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論文摘要 

支援定位服務之感測器配置演算法 

邱佩玲 

中華民國九十六年七月 

指導教授：林永松  博士 

國立台灣大學資訊管理研究所 

近年來，無論在實務或是學術領域，無線感測器網路(Wireless Sensor 

Networks, WSNs)的應用與技術發展都是極受關注的議題。目前已有許多重

要的 WSNs 應用被熱切探討，如：環境監測、標的物定位、物體追蹤及健

康照護等。預期未來在軍事與民用上，WSNs 都會有更廣泛的應用出現。 

感測器網路的設計有兩個典型的議題：一是如何建構一個能滿足應用

所需之服務品質的感測器網路。另一則是如何延長感測網路生命期。從應

用層的觀點來看，改善服務品質需求，必須考慮感測器網路對於應用的支

援，如環境監測、標的物定位或追蹤等的能力。再者，感測器電力有限，

通常很難再充電。因此，如何延長 WSNs 的生命期也是配置感測器網路所

關注的議題。 

此論文朝向提供具環境監測與標的物定位服務的應用方向，來探討感

測器配置(sensor deployment)議題，由不同觀點進行一系列的深入研究。茲

將每一研究主題之內涵與成果簡述如下： 

 考慮在資源限制下，配置一個兼具環境監測與標的物定位功能的同

質性感測器網路。此研究的實驗結果顯示，所提演算法不但可得到

高品質的解，且具有效力(effectiveness)、擴展性(scalability)與強固

性(robustness)。接著探討在給定相同資源的情況下，藉由調整每個

感測器的偵測半徑，是否會改善感測器網路的定位服務品質。於

是，我們修改求解的演算法。實驗結果顯示，感測器位置已知之下，
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調整偵測半徑確實可以很有效的改善 WSNs 的定位服務品質。 

 第二個研究方向是以支援差異化服務品質(differentiated QoS)為焦

點。此研究處理感測區內對服務品質及服務優先權的要求並非一致

的問題。當資源充足時，以滿足各服務區對於服務品質的要求為目

標。或是依據各服務區對服務品質要求的優先權，最小化因資源不

足所導致之服務品質降級。實驗結果顯示，當資源稀少時，差異化

服務品質的配置機制，較一致化服務品質的配置機制，能獲得更好

的整體服務品質等級。而且，當感測區擺設感測器的位置有限制

時，採用可調的偵測半徑的感測器比固定半徑的感測器，能獲得更

好的服務品質等級。 

 第三個研究方向是以電能效率(energy efficiency)為焦點。配置具有 k

個相互獨立覆蓋(cover)的感測器網路，每個覆蓋輪流支援監測服

務，並共同運作以提供定位功能。實驗結果顯示，此機制可以有效

地延長感測器網路生命期。每一層覆蓋平均所需感測器密度隨著偵

測半徑與覆蓋數增加而降低，甚至可以只有複製配置策略

(duplicated placement strategy)的 9%。此外，在一層覆蓋所需的感測

器配置成本限制下，改用此電能效率的配置演算法可以使得生命期

至少延長 3 倍。 

對於上述研究，我們都先將問題描述為數學最佳化模型。提供監測服

務的感測網路配置問題，可以說是類比於典型的 set cover 或 set-k cover 問

題。這些都是 NP-Complete 的問題。而我們考慮的是兼具環境監測與標的

物定位服務的感測網路配置問題，所以是比 set cover 或 set-k cover 更為複

雜的問題。我們採用拉格蘭日鬆弛法與模擬退火等方法發展許多的演算

法，來解決這一系列最佳化問題。 

關鍵詞：感測器配置、標的物定位、完全覆蓋、完全辨識、服務品質、電

能效率、拉格蘭日鬆弛法、模擬退火法、數學規劃、網路最佳化 
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From either practical or theoretical viewpoint, wireless sensor network 

(WSN) techniques are new and important research issues. Numbers of 

interesting applications for WSNs have been investigated, e.g., surveillance, 

target positioning, tracing, and health care. Sensor networks have been 

forecasted to apply variously, both the civilian and military domains. 

There are two important issues usually are concerned on WSNs design. 

One is to construct a qualified WSN for applications to guarantee desired quality 

of service (QoS). The other challenge is to prolong the network lifetime. From 

application perspective, in order to improve the QoS supporting by WSNs, the 

ability of environment surveillance, target positioning, or target tracking have to 

be controlled carefully. Moreover, it is difficult to replace or recharge the 

battery for numerous sensors in the most scenarios. Hence, how to prolong the 

lifetime of WSNs also becomes a key challenge.  

In this dissertation, we focus on the sensor deployment problem to support 

environment surveillance and target positioning services from various 

perspectives. Subsequently, we present each topic briefly as follows: 

 We address the homogeneous sensor placement problem for environment 

surveillance and target positioning subject to the deployment budget. The 

experimental results reveal that the proposed algorithm can’t only efficiently 
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obtain a high-quality solution but also is effective, scalable, and robust. 

Afterward, to investigate whether adjusting the sensing radius for individual 

sensor will improve QoS for positioning services. The experimental results 

indicate, when locations are given, using sensors with adjustable sensing 

radius can actually get better QoS for positioning services. 

 The next topic focuses on supporting differentiated QoS for WSNs. The 

work deals with the differentiated QoS requirements in WSNs. The goal of 

the problem is either satisfied QoS requirement of all regions of interest 

(ROIs) or minimized the QoS degradation for ROIs based on its’ level of 

priority. The experimental results show when the given resource is scarce, 

the sensor deployment approach with differentiated QoS requirements can 

obtain better QoS solution than that with the uniform QoS requirement. 

Furthermore, for a sensor field with placement limitations, using sensors 

with adjustable radius can obtain higher level of QoS than adopting fixed 

radius sensors. 

 The third topic focuses on the energy efficiency issue. We deploy K 

independent sets of sensors (K covers) to monitoring a sensor field in turn 

and locating targets together. The experimental results indicate that the 

strategy is very effective for energy conservation. The average sensor 

density of one cover is effectively reduced when radius and amount of 

covers increase; even the deployment cost can be reduced to 9% of that 

using the duplicate sensor deployment approach. Furthermore, using the 

same deployment density for a single-cover sensor network, we can deploy 

an energy-efficient sensor network such that the lifetime extends up to 3 

times at least. 

All of the problems are formulated as mathematical optimization models. 

The senor placement problem for surveillance is analog to classic 

set-cover/set-K-cover problem, which is NP-complete problem. Our problems 

consider both environment surveillance and target positioning; it is therefore 

more difficult than the set-cover/set-K-cover problem. Based on Lagrangean 

relaxation method and simulated annealing method, we develop many heuristics 
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to solve these optimization problems.  

 

Keywords: Sensor deployment, target positioning, quality of positioning service, 

Energy-Efficiency, Lagrangean Relaxation, Simulated Annealing, Mathematical 

Modeling, Network Optimization. 
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CHAPTER 1 INTRODUCTION  

1.1 Overview 

The evolutions in sensor technology and wireless communication have led 

to the development of wireless sensor networks (WSNs) [QIC01]. WSNs will 

affect phenomena sensing and monitoring in upcoming years. Many applications 

of WSNs, such as surveillance [DC03] [DCI02], target positioning [CIQ02] 

[CL04] [LC05] [RST04] [RUP03] [ZC03a] [ZC03b], environment monitoring, 

health care, and animal tracking, have been studied [CHS04]. 

A WSN comprises of a large number of tiny sensor nodes, which are 

low-cost and low power. Numerous sensors are ad hoc deployed in the 

interested area. These sensors collect physical information, process it and 

forward the local information to the sink nodes. Hence, the back-ends can obtain 

global views according to the information provided by the sensors [ASC02a] 

[ASC02b]. The system responds for making appropriate decisions based on the 

received information. Obviously, the quality of the information dominates the 

final decision for the WSNs. Correct information can be obtained by 

constructing a WSN with a high quality of service (QoS) through careful 

planning in the sensor deployment phase. For instance, numbers of sensors are 

deployed carefully to fully cover the whole sensor field such that any target, 

which is at any position in the sensor field, can be detected by at least one sensor. 
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Then the sensor field is completely covered by the sensor network. Therefore, 

the QoS of a WSN is one of the most important issues in sensor deployment 

problem. 

The quality of service of a WSN is influenced by the power efficiency, 

deployment cost, deployment methods, and other physical limitations. A sensor 

network can be deployed in two ways: random or controlled placement 

[MKP01]. When the environment is unknown, dangerous, or inhospitable, 

sensors cannot be deployed manually. In such environments, the placement may 

be relied on aircrafts, cannons, rocket, or missile. By this way, massive sensor 

nodes will be randomly placed on anywhere of sensor field. On the contrary, if 

the terrain of sensor field is predetermined, we can adopt the controlled 

approach that deploys sensors by carefully planning to meet a desired quality of 

service requirement. For instance, we can construct a WSN by carefully 

planning in parking lots, schools, shopping malls, art galleries, or everywhere 

we interested, to perform surveillance, target positioning, or target tracking 

[LP06]. Obviously, to achieve the same quality of service requirement, the 

random placement approach wastes more resources than the controlled 

placement approach.  

Recently, the emerging the mobile computing applications and trend of 

user-centric services enable the requirements of location-based services, 

personalized services, and user-aware services increase rapidly, for instance, 

mobile learning and emergency rescue services [CCK06] [DCT05] [KKL06] 

[LC06] [LXP05]. No doubt, localization capability is therefore one of the most 

important technique for supporting these applications. In various localization 

techniques, sensor-network-based positioning system can provide the indoor 

localization services a simple and feasible solution. Hence, besides the 

surveillance, this dissertation also focuses on target positioning services. 

One of important applications for sensor network is target location, i.e. 

target positioning, which refers to decide the position of target by cooperation of 

sensors in a sensor network [CIQ01] [CIQ02]. Hence, the sensors must be 

deployed carefully. Besides, the sensor network coverage has to cover the whole 
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sensor field, if the coverage areas of multiple sensors overlap, they may all 

report a target in their respective zones. Based on the reports, location of the 

target can be determined. If target in a zone (i.e. region) can be detected by a 

unique set of sensors, the zone is denoted by distinguishable zone. The diameter 

of a distinguishable zone dominates the accuracy of the target location. Some 

papers use service points as reference points to replace zone/region for 

positioning service. When sensor network determine a target being at a certain 

service point, it means the target might occur on the region including the service 

point.  

Sensor localization is another import research issue in WSNs. The sensor 

localization process refers to find the positions of all sensors in a sensor field 

based on partial information, namely the exact locations of only a few sensors 

(called anchor sensors) and the mutual distances between pairs of sensors that 

are within radio distance [CKN07] [WX07]. Sensor localization problem differs 

from target positioning problem; the latter is concerned in this dissertation. 

The degree of coverage is one of the fundamental metrics that used to 

quantify the QoS for a WSN which supports surveillance services [SS05] 

[SSS03] [WXZ03]. The sensor deployment problem where subject to coverage, 

has been transformed to the classical set-cover/set-k-cover problem (Appendix 

A) [GJ79] [GT02] [SP01], which is NP-complete, has been studied intensely for 

last decades [MP03]. Both surveillance and target positioning ability are adopted 

as the QoS parameters of the sensor placement problem in this dissertation. 

Hence, the proposed problems are more difficult then the classical set-cover/set 

k-cover problem. 

On the other hand, due to cost and environment concerns, the battery of 

sensor is not always rechargeable － particularly when the sensor network 

operates in inhospitable or hostile fields. Once the sensors energy exhaust, the 

sensors fail to perform their jobs, it will result in degradation of quality of 

service on the sensor network. Therefore, how to design an energy-efficient 

sensor network is really a major challenge. 
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While the sensor deployment process subjects to some resource constraints 

(such as, the deployment budget as well as coverage requirement) and to achieve 

some specific goals (for instance, minimizing the deployment cost, maximizing 

the quality of service, or maximizing the lifetime) the sensor deployment can be 

dealt as an optimization problem. In this dissertation, we formulate these sensor 

deployment problems as mathematical optimization models. As well as many 

effective algorithms based on Lagrangean relaxation and simulated annealing 

meta-heuristics are proposed.  

The dissertation significantly contributes to the target positioning and the 

wireless sensor deployment research domain. Fist, we introduced the positioning 

ability as the QoS parameter in WSNs from application perspective, as well as 

proposed the error distance to measure the positioning ability. Next, a generic 

framework for sensor deployment problem has been proposed to support the 

differentiated quality of positioning service in WSNs. Third, an energy-efficient 

sensor deployment scheme for target positioning has been proposed. Fourth, the 

mathematical optimization models have been proposed to define each problem 

strictly. Last, these combinatorial optimization problems are hard to solve. We 

have successfully developed many Lagrangean-relaxation-based and 

simulated-annealing-based algorithms to cope with these hard problems and 

presented detailed performance evaluations. Based on the research results, more 

relative problems can be solved by the proposed methods with minor 

modifications. 
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1.2 Research Scope 

Recently, a lot of papers focused on the sensor deployment problems taking 

account of various constraints and goals, and several solutions are proposed. To 

clarify the research field, we attempt to categorize the researches according to 

different dimensions.    

   

 

 

Figure 1.1: The classification of sensor deployment research. 
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Sensor deployment 

Pre-deployment Post-deployment 

Pre-deployment, 
Random 

Pre-deployment,
Controlled 

Post-deployment,
Random 

Post-deployment,
Controlled 

Pre-deployment, 
Random, 

Homogeneous 

Pre-deployment, 
Random, 

Heterogeneous 

Pre-deployment, 
Controlled, 

Homogeneous 

Pre-deployment,
Controlled, 

Heterogeneous 

Post-deployment,
Random, 

Homogeneous 

Post-deployment, 
Random, 

Heterogeneous 

Post-deployment, 
Controlled, 

Homogeneous 

Post-deployment,
Controlled, 

Heterogeneous 

: Research scope 



 

 6

categorized due to the placement method, which includes random and controlled 

deployments. While the environment is unknown, the random deployment 

approach is adopted. Conversely, if the terrain of sensor field is predetermined, 

WSNs can be constructed by a deterministic way. Hence, the controlled 

deployment approach is fit for a candidate solution.   

In reference [ASC02a], the authors define three phases for topology 

maintenances and changes in WSNs, including pre-deployment/deployment, 

post-deployment, and redeployment. We consider the timing for topology 

constructing and maintenance as the second dimension, as well as define two 

phases: pre-deployment and post-deployment phases. The algorithms might 

execute before sensors are deployed by random or controlled manner. Hence the 

sensor network topology is determined at the deploying time. We classify it the 

pre-deployment phase algorithms. For example, according given parameters, 

e.g., the topography of sensing field, sensing/communication abilities of sensor 

nodes, and energy constraints, the random deployment algorithm may compute 

the resource requirements and dropping locations to satisfy lifetime, coverage, 

and connectivity constraints before scattering sensors [AS03] [GCB06]. After 

sensors are deployed, topology might be changed by nature or artificial ways. 

As well as some sensor nodes are added or redeployed to sensor field. We call it 

is post-deployment. For instance, according the given positions of sensors, the 

algorithms determine the cover or role for each sensor to optimize the network 

lifetime [VGD06]. Moreover, after scattering mobile sensors, several papers 

investigate the moving directions, distance, and final positions of each mobile 

sensor to improve the coverage of sensor networks [ZC03b]. 

The last dimension in the research framework considers whether all sensors 

with the same abilities/duties. A number of papers take account of the 

homogeneous sensors in the deployment problem. All of the sensors have the 

same specification. Contrarily, numbers of papers consider the heterogeneous 

sensors being deployed. For example, the two-tier sensor networks are 

investigated frequently [XWH05]. The sensors in the lower tier account for 

sensing and forwarding the information to its cluster node. In the upper tier, the 
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all cluster nodes compose a connected network, these clusters deliver the 

information coming from the sensing nodes and the other clusters such that the 

information can be sent to the base stations.  

 

Table 1.1: Scope and problem definition of this dissertation. 

Problem 1 

Given parameters 
Sensor field, set of service points, sensor cost, and detection range of 
sensor. 

Constraints Budget and complete coverage.  
Objective Complete discrimination / minimizing the maximum error distance.  
Outcomes Sensors’ location and power vectors. 
Approaches Simulated annealing method and exhaustive search. 

Problem 2 

Given parameters 
Sensor field, set of service points, number of sensors, location of each 
sensor, and set of candidate detection ranges. 

Constraints Complete coverage. 
Objective Complete discrimination / minimizing the maximum error distance. 
Outcomes Detection range for each sensor and power vectors. 
Approaches Simulated annealing method. 

Problem 3 

Given parameters 
Sensor field, set of service points, deployment cost for each location, 
and set of candidate detection ranges. 

Constraints 
Budget, complete coverage, and service priority for each region of 
interest. 

Objective 
Minimizing the weighted maximum error distance / maximizing the 
level of QoS. 

Outcomes Sensors’ location and detection range, and power vectors 
Approaches Lagrangean relaxation method and simulated annealing method 

Problem 4 

Given parameters 
Sensor field, set of service points, sensor cost, detection radius of 
sensor, and number of covers. 

Constraints 
Complete coverage constaint for each cover and complete 
discrimination constraint for the whole sensor network. 

Objective Minimizing the deployment cost. 
Outcomes Sensors’ location, members of each cover, and power vectors. 

Approaches 
Lagrangean relaxation method, simulated annealing method and 
CPLEX. 
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In this dissertation, we study several sensor deployment problems 

(summarized in Table 1.1), which belong to both single and multiple categories. 

Mathematical formulations are used to model these problems. Based on the 

proposed mathematical models, Lagrangean relaxation and simulated annealing 

methods are adopted to solve the sensor deployment problems. 

In this dissertation, we consider that the sensor field is divided into grid 

points at which sensors are carefully deployed. This approach is called as 

grid-based placement. 

A grid-based sensor field can be represented as a collection of two- or 

three-dimensional grid points [DCI02]. A set of sensors can be deployed on the 

grid points to monitor the sensor field. The grid point, which requires the 

surveillance or positioning service, is also called service point. In this 

dissertation, we consider the detection model of a sensor to be a 0/1 coverage 

model. The coverage is assumed to be full (1) if the distance between the service 

point and the sensor is less than the detection radius of the sensor. Otherwise, 

the coverage is assumed to be non-effective (0). If any service point in a sensor 

field can be detected by at least one sensor, we call the field is completely 

covered, as shown in Figure 1.2. In this context, a target can be detected at any 

place in the field.  

