2 QoS

g 50 —*— Level 3 QoS

2 40- AN

g 0] \;\i-\v _"

S 20 1 W—*/ﬁ

é 10 \"\o\._,.,—o—o—”‘
0 ] T T T T T T

Sensor radius

Figure 4.3: The minimum required number of sensor vs.
various sensing radius. (Fixed radius)

Figure 4.3 shows the minimum required number of sensor for different
levels of QoS requirements. A sensor has a single sensing radius ranging
between 1 and 8. The curves marked “Level 2 QoS” and “Level 3 QoS”
represent the degree to which Level 2 and Level 3 QoS requirements for ROIs

are satisfied, as listed in Table 4.1. The highest curve “Uniform QoS” means
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that all service points in Figure 4.1 can be completely discriminated. Figure 4.3
demonstrates that the minimum number of sensors for the sensor network
deployment depends strongly on the detection radius of a sensor. Experiment |
indicates that using sensors with radius 5 yields the lowest deployment density.
In Figure 4.3, we can observe that at the beginning and ending of all curves will

trend to up; we give more discussion in Section 4.6.4.

350
Q300 k\
c
S 250
@
T 200-
S 150
()
= 100 Yok
j —a—U, R={4,5,6} W\
o 509 —e—UR=34567)
g 04 —*—U R={1-8} 4\%
T T T T T T
5 10 15 20 25 30 35
# of Sensors

Figure 4.4: The best-found objective values for various set
of sensing radius. (Uniform QoS)
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0.014 —e—D,R={3,4,56,7}
| ——D,R={1-8}
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Figure 4.5: The best-found objective values for various set
of sensing radius. (Differentiated QoS)

Figure 4.4 and Figure 4.5 show that the best-found objective values of the
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uniform QoS and the differentiated QoS respectively. The candidate sets of the
sensing radius for sensors were {4, 5, 6}, {3,4,5,6,7},and {1,2,3,4,5,6,7,
8}. Table 4.3 lists the ranges of objective values for the differentiated QoS
scenario by Zps 3. These objective values were the weighted error distance and
their corresponding quality of positioning service providing by the sensor
network. For both the uniform and differentiated QoS, the objective values of
the three candidate sets were very close according to Figure 4.4 and Figure 4.5.
The candidate radius set {3, 4, 5, 6, 7} has a better objective value than others.
With these candidate sets, each service point on the field can be completely

discriminated when the amount of sensor nodes reaches 26.

Table 4.3: The levels of QoS and their ranges of Zp,; in the
experiment for differentiated QoS.

Level of QoS | Z;p,; (weighted error distance) Notes
1 Zips3 =100 Zipgs 2 Wy
2 100> Zipy32>5 Wi> Zipg3 2 W
3 5> Zips320.1 Wy > Zipg3 2 Wy
4 Zips3 < 0.1 L Zipgz < W
1000 4

Level 1 QoS

Level 2 QoS

0.1 o-oole
Level 4 QoS
0.01d —e—D,R=(3.456.7} \%

i —=—VU R={34,56,7}
lE-3 AL I L R L L B AL B
5 10 15 20 25 30 35

Weighted error distance
-
ul

# of sensors

Figure 4.6: Performance comparison between the uniform
(U) and differentiated (D) QoS services.
(Adjustable radius, R={3,4, 5, 6, 7})
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Figure 4.7: Performance comparison between the uniform
(U) and differentiated (D) QoS services. (Fixed
radius, R=5)

Figure 4.6 and Figure 4.7 compare the performance of the uniform and
differentiated QoS represented by U and D respectively. The figure only depicts
the curves of R={5} and R={3, 4, 5, 6, 7} for the two QoS requirements. These
cases achieved the best performance for the scenario of the fixed and various
detection radii respectively. Figure 4.6 and Figure 4.7 indicate that the
deployment for the network with the differentiated QoS requirement had a better
objective value, i.e., the lower weighted error-distance, when the number of
deployed sensors was less than 26. That means that service points in ROIs with
higher service priority can be discriminated even with a small number of sensors.
Moreover, ROIs with lower service priority can obtain a better QoS support (i.e.,
lower weighted error distance). In Contrast, if a uniform QoS for ROIs is
requested, then the service priority for the ROIs cannot be guaranteed effectively.
This result confirms the effectiveness of the proposed framework as well as the

algorithm.
B. Experiment 11

The second experiment was designed to observe the solution qualities of
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the proposed algorithm under topography with placement limitations. Placement
limitations were added to the topography used in the first experiment: sensors
could not be placed in 35 grid points located at the right-upper corner of the
museum, as shown in Figure 4.8. Let the deployment cost of the location with
placement limitation greater than the deployment budget. Also, the sensor cost
in other locations is one. Except for this change, the scenario for this experiment

was the same as that in Experiment I.

Figure 4.8: The topography with placement limitations.
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Figure 4.9: The minimum required number of sensor vs.
various sensing radius. (Fixed radius,
placement limited)
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From Figure 4.9 to Figure 4.11 provide two observations that are the same

as those of experiment I. First, the least number of sensors for different levels of

QoS are depended strongly on the selection of sensor radius, when all sensors
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have the same radius. Second, different candidate sets of sensing radius obtained
almost the same objective value in the case of sensors with various radii. Figure
4.9 indicates that sensors with radius 6 required the minimal number of sensors
to achieve uniform QoS (i.e., level 4 QoS). This differs from the result of
experiment I, and indicates that both topography and placement limitation

dominate the selection of the sensor radius.

Figure 4.12 and Figure 4.13 indicate that even with the placement limitation,
the deployment for the network with the differentiated QoS requirement had a
lower weighted error-distance whenever the number of deployed sensors is
scarce. Moreover, when we adopt the various sensing radius of sensors, we can
also observe that both the objective value and the minimum required amount of
sensors for each level of QoS are low down. These results confirm the
effectiveness of the proposed framework and algorithm in the case of the

placement limitation.
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Figure 4.12: Performance comparison between the uniform
(U) and differentiated (D) QoS services.
(Adjustable radius, placement limited)
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C. Experiment 111

In experiment III, sensor fields 50, 100, 150, and 200 service points were
used to evaluate the scalability of the proposed algorithm. The solution space
increase exponentially as the sensor field size increased linearly. Therefore, this
study observes the variation of computation time and solution quality while the

problem size increases.

The parameters about LR algorithm include: 0<A<2 and improvement
counter is 40. The number of iteration for field size 50, 100, 150, and 200 are
500, 1000, 1500, and 1500, respectively.

Figure 4.14 shows that the minimal requirements of sensor density for
various sizes of sensor fields. In the single radius case, the solution spaces of the

50 ~100 ~150 200
four cases were 27,2, 2", and 2

. However, the four curves in Figure 4.14
exhibit the same trend. They indicate that the solution quality of the proposed

algorithm is scalable in problem size.
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Figure 4.15 presents the computation time of the proposed algorithm,
where |R| is the amount of candidate sensing-radius. The solution space of the
proposed problem exhibited steep growth when |R| increased slightly. However,
as shown in Figure 4.15, the computation time did not increase significantly
when |R| was increased. These findings clearly indicate that the proposed

algorithm is scalable in terms of the candidate sensing-radius. In contrast, the
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computation time only increased by a factor of about 17 when the number of
service points grew from 50 to 100, and by about 15 times as the number of
service point increased from 100 to 200. Results of this experiment indicate that
the computation time does not increase exponentially as the solution space
grows exponentially. Therefore, the proposed algorithm is also scalable in

computation time.
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4.5 Simulated Annealing Approach

Simulated annealing (SA) approach is a highly reliable method for solving
hard combinatorial optimization problems, i.e. it can find the good approximated
global optimum solutions for the optimization problems in a large search space.
In this section, the original mathematical model, IP4.1, is adopted to develop
two SA-based algorithms, noted by SA 1 and SA 2, and to solve the sensor

placement problem.

4.5.1 Algorithm SA 1

To simplify the solution procedure, we try to relax the budget and coverage
constraints, ie. (4.4) and (4.5), by penalizing objective function Zp,; in

algorithm SA 1. The penalty function multiplied by original objective is

penally:1+p(g+2hl}
ieA

, where constant p is equal to w,D K N. D is the diameter of the sensor field.
Variable g indicates the exceeding budget. Variable /; indicates whether service
point i is covered. Xh; means the number of uncovered service points. Hence,

energy E can be defined as follows:

w.d,
E =max ———="~" l+p(g+ h,.D.
XL’A}Z‘E"‘I_*'K];(V% —ij)2 [ ;

Algorithm 4.2 presents the pseudo code of algorithm SA 1. Initially,
sensors are randomly deployed under the budget limitation. The radius of all

sensors is set to the maximum one in the candidate radius set. In each loop, the
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solution configuration is randomly altered by one of following actions: adding
one sensor, reducing one sensor, changing one sensor’s location, increasing one
sensor’s radius, or reducing one sensor’s radius. The solution with the minimum
energy is saved as the best found solution. The terminate condition of the
algorithm is either reaching the frozen temperature ¢ or satisfying the desired
level of QoS for each block. The energy of best found solution, Z,,,, can be used
to verify whether the latter condition reached. For example, if we want to deploy
a completely discriminated sensor network, Z,;, has to be less than the lowest
discrimination weight. When the algorithm stopped, it is a feasible solution to

this problem, if no penalty for the best found solution.

Algorithm 4.2: The pseudo code of algorithms SA 1 and SA_ 2.

According to the budget, randomly deploy sensors on the sensor field.
Calculate E for the initial guess.

Zoa< E.

Let Z,,in¢— Z,14 and save the current configuration as the best solution.
Evaluate Z,,;,, If desired QoS requirement for each block is satisfied then
goto step (21).

6. <ty b« by.

7. While t>¢,do

8 Repeat r times

NS

9. Randomly alter the solution configuration.

10. Calculate £ for the new configuration.

11. Zpew < E.

12. Evaluate Z,,,, if desired QoS requirement for each block is satisfied

then goto step (21)

13. AE < Znew—Zojd.

14. Generate a random number p uniformly distributed in (0,1).

15. If AE< 0 or p< ™" then

16. Zold <~ Znew

17. If Zoia < Zyin then Z,;, < Zy14, save current configuration as the
best solution.

18. else recover the action in step (9).

19. End

20. b<«b=*p t<txa
21. End
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4.5.2 Algorithm SA 2

Besides relaxing the budget and coverage constraints as algorithm SA 1,
we consider the number of service points with the maximal weighted error

distance to construct a surrogated energy function Ej:

1+ Y
E =E (1+|A Zm,J.

i€ed

Where m; indicates whether the service point i has the maximal weighted
error distance with another service point. And, Xm/|4| means the ratio of the
service point with the maximal weighted error distance. Constant p’ is the
minimum gap size between any two adjacent objective values. The value of p’
must be computed carefully to avoid the part of penalty over the gap, which is

between current original objective and the higher candidate objective values.