Figure 1.2: A complete covered and discriminated sensor field. 
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A power vector is defined for each service point to indicate whether 

sensors can cover a service point in a field. As shown in Figure 1.2 the power 

vector of service point 8 is (0, 0, 1, 1, 0, 0) corresponding to sensor 4, 6, 7, 9, 10, 

and 12. In a completely covered sensor field, when each service point has a 

unique power vector, we note the sensor field is completely discriminated, as 

shown in Figure 1.2. In this case, as soon as a target occurs in a grid of the 

sensor field, it can be located by the back-end according to the power vector of 

the service point. 

In Chapter 3, two sensor-placement problems for positioning targets are 

discussed. The first problem, given the topography of sensor field, deployment 

budget, and uniform detection radius of sensors, we determine the position of 

each sensor to obtain a completely covered/discriminated sensor field when 

deployment budget is adequate, and to optimize the positioning accuracy when 

deployment budget is scarce. We classify the research is a pre-deployment 

algorithm using controlled placement approach to obtain a homogeneous sensor 

network.   

The second problem in Chapter 3, given the location of each sensor by 

randomly scattering, we design a algorithm to adjust the detection radius of 

individual sensor such that the quality of positioning service is optimized. We 

classify the research is a pre-deployment problem using random deployment 

approach to obtain a heterogeneous sensor network. 

In Chapter 4, continuing from Chapter 3, we deal with the sensor 

deployment problem for supporting differentiated QoS of target positioning. The 

QoS requirement and level of priority for each region of interest (ROI) in sensor 

field is given. The locations and detection radius of sensors are decision 

variables [WY04]. When the given resource is adequate, the objective of the 

problem is to satisfy the QoS requirements of each ROI. When the given 

resource is scarce, the objective is to minimize the QoS degradation based on 

the level of service priority for each ROI. We classify the research is a 

pre-deployment algorithm using controlled placement approach to obtain a 

heterogeneous sensor network. Finally, in Chapter 5, we address the 
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energy-efficient sensor network deployment problem. We consider deploying K 

independent sets of sensors to monitoring the sensor field in turn and locating 

the target together. With this strategy, the duty cycle of each sensor is only 1/K 

and the lifetime of the sensor network will be extended up to K times. The 

objective of the problem is to minimize the deployment cost, where the position 

and cover of each sensor are decision variables. We classify the research is a 

pre-deployment algorithm using controlled placement approach to obtain a 

homogeneous sensor network. 
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CHAPTER 2 RESEARCH 
BACKGROUND  

2.1 Related Work 

In this section, we present the background and related work about sensor 

placement problem, including: coverage, QoS in WSNs, target location, and 

sensor deployment.  

 

2.1.1 Coverage 

The coverage model and location of all sensors determine the whole 

network coverage in sensor field. As pointed out in [CW06] [MKP01], sensor 

coverage concept is a measure of the quality of service (QoS) of the sensing 

function and is subject to a wide range of interpretations due to a large variety of 

sensors and applications. On the other hand, network coverage can be 

considered as a collective measure of the quality of service provided by sensors 

at different geographical locations. 

2.1.1.1 Coverage Models 

The most commonly used sensor coverage model is a sensing disk model. 

All points within a disk centered at sensor are considered to be covered by the 
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sensor. In the literature of WSNs, however, many papers assume a fixed sensing 

range and an isotropic detection capability of sensor, i.e., a disk coverage model 

[Wan06]. The detection ability within coverage of a sensor can be classified as 

the 0/1 coverage model (binary model), the probabilistic coverage model, and 

the information coverage model.  

 

A. Binary Model (0/1 Model) 

In many cases, the coverage model is simplified as 0/1 model [CIQC02] 

[MP03]. The coverage is assumed to be full (1) if the distance between the 

service point and the sensor is less than the detection radius of the sensor, as 

Figure 2.1 shown. Otherwise, the coverage is assumed to be non-effective (0). 

For instance, a sensor with camera captures photos around its nearby 

environment. If an object can be recognized from images, it means the object 

being covered by the sensor. The resolution threshold determines the detection 

radius of sensor.  

 

Figure 2.1: Binary (0/1) detection model. 
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B. Probabilistic Models 

(1) Probabilistic Model 1 

Several papers [DC03] [NKJ05] adopt probabilistic models, which assume 

the probability of sensing is function of the distance between sensors and events. 

Dhillon and Chakrabarty assume that the probability of detection of a target by a 

sensor varies exponentially with the distance between the target and the sensor 

[DC02] [DC03]. The model is shown in Figure 2.2. A target at distance d from a 

sensor is detected by the sensor with probability  

p(d) = e-αd.                             (2.1) 

 

 

Figure 2.2: Probabilistic detection model. 

 

(2) Probabilistic Model 2 

Assume sensor si has detection radius r. For any point P, the Euclidean 

distance between si and P is denoted as d(si, P). Zou and Chakrabarty [ZC03a] 

[ZC03b] present the probability-based sensor detection model as Figure 2.3. The 

coverage of sensor si, c(si), is represented as follows: 

Sensor

P(d) = e-αd

d
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, where re, re < r, is a measure of the uncertainty in sensor detection.  

( , ) ( )i ea d s P r r= − − . Parameters λ and β are used to measure detection 

probability when a target is at distance greater than (r − re) but within a distance 

(r + re) from the sensor. The probabilistic sensor detection model is shown in 

Figure 2.3. Different values of parameters λ and β yield different translations 

reflected by different detection probabilities, which can be viewed as the 

characteristics of various types of physical sensors. This model reflects the 

behavior of range sensing devices such as infrared and ultrasound sensors.  

 

 

Figure 2.3: Probabilistic detection model. 

 

(3) Probabilistic Model 3 

To capture the real world sensing characteristics of sensor nodes, Ahmed et 
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al. [AKJ05] assume that the signal propagation from a target to a sensor node 

follows a probabilistic model. This assumption is only valid for certain kind of 

sensors e.g. radio, acoustic, seismic etc.  

This model is based on the path loss log normal shadowing model, it can be 

extended to incorporate different signal decay models e.g. acoustic signal model 

for acoustic sensors. The probability of detection of a target by a sensor 

decreases exponentially with increase in distance between the target and the 

sensor. Using the log-normal shadowing model, the path loss PL (in dB) at a 

distance d is given as follows [Rap96]: 

0
0

( ) ( ) 10 log dPL d PL d n X
d σ

⎛ ⎞
= + ⋅ ⋅ +⎜ ⎟

⎝ ⎠
              (2.3) 

, where, 

d0 = Reference distance, 

n = Path loss component, indicating the rate at which the path loss 

increases with distance, 

Xσ = Zero-mean Gaussian distributed random variable (in dB) with 

σ-variance (shadowing, also in dB), 

0( )PL d  = Mean path loss at reference distance d0. 

 

Equation (2.3) captures various environmental factors resulting in different 

received signal values at different locations although the distance between the 

target and sensor is the same. Parameters n and Xσ can be measured 

experimentally. Similarly, 0( )PL d  can be measured experimentally for given 

event and sensor characteristics or can be calculated using free space path loss 

model.  

Each sensor has a receive threshold value γ that describes the minimum 

signal strength that can be correctly decoded at the sensor. The probability that 

the received signal level at a sensor will be above this receive threshold, γ, is 

given by Equation (2.6), requiring Q-function to compute probability involving 
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the Gaussian process. The Q-function is defined as Equation (2.4). 
21( ) exp( )

22 z

xQ z dx
π

∞
= −∫                      (2.4) 

, where  

( ) 1 ( )Q z Q z= − −                               (2.5) 

Pr( )Pr[Pr( ) ] [ ]dd Q γγ
σ

−
> = .                     (2.6) 

 

For a given transmit power and receive threshold value, we can calculate 

the probability of receiving a signal above the receive threshold value, γ, at a 

given distance using Equations (2.6) and (2.4). Figure 2.4 shows the decrease in 

detection probability example for a sensor [AKJ05]. 

 

Figure 2.4: Change in detection probability with 
distance. 

 

 

(4) Probabilistic Model 4 
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model (Equation (2.7)), which has been widely used in several papers, and is 

reasonable for radio, acoustic and seismic signals, as Figure 2.5 shown [LT04]. 

For a sensor s, the sensing signal at an arbitrary point p is given by: 

 

( , )
( , )( , )

0 otherwise

A d s p B
d s pS s p β

α⎧ ≤ <⎪= ⎨
⎪⎩

               (2.7) 

 

, where α is the energy emitted by events occurring at point p; d(s, p) is the 

Euclidean distance between sensor s and point p; parameters A and B define the 

range of a sensor’s sensing capability. The sensing signal decays according to a 

power law with exponent β. The value of the decaying exponent is assumed to 

be known (or estimated via experiments). For radio signal sensing, the exponent 

typically ranges from 2.0 to 5.0.  

 

Figure 2.5: Probabilistic sensing model. 

 

Liu and Towsley define the all-sensor field intensity of an arbitrary point p, 

Ip, to be the sum of the sensing signals of all sensors (s1, s2, ...) at p, i.e., 

1 1
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I S s p
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We say that a point p is covered if the all-sensor field intensity at p is 

greater than or equal to some threshold, θ, i.e., Ip ≥ θ. The set of points that are 

covered according to the above definition is called the covered region. Similarly, 

the complement of the covered region is called the vacant region. 

 

 

C. Information Coverage Model 

Recently, Wang et al. [Wan06] calls the disk coverage model as physical 

model, as well as propose a concept of information coverage based on signal 

estimation theory [WWS05]. Suppose that an event with parameter θ occurs on 

a space point with the Euclidean distance d to a sensor sk and θ. For example, θ 

can be the seismic/acoustic amplitude of a tank. We further assume that the 

parameter θ decays with distance, and at distance d it is θ / dα, where α > 0 is 

the decay exponent. The measurement of the parameter, xk, at a sensor may also 

be corrupted by an additive noise, nk. Thus, 

 

,  1, 2,..., .k k
k

x n k K
dα

θ
= + =                     (2.9) 

 

A parameter estimator, e.g., a best linear unbiased estimator, can be used to 

estimate θ based on the measurement xk, k = 1, 2, …, K. Let θ  and θ θ θ= −  

denote the estimate and the estimation error, respectively. If an estimation error 

is small, not only the event/target can be claimed to be detected but also the 

event/target parameter can be obtained within a certain confidence level. Wang 

et al. define information exposure as the probability that the absolute value of 

the estimation is less than or equal to a predefined constant A, i.e. { }Pr K Aθ ≤ , 

to measure how well a point is monitored. When it is equal to or larger than a 

predefined threshold  (0 1)ε ε≤ ≤ , i.e. { }Pr K Aθ ε≤ ≥ , this point is said to be 
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information covered (or (K, ε)-covered) by these K sensors. The information 

coverage model can be reduced to a sensing disk model if only (1, ε) coverage is 

considered for an isotropic sensor. When higher order information coverage is 

considered, e.g., (K = 2, ε) coverage, the area covered by these K sensors is no 

longer a simple union of these K sensors’ sensing disks but larger than that. 

Figure 2.6 illustrates the area that can be (3, ε)/(4, ε)-covered with that 

physically covered when placing sensors at the vertices of a regular 

triangle/square. It is seen that higher order information coverage increases the 

area can be covered [Wan 06]. 

 

 

Figure 2.6: Comparison physical and information 
coverage. 

 

 

2.1.1.2 Coverage Problems 

This section, we survey the main issues of coverage in sensor networks, 
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including: area coverage, point/target coverage, barrier coverage, 

energy-efficient area coverage, energy-efficient point/target coverage, 

set-k-cover problem, and k-coverage problem. 

Cardei et al. defines three types of coverage problems in sensor networks 

[CW04] [CWLP05]: (1) area coverage, (2) point/target coverage, and (3) 

barrier coverage. As Figure 2.7 shown, area coverage considers the ratio of 

coverage in whole sensor field [CW06]. Hence complete coverage becomes one 

of metric of design. Point/target coverage concerns whether the given points are 

covered. The barrier coverage considers whether existing one path through 

sensor field such that targets should/shouldn’t be detected. 

Cardei and Wu [CW06] survey the various energy-efficient coverage 

papers. They classify the literatures as two types: energy-efficient area coverage 

and energy-efficient point coverage. 

 

Figure 2.7: (a) Area coverage and (b) Point coverage. 

 

(1) Energy-efficient Area Coverage 

Consider a large number of sensors are deployed randomly for area 

monitoring. The goal of the issue is to achieve an energy-efficient design that 
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maintains area coverage. As the large number of sensors is deployed to perform 

monitoring tasks, several papers [CMC02] [SP01] divide these sensor nodes into 

disjoint sets, such that every set can individually perform the area monitoring 

tasks. These sets are then activated successively, and while the current sensor set 

is active, all other nodes are in a low-energy sleep mode. The goal of this 

approach is to determine a maximum number of disjoint sets, as this has a direct 

impact on conserving sensor energy resources as well as on prolonging the 

network lifetime. The problem is indicated as set-k-cover problem in sensor 

networks.  

 

(2) Energy-efficient Point/Target Coverage 

As Figure 2.7(b) shown, a set of sensors are randomly deployed, the aim of 

point coverage problem is to cover a set of points (small square nodes) in a 

sensor field. 

Cardei and Du [CD05] address the point coverage problem in which a 

limited number of points (targets) with known locations need to be monitored. A 

large number of sensors are dispersed randomly in close proximity to the targets 

and send the monitored information to a central processing node. The 

requirement is that every target must be monitored at all times by at least one 

sensor, assuming that every sensor is able to monitor all targets within its 

sensing range.  

One method for extending the sensor network lifetime through energy 

resource preservation is the division of the set of sensors into disjoint sets such 

that every set completely covers all targets. These disjoint sets are activated 

successively, such that at any moment in time only one set is active. As all 

targets are monitored by every sensor set, the goal of this approach is to 

determine a maximum number of disjoint sets, so that the time interval between 

two activations for any given sensor is longer.  

In order to considering fault tolerance, several papers investigate 
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k-coverage in sensor networks design [CW04] [VGD06] [ZDG04]. K-coverage 

means that each point or target in the sensor field is within the sensing range of 

at least k active sensors. With k-coverage, the network still works even when 

any k-1 sensors fail at the same time.  

 

2.1.2 QoS in WSNs 
 

Since WSN has a wide variety of applications, it also has many different 

QoS parameters. Wang, Liu and Yin refer to OSI 7-Layer to defined the QoS 

parameters for each function layer [WLY06]. We list the QoS parameters 

[WLY06], shown as Table 2.1.  

 

 
Table 2.1: QoS parameters and function layers. 

Function layer QoS parameters 

Application Layer 
System lifetime, response time, data novelty, 
detection probability, data reliability, and data 
resolution. 

Transport Layer Reliability, bandwidth, latency, and cost. 

Network Layer 
Path latency, routing maintenance, congestion 
probability, routing robustness, and energy 
efficiency. 

Connectivity 
Maintenance Layer 

Network diameter, network capacity, average path 
cost, connectivity robustness, and connectivity 
maintenance 

Coverage  
Maintenance Layer 

Coverage percentage, coverage reliability, coverage 
robustness, and coverage maintenance. 

MAC Layer Communication range, throughput, transmission 
reliability, and energy efficiency, 

Physical Layer The capabilities of wireless unit, processor unit and 
sensing unit 

 

In this dissertation, we take account of positioning accuracy, which is one 
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kind of data qualities. Hence, we consider that positioning accuracy belongs to 

application layer QoS parameter. 

Meguerdichian et al. [CW06] [MKP01] noted that the coverage of WSN is 

a measure of the quality of service/surveillance (QoS) of the sensing function. 

The objective of sensor deployment is to achieve complete coverage, such that 

each location in the sensor field is within the sensing range of at least one sensor 

[LC05]. 

Maleki and Pedram have defined Quality of Monitoring (QoM) as the 

average of spatial distortion in the reconstructed signal at base stations. They 

then solved the sensor deployment problem subject to the QoM and network 

lifetime constraints [MP05]. 

In some cases, sensor field dose not require complete sensing coverage. 

Yan, He and Stankovic propose the concept of differentiated surveillance 

service of sensor networks [YHS03]. The authors consider the sensor network, 

which provides differentiated surveillance service for various target areas with 

different degrees of security requirements. They developed an adaptable 

energy-efficient sensing coverage protocol to support differentiated surveillance 

by sensor networks. 

Lu et al. propose a real-time communication architecture, RAP, use 

velocity monotonic scheduling to prioritize real-time traffic in MAC layer 

[LBA02]. 

For providing the target positioning and tracking service, this work refers 

to the positioning accuracy as the QoS parameter hereinafter. Moreover, the 

concept of differentiated QoS is also considered to provide weighted 

discrimination requirement for each ROI in a sensor field.  

 

2.1.3 Energy Efficiency 

Energy optimization problems in sensor networks include reducing power 
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consumption of sensor nodes and extending overall sensor network lifetime. The 

energy-efficiency is a QoS parameter in each network function layer. 

Consequently, a lot of research groups are engaged in developing 

energy-efficient hardware architecture, system software or network protocols to 

lengthen system lifetime in various aspects [EGH99].  

The main components of a sensor node include sensor, data processor, and 

communication subsystem. Recent studies have demonstrated that data 

communication is the main consumer of energy in sensor networks. Therefore, 

several projects have been performed to design power-efficient integrated 

sensors [PK00] and low-power, low-cost transceiver technologies of sensor node 

[PME00].  

Moreover, link layer techniques usually consider the reliability constraints. 

The power-efficient MAC protocols minimize the number of times for packet 

retransmissions, thus reducing the power consumed at both the transmitter and 

receiver [RSP02] [YHE02]. 

Furthermore, several power-aware routing protocols have been developed 

for sensor networks. Almost all of these routing protocols considered energy 

efficiency as the ultimate objective for maximizing network lifetime [LAR01] 

[SR02]. 

From sensors self-organization perspective, some studies have investigated 

the possibility of partitioning the sensors into many clusters (or covers) such that 

every sensor cluster provides sufficient service quality [AGP04] [CTL05].  

 

2.1.4 Target Location 

Several location systems have been proposed and realized. For instance, the 

satellite-based Global Positioning System (GPS) is common outdoor location 

system. However, GPS is not useful in indoor, dense, or harsh environments 

[RST04]. 
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A. Location Techniques 

Hightower and Borriello present three main techniques for location-sensing, 

including: triangulation, scene analysis, and proximity. Location systems may 

employ them individually or in mixing [HB01]. We illustrate the classification 

in Figure 2.8.  

  

Figure 2.8: The classification of location sensing techniques. 

 

Figure 2.9: Triangulation location-sensing technique. 
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The triangulation location-sensing technique uses the geometric properties 

of triangles to compute object locations. Triangulation is divisible into two 

sub-categories: lateration, using distance measurements, and angulation, using 

primarily angle or bearing measurements.  

Lateration computes the position of an object by measuring its distance 

from multiple reference positions. For instance, calculating an object’s position 

in two dimensions requires distance measurements from 3 non-collinear points 

as shown in Figure 2.9 [HB01].   

In general, there are three approaches to measuring the distances required 

by the lateration technique.  

1. Direct measurement: distance measurement using a physical action or 

movement.  

2. Time-of-flight: it measures distance from an object to a specific point by 

emitting signal with known velocity (for example, ultrasound, light, or 

radio) and measuring the traveling time between the object and point P to 

calculate the distance.  

3. Attenuation: the intensity of an emitted signal decreases as the distance 

from the emission source increases. Given an attenuation function, it is 

possible to estimate the distance between an object and source by 

measuring the strength of the emission when it returns to source. 

 

Angulation technique is shown in Figure 2.10 [HB01], two dimensional 

angulation requires two angle measurements and one length measurement such 

as the distance between the reference points. Sometimes, angulation technique 

adopts a constant reference vector (e.g. magnetic north) as 0°. 

The scene analysis location-sensing technique uses features of a scene 

observed from a particular vantage point to draw conclusions about the location 

of the observer or of objects in the scene. Usually, the observed scenes are 

simplified to obtain features that are easy to represent and compare (e.g., the 
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shape of horizon silhouettes as seen by a vehicle mounted camera). In static 

scene analysis, observed features are looked up in a predefined dataset that maps 

them to object locations. In contrast, differential scene analysis tracks the 

difference between successive scenes to estimate location. Differences in the 

scenes will correspond to movements of the observer and if features in the 

scenes are known to be at specific positions, the observer can compute its own 

position relative to them. 

 

Figure 2.10: An example of 2D angulation technique. 

 

A proximity location-sensing technique determines target location when it 

is “near” a known location. The object's presence is sensed using a physical 

phenomenon with limited range. There are three general approaches to sensing 

proximity: 

1. Detecting physical contact: detecting physical contact with an object is 

the most basic sort of proximity sensing. Technologies for sensing 

physical contact include pressure sensors, touch sensors, and capacitive 

field detectors. Touch Mouse and Contact systems are implemented by 

this approach.  

2. Monitoring wireless cellular access points: monitoring when a mobile 

device is in range of one or more access points in a wireless cellular 
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network is another implementation of the proximity location technique. 

Examples of such systems include the Active Badge Location System 

and the Xerox ParcTAB System, both using diffuse infrared cells in an 

office environment, and the Carnegie Mellon Wireless Andrew using a 

campus-wide 802.11 wireless radio network. 

3. Observing automatic ID systems: a third implementation of the 

proximity location-sensing technique uses automatic identification 

systems such as credit card point-of-sale terminals, computer login 

histories, electronic card lock logs, and identification tags such as 

electronic highway e-toll systems, RFID system, etc. While detection 

devices scan the label, interrogate the tag, or monitor the transaction, the 

location of the mobile object can be inferred. 

 

In reference paper [RST04], base on wave frequency, the authors classify 

the indoor location systems into three categories: infrared, ultrasound, and 

radio.  

1. Infrared: The Active Badget location system first adopts infrared 

technique to design an indoor location detection system [RSTU04]. This 

system provides each person with a badge that periodically emits a 

unique ID using diffused IR that is received by one of several receivers 

scattered throughout a building. Badge location is then resolved by 

proximity to the nearest receiver. In harsh settings, however, the 

communication environment can be very dynamic, as people move about, 

smoke or other impurities fill the air, or walls collapse. In such settings, 

proximity to a single receiver is not sufficiently robust or flexible to 

provide reliable location detection. 

2. Ultrasound: Ultrasound based systems also provide location detection 

based on proximity, but improve accuracy by measuring ultrasound 

time-of-flight with respect to a reference RF signal. Systems such as the 

Active Bat or MIT’s Cricket compare the arrival time of the two signals 
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from various known sensors in order to calculate a listener’s location. As 

with the infrared based schemes, current ultrasound based systems are 

not designed for robustness, since line-of-sight paths may get obstructed 

or altered in the face of changing room dynamics. In addition, these 

systems are particularly sensitive to the possible destruction of sensors. 

3. Radio: Radio waves provide a powerful means of location detection 

because of their ability to penetrate many types of surfaces and objects, 

and due to their range, scalability, and maintenance benefits. Rather than 

using differences in arrival time, as done by ultrasound systems, radio 

based location detection systems determine location based on received 

signal strength, predicated on a known signal-to-noise ratio (SNR). 

RADAR system pre-computes an SNR map for a building. A vector of 

signal strengths received at various base-stations is compared with this 

map to determine position. Other radio based systems include SpotON 

and Nibble.  

 

These systems determine location according to the signal strength and a 

known signal-to-noise ratio (SNR). Hence, the sensitivity for environmental 

conditions is very significant; quality of positioning is injured by interference 

frequently. In addition, these location detection systems work well for their 

designed purposes, but cannot handle significant changes in communications 

paths or building topology. 

Bulusu et al. suggest placing multiple beacons (reference points) in a 

positioned field with overlapping regions of coverage and transmitting periodic 

beacon signals. Targets can be localized to the centroid of their proximate 

reference points [BHE00]. 

 

B. Identifying Codes  

In paper [KCL98], identifying codes first are proposed as a means for 
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uniquely identifying malfunctioning processors in multiprocessor systems. Such 

a system can be modeled as a graph G = (V, E), where V is the set of processors 

and E the set of links between processors. Assume that at most one of the 

processors is malfunctioning. For testing the system and locating the faulty 

processor, some processors (which constitute the code) will be selected and 

assigned the task of testing their neighborhood. Whenever a selected processor 

(i.e. a codeword) detects a fault, it sends an alarm signal. Hence, the set of 

detecting processors must be selected carefully to uniquely locate the 

malfunctioning processor based only on the information which one of the 

codewords gave the alarm.  

Therefore, it is important to obtain results on the complexity of this issue. 

Given an undirected graph G and integer r (r-cover for each vertex), Charon et 

al. [CHL03] have proved the decision problem of the existence of an 

r-identifying code of size at most k codewords in G, is NP-complete for any r. 

Due to definition of NP-hard, the corresponding optimization problem, i.e., 

minimizing size of identifying code, is NP-hard.   

 

C. Using Identifying Codes to Target Location Problem  

Several researchers adopt concept of identifying codes (i.e., power vectors 

in this dissertation) to construct location systems.   

 

(1) CIQ Approach 

In papers [CIQ01] [CIQ02], the authors propose target location problem in 

sensor networks. The sensor field is presented as a (two or three dimensional) 

grid of points; target location refers to the problem of pinpointing a target at a 

grid point at any point in time. If the coverage areas of multiple sensors overlap, 

they may all report detecting a target, then the precise location of the target can 

be determined by overlap of these sensor’s detection zones. If every grid point in 

the sensor field is covered by a unique subset of sensors, we can easily 
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determine the target occurring and its location according to the set of reporting 

sensors.   

 

Figure 2.11: Sensor placement based on the coding theory. 

 

Chakrabarty et al. [CIQ02] solve the problem of placing sensors for unique 

target identification by the theory of identifying codes [KCL98], is called CIQ 

approach in this dissertation. They first build a primitive block which is 

completely discriminable by sensors on the block. Each grid point on the field 

has a unique identifying code which is composed by the reporting messages of 

these sensors. Then, a larger sensor field can be constructed by tiling primitive 

blocks on the sensor field. For example, as shown in Figure 2.11(a), a primitive 

block which contains 13 grid points is deployed 5 sensors with sensing radius 1 

on it. A 13 by 13 sensor field is tiled by the primitive block and the field is 

therefore completely discriminable sensor. Figure 2.11(b) illustrates an 8 by 8 

sensor field which is a primitive block is composed by 35 sensors. It can be used 

to build any 8n by 8n sensor field ( 1 , ≥∈∀ nZn ) directly. However, this 

placement manner can only use in regular sensor field and fixed sensor detection 

Uncovered grid point 

A primitive block 

(a) (b)

: Sensor at grid point. 
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radius. In additional, the grid points in boundary of sensor fields do not take into 

consideration. In Figure 2.11(a), there are 4 uncovered grid points, to achieve 

completely discriminable, it requires to deployed additional sensors for the 

sensor field. It will harm the applicability of the approach, especially in irregular 

sensor fields.  

 

(2) ID-CODE Algorithm 

Ray et al. apply identifying code theory to design a location system in 

sensor networks [RST04]. They divide a continuous sensor field into a finite set 

of locatable regions represented by a designated point (It is called a service 

point in the dissertation). Each designated point can be identified 

unambiguously. The system operates in location service mode and periodically 

broadcasts ID packets from designed sensors. An observer can determine her 

location due to the unique collection of received ID packets.  

 

Figure 2.12: The location system proposed by Ray et al. 

 

The sensor network design procedure is as follows. A set of designated 

points is selected for a given field. Then, based on physical point connectivity, a 

corresponding graph can be obtained. The vertices are designed points and 

connectivity between any two points determines whether edge exists. For 
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example, the points set P = {a, b, c, d, e, f, g} on a floor plan is depicted in 

Figure 2.12(a). Figure 2.12(b) shows the connectivity among these points 

represented by the arrows.  

 

Figure 2.13: Performance of various heuristics for 
|V|=128 vertices graphs. 

 

Ray et al. propose ID-CODE algorithm to deploy sensors and build an 

identifying code for the given graph as shown in Figure 2.12(d). First, every 

vertex is deployed a sensor, as a codeword. At each loop of ID-CODE algorithm, 

one of codeword is checked whether it can be deleted and results in identifying 

code. The authors suggest three predetermined sequences to visit vertices: 

random, descending, and ascending orders. The simplest approach is to visit all 

vertices in random order. If the average degree of vertices in the graph is low, 

the good codewords are likely to have high degree such that the number of 

codewords required to cover all the vertices is reduced. Hence, the authors 

propose visit the vertices by descending order. On the contrary, if the average 

degree of vertices in the graph is high, the good codewords are likely to have 

lower degree. Hence, the authors propose visit the vertices by ascending order. 

The performance of ID-CODE algorithm depends on the sequence of vertices. 

Therefore, the authors propose a hybrid heuristic for ordering. When the average 
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degree of graph is greater than half the number of vertices, the descending order 

of degree is used. Otherwise, the ascending order is used in ID_CODE 

algorithm.  

Figure 2.12(c) and (d) illustrate the sensors deployment, and the 

corresponding graph. Four sensors are placed at codewords a, b, c, and d. 

Therefore, each vertex has unique identifying code, e.g., ID(a)={a, b}, ID(b)={a, 

b, c}, ID(c)={b, c}, ID(d)={d}, ID(e)={c, d}, ID(f)={b, d}, and ID(g)={a, d}. 

Figure 2.13 shows the size of identifying code of various visiting order in 

|V|=128 vertices graphs with various average degree [RUP03].  

 

(3) Power Vectors 

A number of papers investigate the sensor placement problems with grid 

based sensor field [CIQ01] [DC02] [LRS05] [SSS03]. A grid-based sensor field 

can be represented as a collection of two- or three-dimensional grid points. In 

this dissertation, we adopt grid based placement method. A set of sensors can be 

deployed on the grid points to monitor the sensor field.  

 

 

Figure 2.14: Grid-based sensor field and power code. 

 

If any grid point in a sensor field can be detected by at least one sensor, we 
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call the field is completely covered, as shown in Figure 2.14. In this context, a 

target can be detected at any place in the field [CL04] [LC05]. 

A power vector, which is analog to identifying code, is defined for each 

grid point to indicate whether sensors can cover a service point in a field. As 

shown in Figure 2.14, the power vector of service point 8 is (0, 0, 1, 1, 0, 0) 

corresponding to sensor 4, 6, 7, 9, 10, and 12. In a completely covered sensor 

field, when each service point has a unique power vector, we note the sensor 

field is completely discriminated, as shown in Figure 2.14. In this case, as soon 

as a target occurs in a grid of the sensor field, it can be located by the back-end 

according to the power vector of the grid. 

 

2.1.5 Sensor Deployment 

Sensor deployment is a key step for sensor network designs, which greatly 

influences the effectiveness of networks. In general, there are three deployment 

objectives are major concerned in the sensor deployment phase: reducing the 

deployment cost, improving quality of surveillance, and prolonging the network 

[IMP05]. Moreover, there are several factors have to be take account into the 

sensor placement problem, for instance, the placement methods, the nature of 

the terrain, types of sensors, network coverage, connectivity, fault tolerance, 

network architecture, etc. Form perspective of deployment method, we divide 

related works into two categories: random and controlled deployment methods. 

In the rest of this subsection, we will review related literatures from this 

perspective.  

 

A. Random Deployment 

(1) To Determine the Drop Strategy 

Typically, a WSN used for environmental monitoring is designed to 
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provide a certain level of QoS, which essentially measures the degree of 

spatio-temporal accuracy required by the particular application. In paper 

[LRS05], Leoncini et al. focus on degree of coverage (DoC), which evaluates 

the percentage of a given region sensed by a set of connected sensors. The DoC, 

as well as other QoS measures provided by a sensor network, depends on the 

number and positions of the sensors used to monitor the area, and thus on the 

deployment strategy. In situations where manual deployment is not feasible, 

random distribution is typical alternative, which drops sensors from a moving 

vehicle, such as an airplane. Hence, the human operator can only control the 

sensor drop point(s).  

Leoncini et al. consider the following network planning problem. Given a 

sensor field and a certain DoC requirement, the spatial distribution of the 

sensors released at a drop point is modeled by a certain probability density 

function F. Leoncini et al. consider the problem of determining the optimal drop 

strategy, i.e. the strategy such that the DoC requirement is satisfied, and the total 

number of deployed nodes is minimized. They assume the candidate drop points 

are arranged in grids of arbitrary side. Further, we assume that probability 

density function F is the normal distribution. Through analysis and simulation, 

they can identify the optimal deployment strategy.  

 

(2) To Determine the Critical Sensor Density 

An important problem in random distributed sensor networks is to estimate 

the number of sensors required to achieve complete coverage for a desired 

region. In [AS03], Adlakha and Srivastava address the problem finding the 

critical density of sensors for complete coverage by presenting analytical result. 

They adopt exposure coverage model, that the sensor detects the change in the 

signal strength over time. In addition, the integrator model be used, i.e., when 

the total signal energy or exposure exceeds a threshold, the sensor states the 

target is detected. The authors also model the properties of target as an object 

moving with constant speed for a distance. Through analysis, they derive an 
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equation for an effective sensor radius. Then, using this effective radius, they 

can estimate the critical density for complete coverage in sensor field. 

 

(3) Heterogeneous Sensor Networks   

Mhatre et al. consider two types of sensors [MRK05]: cluster header and 

sensor node. They assume the nodes are organized as a collect of clusters. 

Cluster heads perform data aggregation for the sensors in the cluster. Sensors are 

responsible for sensing and relaying data to the nearest cluster head. An aircraft 

(i.e. a mobile sink) visits the sensor field periodically and gathers data from all 

of the sensors. Each visiting of the aircraft triggers a sensing and data gathering 

cycle on the ground during which every sensor node sends a packet to its cluster 

head and the cluster head directly sends aggregated data to aircraft. The authors 

also model the cost functions for cluster and sensor node, they consider both 

hardware and battery cost. Under the coverage and connectivity constraints, the 

aim of this paper is to determine the sensor deployment parameters such that the 

network lifetime is enlarged.   

 

(4) Energy Efficiency 

Using random deployment, usually a large number of excess sensors are 

scattered in a monitor field for satisfying quality of surveillance. Many 

researchers use these redundant sensors to prolong the network lifetime. 

Slijepcevic and Potkonjak [SP01] propose a heuristic to organize the 

sensors into mutually exclusive sets where each set can completely cover the 

sensor field. These sets of sensors work in turn. Any moment, only one of these 

sets is active and the other sets operate at sleeping mode. Generally, “mutually 

exclusive sets of sensors” is also denoted as “cover”. The goal of this work is to 

maximize the number of covers. They present the problem as set k-cover 

problem, and propose a heuristic approach for solving the set k-cover problem. 

In [AGP04], the requirement of complete coverage of cover is relaxed. Abrams 

et al. design three algorithms to maximize the number of covers. 
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(5) Target Coverage 

Cardei et al. [CWL05] address the target coverage problem in random 

deployment sensor networks. They consider a large number of sensors with 

adjustable sensing radius that are randomly deployed to monitor targets. The 

authors define the Adjustable Range Set Covers (AR-SC) problem. By the 

property that sensors have adjustable sensing ranges, the objective is to 

maximize the number of covers and to reduce the radius associated with each 

sensor, such that targets can be covered by each cover [CWL05]. The authors 

first introduce the mathematical model for AR-SC problem as the integer 

programming model, and then propose efficient heuristics by greedy approach to 

solve it.  

(6) Incremental Sensor Deployment  

Vieira et al. [VVB04] propose an efficient algorithm for incremental 

deployment of nodes. A number of sensors randomly deployed in sensor field, 

suppose amount of sensor, the location and energy level of each sensor are 

known, the paper discuss what is the minimum number of new sensors that 

should be added so that it does not lose any covering area? Where should be the 

new sensors placed? The authors propose algorithm which improves the 

coverage iteratively for solving the problem [VVB04].  

(7) Mobility 

Random scattering approach can not always achieve effective coverage, 

especially if the sensors are overly clustered. There is a small concentration of 

sensors in certain parts of the sensor field. In [ZC03a], a lot of mobile sensors 

are scattered in sensor field, Zou and Chakrabarty propose a virtual force 

algorithm as a sensor placement strategy to improve coverage after initial 

random deployment. The coverage is extended under the constraint of reducing 

energy consumption for moving. 
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B. Controlled Deployment 

(1) Grid-based Deployment 

Dhillon et al. [DC02] [DC03] consider the probabilistic detection model, 

and propose two polynomial-time sensor placement algorithms to address the 

homogeneous sensor placement problem. The authors represent the sensor field 

as a collect of grid points. When a target enters to the sensor field, it will be 

detected by a set of sensors. They proposed an algorithm optimizes coverage 

under constraints of a threshold of detection probability and terrain properties. 

Based on relative measures of security and tactical importance, the preferential 

coverage of grid points is also modeled in the work.  

Dhillon et al. [DC02] adopt the probabilistic detection model, which is 

illustrated in Section 2.1.1, Equation (2.1). The authors assume that knowledge 

of the terrain is given, e.g, through satellite imagery. Hence, obstacles and the 

detection probability for each grid point are known. They develop two 

polynomial-time sensor placement algorithms, MAX_NIN_COV and 

MAX_AVG_COV, to minimize the number of sensors, and to determine the 

location of each sensor such that every grid point satisfy the given coverage 

threshold [DC02]. However, the algorithms can construct a sensor network to 

support surveillance-only service.  