The solution procedure of algorithm SA 2 is the same as algorithm SA 1,

as listed in Algorithm 4.2, except for using £, substitutes for E.

4.5.3 Computational Results

Two sets of experiments were conducted to evaluate the performance of the
proposed algorithm under various settings for the numbers of priority class,
amount of resource, topology area and detection radius. The proposed
algorithms were coded in C in MS-VC++ 6.0 development environment. All the
experiments were performed on a P4-3.0GHz PC running MS-Windows XP Pro.
The performance metrics were assessed in terms of the solution quality and

computation time.

The parameters of the cooling schedule are =0.7, f=1.3. The initial value
of by and 1y are 2000 and 0.001, respectively. As well as the frozen temperature

tr1s 19/2000. In addition, sensor cost, ¢, is set to one.
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A. Experiment |

The first experiment was designed to observe the solution qualities of the
proposed algorithms. The sensor field topology was based on the above museum

example, as shown in Figure 4.1.

For the differential positioning accuracy, the set of discrimination weights
was set to {0.1, 5, 100}. The discrimination weight between any two service
points on ROI A was set to the high weight, w;=100. The discrimination weight
between any two service points, which both on ROIs B, C, D, or E, was set to
the medium weight, w,,=5. The weights between any two service points, which
both are on ROI F was set to the low weight w=0.1. The weight between any

pair of service points on different ROIs was set to the highest weight, w;=100.

The diameter of the sensor field was set to D=16. Parameter K = 20000.

Table 4.4: The min. required sensors (S) for level 4 QoS in SA 2.

single radius adjustable radius

Rl1]213]14]516]7]8]46]|3~7]|1~8
§5159136[30[24]24(124[25[29] 25 | 24 | 25

Table 4.4 demonstrates that the minimum number of sensors for the sensor
network deployment depends strongly on the detection radius of a sensor, while
the sensor is with a single radius. Contrary, while an adjustable radius is used, S
is very stable relatively. With these candidate sets, each service point on the
field can be completely discriminated when the amount of sensor nodes reaches
25. This result shows that adapting sensors with adjustable radius for the
problem is more flexible than using a single radius. This experiment indicates

that using sensor with radius 3~7 yield the lowest deployment density.

Figure 4.16 shows the best-found objective value for SA 2. Table 4.3 lists
the ranges of Zps ;. Figure 4.16 indicates that the deployment for the network
with the differentiated QoS requirement had a lower weighted error-distance

when the number of deployed sensors was less than 24. It means that the
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different level of QoS can be satisfied for ROIs according to their service
priority even with a small number of sensors. Moreover, the QoS degradation
for ROIs with lower service priority is minimized. In contrast, if a uniform QoS
for ROIs is requested, then the service priority for the ROIs cannot be
guaranteed effectively. This result confirms the effectiveness of the proposed

framework as well as algorithm SA_ 2.
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Figure 4.16: Performance comparison between the uniform
(U) and differentiated (D) QoS services.
(SA _2,R={3,4,5,6,7})
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Figure 4.17 indicates that if algorithm SA 2 is applied, each ROI can get
level 4 QoS when the amount of sensor nodes reaches 24. However, it requires
32 sensor nodes if algorithm SA 1 is used. This result shows the SA-based
algorithm with a surrogated energy function, SA 2, can convergence more

effectively than SA 1, which applies a simple penalized energy function.

B. Experiment 11

In experiment II, sensor fields 50, 100, 150, and 200 service points were

used to evaluate the scalability of the proposed algorithm.

Figure 4.18 shows that the minimal requirements of sensor density for
various sizes of sensor fields. In the single radius case, the solution spaces of the

four cases were 250, 2100, 2150

, and 27 However, the four curves in Figure 4.18
exhibits the same trend and indicate that the solution quality of the proposed

algorithm is scalable in problem size.
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Figure 4.18: The minimum requires sensor density under
various sensing radius and sensing area. (SA 2,
Fixed radius)
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Figure 4.19 shows the computation time of algorithm SA 2. The solution
space of the proposed problem exhibited steep growth when candidate radii
increased slightly. However, the computation time did not increase significantly.
These findings clearly indicate that SA 2 is scalable in terms of the candidate
sensing-radius. Moreover, the computation time only increased about 12 times
when the number of service points grew from 50 up to 200. Results of this
experiment indicate that the computation time does not increase exponentially as
the solution space grows exponentially. Therefore, the proposed algorithm is

also scalable in computation time.
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Figure 4.19: The solution time (seconds) of SA 2 in various
areas.

119



4.6 Performance Comparisons

In this section, due to the previous experiments results, the performance
and convergence properties of the proposed algorithms, LR algorithm, SA 1,
and SA_2, will be compared.

4.6.1 Performance Evaluations

Figure 4.20 depicts the curves of objective values versus the given
number of sensors in the case of no placement limitation and R={3, 4, 5, 6,
7}. Each ROI can get level 4 QoS when amount of sensor is 24, 26, and 32 by
SA 2, LR, and SA 1, respectively. Therefore, for this problem, the SA 2
using surrogate energy function overcomes the other algorithms, LR and

SA 1, in solution quality.
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Figure 4.20: Comparison of solution quality between SA 1,
SA 2, and LR algorithms. (Area: 10x15,
differentiated QoS, R={3,4, 5,6, 7})
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4.6.2 Convergence Properties Analysis

Several famous searching methods usually are adopted or modified to cope
with the unconstrained or constrained nonlinear programming problem, for
instance, Golden Section Search, Newton’s Method, Steepest Decent Method,
Gradient Projection Method, et al. These algorithms have a common heritage of
all being iterative descent algorithms. We mean that the algorithms iteratively
generate a series of points, each point being calculated on the basis of the points
preceding it. As well as iteration by iteration, the points corresponding to
objective function will decrease. Ideally, the sequence of points generated by the
decent algorithm in this way converges in a finite or infinite number of steps to a
solution of the original problem. If for arbitrary starting points, the algorithm is
guaranteed to converge to a solution, then the algorithm is said to be globally
convergent. In addition, the analysis of convergence rate is another important
subject. It can be used to evaluate the effectiveness for iterative descent

algorithm [Lue84].

In this dissertation, all proposed problems are formulated as combinatorial
optimization problems. Due to the above mentioned searching methods are not
applicable to solve these NP-hard problems, we propose Lagrangean relaxation
based and simulated annealing based algorithms to cope with these problems.
The proposed algorithms do not belong to iterative descent approach. Iteration
by iteration, the series of feasible solutions are not monotonic non-increasing.
Hence, the convergence rate is replaced with convergence trend to observe the

effectiveness of the proposed algorithms.

(A) Lagrangean Relaxation Algorithm

The subgradient method is an adaptation of the gradient method in which
gradients are replaced by sub-gradients. The subgradient method is easy to
program and has worked well on many practical problems, hence, it has become

the most popular method for Lagrangean dual problem [Fis81].
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In reference papers [HWC74] [Gof77], the convergence properties of the
subgradient method are discussed. To ensure convergence, all step sizes ¢*
have to satisfy the following constraints:

k
t* -0 and Ztk — .
i=0

In addition, we observe the convergence trend of Lagrangean relaxation
algorithm with different values of improvement counter. Based on the map
shown in Figure 4.1, without placement limitation, in the case of differentiated
QoS requirement and R= {3, 4, 5, 6, 7}, given number of sensors, 25, we
observe the upper bounds on objective function under different values of
improvement counter. We use improvement counters, 20, 30, 40, 50, and 60, in
our experiments. The experimental results are illustrated in Figure 4.21, only 3
curves (improvement counter are 40, 50, and 60) are depicted. The improvement
counter has to be larger than or equal to 50, the proposed LR algorithm will

convergent and solutions will be less than 0.1.
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Figure 4.21: Convergence trend of LR algorithm. (Area: 10
by 15, differentiated QoS, R= {3, 4, 5, 6, 7},
number of sensor is 25, [.C.=Improvement
Counter)
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Afterwards, the LR algorithm executes using radius sets {5}, {3, 4, 5, 6, 7},
and {1~8}, corresponding to 1, 5, and 8 candidate radii. The test improvement
counters are 20, 30, 40, ..., until the feasible solution convergent. We find when
number of candidate radii increases, the minimum improvement counters for
convergence will increase, shown in Table 4.5. So the improvement counter

setting is case by case.

Therefore, we obtain that the upper bound is dependent on the

improvement counter setting in terms of problem size.

Table 4.5: The minimal improvement counters for
convergence in 150 grid points sensor field.

Candidate radius
{5} {3,4,5,6,7} {1~8}
Min. I. C. 20 50 80

(B) Simulated Annealing Algorithm

The cooling schedule of simulated annealing has to be design carefully for
obtaining a good approximated optimal solution. Hence, we design a set of
experiment to observe whether the parameters: initial temperature, cooling ratio,
and initial number of iteration will affect the convergence properties of SA 2.
The context of the experiments for observing convergence trend include 150
service points sensor field without placement limitation, deployed 24 sensors
with multiple candidate detection radii, R={3, 4, 5, 6, 7}. The SA parameters are
setting as follows: « =0.75, B =1.3, 1, =2000, 7; =0.000588, and

T, =T, /20000.

Figure 4.22 shows the convergence trend for different cooling ratio « .
Typically, « is about 0.75, the higher o enables a slowly decrease in

temperature. The spending time of SA 2 from iteration 1 to 10* is very few,
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about several seconds. In despite of « being 0.5, 0.6, or 0.7, SA_2 always can
converge to objective value 0.1 quickly. But only « is 0.7, SA_2 will converge
to less than 0.1. Therefore, the value of cooling ratio a will affect the

convergence trend in SA_ 2.
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Figure 4.22: Convergence trend of SA 2 for different cooling ratio.

1000 4
Level 1 QoS 4
8 1004
% Level 2 QoS
§ 10] | evel 2 Qo
© B
o 13 Level 3QoS r0=10N, 15N
(] ]
it e —— |
B 0.1 § ——1r0=N ;
= 0.01 1 ——0=5N Level 4 QoS N
3 7] ——r0=10N D
; 1E_3 -'I T """:'(I)::!-S"'\I'""I MR | ML | ML | MR | MELRALLL | T
10° 100 10 100 10* 10° 10° 10
# of iterations

Figure 4.23: Convergence trend of SA_2 for different . (N=150)

Figure 4.23 illustrates the convergence trend for different initial number of
iteration, ry, which determines number of iterations, as well as physically affects

the balance for each temperature level. We let 7y be multiple of number of grid
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point, N. In despite of ry being 1, 5, 10, or 15 multiple of N, SA 2 always can
converge to objective value 0.1 quickly. But 7y has to be greater than or equal to
10N, SA 2 will converge to less than 0.1. Therefore, we can obtain the

convergence trend in SA_2 depends on the parameter ry.