 

Figure 2.15: Sensor placements for 4 by 4 sensor field. (a) m=1, (b) 
m=2, (c) m=3. 
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Chakrabarty et al. [CIQ01] [CIQ02] formulate the heterogeneous sensor 

placement problem in terms of cost minimization under coverage constraints. 

They first formulate the optimization problem as an integer programming model 

and then solve problem using the lpsolve package. Given the sensor field, two 

types of sensors (with different cost and radius), parameter m ≥ 1, they 

determine the sensors’ location such that number of sensor is minimized and 

each grid point is covered by at least m sensors. The placement examples are 

shown in Figure 2.15. They also propose a divide-and-conquer approach to cope 

with the large size problem. In addition, the authors developed sensor placement 

approaches based on identifying code theorem in graph theory to construct a 

sensor network providing target location service, which is reviewed in Section 

2.1.4. 

 

(2) Well-known Placement Patterns  

Figure 2.16: Four common regular patterns of 
deployment. (a) Hexagon. (b) 
Square. (c) Rhombus. (d) 
Triangular lattice. 
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A number of papers adopt the well-known manners about placing disks on 

the vertices of a triangular lattice or at the centers of regular hexagons, as 

illustrated in Figure 2.16 [BKX06] [ZH04]. Triangular lattice is optimal pattern 

in terms of the number of disks needed to achieve full coverage of a plane  

[BKX06] [ZH04]. On the problem of achieving both coverage and connectivity 

at the same time, a few results are known in the literature [BKX06]. First, when 

the communication range rc is at least twice of the sensing range rs (i.e., rc ≥ 2rs), 

then coverage of a region implies connectivity in the sensor network [XWZ05]. 

Second, while 3c sr r≥ , then deploying sensors in the triangular lattice pattern 

provides both coverage and connectivity. And the deployment is optimal in 

terms of the number of sensors needed. Third, when rc = rs, a strip-based 

deployment pattern is near optimal [IKB05].  

 

Figure 2.17: Strip-based deployment 
pattern to achieve coverage and 
2-connectivity. 

 

In [BKX06], Bai et al. propose and prove the asymptotic optimality of a 

deployment pattern to achieve both coverage and 2-connectivity for all values of 

rc / rs. In Figure 2.17, the light-filled dots show the sensor locations that form 

the horizontal strip, while the dark-filled dots form the two vertical strips. Here, 

min{ , 3 }c sr rα =  and 2 4( / 4)s sr rβ α= + − . The vertical strip of sensors may 
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be removed when / 3c sr r ≥ . The authors also show that the strip based 

deployment pattern is not only near-optimal but asymptotically optimal for 

achieving both full coverage and 1-connectivity. Moreover, its optimality holds 

not only for ( rc / rs ) = 1 but for all / 3c sr r < . They find the ideal ratio 

between the communication radius and detection radius for sensors. In Figure 

2.18, the light-filled dots show the sensor locations that form the horizontal strip, 

while the dark-filled dots form the one vertical strip. Here, min{ , 3 }c sr rα =  

and 2 4( / 4)s sr rβ α= + − . 

 

 

Figure 2.18: Strip-based deployment that is 
optimal for achieving coverage 
with 1-connectivity. 

 

 

(3) Subject to Connectivity and Data Distortion 

Ganesan et al. [GCB06] consider the problem of deploying a finite number 

of sensor nodes in a sensor field, and determine the communication architecture 

among the nodes of the corresponding network. They assume single sink node is 

responsible for gathering the data from sensors. The authors interest in the 

relation between the data reconstruction distortion that results from the node 
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placement, and the power requirements of data gathering from the sensors. The 

important goal is to minimize the total energy consumption of data gathering 

under the sensing distortion constraints [GCB06].  

Based on multi-hop forwarding scheme, a routing tree rooted at the sink is 

built to connect the sensor nodes, and transmit data along the tree [GCB06]. 

Two kinds of coding schemes include: joint entropy coding with explicit 

communication and Slepian-Wolf. These coding schemes have tradeoff between 

computation and communication. The former offers simple coding computation 

and the latter offers larger communication gains. Ganesan et al. [GCB06] use 

energy related cost function as objective and consider radius limitation, 

coverage, and distortion constraints. Due to performance evaluation, the 

placement outperforms the random placement scheme in terms of power 

efficiency.    

 

(4) Flat/Hierarchical Architecture  

Both flat and hierarchical architectures are commonly adopted for 

designing a sensor network. Generally speaking, homogeneous sensors are 

deployed under flat architecture, as well as each sensor takes on collecting data 

and forwarding it to sinks by multi-hop communication. Hierarchical network 

architectures use heterogeneous sensors, the networks consists two (or more) 

layers of sensors. The first layer of wireless sensor network includes several 

clusters of sensors, which connect to a fixed cluster head. The second layer is a 

collection of cluster heads, which have more energy and powerful capabilities. 

These cluster heads with connectivity aggregate data and forward compressed 

data to sinks. Hierarchical architectures greatly improve the performance of the 

overall system in terms of throughput, reliability, lifetime, and flexibility 

[IMP05].  

In [IMP05], Iranli et al. discuss the impact of hierarchical network 

architectures on network lifetime. Given number of cluster heads and total 

energy budget, the authors address cluster heads deployment, clustering, an 
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energy allocation to cluster heads such that the network lifetime is maximized. 

They consider both collinear and planar deployment, and the experimental 

results showed that 2-level WSN architecture outperforms the flat architecture in 

terms of lifetime.     

 

(5) Others 

 

Table 2.2: Classification of literatures for the sensor deployment problem. 

R/C Pre-/ 
Post-

Homo-/ 
Hetero- Papers Goals Considerations 

R Pre- Homo- [AS03] Min sensor density Coverage  
R Pre- Homo- [LRS05] Min sensor density Coverage,  

sensor distribution 
R Pre- Hetero- [MRK05] Min cost Two type of sensors, 

Coverage and connectivity 
R Post- Homo- [AGP04] 

[SP01] 
Energy-efficiency k-cover 

R Post- Hetero- [CWL05]
[DVZ06]

Max number of 
covers 

adjustable sensing ranges 
reduce radius 

C Pre- Homo- [DC03] 
[DCI02] 

Min number of 
sensors 

Coverage threshold 
Grid based method 

C Pre- Homo- 
Hetero- 

[CIQ02] Min number of 
sensors 

Coverage 
Target location 

C Pre- Homo- [RST04] Min number of 
sensors 

Identifying code 
Target location 
Robust 

C Pre- Homo- [CCZ05] Number of sensor Lifetime/cost 
C Pre- Homo- [BKX06] Number of sensor Coverage, 2-connectivity 
C Pre- Homo- [GCB06] Energy efficiency Data distortion, 

connectivity 
C Post- Homo- [ZC03a] 

[ZC03b] 
Coverage Mobile sensors 

Target location 
C Post- Hetero- [XWH05] Min cost Add relay nodes 

Lifetime 
Connectivity 
Sensing/ Relay nodes 

R/C Post- Homo- [VVB04] Coverage Incremental deployment 
R/C Post- Homo- [KGG06] Min number of 

sensor 
Coverage  
Communication efficiency 

R/C Post- Hetero- [IMP05] Number of cluster Lifetime, Two-level 
 

In [KGG06], the paper proposes the problem that the sensors are dropped 

randomly. And the probabilistic models for sensor data quality and 
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communication cost are collected. The proposed algorithm attempts to add the 

minimal sensors or redeploy the existing sensors subject to coverage and 

communication efficiency. 

Chen et al. [CCZ05] define new performance metric, called lifetime per 

unit cost. They address the sensor deployment problem to optimize the number 

of sensors, determine the sensor placement for maximizing the lifetime per unit 

cost. They propose greedy strategy and numerical approximation to solving the 

problem.  

To obtain the profile of sensor deployment research, in Table 2.2, we 

arrange the previous survey papers and classify based on the proposed research 

scope in Section 1.2.   
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2.2 Lagrangean Relaxation Method 

Optimization plays an important role in many application fields. In 

engineering, for instance, design tasks are routinely cast as optimization 

problems and algorithms are applied to search for parameters. Actually, 

optimization techniques could be widely used to address a number of problems 

found in computer networks, such as traffic routing challenges that have 

recently emerged with the arrival of connection-oriented architectures. In this 

dissertation, sensor deployment problems are modeled as optimization problems 

that are computationally hard and for which no polynomial-time algorithm is 

known.  

Lagrangean methods were originally used in both scheduling and general 

integer programming problems. However, it has become one of the best tools for 

solving optimization problems like integer programming, linear programming 

combinatorial optimization, and non-linear programming [Fis81] [Fis85] 

[Geo74]. Adopting Lagrangean relaxation as our approach has the following 

advantages: 

1. The approach is very flexible, since it is often possible to divide and 

conquer models in several ways and properly apply Lagrangean 

relaxation to each subproblem. 

2. In decomposing problems, Lagrangean relaxation solves primal 

problems as individual components. Consequently, the solution 

approach permits us to exploit any known methodology or algorithm 

to solve the problem. 

3. We can use Lagrangean relaxation methods to devise effective 

heuristic solutions to solve complex combinatorial optimization 

problems and integer problems. 
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Lagrangean relaxation also permits us to remove constraints from the 

original problem and place them in the objective function with associated 

Lagrangean multipliers instead. The optimal value of the relaxed problem is 

always a lower bound (for minimization problems) on the objective function 

value of the problem. By adjusting the multiplier of Lagrangean relaxation, we 

can obtain the upper and lower bounds of the problem. Although the Lagrangean 

multiplier problem can be solved in a variety of ways, the subgradient 

optimization technique is probably the most popular approach. 

We now present an example of an optimization problem (P). By relaxing 

constraint Ax=b, the original primal problem (P) is transformed into an LR 

problem, where ZD(u) ≤ ZP. In other words, the solution of (LR) is a lower 

bound of the primal problem (P). 

ZP = min cx           (P) 

subject to: 

Ax = b 

Dx ≤ e 

x ≥ 0 

x in integral. 

 

ZD(u) = min cx + u(Ax-b)     (LR) 

subject to: 

Dx ≤ e 

x ≥ 0 

x in integral. 

 

With respect to the optimization problem (LR), we denote π = (u1, u2, …) ≥ 

0 as the vector of Lagrangean multipliers with respect to relaxed constraints. 

According to the weak Lagrangean duality theorem, for any π ≥ 0, the objective 

value of ZD(π) is a lower bound (LB) of ZP. Thus, the dual problem (D) is 
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constructed to calculate the tightest LB by adjusting multipliers, subject to π ≥ 0. 

Then, the sub-gradient method is used to solve the dual problem [HWC74]. Let 

the vector g be a sub-gradient of ZD(π) at π ≥ 0. In iteration k of the sub-gradient 

optimization procedure, the multiplier vector is updated by 1k k k kt gπ π+ = + . The 

step size, kt , is determined by 
2*( ( ) / )k k k

P Dt Z Z gλ π= − , where *
PZ  is an 

upper bound (UB) of the primal objective function value after iteration k; and λ 

is a constant, where 0 2λ< ≤ . To calculate the UB of (P), an algorithm to find 

primal feasible solutions must be developed. The maximum number of iterations 

and the improvement counter for the problem are decided on a case-by-case 

basis. We present our experiment settings in Chapter 4 and 5. The parameter λ  

adopted in the sub-gradient method is initialized to be 2, which is halved when 

the dual objective function value does not improve for improvement counter 

iterations. 

ZD = max ZD (π)      (D) 

To better describe how the dual problem is solved, the detailed concept 

adapted from [Fis81] is illustrated in Figure 2.19. 

 

 

Figure 2.19: The concept of the dual problem. 
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The overall procedure of the LR approach is shown in Figure 2.20, but the 

algorithms to find primal feasible solutions must still be developed. After 

optimally solving the dual problem (D), we get a set of decision variables. 

However, this solution is not feasible for the primal problem, since some of 

constraints are not satisfied. Thus, minor modifications of the decision variables 

must be made to get a primal feasible solution for problem (P). Generally 

speaking, the UB of problem (P) is the better primal solution, while the solution 

of problem (D) guarantees the LB of problem (P). Iteratively, by solving the 

Lagrangean dual problem and getting a primal feasible solution, we get the LB 

and UB, respectively. So, the error gap between UB and LB, computed by 

(UB-LB)/LB*100%, illustrates the optimality of the solution. The smaller the 

gap computed, the better the optimality achieved.  

 

 

Figure 2.20: The overall procedure of the LR approach. 
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LR Stop 
Condition

Get Dual Solution

Get Primal Solution 

Update Bounds

Update 
Parameters and 

Multipliers 

End 



 

 50

 

In reference [Fis85] [Fis81], Fisher either provides a guide to use 

Lagrangean relaxation, or describes several instances in which Lagrangean 

relaxation method has been used to solve many well-known hard problems. In 

this section, we only list partial instances in Table 2.3.  

According to the definition of NP-hard [NN04], the optimization problem 

corresponding to any NP-complete (decision) problem is NP-hard. Hence, the 

optimization problems corresponding to the well known NP-complete problems 

listed in Table 2.3 are NP-hard. From Table 2.3, we can claim that Lagrangean 

relaxation approach can be used for solving NP-hard problem.  

 

 
Table 2.3: Applications of Lagrangian Relaxation. 

Problem Complexity Researchers 
TSP (Traveling Salesman Problem) NP-hard Bazarra & Goode 

[BG77] 
    
Scheduling    
n/m weighted tardiness NP-hard Fisher [Fis73] 

 One machine weighted tardiness NP-hard Fisher [Fis76] 
   
GAP (Generalized Assignment 
Problem) 

NP-hard Fisher & Shapiro 
[FS74]  

   
Set Covering NP-hard Etcheberry [Etc77] 
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2.3 Simulated Annealing Method 

Simulated annealing (SA) approach is a generic and probabilistic 

meta-heuristic for solving the difficult optimization problems. It can solve the 

combinatorial optimization problems in large search space, namely can find 

good approximated solutions to the global optimums by randomized heuristic. In 

1983, Kirkpatrick, Gelatt, and Vecchi first invented the approach [KGM83]. 

Afterward, Eglese arranged the previous researchers’ studies about simulated 

annealing and proposed more complete discussions [Egl90].  

The idea of the meta-heuristic refers to the annealing technique in 

metallurgy. Initially, the material is heated to a higher energy state and the 

structure of atoms is unstuck. The cooling procedure has to be controlled to 

yield crystal, such that the structure of atoms is tighter and internal energy is 

lower. The annealing temperature decreases slowly to give atoms more chances 

for finding configuration with lower internal energy. If cooling is not slow 

enough, the material may crystallize with defect. Hence, the material is not on 

an approximated lowest energy state.  

For a minimization problem, each feasible solution and corresponding 

objective value of the problem are analog to a state of material and internal 

energy on the state. Therefore, the goal of minimization, i.e. getting a feasible 

solution with global minimum possible, can be analog to yield crystal and 

decrease defects.  

Initially, the SA heuristic selects an initial feasible solution randomly. Then, 

the following loop of SA heuristic is executed repeatedly. At each state, the 

heuristic selects a new state xi+1, which is neighbor of current state xi, and 

probabilistically decides whether changing current state to the new state or not. 

The neighbors of each state are dependent on the solution structure of problem; 

usually it is determined by the user. The transition probability p=exp(−ΔE/T) is 

a function of energy difference ΔE=E(xi+1)−E(xi) between new state and 
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current state, and of parameter T called temperature. For a minimization 

problem, when ΔE ≤ 0, it means the objective value of new state is lower than or 

equal to current state’s, the transition probability p ≥ 1. Contrarily, ΔE > 0 

means the new state has a higher objective value than current state’s, the 

transition probability p < 1. To prevent to find a local minimum, the heuristic 

should have chance to accept the worse new state. Initially, temperature T=T0 is 

high so that the probability p for accepting the worse solution will be relatively 

high. On a fixed temperature, T=Tt, the algorithm executes r(Tt) iterations at 

least. The cooling ratio α < 1, such that the next temperature Tt+1 is lower than 

Tt, and 1t tT Tα+ = × . The number of iterations on temperature Tt+1 is 

1( ) ( )t tr T r Tβ+ = × , parameter β is greater than one. Hence the number of 

iterations on fixed temperature should increase slowly, while temperature 

decreases. The heuristic controls temperature T decreasing slowly, the 

probability p for accepting the worse solution will reduce, even approaches to 

zero. When the temperature is lower than the frozen temperature, Tf, the system 

is frozen, that is, obtaining an approximated optimum solution.  

 

Algorithm 2.1: The skeleton of the SA heuristic. 

1. Select an energy function E(x); 
2. Select an initial temperature T0 >0, and T=T0; 
3. Select initial number of repetitions on initial temperature, r(T0); 
4. Set repetition counter t=0; 
5. Repeat 
6. Set repetition counter n=0; 
7.   Repeat 
8. Generate new state xi+1, a neighbor of xi; 
9. Calculate ΔE=E(xi+1)−E(xi); 

10. If ΔE ≤ 0 then xi=xi+1; 
11. else if random (0,1) < exp(−ΔE/Tt) then xi=xi+1; 
12. n=n+1; 
13. Until n=r(Tt); 
14. t=t+1; 
15. 1t tT Tα −= × , 1( ) ( )t tr T r Tβ −= × ; 
16. Until stopping criterion, Tt < Tf is true. 
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To obtain a good approximated optimum solution, users should carefully 

design cooling schedule, which includes initial temperature T0, cooling ratio, α, 

number of iteration r(T), and stopping criterion. We rewrite the generic heuristic 

as listed in Algorithm 2.1. 
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CHAPTER 3 SENSOR PLACEMENT 
ALGORITHMS FOR ACHIEVING 
COMPLETE COVERAGE AND 
DISCRIMINATION 

3.1 Overview 

Sensor placement strategy depends on the WSN’s application. To support 

surveillance, the network coverage is one of key issues. Furthermore, 

positioning accuracy must be regarded in sensor deployment phase when WSNs 

support target location services.  

In this chapter, we intend to solve two problems. Both problems have the 

same goal, which is to optimize the positioning accuracy supporting by sensor 

networks. First, we solve controlled sensor placement problem under budget and 

coverage limitations. Next, we consider the random manner, and determine the 

radius for each sensor such that the positioning accuracy can be improved. 
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3.2 Problem Description 

A grid-based sensor field can be represented as a collection of two- or 

three-dimensional grid points [DCI02]. A set of sensors can be deployed on the 

grid points to monitor the sensor field. The grid point, which requires the 

surveillance or positioning service, is also called service point. In this chapter, 

we consider the detection model of a sensor to be a 0/1 coverage model. The 

coverage is assumed to be full (1) if the distance between the service point and 

the sensor is less than the detection radius of the sensor. Otherwise, the coverage 

is assumed to be non-effective (0). If any service point in a sensor field can be 

detected by at least one sensor, we call the field is completely covered, as shown 

in Figure 3.1. In this context, a target can be detected at any place in the field.  