Finally, we investigate how does the initial temperature 7} affects the
convergence trend of the SA_ 2 algorithm. The initial temperature 7 is related to

initial transition probability p,, p,=exp(-AE/T,) . We let AE be the
minimum difference between any two adjacent levels of objective value, and set
P,=0.2, 0.5, and 0.8. Then we get three different initial temperatures 7y , (i.e.,
0.001287, 0.000588, and 0.000253), corresponding to three initial transition
probabilities p,, (i.e., 0.8, 0.5, and 0.2). In Figure 4.24, we can observe that all

curves can reach the region of level 4 QoS. This evidence shows that the SA 2

algorithm is insensitive in the variation of 7.
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Figure 4.24: Convergence trend of SA 2 for different 7, (or p,).
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4.6.3 Compare with Other Approaches

4.6.3.1 Compare with C1Q Approach

In Section 2.4.1, we review the papers [CIQ01] [CIQO02], which apply the
coding theory to solve the target location problem in sensor networks. In the
dissertation, we note the placement method proposed by Chakrabarty et al. as
“CIQ approach”. The simpleness and quickness are main advantages of CIQ
placement method. However, CIQ approach can not be used for irregular sensor
field, and can not use various radii sensors to solve target location problem. In
addition, it ignores the sensor field boundary effect. Our approach can address

these difficulties.
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Figure 4.25: The sensor deployment in a 13x13 sensor field. (a) By CIQ
approach (79 sensors). (b) By LR approach (68 sensors).

Figure 4.25(a) shows a 13x13 sensor field which is deployed 65 sensors by
CIQ method. To solve the boundary problem, we deploy 14 extra sensors (total
79 sensors) for satisfying the completely discrimination constraint. In the same
scenario, i.e., 13x13 sensor field and uniform discrimination weight, we use

sensor with radius one to deploy a completely discriminated sensor field by
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Lagrangean relaxation algorithm. The deployment by LR approach requires only
68 sensors; it is illustrated in Figure 4.25(b). We can claim that our approach

outperform CIQ method in terms of deployment cost.

4.6.3.2 Compare with ID-CODE Algorithm

In Section 2.4.1, we have been reviewed the papers [RST04] [RUPO03],
which apply the identifying code to solve the target location problem in sensor
networks. They propose the “ID-CODE” sensor placement algorithm, and

design three visiting orders: random, ascending, and descending orders.

However, ID-CODE approach does not consider sensors with adjustable
radius for the target location problem. In addition, the algorithm does not also
take different discrimination quality into account. Contrary, our approach can

address these issues.
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Figure 4.26: Performance of the ID-CODE algorithm in 150
grid points sensor field.

For comparing the proposed algorithms, LR and SA 2 algorithms, with
ID-CODE, we design a set of experiments. Due to the results that were obtained

by the random order of the ID-CODE approach highly depend on probability. It
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will result in either a larger deviation or too much time consumption to obtain a
statistical or the best result. Hence, as Figure 4.26 shown, in each experiment,
we only adopt the ascending and descending orders of the ID-CODE algorithm.
Furthermore, in each simulation scenario, we take the best results, denoted by
“ID_CODE best”, of these two visiting orders as a benchmark of the ID-CODE
algorithm. The curve denoted “Lower Bound” is a modified version of lower

bound according to Theorem 1(2) and (3) in [KCL98].

From Figure 4.27(a) to (d) illustrate performance comparisons between
ID-CODE, SA 2, and LR algorithms under various areas of sensor fields, i.e. 50,
100, 150, and 200 grid-points, respectively. We can observe the SA 2 and LR

algorithms outperform ID CODE best in terms of deployment cost, i.e., number

of sensors.
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Figure 4.27: Performance comparisons between ID_CODE best, SA 2, and LR
algorithms under various areas of sensor fields.
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4.6.4 Results Analysis

From the previous experimental results, we are concerned with an
interesting phenomenon. That is, the minimum required number of sensors for
the positioning services will increase if the detection radius is larger or smaller,

as Figure 4.27 shown. We discuss and investigate from two different directions.

1. By theoretical and mathematical analysis

From information theorem perspective, while sensor detection radius is
larger or smaller, the corresponding information (or entropy) of the sensor will
decrease. So that, more sensors are required to satisfy the entropy for
constructing identifying code in a ‘sensor network. The detail proof is illustrated

in Appendix B.

2. By experimental observations

From the experimental results (in' Appendix C), we can find that the sensor
with smaller radius needs more for supporting target positioning. But when the
detection radius closes to the maximum candidate radius for the size of sensor
field, the required density will increase according to the boundary effect of the

sensor field.
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4.7 Concluding Remarks

In this chapter, we propose a generic framework for the sensor placement
problem to support the differentiated QoS and prioritized service for different
ROIs in a sensor field. The weight is designed to assign the discrimination
priority of two service points. Under the budget, coverage, and placement
constraints, the goal is to minimize weighted error distance. Besides the sensor’s
locations, we consider the detection ranges as decision variables and construct
the mathematical model for the sensor deployment problem. Next, we develop a
Lagrangean Relaxation based heuristic, two SA-based algorithms, SA 1 and

SA 2, to scope with the NP-complete problem.
Based on the experiment results, we make a summary as follows:

1. The proposed framework can support a better and differentiated QoS
than the pervious framework, which can only handle uniform QoS

requirements.

2. The performance of the proposed algorithms is almost independent of the
radius selection when it adapts sensors with an adjustable
sensing-radius. By the various radii, the proposed algorithm can
efficiently get well solution quality. Particularly, some locations can’t
be placed sensors in sensor field, all the proposed algorithms use

various radii to cope with the problem effectively.

3. The proposed algorithms are scalable in terms of the number of the

radius types and the size of the sensor field.

4. It is independent of the size of sensor field that the sensor density

requirement will increase if the radius is shorter or longer.
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5. The proposed SA-based algorithm with a surrogated energy function,
SA 2, is convergence more effectively than the LR algorithm and SA 1
in solution quality. It is the same that the LR algorithm overcomes SA 1

in solution quality.

6. When size of sensor field is small, the proposed LR algorithm is more
efficient than SA 1 and SA_2. When size of sensor field increases, the
efficiency of three proposed algorithms come up with no significant

difference.

7. The proposed approaches (LR and SA 2) are more effective and flexible
than the CIQ and ID-CODE approaches in terms of various sensor radii,
terrain as well as other deployment constraints. The main drawbacks of

our approaches are more computation time and less scalability.
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CHAPTER 5 ENERGY-EFFICIENT
SENSOR NETWORKS DESIGN

5.1 Overview

Both sensor deployment and energy conservation are key issues for WSNs
[ASCO02a]. This work considers the problem of constructing an energy-efficient
sensor network for surveillance and target positioning services using the
controlled placement approach. The design goals are to achieve target
positioning as well as to prolong sensor network lifetime. To support positioning
functionality, the sensor field must be completely covered and each unit in the
field is discriminable. It requires deploying more sensors than to support
surveillance functionality. However, to keep all sensors in active to support the

target positioning service is not necessary and waste sensors' energy if intrusion
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events occur infrequently. Actually, the surveillance service is enough when
there isn't any intruder in the sensor field. Hence, we try to deploy K
independent sets of sensors to support positioning service on a sensor field. Each
of them, is called a cover, can provide complete coverage of the field. Each set
is activated in turn to monitor the field when no any intruder was existence.
Once the intrusion event occurs, all sets of sensors are activated and work
corporately to locate the intruder. Generally, the power consumption for inactive
sensors can be neglected, and the sensor lifetime can be effectively prolonged up

to K times.

In this chapter, we formulate the problem as a 0/1 integer programming
problem where the objective function is the minimization of the total
deployment cost required to complete coverage and discrimination constraints
under a given amount of cover K. The problem is a variant of the set K-cover
problem and thus is NP-complete [AGP04] [SPO1]. Then, the Lagrangen
Relaxation (LR) based algorithm and Simulated Annealing (SA) based
algorithm are proposed to address the optimization problem [Egl90].

From sensor placement perspective, the energy conservation strategy can
be considered in “deployment phase” or ‘‘post-deployment phase”. This study
belongs to the former, and focuses on energy efficient sensor network

deployment.

From papers review, we find that this study differs from prior works in
several points. First, we consider both the energy conservation and lifetime
extending during the sensor deployment phase for target positioning. Second,
we present a mathematical model to describe the optimization problem. Third,
the LR-based algorithm and the SA-based algorithm are proposed to solve the
problem. Fourth, the relationship between the deployment cost and the
maximum extension of system lifetime is investigated. Finally, the performances

of the proposed algorithm are evaluated and compared with CPLEX.
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5.2 Problem Description

A. Sensor Placement

In this chapter, we use the controlled deployment method to construct
WSNs. The sensor field can be represented as a collection of two- or
three-dimensional grid points [CIQ02] [CL04] [DC03] [DCI02] [LCO05], as
illustrated in Figure 5.1. This approach is called grid-based placement. The
positioning resolution requirement of application determines the granularity of
grid point. In this chapter, the distance between two adjacent grid points is
adopted as a length unit. Therefore the sensor field illustrated in Figure 5.1 has 5
by 3 grid points. And six sensors are placed on grid point 4, 6, 7, 9, 10, and 12.

1 2 3 s
T~ grid point
0 0 34
I~ sensor node
v .
n @ 1B |15 (dius1)

Figure 5.1: A complete coverage/discrimination sensor field.

This study assumes that the sensor detection model is 0/1 model [CIQO02]
[CLO04] [LCOS5]. The coverage is assumed to be complete (1) if the distance
between the grid point and the sensor is less than the detection radius of the
sensor. Otherwise, the coverage is assumed to be incomplete (0). For example,
the radius of the sensors illustrated in Figure 5.2 is assigned to one. It is a
homogeneous sensor network. Therefore sensor 4 covers grid point 3, 4, 5, and 9,

sensor 7 covers grid point 2, 6, 7, 8, and 12, sensor 9 covers grid point 4, §, 9, 10,
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and 14, and so on. If any grid point in a sensor field can be detected by at least

one sensor, the field is called completely covered sensor field.

& (3 @ Q2|3 Q|
o 7 e e @ 6 7 8 9 10
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@ 12 ]i‘:& @‘L 15 ,f:!ll 12 @ 14 | 15
(c) sensor )

Figure 5.2: A grid-based sensor field with 3 covers: (a) Overall
placement. (b) Cover 1. (¢) Cover 2. (d) Cover 3.