 

Figure 3.1: A complete covered and discriminated sensor field. 

 

A power vector is defined for each service point to indicate whether 

sensors can cover a service point in a field. As shown in Figure 3.1 the power 

vector of service point 8 is (0, 0, 1, 1, 0, 0) corresponding to sensor 4, 6, 7, 9, 10, 

and 12. In a completely covered sensor field, when each service point has a 
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unique power vector, we note the sensor field is completely discriminated, as 

shown in Figure 3.1. In this case, as soon as a target occurs in a grid of the 

sensor field, it can be located by the back-end according to the power vector of 

the service point. 

Sometimes, due to some resource limitations, a completely discriminated 

sensor field cannot be constructed. Consequently, these may lead to wrong 

determinations, whenever a target occurs at any one of the service points. 

Positioning accuracy, therefore, becomes a major consideration in solving the 

problem. Error distance is one of the most natural criteria to measure 

positioning accuracy. The error distance of two indistinguishable service points 

is defined as the Euclidean distance between them. Hence, when complete 

discrimination is impossible, the goal of this problem is to minimize the 

maximum error distance, that is, to optimize the positioning accuracy.  
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3.3 Sensor Placement Problem for Achieving 

Complete Coverage and Discrimination 

3.3.1 Mathematical Model 

The sensor placement problem is formulated herein as a combinatorial 

optimization problem. Depends on the cost limitation, the formulation can plan a 

completely discriminable sensor network or a discriminable sensor network with 

a minimum error distance. If the minimum Hamming distance of the power 

vectors associated with any pair of grid points doesn’t equal to zero, the sensor 

network is completely discriminable. Otherwise, it leads to an error distance for 

the target positioning. Hence, the objective of the formulation is to minimize the 

maximum error distance for the sensor network. The problem is, therefore, 

defined as a min-max model. 

Given Parameters: 

A : Index set of service points in the sensor field. 
B : Index set of the sensors’ candidate locations. 
C : Index set of sensor cost. 
G  : Budget limitation. 
K  : A large number. 
kr  : Detection radius of sensor located at k , k ∈ B. 
ijd  : Euclidean distance between location i and j, i, j ∈ A. 

kc  : The cost of the sensor allocated at location k ; k ∈ B, ck∈C. 

 

Decision Variables: 

1 2( , ,..., )i i i ikv v v v=  : A power vector of location i, where vik is 1 if the target at 
location i can be detected by the sensor at position k and 
0 otherwise, i∈A, k∈B. 

ky  : 1, if a sensor is allocated at location k and 0 otherwise, 
k∈B. 
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Objective Function: 

3.1 2,
min max

1 ( )
ij

IP v i j A
ik jk

k B

d
Z

K v v∀ ∈

∀ ∈

=
+ −∑

 (IP3.1)

subject to: 

ik ikv d  ≤  k ky r  , ,k B i A i k∀ ∈ ∈ ≠  (3.1)

ik

k

d
r

 >  k iky v−  , ,k B i A i k∀ ∈ ∈ ≠  (3.2)

kkv  = ky  k A B∀ ∈ ∩  (3.3)

k k
k B

c y
∀ ∈
∑  ≤  G   (3.4)

ik
k B

v
∀ ∈
∑  ≥  1 i A∀ ∈  (3.5)

,ik kv y  = 0 or 1 ,k B i A∀ ∈ ∈ . (3.6)

 

When 2( )ik jk
k B

v v
∀ ∈

−∑ = 0, objective function (IP3.1) introduces a penalty 

dij, dij ≥1. As K → ∞  and 2( )ik jk
k B

v v
∀ ∈

−∑ >0, ZIP3.1 introduces a penalty 

dij/(1+ K ) which approaches zero.  

Constraints (3.1), (3.2), and (3.3) require the relationship between sensor 

transmission radius r and detection distance dik. If a target appears at service 

point i and the service point is inside the coverage of sensor k, the target should 

be detected by the sensor if it is available. Constraint (3.4) states that the total 

deployment cost of sensors must limited by cost G. Constraint (3.5) is the 

complete coverage limitation. It guarantees that any service point in the field 

will be covered by at least one sensor. Constraint (3.6) is an integer constraint. 

 

3.3.2 Algorithm 

Simulated annealing (SA) is a highly reliable method for solving hard 
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combinatorial optimization problems. The concept of SA is applied to derive an 

efficient method for solving the problem approximately. 

 

Algorithm 3.1: Simulated-annealing-based pseudo code for sensor placement. 

1. Deploy sensors on all grid points; Eold ← ∞, Emin← Eold. 
2 t ← t0, b ← b0. 
3 While t > tf  do 
4 Repeat Steps (5)~(27) b times. 
5 If budget constraint is satisfied then goto Step (17). 
6 Configure a new deployment by removing a sensor randomly. 
7 If coverage constraint is violated then goto Step (16). 
8. Calculate Enew and ΔE= Enew − Eold. 
9. Generate a random number ,  0 1p p< < . 
10. If exp(−ΔE/t) ≤ p then goto Step (16). 
11. Accept the new deployment; Eold ← Enew. 
12. If Emin ≤ Eold then goto Step (4). 
13. Emin ← Eold ; save the new configuration as the best solution. 
14. If Emin is a desired solution then goto Step (30). 
15. Goto Step(4). 
16. Recover the action in step (6); 
17. Configure a new deployment by moving one sensor’s location 

randomly. 
18. If coverage constraint is violated then goto Step (26). 
19. Calculate Enew and ΔE= Enew − Eold. 
20. Generate a random number ,  0 1p p< < . 
21. If exp(−ΔE/t) ≤ p then goto Step (26). 
22. Accept the new deployment; Eold ← Enew. 
23. If Emin ≤ Eold then goto Step (4). 
24. Emin ← Eold ; save the new configuration as the best solution. 
25. If Emin is a desired solution then goto Step (30). 
26. Recover the action in step (17). 
27. End_repeat 
28. t ← t×α, b ← b×β. 
29. End_while 
30. ZIP3.1←Emin. 

 

Here, the cooling schedule of the algorithm is stated briefly. Initially, we 

assume the sensors are deployed at all grid points. In each loop, an attempt is 

made to remove one sensor if the cost constraint is not met. Otherwise, an 

attempt is made to move a sensor to another randomly chosen position. 
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Moreover, the stopping criterion is modified to improve efficiency. Besides 

reaching the frozen temperature tf, when both complete coverage and 

discrimination are achieved, that is ZIP1=1/(1+ K ), the procedure will also be 

stopped. The solution with complete coverage and discrimination may not be 

optimal. However, the solution is the desired solution to this problem.  

Algorithm 3.1 shows a pseudo code of the algorithm. The energy, E, is 

defined as follows: 

2,
,

max
1 ( )

ij

i j A
ik jki j

k B

d
E

K v v∀ ∈
≠

∀ ∈

=
+ −∑

 (3.7)

 

3.3.3 Computational Results 

This section presents the computational results. First, the performance of 

the proposed algorithm is evaluated when small sensor fields are deployed. The 

purpose of the experiment is to examine whether the algorithm can find the 

optimal solution under a minimum cost constraint. Then, the performance 

results in the case of larger sensor fields are presented under various cost 

constraints. 

The parameters of the cooling schedule are α = 0.75 and β = 1.3. The initial 

values of b0 and t0 are 5n and 0.1, respectively; and n is the amount of grids in 

the sensor field. The frozen temperature, tf, is set to t0/30. K  is 10000 and the 

cost of sensor, ci, ∀1≤ i≤ n, is set to one. 

 As all sensors have same cost, the cost constraint, Constraint (3.4), can be 

expressed as a limit on the number of sensors. This section uses a normalized 

term, sensor density, in the constraint. Sensor density is defined as follows: 

( )Sensor density (%) / 100kk B
y n * %

∀ ∈
= ∑  
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A. Experiment I 

Experiment I evaluates the performance of the proposed algorithm for 

smaller rectangular sensor fields that have no more than 30 grid points. The 

results are compared with those obtained in an exhaustive search. 

First, we find a minimum sensor density for a complete covered and 

discriminated sensor field. Then, an attempt is made to obtain the same result by 

using the proposed algorithm under a sensor density constraint. 

Table 3.1 shows the results. In all cases, the proposed algorithm achieves 

the same deployment of sensor fields with a minimum sensor density. The 

required sensor density ranges between 40% and 45%, except for the case of the 

4×3 rectangular sensor field. The exhaustive search for the 10×3 sensor field 

exceeds 65 minutes. However, the proposed algorithm finds the solution in 0.1 

second. 

 

Table 3.1: Comparison between exhaustive search and the SA algorithm. 

# of sensors # of sensors
Area 

Opt. SA 
Sensor density Area

Opt. SA
Sensor density

3x3 4 4 44.44% 6x4 10 10 41.67% 
4x3 6 6 50.00% 6x5 12 12 40.00% 
4x4 7 7 43.75% 7x3 9 9 42.86% 
5x3 6 6 40.00% 7x4 12 12 42.86% 
5x4 8 8 40.00% 8x3 10 10 41.67% 
5x5 10 10 40.00% 9x3 11 11 40.74% 
6x3 8 8 44.44% 10x3 12 12 40.00% 

 

 

B. Experiment II 

In this experiment, two larger sensor fields with 10×10 and 30×30 grid 

points are considered. The radius of the sensor is one. The values of ZIP3.1 are 
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determined by various sensor densities. The results obtained by the proposed 

algorithm are compared with the best solution obtained by the random 

placement approach. The best solution that has a minimum objective value is 

found in 1000 arbitrarily generated solutions. 

The time needed to compute 1000 arbitrary solutions for the 30 by 30 

sensor field with 70% sensor density is 700 seconds. There are only a couple of 

minutes for the proposed algorithm. Figure 3.2 and Figure 3.3 show that the 

required density for the desired solution obtained using the proposed algorithm 

ranges from 40% to 45%. This result is consistent with Table 3.1. In contrast, 

the random placement approach is associated with a relatively high density 

(54% and 69% for Figure 3.2 and Figure 3.3, respectively). The proposed 

algorithm is, therefore, very effective and scalable. 

 

Figure 3.2: Error distance vs. sensor density. (10x10, R=1) 

 

The proposed algorithm can achieve completely covered placement at a 

very low sensor density. The minimum required sensor densities in Figure 3.2 

and Figure 3.3 are only 25% and 24% respectively. The results are very close to 

the theoretical lower bound. (When the sensor radius is 1, a sensor can cover 5 

grid points. Hence, the lower bound of the sensor density for complete coverage 

is 20%). However, with the random placement approach, the required density 
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for a completely covered placement is very high (44% and 63% for Figure 3.2 

and Figure 3.3, respectively). The results show that the probability of finding the 

feasible solution using the random placement approach is very low when the 

sensor field area increases. 

 

 

Figure 3.3: Error distance vs. sensor density. (30x30, R=1) 

 

 

Figure 3.4 and Figure 3.5 show the required density for the case of radius 2. 

The desired solution obtained by the proposed algorithm ranges from 25% to 

30%. In contrast, the random placement approach is associated with a relatively 

high density (40% and 52% for Figure 3.4 and Figure 3.5, respectively). The 

results confirm that the proposed algorithm is very effective and scalable again. 

The minimum required sensor densities to achieve complete covered 

placement for the SA algorithm in Figure 3.4 and Figure 3.5 are only 10% and 

11% respectively. The results are very close to the theoretical lower bound. 

(When the sensor radius is 2, a sensor can cover 13 grid points. Hence, the lower 

bound of the sensor density for complete coverage is 7.69%). However, with the 

random placement approach, it requires very high density for a complete 
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covered placement (40% and 52% for Figure 3.4 and Figure 3.5, respectively). 

The results show that the random placement approach becomes more difficult to 

get feasible solutions when the area of the sensor field increases. 

 

Figure 3.4: Error distance vs. sensor density. (10x10, R=2) 

 

Figure 3.5: Error distance vs. sensor density. (30x30, R=2) 

 

From Figures 3.2 to 3.5 indicate that the placement of sensors by the 

proposed algorithm has a minimum error distance, 1, when the sensor density is 
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insufficient. The random placement approach cannot achieve the same result. 

 

3.3.4 Concluding Remarks 

This section considers the sensor placement problem for locating targets 

under cost constraints. We first formulate this problem as a min-max 

mathematical optimization model where the positioning accuracy is the 

objective. Then, the simulated annealing-based algorithm is developed to solve 

the optimization problem. The experimental results show that the proposed 

algorithm can efficiently obtain a high-quality solution. Additionally, the 

proposed algorithm is very effective, scalable, and robust. 
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3.4 Consider Adjustable Detection Radius on 

Random Sensor Placement Problem 

Several papers about sensor deployment consider the sensors to be 

scattered in the sensor field, and locations of sensors are determined randomly. 

Hence, determining the number of sensors for achieving ratio of coverage is one 

of important issues in pre-deployment phase. It motivates us to investigate 

whether the positioning accuracy can be improved by adjusting detection radius 

of each sensor when the location of each sensor is given by random manner. 

This section, we develop another simulated annealing algorithm and many sets 

of experiments to study the problem. 

3.4.1 Simulated Annealing Based Algorithm 

In this section, the cooling schedule of the algorithm is stated briefly. In 

this study, the set of candidate radius, R, as well as the number of sensors, N, are 

given. Initially, all the sensors are randomly deployed in sensor field. We 

separate those samples, whose configurations satisfy complete coverage, as well 

as to determine radius of each sensor by the proposed algorithm.   

Algorithm 3.2 shows a pseudo code of the simulated-annealing-based 

algorithm. The energy function is still Equation (3.7), which means the 

maximum error distance. 

Initially, sensors are randomly deployed under the number limitation. The 

radius of all sensors is set to an initial radius, which belongs to the candidate 

radius set, R. If the configuration still doesn’t satisfy the coverage constraint, it 

should be abandoned.  

In each loop, the solution configuration is randomly altered by one of 

following two actions: increasing one sensor’s radius, or reducing one sensor’s 
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radius. Each action only changes the status of one sensor. The solution with the 

minimum energy is saved as the best found solution. The terminate condition of 

the algorithm is either reaching the frozen temperature tf or getting the desired 

solution, i.e. complete discrimination. The energy of best found solution, Zmin, 

can be used to verify whether the latter condition is reached or not. When Zmin 

<1, the solution configuration is a completed discriminated sensor network, the 

algorithm should be terminated. Otherwise, the proposed algorithm will 

determine the new detection radius of each sensor to minimize the maximal 

error distance of the configuration until the terminated temperature is satisfied. 

 

Algorithm 3.2: The pseudo code of simulated annealing algorithm. 

1. According to the budget, randomly deploy sensors in the sensor field. 
2. The detection radius of all sensors is set to the initial radius, which 

belongs to R. 
3. If the initial configuration doesn’t satisfy the complete coverage constraint 

then goto step (23). 
4. Calculate initial energy Eold, Emin←Eold; save the initial configuration as the 

best solution. 
5. If the initial configuration is a desired solution, Emin < 1, then goto step 

(22). 
6. t ←t0, b ← b0 . 
7. While t > tf  do 
8. Repeat step (9)~(19) b times. 
9. Randomly choose one of sensors; alter its radius by increasing or  
 decreasing one unit. 
10. If coverage constraint is violated then recover the action in step (9); 

goto Step (19). 
11. Calculate Enew for the new configuration. 
12. Evaluate the difference in energy between the two configurations,  
 ΔE ← Enew−Eold. 
13. Generate a random number p, 0 < p < 1. 
14. If exp(−ΔE/t) ≤ p then recover the action in step (9) ; goto Step (19). 
15. Accept the new solution; Eold ← Enew. 
16. If Emin ≤ Eold then goto Step (19). 
17. Emin ← Eold; save current configuration as the best solution. 
18. If the best solution is a desired solution, Emin < 1, then goto step (22). 
19. End_repeat 
20.   b ←b ∗β, t ←t∗α 
21. End_while 
22. ZIP ← Emin. 
23. End 
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3.4.2 Computational Results 

This section presents the results of experiments. The experiments include 

two steps: Step1, the initial configurations are deployed by random approach, 

and we observe the average ratio of coverage and discrimination. Step 2, the 

radii are adjusted by the proposed algorithm as well as we evaluate the results. 

We develop many sets of experiments with varied number of sensors and 

initial radius. The parameters of the cooling schedule are α=0.7, β=1.3. The 

initial value of b0 and t0 are 2000 and 1.0, respectively. The frozen temperature tf 

is t0/2000. Furthermore, the sensor field is 150 (10 by 15) service points. Sensor 

cost, cj, is set to one, and the set of candidate radius R is {1, 2, …, 8}. 

 

A. Random Placement 

We randomly scatter lots of sensors in a sensor field with 150 service 

points. Let radius rk ranging from 5 to 8 length units; and we calculate the 

objective values of the configurations satisfying complete coverage by initial 

radius. Each experiment with specific number of sensors and initial uniform 

radius repeats 1000 times, and the statistical results are shown in Figures 2 to 5.  

The sensor density, d, which equals the number of sensors divided by the 

number of service points (d=N/|A|), is replaced the number of sensor to clearly 

show the results in Figures 3.6 to 3.9. 

Figure 3.6 shows the average objectives decrease monotonously when the   

sensor density increases. The ideal uniform radius is 5, 6, or 7, whose average 

objectives are lower than radius 8.  

Figure 3.7 depicts the best found objective in 1000 samples. The radius 8 is 
still the worst one, when sensor density is about 60%, the completely 
discriminated configuration just probably occurs. Therefore, due to Figures 3.6 
and 3.7, radii 5, 6, and 7 are still ideal choices for minimizing the maximum 
error distance by random placement. 
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Figure 3.6: Average error distance of the random approach. 

 

Figure 3.7: Minimum error distance of the random approach. 

 

Figure 3.8 shows the probability of achieving complete coverage for varied 

sensor density. It is reasonable that the probability of achieving complete 

coverage will increase if the detection radius increases. But, with adequate 

sensor density, over 40%, the complete coverage almost can be achieved with 

100% probability for each kind of radius. For achieving complete coverage, 

using uniform radius 5 is not a good choice. 