To locate an intruder, we define a unique power vector for each grid point.
The power vector of a grid point is constructed according to the deployment of
sensors. If a sensor covers the grid point, constituent of the power vector of the
grid point, which is corresponding to the sensor, is set to 1, otherwise 0. For
example, as illustrated in Figure 5.2, the power vectors of grid point 1 and 8 are
<0, 1,0, 0,0, 0>and <0, 0, 1, 1, 0, 0> corresponding to sensor 4, 6, 7, 9, 10, and
12, respectively. After all of the sensors are deployed, the power vectors for
each grid point in the sensor field are constructed and stored on the database at
the back-end of the network. Once an intruder was detected, sensor has to report
the information to the sink nodes. According to the received information, the
back-end can obtain a power vector to determine the position of the intruder. If
each grid point has a unique power vector in a sensor field, the sensor field is
called completely discriminated. The sensor field in Figure 5.2 is completely
covered/discriminated by the sensor network, which can provide surveillance

and target positioning services.
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B. Energy-Efficient Sensor Networks

The duplicate placement approach is an intuitive method to extend system
lifetime in deployment phase. The algorithm deploys K duplicate sensor
networks, which provide surveillance and target positioning services in turn to

prolong lifetime by K times. However, the total cost is increased by K times

accordingly.

This study attempts to construct the sensor network such that it includes K
mutually exclusive sets (number K is given). These sets are called cover [SPO1].
Figure 5.3 shows the state transitions of the sensor network. From the network
viewpoint, two operation states exist: the surveillance and positioning states.
When no any intruder exists in the sensor field, the network operates in the
surveillance state. At the period, the K covers of sensors are activated in turn to
monitor the whole sensor field. Each sensor may be in sleeping or monitoring
states. Once the intrusion event occurs, the network transits to the positioning
state. All covers of the sensors are activated and work corporately to locate

intruder. At the period, all sensors on the network operate in active state.

incursive
event
disappearance

Network’s
perspective

Surveillance
state

Positioning

incursive
event

\
occurrence All sensors |

\ operate at
active state.

Figure 5.3: The state diagram of the sensor network.
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We assume that a sensor has multiple power states, active, monitoring, and
sleeping state [SCIO1]. There are three main components in sensor nodes:
processor, sensor, and radio transceiver. Table 5.1 presents the working modes
of the sensor's components corresponding to the three different power states. If
there is not any intruder approaching to the sensor field, only one set of sensors
operates at monitor state and the others operate at sleeping state. Once intrusion
event occurs, all of the sensors transit to active state. In this study, we assume
that the intrusion event is infrequently, so only monitor and sleep power states

of sensors must be focused.

Table 5.1: The working modes on three states for the sensor node. The radio is
dominant power consumer.

_ Components of sensor node
Working modes :
Processor Sensor Radio
Active Active On Tx/Rx
Power -
Monitor Idle On Rx
states
Sleep Sleep Off Sleep

The main power consumption for a sensor node contains three domains:
sensing, data processing and communication. The communication depletes
much more energy than the sensing and processing, so the radio transceiver is
dominant power consumer in sensor node. The energy consumption for sensing

device and processor can be neglected [EGH99].

Typically, there are four working modes for radios: transmitting (Tx),
receiving (Rx), idle, and sleeping. The required power to idle is about the same
as the power to receive. Usually, sleep mode power consumption is much less
than the transmitting and receiving power consumption (one to four orders of
magnitude) [MV04]. So the power consumption of radio transceiver in sleeping

sensor is less than the monitor and active states.
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Therefore we can assume that power depletion is negligible in the sleep
state. However, the network lifetime can be effectively prolonged by K times.
For example, if the lifetime of sensor network illustrated in Figure 5.1 is
prolonged by three times using duplicate placement approach, the number of
sensors will be increased to 18. Our algorithm placed only 14 sensors in the
same field and can also prolong sensor network lifetime by three. The whole
sensor network is composed of three covers (as illustrated in Figure 5.2), each of
them provides complete coverage. Obviously the proposed algorithm provides

an economical solution to deploy an energy efficient sensor network.

Afterwards this study discusses the possible number of covers in a sensor
network. First the amount of covering grid points of sensor with a specific
detection radius has been discussed and the following propositions have been

obtained.

Proposition 5.1: Suppose a sensor has detection radius r, »>0,
r € Integer-, then, the number of covering grids, G,,
for the sensor in an infinite sensor field can be

represented as

& =2r+1+22(2wr2—Ay2J+1)

Ay=1

, where r represents the detection radius of the
sensor and Ay, Ay>0, Ayelnteger , is the

distance from the sensor to one grid point in y axis,

as shown in Figure 5.4.

Proposition 5.2: A grid point can be covered by a set of sensors. The
maximum cardinality of the set exactly equals the
number of covering grids of a sensor that is allocated

in the grid point.
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For example, in an infinitive field, the radiuses of the sensor are 1, 2, 3, and
the numbers of covering grid points are 5, 13, and 29, respectively. Moreover, a

grid point can be covered by 5, 13, and 29 sensors at most.

Generally, it is impractical to use an infinite sensor field. This study
focuses on the case of the rectangular sensor field with a finite area. For a finite
sensor field, the upper bound of the number of covers is determined by critical
grid points in the field. A critical grid point is a particular grid point which is

covered by a sensor set with smaller cardinality than other sensor sets.

'e) Ce @) e @)
. ® ,//t?-\:)/{ =
. // Ay: \ \\
sensor’s | O+ 'OQ " 6‘ \
coverage *O -+ O e q ® O
!

/

N

e} e e} Sensor field 0O

@ : sensor. Q' grid point.

Figure 5.4: Sensor and its coverage. (The distance
between any two adjacent grid points is
used as one length unit.)

Proposition 5.3: On a rectangular sensor field with a finite area, the
critical grid points are located at the corner of the

field. Therefore, the upper bound, U,, is
U, =2r+1+ ZLWQ —Asz
Ay=1

, where r represents the detection radius of the
sensor and Ay is the distance from the sensor to a

grid point in y-axis.
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In a sensor field with 3 by 5 service points, as illustrated in Figure 5.2, the
radius of sensor is assumed to be 1, while the critical grid points are 1, 5, 11,
and 15. According to Proposition 5.3, the upper bound of the number of covers,
Uy, 1s 3. In Figure 5.2, grid point 1 can only be covered by sensors placed in grid
points 1, 2, and 6. Meanwhile, the corner grid points are all covered by 3 sensors
maximally. In the case, the sensor network can be partitioned into a maximum
number of covers, 3 covers. Clearly, as shown in Figure 5.2, we can deploy the
minimum number of sensors, 14 sensors, for the sensor network with 3 by 5 grid

points.

Table 5.2: The theoretic upper bound of the number of covers in
10x10 sensor field.

Radius(r)| 1 | 2 | 3 | 4 | 5| 6 | 7
U, 3 | 6 |11 17| 26 | 35 | 45

To achieve complete discrimination, the sensor radius must be smaller than
a half of the diameter of the sensor field. Therefore, we vary the radius (from 1
to 7) to compute the theoretic upper bound of the number of covers U, in a 10 by
10 sensor field. Table 5.2 shows the theoretic upper bound of the number of
covers. Theoretically, if radius is 7, we can deploy a sensor network including

45 covers such that the lifetime can be extended by 45 times.

The solution space of the problem is O((K+1)™). When field size m and the
number of cover K increase gradually, the solution space increases rapidly.

Hence, we develop an effective algorithm to cope with the problem.
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5.3 Mathematical Model

The notations used to model the problem are listed as follows.

Given Parameters:

A :Index set of the service points in the sensor field.

B :Index set of sensors’ candidate locations, BCA.

C :Index set of sensor cost.

K : The number of covers required for the sensor network.

a; : Indicator function which is 1 if service point i can be covered by sensor j

and 0 otherwise.

¢ Cost function of sensor j, ¢ e C.

Decision Variables:
xj 1 if sensor is allocated on cover k of the sensor network.
¥;  : Sensor allocation decision variable which is 1 if sensor j is allocated in the

sensor network.

Problem (IP5.1):

Zips1 = mlnv,ze;;szeK €t (IP5.1)
subject to:
DI TR Vied, keK (5.1)
VjeB
X . .
v;{ o<1 jeB (5.2)
= v%;(xjk VjeB (5.3)
2
2 (a,=a,)y, 5 Vi, Led, il (5.4)
VjeB
X y; = Oorl ,VjeB, keK (5.5)
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Physical meanings of the objective function and constraints are briefly
described as follows. Problem (IP5.1) presents that the objective is to minimize
the total cost of sensors. Constraint (5.1) requires that each service point must be
covered in every cover of the sensor network. Constraint (5.2) and (5.3) ensure

that each sensor only belongs to one cover of the sensor network. The

discrimination constraint is Z (al.j—a/,,j)2 y,21 that requires the Hamming
VjeB

distance between each pair of service points in the sensor network must be
greater than one. And the discrimination constraint can be rewritten as constraint
(5.4). Constraint (5.5) requires integer property of the decision variables with

respect to xj; and y;.
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5.4 Lagrangean Relaxation Approach

5.4.1 Relaxation

This section presents the algorithm for solving the proposed sensor
placement problem. An approach based upon Lagrangean relaxation is
considered. Lagrangean relaxation is a method for obtaining lower bounds (for
minimization problems) as well as good primal solutions in integer
programming problems. A Lagrangean relaxation is obtained by identifying in
the primal problem a set of complicated constraints whose removal will simplify
the solution of the primal problem. Each of the complicated constraints is
multiplied by a multiplier and added to the objective function. This mechanism
is known as dualizing the complicating constraints [Fis81] [Fis85] [Geo74]
[HWC74].

Using the Lagrangean relaxation,  this investigation chooses to dualize
Constraints (5.1), (5.3), and (5.4), and establishes the following Lagrangean

relaxation problem.

Problem (LR5.1)

R DI 3D AR SRR ST op

VjeB VkeK VieA VkeK VjeB VjeB VkeK

> D uy (=Y (a;=a,)'y;) (LR5.1)

VieAV/ieA, VjeB
(i

subject to:

Z X ji

VkeK

IN

VjeB (5.2)

xjk

Oorl VjieB,keK (5.5)
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Y, = Oorl VjeB (5.6)

The multipliers ', u°, and u’ are the vectors of {u}, }, {u’}, and {u;},

respectively. Notably, the constraints (5.1) and (5.4) are dualized such that the

. . g 1 3 .
corresponding multipliers #'and u” are nonnegative.

(LR5.1) can be decomposed into two independent and easily solvable
subproblems, where only the xj decision variables are involved in the first

subproblem and only the y; decision variables are involved in the second

subproblem. Note that, the constant terms, Z Z u; and Z Z u, , were

VieA VkeK VieAV(leA,
l#i

omitted from the objective function in the subproblems.

Subproblem 5.1: for xj

Z s (' u”) = min{z z ((Cj _ujg)_ z ul.lkay]xjk} (SUBS.1)

VjeB VkeK Vied

subject to:

2% < 1 VjeB (5.2)

VkeK

Oorl VieB,kekK (5.5)

Jjk

Subproblem 5.2: for y;

Zgpsa (u”,u”) =min z (”,2 - z Z ”; (a[j —%j)z)yj (SUB5.2)

VjeB VieAVIieA,
l#i

subject to:
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y; = Oorl VjeB (5.6)

Subproblem 5.1 comprises |B| (one for each sensor) problems. To simplify
descriptions of the procedures for solving Subproblem 5.1, pj is used to

represent the following function:

2 1
P =(c;—up)= D ua,

Vied

For each sensor, first we assume sensor j is allocated and p, is calculated
for each cover k. Then the minimal p, of sensor ; in all cover (min p,) is

determined and the corresponding cover number k' can be obtained. If the

minimal p, in all cover is negative, we assign xj-to 1. It means that sensor j is

allocated and belongs to cover k. Otherwise, all x;; are assigned to 0.

Subproblem 5.2 also.comprises |B| problems. Let g; be the coefficient of y;
in (SUBS5.2).

b 3 2
q,=u; — Z Z uil(aij _aéj)

VieAVIleA,
C#i

For each sensor j, if g; is negative, we assign y; to 1. Otherwise, let y; be

Z€10.

For any (u', u’)>0, using the weak Lagrangean duality theorem, the optimal
objective function value of (LR5.1), ZDI(uI , w , uw ), 1s a lower bound on Zps ;.

The dual problem then is
Z,, = max Z, ', u’, u’). (D5.1)

(1,41 N u3)20

(D5.1) 1s solved to find the highest lower bound. Several methods exist for
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solving the dual problem (D5.1). One of the most popular methods is the
subgradient method. Let a (| A|x| K |+|B|+]|A|x|A4|) vector g represent a
subgradient of Zps (', u’, u’). In iteration m of the sugradient optimization

procedure, the multiplier vector 7 is updated by

m m

" ="+ t"g".
The step size " is determined by

%

i M5y = Z,(x")
2
|

b

where Z*1p5_ ; represents an upper bound on the primal objective function value,

obtained by applying a heuristic to (IP5.1), and A is a scalar satisfying 0< 4 < 2.

5.4.2 Getting Primal Feasible Solutions

After optimally solving the [Lagrangean dual problem, a set of decision
variables can be found in each round. Since some of the constraints are relaxed,
the solutions are infeasible for the primal problem. However, efficient heuristic
algorithms must be developed to adjust the optimal dual solutions. A set of
feasible solutions of the primal problem (IP5.1) then can be obtained. With
increasing number of iterations, the better primal feasible solution is an upper
bound (UB) of the problem (IP5.1), while the Lagrangean dual problem
provides the lower bound (LB) of the problem (IP5.1).

In this section, we propose a heuristic for obtaining primal feasible

solutions. The algorithm is shown as follows.

Step 1: Check constraint (5.3) for each sensor. If y;=1 and

z x; =0 for sensor j, sensor j is added to cover k£’ such
VkeK

that p,. is the minimum of p, for all covers on sensor j.
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If ;=0 and z x; =1 for sensor j, then let y; be one, and the

VkeK

sensor j is allocated.

Step 2: For each cover k of the sensor network, check coverage
constraint (5.1). If the coverage constraint is violated, then
sensor-addition-procedure are repeated, or
sensor-exchanged-procedure are repeated until the coverage
constraint is satisfied. Then, we try to drop sensors, which are

redundant in terms of coverage constraint.

Step 3: Check the discrimination constraint (5.4) for the whole sensor
network. If constraint (5.4) is violated, a lot of sensors are
added to achieve the completely discriminated sensor
network. Afterwards, this algorithm attempts to drop some
sensors that are redundant for coverage and discrimination

constraints.

5.4.3 Computational Results

To evaluate the performance of the proposed algorithm, we conduct a serial
of experiments. The performance is assessed in terms of lifetime of sensor,

deployment cost, and computation time.

5.4.3.1 Scenario

The proposed algorithm is coded in C under a Microsoft® Visual C++ 6.0
development environment. All the experiments are performed on a Pentium
IV-1.4GHz PC running Microsoft Window XP. The algorithm was tested on a
10 by 10 senor area. To achieve complete discrimination, the sensor radius must
be smaller than a half of the diameter of the sensor area. The distance between
two adjacent grid points defines the length unit. Hence, seven sets of

experiments are conducted, which consider sensor radius » ranging from 1 to 7.
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According to Proposition 5.3, each set of experiments is investigated under a
given K cover, which ranges between 1 and the theoretic upper bound on
maximum number of covers, U,, 1< r <7, as listed in Table 5.3. The parameters
about LR algorithm include: 0< A <2, improvement counter is 35, and the

amount of iteration is 1000.

5.4.3.2 Results

A. Maximum Increasing Lifetime of Sensor

We first investigate whether the theoretic upper bound of covers, U,, can be
found. Based on our assumptions, the maximum lifetime of sensor is almost
proportional to the number of covers that can be found. The experimental results
are listed in Table 5.3. In the first five cases, the sensor radius ranges from 1 to 5,
and the proposed algorithm can always obtain the solution under the given upper
bound of cover. Moreover, little difference exists'between the situations where
the sensor radius 1s 6 and 7. The degradation of the solution quality is less than
4.4%. From this perspective, the proposed algorithm is very effective for

maximizing the lifetime of sensor.

Table 5.3: Comparison of U, between the theoretical
and the best found values.

Radius (1) 1 2 131|415 6 7

U, (theoretic) 3 6 | 11 | 17 | 26 | 35 | 45
U, (thebestfound) | 3 | 6 | 11 | 17 | 26 | 34 | 43
Degradation (%) 0 01010 0 129]|44

B. Deployment Cost

This study shows the best found for the minimum deployment cost by the

proposed algorithm. Since all sensors have the same deployment cost, the
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overall deployment cost can be simplified as the number of deployed sensors.
This section instead uses a normalized term, sensor density, as a performance

metric. Sensor density can be defined as follows:

Sensor density (%) = (- > > x,)x100%
VjeB VkeK

Table 5.4 lists the selected results of experiments, which shows the sensor
density requirements with specific sensor radius and the number of cover. For
example, the sensor radius is 1 in the first experiment, and the number of covers
is 1, 2 and 3. From average sensor density perspective, the average sensor
density per cover is higher while the number of covers is few, as shown in
Figure 5.5 and Figure 5.6. But while the cover quantity increases, the average
sensor density per cover decreases progressively and achieves stability.
Therefore, the proposed sensor placement algorithm is extremely effective for

minimizing the sensor density increase in extending lifetime.

Table 5.4: Selected sensor densities obtained in the experiment.

4 of covers Sensor radius
1 2 3 4 5 6 7
1 0.40 | 0.28 | 0.25 | 0.19 | 0.22 | 0.25 | 0.25
3 0.8 | 0411029 (022|022 0.25]0.25
6 0.8 1043|031 |025]|0.26] 0.26
11 0.78 | 0.51 | 0.39 | 0.31 | 0.33
17 0.79 |1 0.61 | 043 | 04
26 0.97 | 0.65 | 0.53
34 0.97 | 0.75
43 0.97

Moreover, from the energy efficiency and deployment cost perspectives,
the proposed algorithm demonstrates a significant improvement compared with
duplicate deployment approach. This study uses the required number of sensors
for one cover as a base, then the times of lifetime extension and cost increase of
duplicate deployment approach compare with the proposed approach’s, as listed

in Table 5.5. Obviously, the times of cost increase for the proposed approach is
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lower than that for duplicate deployment approach. For sensor radius 7, the

required number of sensors is as low as 8.4% of duplicate deployment approach.

40
] —8—R=1——R=2
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Average sensor density (%)
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Figure 5.5: Proportion of the lifetime extending times to
average sensor density per cover. (LR, R=1~4)
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Figure 5.6: Proportion of the lifetime extending times to
average sensor density per cover. (LR, R=5~7)
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Table 5.5: Performance comparison between the duplicate deployment and
the proposed sensor placement approach.

Radius The duplicate deployment The proposed approach
#Duplication | Increased cost #Cover Increased cost
1 3 3 3 2.00
2 6 6 6 2.71
3 11 11 11 3.04
4 17 17 17 4.16
5 26 26 26 441
6 34 34 34 3.88
7 43 43 43 3.88

C. Computation Time

The study observes the computation time for the proposed algorithm. Table
5.6 lists the execution time of each set of experiments. The solution time of the
algorithm is below 100 seconds in all cases. The efficiency of the algorithm thus

can be confirmed.

Table 5.6: The execution time of each set experiments.

Sensor radius 1 p/ 3 4 5 6 7
Solution time (Second) | 43 | 61 | 8 | 38 | 25 | 91 | 51

D. Density vs. Different Radius

Next, we observe the experimental results that the number of covers is one,
as illustrated in Figure 5.7. The sensor radius varies from 1 to 7, and the sensor
densities first decrease and then increase. In radius 4, the sensor density
requirement is the lowest in all cases. It is reasonable for sensors with smaller
radiuses to have smaller covered areas, and thus more sensors are required to
cover the whole sensor field. Meanwhile, a larger sensor radius requires more

sensors to satisfy the discrimination constraint.
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E. Scalability
40
0 /\
© 4
c
o
® 30
)
[}
£
= 204
]
5
8
10 T T T T T T T T T T T T T T T T T
0123456 7 8 91011121314151617
# of covers (K)

Figure 5.8: The solution time for 10x10 sensor area. (R=4)

Finally, we investigate the scalability of the proposed algorithm in terms of
the solution time by two experiments. First, we evaluate the solution time under

various amount of covers, K. Figure 5.8 shows the solution times for the 10 by
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10 sensor field. The sensor radius is 4. In this experiment, the solution space
ranges between O(2'°’) and O(18'"’). The results indicate that the solution times
are very stable when K value increases. Actually, in all cases, the solution times are

below 40 seconds.

The second experiment explores the solution time of the proposed
algorithm under various sensor fields. The solution space extends from O(2'")
to O(4°"). The results show that the solution time increases very slowly, as
shown in Figure 5.9, when the solution space extends greatly. The maximum
solution time in this experiment is only 542 seconds. These experiments indicate

the proposed algorithm has excellent solution time and highly scalable.
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Figure 5.9: The solution time for various sensor areas. (LR, R=1)
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5.5 Simulated Annealing Approach

5.5.1 Algorithm

Simulated annealing (SA) is a highly reliable method for solving hard
combinatorial optimization problems [KGM83]. The concept of SA is applied to
derive an efficient method for solving the problem approximately. To simplify
the solution procedure, we try to relax the coverage and discrimination
constraints (i.e., constraints (5.1) and (5.4)) by penalizing objective function

Zips.1.

The penalty for coverage constraint (constraint (5.1)) is

1+pz Zgik

VkeK VieAd

, where p, p>|B|, is a constant. Variable g,, Vie 4, k€ K , indicates
whether grid point i was covered by sensors in cover k. g, =1, if

a;x, =0, VjeB.Otherwise, g, =0.

The penalty for constraint (4) is 1+ p*(1-d_ ). Where d__ represents

the minimum Hamming distance between each pair of service points. If

. m 2 _ . _
w,r[relhr}ﬂzjzl(ay —a,)y; 21, d =1. Otherwise, d, =0. Hence, energy E

can be defined as

E=(+p Y > g)+p (1=d, )Y > cpx,.