15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

7

A
ve

ra
ge

 e
rr

or
 d

is
ta

nc
e

Sensor Density (%)

 R = 5
 R = 6
 R = 7
 R = 8

15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

B
es

t-f
ou

nd
 e

rr
or

 d
is

ta
nc

e

Sensor Density (%)

 R = 5
 R = 6
 R = 7
 R = 8



 

 71

 

Figure 3.8: Probability to achieve complete coverage. 
(Random approach) 

 

Figure 3.9 depicts the probability of completely discriminated 

configuration for varied sensor density by random deployment. For achieving 

complete discrimination, radius 6 is the best choice in the candidate radius set.  

Figure 3.9: Probability to achieve complete discrimination. 
(Random approach) 
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maximizing probability of discrimination, respectively. Radius 5 is worse than 

radii 6 and 7 for satisfying coverage constraint. We will adopt radius 5 as the 

initial radius of random deployed configuration to check the coverage constraint. 

And we keep the samples with complete coverage to adjust individual radius in 

the next experiment.   

B. Adjusting Radii   

Subsequently, for each kind of sensor density, we randomly select 100 

configurations with complete coverage to test Algorithm 3.2. The simulated 

annealing based algorithm generates new configurations with various radii. A lot 

of statistical data are obtained, including average objective values, probability of 

complete discrimination, and the best found solution. The statistic results are 

compared with random placement with uniform radius 5, and are depicted from 

Figures 3.10 to 3.12.  

Figure 3.10 shows the average objective values for random placement with 

uniform radius 5, and adjusting radii by Algorithm 3.2. Obviously, after radii are 

adjusted, the average objective values are reduced about 50%. The average 

objective value of original configurations will be lower than 1 when the given of 

sensor density is over 65%. After the radii are adjusted, the average objective 

will be lower than 1 when the given sensor density is over 40%.  

 

Figure 3.10: Average error distance. 
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Figure 3.11 depicts the best found case for initial uniform radius 5 and 

varied radii determined by Algorithm 3.2. The best objective value of original 

configurations will be lower than 1 with 50% sensor density. After the radii are 

adjusted, the best objective will be lower than 1 when the sensor density is over 

30%. 

  

Figure 3.11: Minimum error distance. 
 

Figure 3.12: Probability to achieve complete discrimination. 
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 Figure 3.12 shows the probability of the complete discrimination of 

original configurations with uniform radius 5 and various radii by adjusting. The 

latter can obtain probability of complete discrimination approaching 100% with 

45% sensor density. But probability of complete discrimination for initial 

random configurations with uniform radius doesn’t over 80% until given 80% 

sensor density.  

Synthesizing the previous results, we can claim the proposed adjusting 

radius algorithm is very effective for reducing the maximum error distance and 

improving the probability of complete discrimination for the original sensor 

networks, which are deployed by random approach. 
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3.5 Concluding Remarks 

This chapter considers two issues: 1, sensor placement problem for locating 

target under cost constraints, 2, by adjusting individual radius, target positioning 

ability of sensor networks is improved.  

We first formulate problem one as a min-max mathematical optimization 

model where the positioning accuracy is the objective. Then, the simulated 

annealing-based algorithm, Algorithm 3.1, is developed to solve the 

optimization problem. The experimental results show that the proposed 

algorithm can efficiently obtain a high-quality solution. Additionally, the 

proposed algorithm is very effective, scalable, and robust. 

Next, we consider given sensor network by random placement with 

uniform radius initially. By statistical approach, we observe that neither smaller 

nor larger candidate radius set is an ideal choice for getting completely covered 

and discriminated sensor networks. The experimental results for the random 

deployment are analog to our previous work, which focuses on controlled 

deployment to determine the position of each sensor. 

Subsequently, we develop a simulated-annealing-based algorithm, 

Algorithm 3.2, to determine radius for each sensor. The objective is to improve 

target positioning ability of the sensor networks. The experiment results show 

that the proposed algorithm is very effective for reducing the maximum error 

distance and improving the probability of complete discrimination.  
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CHAPTER 4 SENSOR PLACEMENT 
PROBLEM FOR DIFFERENTIATED 
QUALITY OF POSITIONING AND 
SURVEILLANCE SERVICES 

4.1 Overview 

In this chapter, surveillance and target positioning ability are adopted as the 

QoS parameters for the sensor placement problem. Different levels of QoS 

require different deployment schemes and amount of resources. For example, in 

a surveillance-only service, a target anywhere in the sensor field has to be 

watched by at least one sensor node. However, WSN can deploy more sensor 

nodes for a target positioning service than for a surveillance-only service. 

Previous studies focus on how to deploy a WSN that can provide the same level 
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of QoS for the entire sensor field [CL04] [LC05]. The WSN should ideally 

provide a uniform QoS service throughout the sensor field. However, in practice, 

a differentiated quality of positioning service (i.e., differentiated QoS) for 

different regions in a sensor field is likely to be needed. Some important regions, 

called regions of interest (ROI), require a high accuracy positioning service. 

Conversely, some regions only need surveillance service. Providing a uniform 

QoS to comply the QoS requirement for all regions of the field leads to a high 

resource consumption. 

This study presents a generic framework for the sensor placement problem 

to support differentiated QoS for WSNs. We assume that the terrain of a sensor 

field is predetermined; hence, sensors with an adjustable sensing radius are 

deployed at candidate locations to meet a certain QoS requirement. The field has 

some placement limitations — sensors may be difficult or impossible to place at 

some locations (e.g., lakes or wetlands) in the field. Furthermore, the field can 

be divided into several regions. Each of which can have different levels of QoS 

requirements and service priority. All the QoS requirements can be satisfied if 

sufficient resources are available. If resources are scarce, then the QoS 

requirements of regions with higher service priority are satisfied first.  

The main parameter of QoS for the target positioning service is the 

positioning accuracy. Our previous studies define a sensor field as completely 

discriminable, which is the best positioning accuracy for a sensor field, if each 

service point in the field has a unique power code. In contrast, if multiple 

service points with the same power code, it incurs a positioning error. The 

positioning accuracy is defined in terms of the error distance, i.e., the distance 

between two service points with the same power code. Thus, a farther error 

distance means a worse positioning accuracy in a WSN.  

Wang, Liu, and Yin refer to OSI 7-Layer to define the QoS parameters for 

each function layer [WLY06]. Due to their recommendation, in this dissertation 

we take account of positioning accuracy, which is one kind of data quality. 

Hence, we consider positioning accuracy belong to application layer QoS 

parameter. 
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Yan, He and Stankovic proposed the concept of differentiated surveillance 

service of sensor networks [YHS03]. They developed an adaptable 

energy-efficient sensing coverage protocol to support differentiated surveillance 

by sensor networks. 

For providing the target positioning, this work refers to the positioning 

accuracy as the QoS parameter hereinafter. Moreover, the concept of 

differentiated QoS is also considered to provide weighted discrimination 

requirement for each ROI in a sensor field.  

This study formulates the proposed problem as a nonlinear integer 

programming problem, where the objective function is the minimization of the 

maximum error distance subject to complete coverage and deployment budget 

constraints. The problem is NP-complete for arbitrary sensor fields. Three 

heuristics are proposed to determine the location and detection radius for each 

sensor, such that the positioning accuracy is maximized. 

This study differs from prior works in the following ways. First, this study 

presents a generic framework and a corresponding mathematical model for the 

sensor placement problem. Second, the positioning accuracy is defined as a QoS 

parameter in WSN. Third, the sensors detection radius is considered as decision 

variables in the sensor deployment problem. To the best of our knowledge, no 

other studies have discussed QoS in WSN about positioning accuracy or 

differentiating positioning accuracy services up to date. 
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4.2 Problem Description 

4.2.1 The Framework 

This study assumes that the terrain of sensor field is predetermined, and 

that the sensor deployment problem is addressed by the controlled approach. In 

other words, sensors are placed by a prior planning to satisfy a particular QoS 

requirement. As shown in Figure 4.1, the sensor field can be represented as a 

collection of two-dimensional grid points, which are the candidate locations for 

sensors as well as the service points for the positioning service.  

 

 
Figure 4.1: A map of museum. (A sensor field with 150 service points) 

 

This study applies the 0/1 detection model for sensors. In this model, the 

coverage indicator bit of the sensor for a service point is set to 1 if its sensing 

radius can cover a service point, and 0 otherwise. Then, a power code, which is 

constructed by all coverage indicator bits of sensors, can be used to represent 

each service point. A service point with a unique power code is exactly 

positioning. Otherwise, the error distance of positioning is the maximum 

distance between those service points with the same power code. 
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For generality, a terrain of sensor field could have some placement 

limitations. That is, for all of the positions in the sensor field, the suitability for 

each placing sensor is unlikely. In most cases, sensors are expensive to place at 

many locations, and impossible in others, e.g. lakes or wetlands. Additionally, 

some locations might require surveillance and positioning services, but not be 

suitable for placing sensors. 

Intuitively, we can adopt sensors with large sensing radii which can be used 

to overcome the placement limitation. However, the use of such sensors affects 

the positioning accuracy for positioning service. Therefore, this study adopts 

sensors with adjustable sensing radius and takes the radius of a sensor as one of 

decision variables for deploying a WSN. This study explores the relationship 

between the best discrimination resolution of a sensor field and the sensing 

radius of sensors.  

This study provides a differentiated QoS instead of a uniform QoS. The 

sensor field can be considered as a set of disjoint ROIs that each of them has a 

different type of QoS. A ROI is an irregular region, which comprises a set of 

adjacent service points. Three types of QoS are provided for the sensor 

placement problem as follows:  

 Completely discriminable: each service point in an ROI can 

be positioned individually. This is the best QoS provided by 

a WSN. 

 Discriminable: a service point can be positioned in an ROI 

but with a constant error distance. In this type of QoS, a 

lower error distance indicates a better QoS.  

 Surveillance-only: all service points can be sensed by 

sensors, but cannot be discriminated. In this chapter, it is the 

basic QoS type. 

 

When the resource is limited, the most important ROIs need to have the 

highest priorities to achieve their QoS requirements. Therefore, except for the 
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QoS type, each ROI can specify its service priority in the sensor placement 

phase. The QoS requirement of ROIs with the highest-level priority can be 

satisfied first if resources are limited. If the resources are still not exhausted, 

then the requirement of the ROIs with the second-level priority can be satisfied, 

and so on. The QoS requirement of ROIs with lower-level priority is degraded if 

the WSN lacks resources. However, all ROIs have to support the 

surveillance-only service. 

The proposed sensor placement framework can be stated briefly as follow. 

In a sensor field with placement limitations, a WSN is constructed to support the 

differentiated service for all ROIs in the field. The WSN is constructed by 

deploying finite sensors at candidate locations, and adjusting the sensing radius 

of each sensor. The goal of the framework is either to satisfy QoS requirement 

for all ROIs, or to minimize QoS degradation for each ROI based on its level of 

priority.  

 

4.2.2 An Example 

Figure 4.1 illustrates a map of a museum which needs a WSN to support 

the security and guide system. For this purpose, the WSN has to provide 

surveillance and positioning information to the security and guide system in 

order to provide the location-based service.  

The monitoring area of the museum includes the main building and the 

grass surrounding the main building. Five exhibition areas, denoted by area A, B, 

C, D, and E, are arranged inside the museum. Area F is the grass field. When a 

visitor enters the monitoring area, the WSN has to obtain the information rapidly, 

i.e. the surveillance function. Moreover, while visitors reach exhibit areas, the 

WSN responds to locate the position of the visitors, i.e. the positioning function.  

A WSN that can provide the positioning service for the whole monitoring 

area of the museum is constructed based on the scenario. Moreover, three 

priority classes, high, medium, and low, are assigned to each monitoring area to 
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denote its importance. First, area A is the most important area, so it has a high 

service priority. Next, the other exhibition areas, B, C, D, and E, have medium 

service priorities. Third, area F has a low service priority. 

According to the above settings, the QoS is separated into four levels, 1–4, 

as shown in Table 4.1. The best positioning quality, level 4 QoS, is satisfied if 

the given resource is adequate. Conversely, if the given resource is scarce, the 

QoS guaranteed for the ROI with lower service priority will be degraded to 

lower level of QoS, Level 1-3 QoS, according to its service priority. In this 

scenario, Level 4 QoS is also called Uniform QoS because that all of the service 

points are discriminated, i.e. they have the same QoS.  

 
 

Table 4.1: The QoS supported for ROIs in the museum example. 

Level of QoS QoS supported for ROIs 

1 
 Completely discriminable: None. 
 Discriminable: ROI A. 
 Surveillance-only: ROIs B, C, D, E, and F. 

2 
 Completely discriminable: ROI A. 
 Discriminable: ROIs B, C, D, and E. 
 Surveillance-only: ROI F. 

3 
 Completely discriminable: ROIs A, B, C, D, and E. 
 Discriminable: ROI F. 

4  Completely discriminable: ROIs A, B, C, D, E, and F. 
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4.3 Mathematical Model 

This section presents a mathematical model for the proposed sensor 

placement problem. Since the proposed problem supports the differentiated 

services as well as the prioritized service, the mathematical model of the 

problem becomes quite intractable. This study introduces a discrimination 

weight to simplify the model. A discrimination weight is a positive real number, 

which denotes the priority of discrimination for service points i and j. An ROI 

with a larger discrimination weight has a higher priority to obtain guaranteed 

QoS. In this context, the objective of the proposed problem is to minimize the 

weighted error distance for all pairs of service points.  

A. Given Parameters and Decision Parameters 

The notations used to model the problem are listed as follows. 

Given Parameters:  

A : Index set of the service points in the sensor field. 

B : Index set of the sensor’s candidate locations, B⊆A. 

C : Set of the kinds of cost for sensor 

W : Set of the discrimination weight 

R : Set of candidate detection radiuses for sensor 

dij : Euclidean distance between location i and j; i, j∈A. 

ck : The cost of sensor located at position k; k∈B, ck∈C. 

cmin : The minimum cost of sensors. 

G : The budget limitation for sensors. 

N : The maximum number of sensors, N=G/cmin . 

wij : Discrimination weight, i,j∈A, wij∈W. 

K  : A larger number 
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Decision Variables: 

yk : 1, if a sensor is allocated at position k, and 0 otherwise, k∈B.

vi=(vi1,vi2,…,vik) : A power vector of location i, where vik is 1 if the target at 
location i can be detected by the sensor at position k and 0 
otherwise, i∈A, k∈B. 

rk : Detection radius of sensor located at k, k∈B. 

 
B. Original Model 
 

The original problem (IP4.1) is presented as follows. 

4.1 2,
,

min max
1 ( )

ij ij
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w d
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∀ ∈

≤∑  ∀i∈A (4.6)

rk∈ R   ∀k∈B (4.7)

vik=0 or 1  ,i A k B∀ ∈ ∈  (4.8)
yk=0 or 1  ,i A k B∀ ∈ ∈ . (4.9)

 

The objective of Problem IP4.1 is to minimize the maximum weighted 

error distance for any pair of service points. Suppose that ∑
∈∀

−=
Bk

jkik vvb 2)(  

presents the Hamming distance of two power vectors belonging to two service 

points i and j respectively. If the power vectors are distinct, then the weighted 
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error distance between service points i and j, i.e. (wijdij/(1+ K b)), approaches 

zero. In contrast, if the power vectors are the same, then the weighted error 

distance between service points i and j is wijdij, which is greater than or equal to 

wij. Constraint (4.1) requires the power vector (vik) of a service point which 

locates on the outside of the sensor coverage to be zero. Constraint (4.2) requires 

that the power vector (vik) of service points located on the interior of sensor 

detection range is 1. Constraint (4.3) requires the coverage to be full for the 

service point on which sensor is located. Constraint (4.4) requires that the 

budget to be limited. Constraint (4.5) is the completed coverage requirement. 

Constraint (4.6) requires the amount of sensors to monitor service point i. 

Constraint (4.7) requires that the detection radius of sensors belong to set R. 

Constraints (4.8) and (4.9) are integer constraints. 

Subsequently, we discuss how to determine the values of weights and 

constant K , two propositions are obtained and presented as follows. 

 

Proposition 4.1: If the diameter of the sensor field is D, and the 

discrimination weights are w1, w2, …, wh , and 

w1<w2<…<wh. Then wi+1>Dwi for any two adjacent 

weights wi and wi+1.   

Proof: 
Some groups of service points all have the same power code. 

Among these groups, the pair of service points with the highest 

discrimination weight and the furthest distance has the maximum 

weighted error distance (the worst positioning accuracy). In this sensor 

network, the weighted error distance S of any pair of service points, 

which has discrimination weight wi+1 and one unit length apart, should 

be smaller than Dwi.  

 

Proposition 4.2: If the diameter of sensor field is D; the detection range 
is r, and the discrimination weights are w1, w2, …, wn , 
and w1<w2< …<wh, then the constant K  must satisfy 
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constraints as follows.  
1. If 2r≥D, then w1 > (wh⋅D)/(1+ K ), 
2. If 2r<D, then w1>max{wh(2r)/(1+ K ), 

(wh⋅D)/(1+2 K )}. 
Proof: 

The minimum value of weighted error distance for 

indistinguishable service points is w1, which must be greater than the 

weighted error distance for each pair of discriminated service points, 

(wi⋅dij)/(1+ K Σ(vi−vj)2). The maximum value of (wi⋅dij)/(1+ K Σ(vi−vj)2) 

is first discussed.  

For 2r≥D 

The furthest distance between any pair of discriminated service 

points is D. The closest distance between two discriminated power codes 

is 1. Hence, the maximum value of (wi⋅dij)/(1+ K Σ(vi−vj)2) is 

(wi⋅D)/(1+ K ). Therefore, the constraint, w1 > (wh⋅D)/(1+ K ), must be 

satisfied for K . 

For 2r<D 

The two discriminated service points with furthest distance D 

cannot possibly be covered with the same sensors while the detection 

radius of the sensor is less than the diameter of the sensor field. Hence, 

the distance between their power codes is at least 2, and 

(wh⋅dij)/(1+ K Σ(vi−vj)2) is (wh⋅D)/(1+2 K ). 

Conversely, consider the case of two discriminated service points 

covered by at least one sensor. The further distance between them is 2r, 

and the minimum distance between their power codes is 1. In this case, 

the value of (wh⋅dij)/(1+ K Σ(vi−vj)2) is (wh⋅2r)/(1+ K ). 

Therefore, both (wh⋅D)/(1+2 K ) and (wh⋅2r)/(1+ K ) must be less 

than w1.  
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4.4 Lagrangean Relaxation Approach 

4.4.1 Equivalent Model 

The original model is a nonlinear combinatorial problem, and is therefore 

hard to solve directly. Hence, an equivalent model is developed. The 

transformation method is also presented in this section. 

An equivalent formulation of problem (IP4.1) is given by (IP4.2) below. 

Define 

2,
, 

max
1 ( )

ij ij
v i j A

ik jki j
k B

w d
S

K v v∀ ∈
≠

∀ ∈

=
+ −∑

………………………..(4.10) 

, and rewrite the objective function as follows. 
 

4.2 minIP vv
Z S=  (IP4.2)

subject to: 
21 ( )

1 ik jk
k B

v ij ij

K v v

S w d
∀ ∈

+ −
≤

∑
 ∀i, j∈A,i≠j (4.11)

vS S S≤ ≤  
S is lower bound of vS ; 

S is upper bound of vS .  
(4.12)

vikdik≤ ykrk   ∀i∈A, k∈B, i≠k (4.1)

ik
k ik

k

d y v
r

> −  ∀i∈A, k∈B, i≠k (4.2)

vkk= yk   ∀k∈A∩B (4.3)

k k
k B

c y G
∀ ∈

≤∑   (4.4)

1ik
k B

v
∀ ∈

≥∑  ∀i∈A (4.5)
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ik
k B

v N
∀ ∈

≤∑  ∀i∈A (4.6)

rk∈ R   ∀k∈B (4.7)

vik=0 or 1  ,i A k B∀ ∈ ∈  (4.8)

yk=0 or 1  ,i A k B∀ ∈ ∈  (4.9)

 

Constraint (4.11) is added to stipulate the upper and lower bound of the 

maximum weighted error distance S. The theoretic upper and lower bounds are 

then discussed. 

 

Proposition 4.3: Theoretic upper bound of vS , S , is at whD, where wh 

denotes the highest discrimination weight, and D is the 

smaller value of the diameter of a sensor field and the 

maximum detection range of sensors.  

 

Proof: 

If the sensor field is not completely discriminable, then a pair of 

service points on the field that has the farthest distance D and the same 

power vectors can be found. The value of D is not greater than the 

diameter of the field and the maximum detection range of the sensors. 

Hence, S  is bounded by whD.  

 

Proposition 4.4: Theoretic lower bound of vS , S , is at wl/(1+Dh K ) 

where wl is the lowest discrimination weight, and Dh 

represents the maximum Hamming distance of power 

vectors for all service points. If n is the maximum 

number of sensors that can cover a service point, then 

Dh=max{2n, N}.  
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4.4.2 Transformation 

Problem (IP4.2) is still very hard to solve, since Constraint (4.11) is 

nonlinear. Instead of solving Problem (IP4.2) directly, the cutting plane method 

is applied to transform Constraint (4.11) to a linear Constraint (4.13). 

An auxiliary variable tijk is introduced, where tijk=vikvjk. Table 4.2 shows the 

truth table for variables vik, vjk and tij. The possible values for the three variables 

only exist in four integer vertices, p1, p2, p3, and p4, of the polyhedron, which 

are depicted in Figure 4.2. The four planes constructing the polyhedron are 

presented as following. 

 
vik-tijk≥0 ∀i,j∈A, i≠j, k∈B 
vjk-tijk≥0 ∀i,j∈A, i≠j, k∈B 
vik+ vjk -tijk≤1 ∀i,j∈A, i≠j, k∈B 
tijk≥0 ∀i,j∈A, i≠j, k∈B 

 
Table 4.2: Truth table for variables vik, vjk, and tijk. 

vik vjk tijk 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

 

Figure 4.2: Relationship between vik , vjk , and tijk. 

 

vik 

P4

P2P1

P3

tijk

vjk
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The auxiliary variable tijk is employed to replace vikvjk. Equation (4.11) can 

thus be transformed to linear Equation (4.22). The transformation is described as 

follows.  

2 2 2

2

( ) 2

                  = 2       ( , 0 or 1)

Let    

( ) 2

ik jk ik ik jk jk

ik ik jk jk ik jk

ijk ik jk

ik jk ik jk ijk

v v v v v v

v v v v v v

t v v

v v v v t

− = − +

− + =

=

⇒ − = + −

∵
 

According to the cutting plane method, Constraints (4.13)~(4.17) must be 

added to require relationship between vik, jkv , and tijk. Constraint (4.13) requires 

that the number of sensors that can cover both points (i and j) cannot be over the 

total number of sensors. Hence, the nonlinear combinatorial Problem (IP4.1) is 

transformed to an equivalent linear combinatorial Problem (IP4.3).  

 

4.3 minIP vv
Z S=  (IP4.3)

subject to: 

1 ( 2 )
1 ik jk ijk

k B

v ij ij

K v v t

S w d
∀ ∈

+ + −
≤

∑
 ∀i,j∈A,i≠j (4.11)

vS S S≤ ≤  
S is lower bound of vS ; 

S is upper bound of vS .  
(4.12)

vikdik≤ ykrk   ∀i∈A, k∈B, i≠k (4.1)

ik
k ik

k

d y v
r

> −  ∀i∈A, k∈B, i≠k (4.2)

vkk= yk   ∀k∈A∩B (4.3)

k k
k B

c y G
∀ ∈

≤∑   (4.4)

1ik
k B

v
∀ ∈

≥∑  ∀i∈A (4.5)

ik
k B

v N
∀ ∈

≤∑  ∀i∈A (4.6)

rk∈ R   ∀k∈B (4.7)



 

 92

vik=0 or 1  ,i A k B∀ ∈ ∈  (4.8)

yk=0 or 1  ,i A k B∀ ∈ ∈  (4.9)

ijk
k B

t N
∀ ∈

≤∑  ∀i,j∈A, i≠j (4.13)

vik-tijk≥0 ∀i,j∈A, i≠j, k∈B (4.14)

vjk-tijk≥0 ∀i,j∈A, i≠j, k∈B (4.15)

vik+ vjk -tijk≤1 ∀i,j∈A, i≠j, k∈B (4.16)

tijk=0 or 1 ∀i,j∈A, i≠j, k∈B (4.17)

 

 

4.4.3 Relaxation 

This section presents the algorithm for solving the proposed sensor 

placement problem. An algorithm based upon Lagrangean relaxation is 

considered. Lagrangean relaxation is an approach for obtaining lower bounds 

(for minimization problems) as well as good solutions in integer programming 

problems. A Lagrangean relaxation is obtained by identifying in the primal 

problem and a set of complicated constraints whose removal will simplify the 

solving procedure of the primal problem. Each of the complicated constraints is 

multiplied by a multiplier and added to objective function. The mechanism is 

known as dualizing the complicated constraints [Fis81] [Fis85] [Geo74] 

[HWC74]. 

 

 

A. Relaxation 

By Lagrangean relaxation, we dualize Constraints (4.1), (4.2), (4.3), (4.11), 

(4.14), (4.15), and (4.16) of Problem (IP4.3), as well as get the following 

Lagrangean relaxation problem. 
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Problem (LR4.1): 

( )
1 2 3 4 5 6 7 1

1 2
1( , , , , , , ) min

ik jk ijk
k B

D v ijv i A j A v ij ij
i j

K v v t
Z u u u u u u u S u

S w d
∀ ∈

∀ ∈ ∀ ∈
≠

⎧ ⎛ ⎞+ + −
⎪ ⎜ ⎟= + −⎨ ⎜ ⎟
⎪ ⎜ ⎟

⎝ ⎠⎩

∑
∑ ∑

( ) ( )2 3 4

, ,

        ik
ik ik ik k k ik k ik kk ik k

i A k B i A k B k B k Bk
i k i k

du v d y r u y v u v y
r∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠

⎛ ⎞
+ − + − − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑

5 6         + ( )+ ( )ijk ijk ik ijk ijk jk
i A j A k B i A j A k B

i j i j

u t v u t v
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠

− −∑ ∑ ∑ ∑ ∑ ∑

7         + ( 1)              (LR4.1)ijk ik jk ijk
i A j A k B

i j

u v v t
∀ ∈ ∀ ∈ ∀ ∈

≠

⎫
⎪+ − − ⎬
⎪⎭

∑ ∑ ∑  

 subject to: 

vS S S≤ ≤  
S is lower bound of vS ; 

S is upper bound of vS .  
(4.11)

k k
k B

c y G
∀ ∈

≤∑   (4.4)

1ik
k B

v
∀ ∈

≥∑  ∀i∈A (4.5)

ik
k B

v N
∀ ∈

≤∑  ∀i∈A (4.6)

rk∈ R   ∀k∈B (4.7)

vik=0 or 1  ,i A k B∀ ∈ ∈  (4.8)
yk=0 or 1  ,i A k B∀ ∈ ∈  (4.9)

ijk
k B

t N
∀ ∈

≤∑  ∀i,j∈A, i≠j (4.13)

tijk=0 or 1 ∀i,j∈A, i≠j, k∈B (4.17)

 

 

The multipliers u1, u2, …, u7 are the vectors of { 1
iju }, { 2

iku }, …, { 7
ijku } 

respectively. Besides Constraint (4.3) with multiplier { 4
kku }, the other 

Constraints are dulized such that the corresponding multipliers, u1, u2, u3, u5, u6, 
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and u7 are nonnegative. 

The dual Problem (LR4.1) is rewritten to Equation (LR4.2), where the 

constant terms are omitted. 

 
1

1 2 3 4 5 6 7 1

, ,

1( , , , , , , ) min ij
D v ijv i A j A i A j Av ij ij

i j i j

u
Z u u u u u u u S u

S w d∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠

⎧
⎪= + −⎨
⎪⎩

∑ ∑ ∑ ∑  

1 1 1

, , ,

2
ik jk ijk

k B k B k B
ij ij ij

i A j A i A j A i A j Aij ij ij ij ij ij
i j i j i j

v v t
K u K u K u

w d w d w d
∀ ∈ ∀ ∈ ∀ ∈

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠ ≠

− − +
∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑  

2 2 3 3

, , , ,

         ik ik ik ik k k ik k ik ik
i A k B i A k B i A k B i A k B

i k i k i k i k

u d v u r y u y u v
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠ ≠ ≠

+ − + −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

3 4 4 5

, ,

         + +ik
ik kk kk kk k ijk ijk

i A k B k A k B k B k B i A j A k Bk
i k i j

du u v u y u t
r∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠

− −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

5 6 6

,

          +ijk ik ijk ijk ijk jk
i A j A k B i A j A k B i A j A k B

i j i j i j

u v u t u v
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠ ≠

− −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
 

7 7 7

, , ,

          ijk ik ijk jk ijk ijk
i A j A k B i A j A k B i A j A k B

i j i j i j

u v u v u t
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠ ≠

+ + −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
 

7

,

                                                                           (LR4.2)ijk
i A j A k B

i j

u
∀ ∈ ∀ ∈ ∀ ∈

≠

⎫
⎪− ⎬
⎪⎭

∑ ∑ ∑  

, where the constant term is  
1

7

, ,

ij
ijk

i A j A i A j A k Bij ij
i j i j

u
u

w d∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠

⎛ ⎞
⎜ ⎟− −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ . 

 
 

B. Decomposition 

According to Lagrangean relaxation approach, Problem (LR4.2) will be 
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decomposed into four mutually independent and easily solvable subproblems. 

Each sub-problem only involves one or two decision variables and must be 

optimal solved. Note that, the constant part is excluded from the objective 

function in the subproblems but will be considered in the lower bound 

computation. 

 
Subproblem 1: for vS  

1 1
4.1

,

1( ) min                               (SUB4.1)   SUB v ij
i A j A v

i j

Z u S u
S∀ ∈ ∀ ∈

≠

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑  

subject to: 
 

vS S S≤ ≤   (4.11)

 

To optimal solve the subproblem, the right hand side of Equation (SUB4.1) 

will be differentiated respected to variable S. Let new equation equals to zero 

and get the optimal solution of variable S, 1

  

opt ij
i A j A

i j

S u
∀ ∈ ∀ ∈

≠

= ∑ ∑ .  

If optS S S≤ ≤ then let 1
4.1

  

2SUB ij
i A j A

i j

Z u
∀ ∈ ∀ ∈

≠

= ∑ ∑ . Otherwise, S  and S are 

substituted for S to get 1
4.1( )U

SUB ijZ u  and 1
4.1( )L

SUB ijZ u . We can get optimal 

solution such that 
1 1

1
4.1

, ,

( ) min ,ij ij
SUB

i A j A i A j A
i j i j

u u
Z u S S

S S∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟= + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ ∑ ∑ ∑ . 

  
 

Subproblem 2: for yk and rk 

2 3 4 2 3
4.2

, ,

( , , ) minSUB ik k k ik k
i A k B i A k B

i k i k

Z u u u u r y u y
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠

⎛
⎜= − +⎜⎜
⎝

∑ ∑ ∑ ∑  

3 4

,

                                                   (SUB4.2)ik
ik kk k

i A k B k B k Bk
i k

du u y
r∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠

⎞
⎟− − ⎟⎟
⎠

∑ ∑ ∑ ∑  
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Equation (SUB4.2) is rewritten to (SUB4.2a), as follows. 

2 3 4
4.2 ( , , )SUBZ u u u  

( )2 3 3 4

,

min       (SUB4.2 )ik
ik k ik k ik kk k

k B i A k Bk
i k

du r u y u u y a
r∀ ∈ ∀ ∈ ∀ ∈

≠

⎛ ⎞
⎛ ⎞⎜ ⎟= − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎝ ⎠
∑ ∑ ∑  

subject to:  

k k
k B

c y G
∀ ∈

≤∑   (4.4)

rk∈ R   ∀k∈B (4.7)

yk=0 or 1  ,i A k B∀ ∈ ∈ . (4.9)

 

Subproblem 2 comprises |B| problems. For each sensor k, we let )( kk rb  

represent the function (SUB 4.2a) while 1=ky .  

( )2 3 3 4

,

( ) ik
k k ik k ik ik kk

i A k Bk
i k

db r u r u u u
r∀ ∈ ∀ ∈

≠

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
∑ ∑

.

 

Then, we calculate bk for each rk, which is belong to set R, as well as find 

the best rk such that bk is the minimum denoted by bk,min. Next, from the set of 

unallocated sensors, we iteratively choose sensor k with the minimal bk,min to be 

set. The cost of sensor k must be accumulated. While adding the cost of sensor k 

will exceed the total deployment cost G, the procedure must be stopped.    

 

Subproblem 3: for vik  

1 2 3 4 5 6 7 1
4.3

,

( , , , , , , ) min
ik

k B
SUB ij

i A j A ij ij
i j

v
Z u u u u u u u K u

w d
∀ ∈

∀ ∈ ∀ ∈
≠

⎛
⎜= −⎜⎜
⎝

∑
∑ ∑  
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1 2 3 4

, , ,

jk
k B

ij ik ik ik ik ik kk kk
i A j A i A k B i A k B k K k Bij ij

i j i k i k

v
K u u d v u v u v

w d
∀ ∈

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠ ≠

− + − +
∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

5 6 7

, , ,

ijk ik ijk jk ijk ik
i A j A k B i A j A k B i A j A k B

i j i j i j

u v u v u v
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠ ≠

− − +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

7

,

                                                        (SUB4.3)ijk jk
i A j A k B

i j

u v
∀ ∈ ∀ ∈ ∀ ∈

≠

⎞
⎟+ ⎟⎟
⎠

∑ ∑ ∑  

  

To simplify Equation (SUB4.3), variable vjk should be eliminated from 

Equation (SUB4.3). For each term with the variable vjk, index j substitutes for i 

contrariwise. Consequently, the equivalent subproblem (SUB4.3a) replaces 

Equation (SUB4.3). 

 

1 1

1 2 3 4 5 6 7
4.3

, ,

( , , , , , , ) min          
ij ik ji ik

k B k B
SUB

i A j A i A j Aij ij ji ji
i j i j

u v u v
Z u u u u u u u K K

w d w d
∀ ∈ ∀ ∈

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠

⎛
⎜= − −⎜
⎜
⎝

∑ ∑
∑ ∑ ∑ ∑

2 3 4 5

, , ,

          +ik ik ik ik ik ik ik ijk ik
i A k B i A k B i B k B i A j A k B

i k i k i j

u d v u v u v u v
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠ ≠

+ − −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

6 7 7

, , ,

           +  +           jik ik ijk ik jik ik
i A j A k B i A j A k B i A j A k B

i j i j i j

u v u v u v
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠ ≠

⎞
⎟− ⎟⎟
⎠

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

1 1
5 6 7 7

,

          min ij ji
ijk jik ijk jik

i A k B j A ij ij ji ji
i j

Ku Ku
u u u u

w d w d∀ ∈ ∀ ∈ ∀ ∈
≠

⎧ ⎛ ⎞−⎪= − − − + +⎜ ⎟⎨ ⎜ ⎟⎪ ⎝ ⎠⎩
∑ ∑ ∑  

( )2 3 4

, ,

                 +                                     (SUB4.3 ) ik ik ik ik ik
k B k B

i k i k

u d u u v a
∀ ∈ ∀ ∈

≠ =

⎫
⎪+ − ⎬
⎪⎭

∑ ∑  
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subject to: 
 1ik

k B
v

∀ ∈

≥∑  ∀i∈A (4.5)

 
ik

k B
v N

∀ ∈

≤∑  ∀i∈A (4.6)

 vik=0 or 1 ∀i∈A, k∈B (4.8)

 

Subproblem 3 comprises |A×B| problems. For each service point i, we 

calculate the coefficient of each variable vik, and sort them in non-decreasing 

order. Iteratively, if the minimal one of the coefficient vik is a positive number, 

we set the corresponding vik to be zero. Otherwise, the corresponding vik is 

assigned to 1 under the number of sensors constraint. Additionally, for each 

service point, the coverage constraint must be satisfied also. If no any vik is 1 for 

service point i, the vik with the minimum coefficient will be set. 

 
 
Subproblem 4: for tijk  
 

1 5 6 7 1 5
4.4

, ,

( , , , ) min 2 +
ijk

k B
SUB ij ijk ijk

i A j A i A j A k Bij ij
i j i j

t
Z u u u u K u u t

w d
∀ ∈

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠

⎛
⎜= ⎜⎜
⎝

∑
∑ ∑ ∑ ∑ ∑  

6 7

, ,

                  +               (SUB4.4)ijk ijk ijk ijk
j A j A k B i A j A k B

i j i j

u t u t
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≠ ≠

⎞
⎟− ⎟⎟
⎠

∑ ∑ ∑ ∑ ∑ ∑  

 

Subproblem (SUB4.4) comprises |A×A×B| problems. It is rewritten to 

Subproblem (SUB4.4a) as follows. 
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1
1 5 6 7 5 6 7

4.4

,

2
( , , , ) min +   (SUB4.4 )ij

SUB ijk ijk ijk ijk
i A j A k B ij ij

i j

Ku
Z u u u u u u u t a

w d∀ ∈ ∀ ∈ ∀ ∈
≠

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

subject to: 
 

ijk
k B

t N
∀ ∈

≤∑  ∀i,j∈A, i≠j (4.13)

 tijk=0 or 1 ∀i,j∈A, i≠j, k∈B (4.17)
 

 

Subproblem (SUB4.4a) can be solved easily. First, the coefficient is 

calculated for each tijk. Then we sort the coefficients in non-decreasing order. If 

the coefficient for tijk is non-positive, tijk is assigned to 1. Otherwise, tijk is zero. 