VkeK VieA VjeB VkeK

Table 5.7 shows a pseudo code of the algorithm. We will use the following

symbols regarding any feasible solution x:
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Sy=4{jl D x,=0,VjeB},S, ={jlx, =1VjeB},and S =] s,.

VkeK VkeK

Table 5.7: The SA pseudo code for sensor placement.

1. Let x, < 1,Vjed, if modK)+1=k.

2. Calculate Sy, S;, and s;,, VkeK.

3. z < E.

4. Let z . <z, andsave the current configuration as the solution.

5. t<t,, b<b,

6. While ¢>¢, do

7. Repeat b times

8. If 5,2 thenchoose s, €S, randomly.

9. Choose s,, €S, randomly.

10. Choose covers c¢; and ¢z, ¢, #¢,, 1n [I, K] randomly.

11. Choose an action ac, ace{l,2,3}, randomly.

12. If ac#1 and Sy =D then S, < SuUs,.,
Stk |k=c2<_ Stk |k=c2 US> S €850 — S -

13. If ac#2  and S0 then s, |_. <5 lica =S >
Sik |k=c2 < Si |k=c2 IS i -

14. Z,,, < BB ¢l 5% 4

15. Generate random variable y uniformly distributed in (0, 1).

16. If AE<0 or y<e ™" then

17. Zold < Znew

18. If z, <z, then z . <z  andsave the current

configuration as the solution.

19. else recover the change for S, S,, and s,,, k € K, that were
made in steps (12) and (13).

20. End

21. beb*p;If z,,<n then t«t*q, else t<t*a,.

22. End.

Initially, we assume the sensors are deployed at all grid points. In each loop,
one of three actions (i.e., remove, add, and exchange) will be chosen randomly.
Each action attempts to change the deployment status of one sensor. The
solution with the minimum energy, z,, is saved as the best found solution.

While frozen temperature, #; is reached, the algorithm stops. If z_, <m, the
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best found solution is a feasible solution to this problem.

The SA-based algorithm is a stochastic process. Computing time for the
algorithm is relative to the selection of the cooling schedule, the desired solution
quality, and the optimization problem itself. Hence, as the size of the problem
increases, the time complexity of the problem will become increasingly
irrelevant. In the proposed problem, the evaluation for discrimination constraint
(i.e., constraint (5.4)) dominates the solution speed of the algorithm. To check
whether the constraint is satisfied, we have to calculate the Hamming distance of
power vectors for each pair of grid points in a sensor field. Therefore, the time
complexity for the evaluation is O(n’), where n is number of grid points in the

field.

5.5.2 Computational Results

To evaluate the performance of the proposed algorithm, we conduct a serial
of experiments. The performance is assessed in terms of solution quality,
efficiency, and scalability. We also make the same experiments by a well-known
optimization software package, ILOG CPLEX 9.0. Afterward, we compare the
performance of the SA algorithm with that of CPLEX.

5.5.2.1 Scenario

We assume that all sensors have the same deployment cost, the overall
deployment cost can be simplified as the amount of deployed sensors. This
section uses a normalized term, sensor density, as a performance metric to

evaluate the solution quality of the algorithm. The average sensor density (%) is

Average sensor density (%) = (L Z z x ;) x100%

VjeB VkeK

. The solution time is used to evaluate efficiency of the algorithm. We observe
the variation of solution quality and performance under the situation that sensor

field is increased gradually to assess scalability of the SA algorithm. ILOG
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CPLEX 9.0 is also used to solve the problem. Afterward, we use the solution by
CPLEX to be benchmark and evaluate the performance of the SA algorithm.

We develop two sets of experiments to evaluate the performance of the
proposed algorithm under various system parameters: field size, sensor radius,
and number of covers. First, the algorithm was tested on a 10 by 10 service area.
The sensor radius » ranges between 1 and 7. According to Proposition 5.3, each
set of experiments is investigated under a given K cover which ranges between 1
and the theoretic upper bound on maximum number of covers, U, , as listed in
Table 5.8. The main purpose of the experiments is to examine the solution
quality and efficiency of the algorithm. In second sets of experiments, the radius
ris set to 1 and 7, the number of covers & is from 1 to U, and the field size is
varied from 5 by 5 to 15 by 15. The purpose of the experiment is to examine

whether the algorithm has scalability while the solution space increasing.

The parameters of the cooling schedule for the SA algorithm are «, =0.5,
a,=0.75, p=13, and b=20n. t, is set to 0.5G, |B|. The frozen

temperature, 7., is set to' 0.00l. p=| B| and the cost of sensor c¢,=1,

S

VjeB.

5.5.2.2 Results

A. Solution Quality

We first investigate whether the theoretic upper bound of covers, U,, can be
found. Based on our assumptions, the maximum lifetime of sensor is almost
proportional to the number of covers that can be found. The experimental results
are listed in Table 5.8. In all cases, the SA algorithm can always obtain the
solution under the theoretic upper bound of cover. From this perspective, the

proposed algorithm is very effective for maximizing the network lifetime.
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Table 5.8: Comparison of U, between the theoretical and the best found values.

Radius (r) 1 345617

U. (theoretic) 3 11 | 17 | 26 | 35| 45

U, (the best found) | 3

11|17 ] 26| 35| 45

S || [N

Degradation (%) 0

Table 5.9 lists the selected results of experiments, which shows the sensor
density requirements with specific sensor radius and the number of cover.
Moreover, from the energy efficiency and deployment cost perspectives, the
proposed algorithm demonstrates a significant improvement compared with
duplicate deployment approach. This study uses the required number of sensors
for one cover as a base, then the times of lifetime extension and cost increase of
duplicate deployment approach compare with the proposed approach’s, as listed
in Table 5.10. Obviously, the times of cost increase for the SA algorithm is
lower than for duplicate deployment approach. For sensor radius 7, the required

number of sensors is as low as 10.58% of duplicate deployment approach.

Table 5.9: Selected sensor densities obtained in experiment.

4 of covers Sensor radius
1 2 3 4 5 6 7
1 0.39 | 0.23 | 0.20 | 0.16 | 0.19 | 0.20 | 0.21
3 0.79 | 0.37 | 0.25 | 0.19 | 0.19 | 0.20 | 0.21
6 0.71 | 0.37 | 0.28 | 0.21 | 0.21 | 0.21
11 0.73 1 047 | 036 | 0.27 | 0.26
17 0.81 | 0.60 | 0.38 | 0.35
26 0.97 | 0.64 | 0.52
35 1.00 | 0.70
45 1.00

From average sensor-density perspective, the average sensor density per
cover is higher while the number of covers is few, as shown in Figure 5.10 and

Figure 5.11. While the cover quantity increases the average sensor-density per
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cover decreases progressively and achieves stability. Therefore, the proposed
sensor placement algorithm is extremely effective for minimizing the sensor

density increase in extending lifetime.

Table 5.10: Performance comparison between the duplicate deployment
and the SA-based sensor placement algorithm.

Radius The duplicate deployment The SA algorithm
#Duplication Increased cost #Cover Increased cost

1 3 3 3 2.03
2 6 6 6 3.09
3 11 11 11 3.65
4 17 17 17 4.94
5 26 26 26 5.16
6 35 35 35 5.00
7 45 45 45 4.76

40
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20 A

Average sensor density (%)

# of covers (K)

Figure 5.10: Average deployment density for 10x10 sensor
field. (SA, R=1~4)

In 10 by 10 sensor field, the problem is also solved by CPLEX under
different number of covers. In some case, the solution time of CPLEX is very
long which can exceed several hours. So, we stop the computation of CPLEX if
it exceeds 10000 seconds. Figure 5.12 to 5.15 show the sensor density solving
by SA algorithm and CPLEX. The difference between densities by two
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approaches is very little. In some case, SA algorithm is better than CPLEX, and
vice versa. These results indicate both SA algorithm and CPLEX has the same

solution quality in terms of the sensor density.
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20} —e—R=6|"
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Figure 5.11: Average deployment density for 10x10 sensor
field. (SA, R=5 ~7)
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Figure 5.12: The requirement sensor density compares
between the SA algorithm and CPLEX.
(R=4)
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B. Solution Time

We investigate the solution time of the SA algorithm with various radius
and k value in a 10 by 10 field. Table.S.ll lists the minimum, maximum, and
average solution times of each set of experiments, which has same radius and
different k. The solution space in this experiment ranges from O(2'") to
0(46'"). The average solution time of our algorithm is only several hundreds of
seconds. The maximum solution time is no more than 1600 seconds. We can
also find out that the maximum difference among all cases is only about 50

times. Therefore, the proposed algorithm is efficient in terms of solution time.

Table 5.11: The solution time of the SA algorithm.

Solution time Sensor radius

(Seconds) 1 2 3 4 5 6 7
Average 94 | 267 | 227 | 265 | 298 | 478 | 587
Maximum 141 | 593 | 537 | 463 | 676 | 1557 | 1437
Minimum 44| 71| 55| 36| 91 87| 149

163



C. Scalability

In the second set experiments, we set sensor radius to be 1 and attend to
investigate the sensor density solved by SA algorithm and CPLEX with different
size of fields. Because of the computing time of CPLEX is so long, even more
than several hours. We stop it while execution time exceeds 10,000 seconds and
adopt the feasible solution at that moment. Figure 5.16 to Figure 5.18 show the
sensor density under different field size with the number of covers, k, is 1, 2,
and 3, respectively. From the sensor density perspective, the proposed algorithm
is better than CPLX. The proposed algorithm always can get lower sensor
density than CPLX. In addition, CPLEX can not always obtain feasible solution
in 10000 seconds. Figure 5.18 shows CPLEX does not obtain feasible solutions
when sensor field is 12 by 12 or 15 by 15 with K is 3.
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Figure 5.16: The required sensor density for various sensor
fields. (K=1, R=1)

The solution time about the second set experiments is illustrated in Figure
5.19. When sensor field increases from 5x5 to 15x15, the solution space extends

from 2% to 2°*°. However, the solution time of the proposed algorithm increases
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slowly when the solution space extends greatly. Contrarily, the solution time of
CPLEX increases very rapidly when sensor field increases. Therefore, the
proposed algorithm is highly scalable in terms of number of cover and field size

for sensor density and solution time.
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Figure 5.17: The required sensor density for various sensor
fields. (K=2, R=1)
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Figure 5.18: The required sensor density for various sensor
fields. (K=3, R=1)
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5.6 Concluding Remarks

In this chapter, we study energy efficient sensor placement problem for
surveillance and positioning service. By Lagrangean relaxation method and
Simulated Annealing meta-heuristic, we develop two algorithms to address this
problem. As the best of our knowledge, the proposed algorithms are truly novel

as it has not been discussed in previous research.

At first, this study formulates the problem as a 0/1 integer programming
problem, and then proposes a Lagrangean relaxation (LR) based heuristic and a
simulated annealing (SA) algorithm for solving the optimization problem. And

CPLEX also is used to solve the problem.

The proposed Simulated Annealing approach can almost prolong the
working life of a sensor up to its theoretical upper bound without surveillance
quality degradation. In the worst case, the proposed LR approach has 4.4%

degradation.

About solution time, the proposed LR approach outperforms the SA
approach. CPLEX is the worst in solution time. Both the proposed LR and SA
approach are scalable in terms of solution quality and solution time, but CPLEX

isn’t.

The required average sensor density of one cover is effectively minimized;
the maximal deployment cost is just 10.58% of that of using the duplicate sensor
placement approach. Furthermore, using the same deployment density for a
single-cover sensor network, we can deploy an energy-efficient sensor network

such that its’ lifetime can be extended up to 3 times.

The computational results indicate that the sensor placement approach is
effective and the proposed algorithm is highly efficient, effective as well as
scalable. Obviously, this study contributes to deploying a sensor network for

target positioning with maximum lifetime.
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CHAPTER 6 CONCLUSION AND
FUTURE WORK

6.1 Summary

In this dissertation, we focus on the sensor deployment problems to support
environment surveillance and target positioning services from various

perspectives.

First, we addressed the homogeneous sensor placement problem for
environment surveillance and target positioning. The problem was formulated as
a min-max mathematical optimization model. The maximum error distance was
used to measure the positioning accuracy of a WSN. Then, a
simulated-annealing-based algorithm has been proposed to solve the
optimization problem. The experimental results reveal that the proposed
algorithm not only can efficiently obtain a high-quality solution but also is

effective, scalable, and robust. Afterward, we considered adjusting the sensing
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radius for individual sensor in a randomly deployed sensor network and
proposed a simulated annealing (SA) algorithm to cope with the problem as well.
The experimental results indicate, sensors with adjustable sensing radius can

actually improve the quality of positioning service when locations are given.

Next, the dissertation focuses on supporting differentiated quality of
positioning service for WSNs. The work dealt with the differentiated QoS
requirements for each region of interesting (ROI). The goal of the problem is
either to guarantee QoS requirement of all ROIs or to minimize the QoS
degradation for ROIs based on its’ level of priority. We have developed three
heuristics, including one Lagrangean-Relaxation-based (LR-based) algorithm
and two SA-based algorithms, to address this problem. The experimental results
show that when the given resource is scarce, the sensor deployment approach
with differentiated QoS requirements can obtain better QoS solution than that
with the uniform QoS requirement. Furthermore, for a sensor field with
placement limitations, using sensors with adjustable radius can obtain higher

level of QoS than adopting fixed radius sensors.

The third topic focuses on the energy efficiency issue. K independent sets
of sensors (K covers) monitor a sensor field in turn and locate the target together.
The problem was formulated as a mathematical optimization model, where the
sensor cost was objective. We have developed a LR-based heuristic and a
SA-based algorithm to solve the problem. The experimental results indicate that
the proposed strategy is very effective for energy conservation. And the
deployment cost is just 9% of that using the duplicate sensor deployment
approach when radius and number of cover increase. Furthermore, using the
same deployment density for a single-cover sensor network, we can construct an
energy-efficient sensor network such that its lifetime can be extended up to at

least 3 times.
The contributions of this dissertation are summarized as follows.

1. We first introduced the positioning ability as QoS parameter in WSNs

designs from application perspective, also proposed the error distance to
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measure the positioning ability.

A generic framework for sensor placement problem has been proposed to

support the differentiated QoS and prioritized service in WSNSs.

The mathematical optimization models were proposed to define the

problems clearly.

Base on Lagrangean Relaxation and Simulated Annealing methods, we

developed many heuristics to solve these optimization problems.

The results of this dissertation could be used as references or guidelines for

sensor network builders and researchers.
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6.2 Future Work

Even though we have dealt with a series of sensor deployment problems for
surveillance and positioning services, there are still many open issues to be
investigated worthily. We point out three challenging issues to be tackled in the

future.

1. Fault Tolerant Sensor Networks Design for Surveillance and
Positioning Services

We assume the survivability requirement for each ROI in sensor field
is different. We will try to design the sensor network, which has to remain
complete coverage, when number of sensors k/ fail, as well as to maintain
a specific positioning quality when number of sensors k2 fail. And the

redundant sensors will be used to enlarge network lifetime.
2. Scalable Sensor Networks Design for Target Location Services

The large scale sensor network design is an important and difficult
problem. We will attempt to adopt the divide-and-conquer heuristic to
reduce problem size and solution time. The trade off between solution time

and deployment cost can be investigated.
3. Mobile Sensor Networks Design

Recently the issue about mobile sensors is attended intensively. We
will assume the sensor network mixed with a lot of mobile sensors and
some stationary sensors. How to optimize the coverage and quality of
service of the sensor network under the moving energy constraint is one of

key challenges.

We will strictly formulate the above three future issues as mathematical
optimization models. The Lagrangean relaxation method and some

meta-heuristics will be used to address these optimization problems.
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APPENDIX A: SET-COVER AND
SET K-COVER PROBLEMS

Set-Cover Problem

The set covering problem is a classical problem in computer science and
complexity theory. Given several sets, its may have some elements in common.
You must select a minimum number of these sets so that the sets you have

picked contain all the elements that are contained in any of the sets in the input.

More formally, problem Set-Cover takes a collection of m sets S;, S, ..., S
and an integer parameter k as input, asks whether there are is a sub-collection of

k sets Sl.l , Sl.2 Y s Sl.k , such that

That is, the union of the sub-collection of k sets includes every element in the

union of the original m sets [GT02].

In the set covering optimization problem, the input is a collection of m sets,
and the task is to find a set covering which uses the fewest sets. The decision
version of set covering is NP-complete, and the optimization version of set

cover is NP-hard.

Set K-Cover Problem

The Set K-Cover problem is a known problem in combinatorial algorithms
and is defined as follow [SPO1]:

INSTANCE: Collection C of subsets of a set A, positive integer K.
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QUESTION: Does C contain K disjoint covers for A, i.e. covers Cy, Cy, ..., Ck,
where C; — C such that every element of A belongs to at least one

member of each of C;?

The Set K-Cover problem has been proved that is NP-complete problem

using polynomial time transformation from the minimum cover problem [GJ79].
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APPENDIX B: THEOREM A.1

From Figure 4.3, Figure 4.14, Figure 4.18, Figure 4.26, and Figure 4.27, we
can observe that at the beginning and ending of all curves will trend to up, and
the middle of these curves is lower than that. That means the required sensor
density is high when we deploy sensors with a smaller or larger radius. In this
Appendix, we will discus the relationship between the required number of
deployed sensors and sensor radius from a theoretic viewpoint. Table A.1 lists

the notations used in this Appendix.

Table A.1: Lists of Notations used in Appendix B.

Notations Descriptions
Ny The number of grid points in a sensor field.
o The number of grid points which can be covered by

sensor with detection radius 7;.

NC The number of sensors with detection radius 7; that
required to uniquely identify every grid points.

X, The random variable of outcome for sensor &, X;=1,
when sensor k& can cover a given grid point, otherwise,

X=0, ke NY.

N ) The power code of outcome of the all sensors.

Y The random variable of outcome for grid point
identification, which is 0 if no grid point is identified,
and it is j if j-th grid point is identified.

First, we review backgrounds of the information theory that will be used in

Theorem A.1 [CTO06]. The mutual information /(X; Y) is the reduction in the
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uncertainty of X due to the knowledge of Y. It can be expressed as follows.
I'(X;Y)=H(X) - HX]Y).

The mutual information of a random variable with itself is the entropy of
the random variable. This is the reason that entropy is sometimes referred to as

self-information. Hence, we have the following lemma.

Lemma A.1: (Mutual information and entropy) [CT06]

1(X;Y)=H(X) — HX]Y)

I(X;Y)=H(Y)— H(Y|X)

I(X;Y)=H(X) +HY)-HXY)

I(X;Y)=1(Y;X)

1 (X; X) = H(X). O

The relationship between H(X), H(Y), H(X, Y), H(X|Y), H(Y|X), and I (X; Y)
is expressed in a Venn diagram, as shown in . Notice that the mutual
information / (X; Y) corresponds to the intersection of the information in X with

the information in Y.

H(X,Y)

H(X) H(Y)

Figure A.1: Relationship between entropy
and mutual information.
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We now show that the entropy of a collection of random variables is the

sum of the conditional entropies.

Lemma A.2: (Chain rule for entropy) [CT06]

Let X}, X, ..., X, be drawn according to p(x;, x2, ..., X,). Then

H(X,, Xy s X)) =D HX, | X, Xy ooy X)), O
i=l

Lemma A.3: (Conditioning reduces entropy) (Information can’t hurt) [CT06]

H(X]Y) < H(X)

with equality if and only if X and Y are independent. O

Now, the relationship between the required number of deployed sensors and

sensor radius can be expressed as Theorem A.1.

Theorem A.1:

For a sensor field with Ny grid points, let C; < C;< ...< (i< ...< Cy. If the

boundary effect of sensor field is ignored, then

(1) & < N >log(N, +1)
N, +1 N 4

, where h(x)=-xlog,x—(1-x)log,(1—-x) is the binary entropy function.

N, +1 N, +1

(2) Let C <(C<.<(C; < and <C

< < Gy, then
NS >N%>. >N% and N <N < <N,

Proof:

Part (1):

It is a special case of [KCL9S8, Theorem 1.2]. We denote by X; (k=1, 2, ...,
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N© ) the result of the (identification) test performed by the i-th sensor. Each X;
is a binary random variable, X;= {0, 1}. Denote by Y the random variable which
is equal to 0 when no grid point is to be identified and j (j = 1, 2, ..., Ny) if the
Jj-th grid point is to be identified, as Figure A.2 shown. We assume that all N,+1
cases are equiprobable. Thus the entropy H(Y)= log,(N,+1). Figure A.3
illustrates an example of ideal identifying code for 7 grid points and 3

codewords.

Outcomes of ¥
0 1 2 Ny
X; 0 ) . e G IS
X 0 0 1 G ‘I’s
Xi 0 G I
Xeg o .. . G

Figure A.2: Random variables Xj (sensor k) and Y
(grid point identification).

Power vector of grid point:2

\
0
= X110 1 (01 0 1 0 1
= X%lo o011 0 0 1 1
SUX o o Jof o 1 1,1 1]
/

Coverage of X3

Figure A.3: An example of ideal identifying code.

Now, denote the mutual information by 1 (Xl, D G XNCf; Y ), which

means the reduction in uncertainty of X, X,, ..., X NG due to the knowledge
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of Y. According to Lemma A.1, we denote mutual information as Equation (A.1)

and illustrate in Figure A.4.

1(X Xy o X o3 Y

- H(Y) - H(Y/XI, X, o XNCJ.). (A.1)

H(X,, X0 X 3Y)

H(X,, Xy X )

N

H(Y)

HY /X, X,,00 X )
H(X,. Xy X o /Y)

I(X, Xy X 57)

Figure A.4: Mutual information and entropy in Equation (1).

If a lot of grid points cannot be uniquely identified, then

H (Y /X, X,y s XNC,.)?&O, as Figure A.5 shown. In this dissertation, the grid

point in sensor field is uniquely determined by the given power

code, (XI,XZ, vy X C,), so that H(Y/XI,XZ, vy X C_)is 0 and shows in
N/ N/
Figure A.6. We rewrite Equation (A.1) as the follows:
I(X,, X,, .., X o Y)
=HY)-HY/X,, X,, .., XNC')

=H(Y) |
=log,(N,+1). (A.2)
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ol — Outcomes Of Y —’I
0 1 2 Ny | Nost oo. Ny
X; 0
X 0 0 1
X; :
0
Xch 0
A

H(Y /X, Xy X ) %0

Figure A.5: A lot of grid points cannot be uniquely identified.

H(X\, Xy0o0 X )

S HY X, X0 X )=0

J

H(Y)=1(X, Xy, X o 3Y)

Figure A.6: Mutual Information and entropy for Equation (2).

Afterwards, due to Lemma A.1 again, we get Equation (A.3).

I(X, Xy X 3 Y)
= H(X\, Xy X o )= H(X, X, X |Y) (A.3)

Because entropy is larger than or equal to zero, we can obtain Inequality
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(A.4) and illustrate in Figure A.7.

H(X,, X000 X ()
=1(X,, Xy X s+ H(X, X, X ]Y)

> 1(X,, Xy X o3Y)

>log, (N, +1) (A4)

H(X, Xy X)) 2 log, (N, +1)

\

I(Xsz’""XNC, ;Y)
=log,(N,+1)

Figure A.7: Mutual information and entropy of Inequality (4).

Then based on chain rule for entropy (Lemma A.2), we can obtain Equation

(A.5).
H(X\, X000 X )

=H(X)+H(X, |X1)+-.-+H(XNC_, |XNC]__1,...,X1)

NC

ZZH(Xk | X X7) (A.5)

k=1

190



From the Lemma A.3, H(X]Y) < H(X), we obtain Inequality (A.6) and

illustrates in Figure A.8.

H(X\. X,,n X o))

=NZJH(X;{ IXk,p-~-,X1)SNZJH(Xk) (A.6)

k=1

€j

H(X\, Xy, X )< D H(X,)

1

=

>
I

H(X)) H(X,)

H(XNC.f )

Figure A.8: The conditioning reduces entropy of Inequality (6).

C,
However, the probability Pr{X L= 1} =— T which is determined by the

A

ratio of the coverage to the amount of grid points for sensor k. Hence,

C,
H(X,)= h[N : 1]. Therefore, Inequality (6) can be rewritten as Inequality

A

(A.7).

H(X, X, X )

N9 C. c
sZH(Xk):h[N llj.Nf (A7)

A
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Hence, due to Inequalities (A.4) and (A.7), we can obtain that the number of

sensors N for identifying each grid point completely has to satisfy the

following inequality.

B =S| N s tog, (v, +1)
N, +1 o

Part (2):

C,
When the entropy h(N ! J increases, the minimum number of sensor
A

J

N,+1

is between 0 and 1. As

for discrimination will decrease. The value of

. ‘ : ; 1
well as the maximum entropy approximates to 1, while N : 1:—, i.e. the
+
A

sensor coverage ratio is about 0.5 of number of grid points. In this case, the

number of sensor for discrimination can be minimized. Contrarily, while

N / " approaches to 0 or 1, the entropy will decrease, even approach to 0. It
+
A

means that the sensor coverage ratio is either smaller or larger, the entropy will

decrease and the number of sensor required for discrimination will increase.

O

Example A.1: In a sensor field with 150 grid points, sensors with 1, 2, 3,4, 5, 6,
and 7 detection radii are adopted to construct a completely
discriminated sensor field. The minimum required sensors for
each radius are listed in . The trend of the minimum required

sensors for each radius is drawn as .
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Table A.2: The minimum required sensors for various radii.

) Entropy of Min. number of
coverage | Coverage ratio | 4 oo | log,(151) sensors
r C. C./(N,+1 . H %,
J J ( A+ ) H(C%A_H) (/A 1) min NCJ
1 5 0.033113 0.209769 34.50655 35
2 13 0.086093 0.423292 17.10026 18
3 29 0.192053 0.705746 10.25639 11
4 49 0.324503 0.909212 7.961185
5 81 0.536424 0.996169 7.266242
6 113 0.748344 | 0.813892 8.893569 9
7 149 0.986755 0.101609 71.23783 72
90
£ 80
2 704 .
o 60 /
©® 50
3 40 /
® 3pl" /
E 20 . /
E 101 T ._—_./
.!EE 0 | T T T T T T
1 2 3 5 6 7
Sensor radius

Figure A.9: The minimum required sensors vs. sensor radius in
a 10x15 sensor field.
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APPENDIX C:

Deploying minimum sensors to support target positioning service, why the
minimum number of deploying sensors will increase while the detection radius

is larger or smaller? We conduct a set of experiments to investigate this problem.

In a rectangular sensor field, the width is divided into 15 grid points and the
height increases from one grid point to 15 grid points. The uniform quality of
positioning service is required, and the set of candidate detection radius depends
on the size of the sensor field. In Table A.3, by our algorithm (SA_2), we obtain
the minimum density of sensors required to deploy a sensor network for
supporting target positioning in the various detection radius and height of sensor
field. The blank in Table A.3 means the radius does not be used in the sensor

field with the height. From Table A.3, we can obtain the following remarks.

(1) Observing any detection radius (each column):

While the height of sensor field increases, the boundary effect for sensors
moderates. As well as the trend of the sensor density requirements is descending,
then moderate, and even moving up and down. In addition, the height of sensor
field increases, we find the density of the sensor density is descending and even
lower than the density of sensors with smaller radius. For example, when the
heights are 1 to 4, the densities of sensors with radius 3 are higher than sensors
with radius 2, but when the height (H) is more than 4, the densities of sensors

with radius 3 are lower than sensors with radius 2.

(2) Observing the detection radius 1 to 5 (columns 1 to 5):

Although, the height of sensor field increases, the boundary effect for

sensors moderates. Observing these relatively small radii, the required densities
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decrease while detection radii increase. For example, the required minimum
sensor density is about 38.6% for radius 1, 23% for radius 2, 18.2% for radius 3,
and 13.3% for radius 5. We deduct that the required sensor density for deploying
a sensor network to support target positioning will decrease when sensor’s

radius increase under the boundary effect being insignificant.

Table A.3: The minimum sensor density (%) for various sizes of sensor field.
(The width of sensor field is 15.)

Detection radius
5 6 7 8 9 10

an
—
)
w
~

—_

53.33 | 60.00 | 53.33 | 60.00 | 73.33 | 86.67 | 93.33

46.67 | 40.00 | 46.67 | 40.00 | 50.00 | 60.00 | 70.00

40.00 | 28.89 | 44.44 | 35.56 | 44.44 | 53.33 | 62.22

41.67 | 26.67 | 30.00 | 33.33 | 50.00 | 60.00 | 70.00

40.00 | 25.33 | 24.00 | 24.00.| 40.00 | 48.00 | 56.00

40.00 | 25.56 | 21.11 | 20.00/| 30.00 | 36.67 | 43.33

40.00 | 25.71 | 19.05 | 20.00 |.20.00 | 20.00 | 23.81 | 41.90

39.17 | 24.17 | 19.17 | '18.33 | 18.33 | 19.17 ]| 19.17 | 35.00

O | 0 [ QI || | | WD

39.26 | 23.70 | 19.26 | 17.78|| 16.30 |/17.04 | 18.52 | 20.74

—_
(=]

39.33 | 23.33 | 20.00 | 16.00 | 15.33-| 16.67 | 17.33 | 19.33
39.39 | 23.64 | 20.00 | 16.36 | 15:15 | 15.15 | 16.36 | 17.58 | 19.39
3944 | 2333 | 18.89 | 17.22 | 14.44 | 14.44 | 15.00 | 17.22 | 17.78
39.49 | 23.08 | 18.97 | 16.92 | 13.33 | 13.85 | 14.36 | 15.90 | 16.41
39.05 | 23.33 | 19.05 | 16.67 | 13.81 | 13.33 | 13.81 | 14.76 | 15.24
38.67 | 23.11 | 18.22 | 16.44 | 14.22 | 12.89 | 12.89 | 14.67 | 15.11 | 17.33

—
—_—

—_
[\

—_
w

—_
n

—_—
(V)]

(3) Observing the detection radius 6 to 10 (columns 6 to 10):

We can find the following two points which support the boundary effect is

more significant for the sensors with larger detection radius.

1. The maximum candidate radius is increasing when the height of

sensor field increases. For example, the sensors with radius 8 can’t
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1l.

be used when the height is less than 7, the sensors with radius 9

can’t be used when the height is less than 11.

In a sensor field, the detection radius is more close to the maximum
candidate detection radius, the boundary effect is more significant,

and the required deploying density is more.
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APPENDIX D: LIST OF
NOTATIONS

Notation Description

A Index set of the service points in the sensor field.

B Index set of the sensor’s candidate locations, BcA.

C Index set of sensor cost.

D The diameter of a sensor field.

E(x) The energy function of solution structure x. (for SA
algorithm)

AE The energy difference between new and current solution
structures. (for SA algorithm)
Budget limitation.

G, The number of covering grids of a sensor with detection
radius 7.

K Index of covers required for the sensor network.

K A large number.

N The maximum number of sensors, N=G/ci .

R Set of candidate detection radiuses for sensor.

T, The initial temperature. (for SA algorithm)

Ty The frozen temperature. (for SA algorithm)

U, The upper bound on number of covers in a rectangular
sensor field where deploys sensors with detection radius r.

w Set of the discrimination weight.

a; Indicator function which is 1 if service point i can be
covered by sensor j and 0 otherwise.

Ck The cost of sensor located at position k; ke B, c,eC.

Cmin The minimum cost of sensors.

d, Euclidean distance between location i and j; i, j€ A.

r(T) The number of iterations on temperature 7. (for SA
algorithm)

Tk

Detection radius of sensor located at k&, keB.
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Notation Description

to The initial temperature. (for SA algorithm)

tr The frozen temperature. (for SA algorithm)

Wi The discrimination weight for the highest-level QoS in a
sensor field.

W The discrimination weight for the i-t4 level QoS in a sensor
field.

Wi Discrimination weight, i,jeA, w;je W.

Xjk 1 if sensor j is allocated on cover k of the sensor network.

Vi 1, if a sensor is allocated at location k and 0 otherwise, k€B.

a The cooling ratio, a <1. (for SA algorithm)

B The cooling speed control parameter, £ >1. (for SA
algorithm)

A A scalar for the LR-based algorithm, 0< A< 2.
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