However, the number of tijk which is set one can’t exceed the maximal number 

of sensors. 

 
 

C. Lower bound 

In each iteration, after every subproblem is optimally solved, the objective 

value of the dual problem, ZD, is a lower bound of original problem. It can be 

obtained by summarizing the objective values of all subproblem and the 

constant part as the following equation.  

( )1 2 3 4 5 6 7
4.1 4.2 4.3 4.4, , , , , ,D SUB SUB SUB SUBZ u u u u u u u Z Z Z Z= + + +

1
7

, ,

                                                          ij
ijk

i A j A i A j A k Bij ij
i j i j

u
u

w d∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
≠ ≠

⎛ ⎞
⎜ ⎟+ − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑
.

 

According to the weak Lagrangean duality theorem [Fis81] [Fis85], the 

optimal objective value of the dual problem (LR), ZD(u1,u2,u3,u4,u5,u6,u7), is a 

lower bound on primal problem (IP4.3). ZIP4.3 is subject to (u1,u2,u3,u5,u6,u7)≥0. 

Therefore, we can obtain the lower bound by  
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1 2 3 5 6 7

1 2 3 4 5 6 7

( , , , , , ) 0
max ( , , , , , , )D D

u u u u u u
Z Z u u u u u u u

≥
=       (D1) 

 Several methods can be used for solving Equation (D1) to get the highest 

lower bound. One of the most popular methods is the subgradient method. Let a 

(|A|2 + |A||B| + |A||B| + |A||B| + |A|2|B| + |A|2|B| + |A|2|B|) vector g represent a 

subgradient of ZD(u1, u2, u3, u4, u5, u6, u7). We denote 

( )1 2 3 4 5 6 7, , , , , ,ij ik ik ik ijk ijk ijku u u u u u uπ =  as the vector of Lagrangean multipliers with 

respect to relaxed constraints. In iteration m of subgradient optimization 

procedure, the multiplier π m is updated by π m+1= π m+ξ mgm. 

The step size ξ m is determined by 
*

4.3
2

( ( ))m
m IP D

m

Z Z

g

λ πξ −
=  

, where Z*
IP4.3 represents an upper bound on the primal objective value, obtained 

by applying a heuristic to (IP4.3), and λ is a scalar satisfying 0≤λ≤2. 

 

4.4.4 Getting Primal Feasible Solutions 

After optimally solving each Lagrangean relaxation problem, a set of 

decision variables can be found. Since some constraints are relaxed, the 

solutions of Lagrangean relaxation might be infeasible for the primal problem. 

Hence, an efficient heuristic algorithm which adjusts the dual solutions to obtain 

the feasible solutions for the primal problem (IP4.3) must be developed. By 

increasing the number of iterations, the better primal feasible solution is an 

upper bound (UB) on the primal problem (IP4.3), while the dual problem 

provides the lower bound (LB) of the primal problem (IP4.3). 

 

Algorithm 4.1 

Step 1: Initialize the decision variables, yk, vik, and rk. 

Step 1.1: Before the fifth iteration, initial decision variables yk are 
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determined by sub-problem (SUB4.2) on Lagrangean 

relaxation problem. For each sensor, the five recent history 

solutions are recorded. After the fifth iteration, we can 

randomly determine whether decision variables yk should be 

one by the placement probability for the sensor k in history 

record. 

Step 1.2: Check Constraints (4.1), (4.2), and (4.3), for each sensor k. For 

each service point i, let vik=0 if dik>maximal radius. Add sensor 

k if vik=1 and dik<maximal radius, for each service point i.  

Step 1.3: Determine the radius rk if sensor k is allocated. For each sensor 

k, find the farthest distance between sensor k and the service 

points with vik=1 to determine the radius rk.  

Step 1.4: The decision variables vik can be obtained by the decision 

variables yk .  

 

Step 2: To satisfy the coverage and cost constraint, the sensors might be 

added, deleted or changed the radius.  

Step 2.1: If the coverage constraint is violated, “Change Radius” or 

“Add Sensor” procedure will be executed. Randomly select a 

sensor if the increase of radius for the sensor can improve 

coverage, the radius will be changed. If the operation of 

change radius is not suitable, the other operation, “Add 

Sensor”, can be tried. The sensor that can cover the most 

uncovered service points will be added with a proper radius 

until the coverage constraint is satisfied. 

Step 2.2: If the budget constraint is violated, “Delete Sensor” procedure 

can be applied. Remove a sensor away from the sensor field 

randomly, if the coverage of the sensor field is not changed. 

The operation is executed until the budget constraint is 

satisfied. 

Step 2.3: Running the previous two steps until both the coverage and 

budget constraint are satisfied. 
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Step 3: For each sensor, the operations “Change Position” and “Modify 

Radius” are tried in order to improve the discrimination resolution. 

 
 

4.4.5 Computational Results               

Three sets of experiments were conducted to evaluate the performance of 

the proposed algorithm under various settings for the numbers of priority class, 

amount of resources, placement limitation, topology area, and detection radius. 

The proposed algorithms were coded in C in the Microsoft Visual C++ 6.0 

development environment. All the experiments were performed on a Pentium 

IV-3.0GHz PC running Microsoft Windows XP Pro. The performance metrics 

were assessed in terms of the solution quality and computation time.  

 
 
A. Experiment I 
 

The first experiment was designed to observe the solution qualities of the 

proposed algorithm. In this experiment, the system parameters, namely 

placement limitation and topology area were fixed while the amount of 

resources, detection radius, and numbers of priority class were variant 

parameters. The sensor field topology was based on the previous museum 

example, as shown in Figure 4.1. The sensor field was a 10×15 rectangular field, 

and was divided into seven different ROIs. The QoS and service priority for 

these ROIs are the same as the example. The candidate sensing-radius of sensor 

is either fixed or varying between 1 and 8 units of length. The parameters about 

LR algorithm include: 0<λ≤2, improvement counter is 40, and number of 

iterations is 1500. 

For the differential positioning accuracy, the set of discrimination weights 

was set to {0.1, 5, 100}. The discrimination weight between any two service 

points on ROI A was set to the high weight, wh=100. The discrimination weight 
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between any two service points, which both on ROIs B, C, D, or E, was set to 

the medium weight, wm=5. The weights between any two service points, which 

both are on ROI F was set to the low weight wl=0.1. The weight between any 

pair of service points on different ROIs was set to the highest weight, wh=100. 

The diameter of the sensor field was set to D=16. The sensor cost of each 

location, ck, is one. The parameters wl, wm, and wh were adopted according to 

Proposition 4.1. Parameter K = 20000 follows Proposition 4.2. 

To contrast the differentiated QoS and uniform QoS, we design another set 

of experiments for uniform QoS. All of service points in the sensor field, shown 

in Figure 4.1, require the same discrimination weight. Let wij=100 for all i, j. 

When objective value is less than 100, the sensor field is completed 

discriminated. Otherwise, it is discriminated with error distance (ZIP4.3/100). 

 
 

 

Figure 4.3: The minimum required number of sensor vs. 
various sensing radius. (Fixed radius) 

 

Figure 4.3 shows the minimum required number of sensor for different 

levels of QoS requirements. A sensor has a single sensing radius ranging 

between 1 and 8. The curves marked “Level 2 QoS” and “Level 3 QoS” 

represent the degree to which Level 2 and Level 3 QoS requirements for ROIs 

are satisfied, as listed in Table 4.1. The highest curve “Uniform QoS” means 
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that all service points in Figure 4.1 can be completely discriminated. Figure 4.3 

demonstrates that the minimum number of sensors for the sensor network 

deployment depends strongly on the detection radius of a sensor. Experiment I 

indicates that using sensors with radius 5 yields the lowest deployment density. 

In Figure 4.3, we can observe that at the beginning and ending of all curves will 

trend to up; we give more discussion in Section 4.6.4. 

 

Figure 4.4: The best-found objective values for various set 
of sensing radius. (Uniform QoS) 

 

Figure 4.5: The best-found objective values for various set 
of sensing radius. (Differentiated QoS) 
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uniform QoS and the differentiated QoS respectively. The candidate sets of the 

sensing radius for sensors were {4, 5, 6}, {3, 4, 5, 6, 7}, and {1, 2, 3, 4, 5, 6, 7, 

8}. Table 4.3 lists the ranges of objective values for the differentiated QoS 

scenario by ZIP4.3. These objective values were the weighted error distance and 

their corresponding quality of positioning service providing by the sensor 

network. For both the uniform and differentiated QoS, the objective values of 

the three candidate sets were very close according to Figure 4.4 and Figure 4.5. 

The candidate radius set {3, 4, 5, 6, 7} has a better objective value than others. 

With these candidate sets, each service point on the field can be completely 

discriminated when the amount of sensor nodes reaches 26. 

 
Table 4.3: The levels of QoS and their ranges of ZIP4.3 in the 

experiment for differentiated QoS. 

Level of QoS ZIP4.3 (weighted error distance) Notes 
1 ZIP4.3 ≥ 100   ZIP4.3 ≥ wh 

2 100> ZIP4.3 ≥ 5 wh> ZIP4.3 ≥ wm 

3 5> ZIP4.3 ≥ 0.1 wm > ZIP4.3 ≥ wl 

4 ZIP4.3 < 0.1 ZIP4.3 < wl 

 

 

 

Figure 4.6: Performance comparison between the uniform 
(U) and differentiated (D) QoS services. 
(Adjustable radius, R={3, 4, 5, 6, 7}) 
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Figure 4.7: Performance comparison between the uniform 
(U) and differentiated (D) QoS services. (Fixed 
radius, R=5) 

 

Figure 4.6 and Figure 4.7 compare the performance of the uniform and 

differentiated QoS represented by U and D respectively. The figure only depicts 

the curves of R={5} and R={3, 4, 5, 6, 7} for the two QoS requirements. These 

cases achieved the best performance for the scenario of the fixed and various 

detection radii respectively. Figure 4.6 and Figure 4.7 indicate that the 

deployment for the network with the differentiated QoS requirement had a better 

objective value, i.e., the lower weighted error-distance, when the number of 

deployed sensors was less than 26. That means that service points in ROIs with 

higher service priority can be discriminated even with a small number of sensors. 

Moreover, ROIs with lower service priority can obtain a better QoS support (i.e., 

lower weighted error distance). In Contrast, if a uniform QoS for ROIs is 

requested, then the service priority for the ROIs cannot be guaranteed effectively. 

This result confirms the effectiveness of the proposed framework as well as the 

algorithm. 
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the proposed algorithm under topography with placement limitations. Placement 

limitations were added to the topography used in the first experiment: sensors 

could not be placed in 35 grid points located at the right-upper corner of the 

museum, as shown in Figure 4.8. Let the deployment cost of the location with 

placement limitation greater than the deployment budget. Also, the sensor cost 

in other locations is one. Except for this change, the scenario for this experiment 

was the same as that in Experiment I. 

 

Figure 4.8: The topography with placement limitations. 

 

 

 

Figure 4.9: The minimum required number of sensor vs. 
various sensing radius. (Fixed radius, 
placement limited) 
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Figure 4.10: The best-found objective values for various set 
of sensing radius. (Uniform QoS, placement 
limited) 

 

 

 

Figure 4.11: The best-found objective values for various set 
of sensing radius. (Differentiated QoS, 
placement limited) 
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have the same radius. Second, different candidate sets of sensing radius obtained 

almost the same objective value in the case of sensors with various radii. Figure 

4.9 indicates that sensors with radius 6 required the minimal number of sensors 

to achieve uniform QoS (i.e., level 4 QoS). This differs from the result of 

experiment I, and indicates that both topography and placement limitation 

dominate the selection of the sensor radius. 

Figure 4.12 and Figure 4.13 indicate that even with the placement limitation, 

the deployment for the network with the differentiated QoS requirement had a 

lower weighted error-distance whenever the number of deployed sensors is 

scarce. Moreover, when we adopt the various sensing radius of sensors, we can 

also observe that both the objective value and the minimum required amount of 

sensors for each level of QoS are low down. These results confirm the 

effectiveness of the proposed framework and algorithm in the case of the 

placement limitation. 

 

 

 

Figure 4.12: Performance comparison between the uniform 
(U) and differentiated (D) QoS services. 
(Adjustable radius, placement limited) 
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Figure 4.13: Performance comparison between the 
uniform (U) and differentiated (D) QoS 
services. (Fixed radius, R=6, placement 
limited) 

 
 
 

C. Experiment III 

In experiment III, sensor fields 50, 100, 150, and 200 service points were 

used to evaluate the scalability of the proposed algorithm. The solution space 

increase exponentially as the sensor field size increased linearly. Therefore, this 

study observes the variation of computation time and solution quality while the 

problem size increases.  

The parameters about LR algorithm include: 0<λ≤2 and improvement 

counter is 40. The number of iteration for field size 50, 100, 150, and 200 are 
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Figure 4.14 shows that the minimal requirements of sensor density for 

various sizes of sensor fields. In the single radius case, the solution spaces of the 

four cases were 250, 2100, 2150, and 2200. However, the four curves in Figure 4.14 

exhibit the same trend. They indicate that the solution quality of the proposed 

algorithm is scalable in problem size. 

 

5 10 15 20 25 30 35
1E-3

0.01

0.1

1

10

100

1000

W
ei

gh
te

d 
er

ro
r d

is
ta

nc
e

# of sensors

 U, R={6}
 D, R={6}

Level 4 QoS

Level 3 QoS

Level 2 QoS

Level 1 QoS



 

 111

 

Figure 4.14: The minimum requires sensor density under 
various sensing radius and sensing area. (LR, 
Fixed radius) 

 

 

 

Figure 4.15: The computation time. (LR) 
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computation time only increased by a factor of about 17 when the number of 

service points grew from 50 to 100, and by about 15 times as the number of 

service point increased from 100 to 200. Results of this experiment indicate that 

the computation time does not increase exponentially as the solution space 

grows exponentially. Therefore, the proposed algorithm is also scalable in 

computation time. 
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4.5 Simulated Annealing Approach 

Simulated annealing (SA) approach is a highly reliable method for solving 

hard combinatorial optimization problems, i.e. it can find the good approximated 

global optimum solutions for the optimization problems in a large search space. 

In this section, the original mathematical model, IP4.1, is adopted to develop 

two SA-based algorithms, noted by SA_1 and SA_2, and to solve the sensor 

placement problem.  

 

4.5.1 Algorithm SA_1 

To simplify the solution procedure, we try to relax the budget and coverage 

constraints, i.e. (4.4) and (4.5), by penalizing objective function ZIP4.1 in 

algorithm SA_1. The penalty function multiplied by original objective is  

1 i
i A

penalty p g h
∈

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∑  

, where constant p is equal to whD K N. D is the diameter of the sensor field. 

Variable g indicates the exceeding budget. Variable hi indicates whether service 

point i is covered. Σhi means the number of uncovered service points. Hence, 

energy E can be defined as follows: 

2,
,

max 1
1 ( )

ij ij
ii j A i Aik jki j

k B

w d
E p g h

K v v∀ ∈
∈≠

∈

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟+ − ⎝ ⎠⎝ ⎠

∑∑
. 

Algorithm 4.2 presents the pseudo code of algorithm SA_1. Initially, 

sensors are randomly deployed under the budget limitation. The radius of all 

sensors is set to the maximum one in the candidate radius set. In each loop, the 
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solution configuration is randomly altered by one of following actions: adding 

one sensor, reducing one sensor, changing one sensor’s location, increasing one 

sensor’s radius, or reducing one sensor’s radius. The solution with the minimum 

energy is saved as the best found solution. The terminate condition of the 

algorithm is either reaching the frozen temperature tf or satisfying the desired 

level of QoS for each block. The energy of best found solution, Zmin, can be used 

to verify whether the latter condition reached. For example, if we want to deploy 

a completely discriminated sensor network, Zmin has to be less than the lowest 

discrimination weight. When the algorithm stopped, it is a feasible solution to 

this problem, if no penalty for the best found solution.  

 

Algorithm 4.2: The pseudo code of algorithms SA_1 and SA_2. 

1. According to the budget, randomly deploy sensors on the sensor field. 
2. Calculate E for the initial guess. 
3. Zold ← E. 
4. Let Zmin← Zold and save the current configuration as the best solution. 
5. Evaluate Zmin, if desired QoS requirement for each block is satisfied then 

goto step (21). 
6. t ←t0, b ← b0 . 
7. While t >tf do 
8.    Repeat r times 
9. Randomly alter the solution configuration. 

10. Calculate E for the new configuration. 
11. Znew ← E.   
12. Evaluate Zmin, if desired QoS requirement for each block is satisfied 

then goto step (21) 
13. ΔE ← Znew−Zold.  
14. Generate a random number ρ uniformly distributed in (0,1). 
15. If ΔE≤ 0 or ρ < e(−ΔE/t) then 
16. Zold ← Znew 
17. If Zold < Zmin then Zmin ← Zold, save current configuration as the 

best solution. 
18. else recover the action in step (9). 
19. End  
20. b ←b ∗β, t ←t∗α 
21. End 
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4.5.2 Algorithm SA_2 

Besides relaxing the budget and coverage constraints as algorithm SA_1, 

we consider the number of service points with the maximal weighted error 

distance to construct a surrogated energy function Es:  

* 1s i
i A

pE E m
A ∈

⎛ ⎞′
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ . 

Where mi indicates whether the service point i has the maximal weighted 

error distance with another service point. And, Σmi/|A| means the ratio of the 

service point with the maximal weighted error distance. Constant p’ is the 

minimum gap size between any two adjacent objective values. The value of p’ 

must be computed carefully to avoid the part of penalty over the gap, which is 

between current original objective and the higher candidate objective values.  

The solution procedure of algorithm SA_2 is the same as algorithm SA_1, 

as listed in Algorithm 4.2, except for using Es substitutes for E. 
 

4.5.3 Computational Results               

Two sets of experiments were conducted to evaluate the performance of the 

proposed algorithm under various settings for the numbers of priority class, 

amount of resource, topology area and detection radius. The proposed 

algorithms were coded in C in MS-VC++ 6.0 development environment. All the 

experiments were performed on a P4-3.0GHz PC running MS-Windows XP Pro. 

The performance metrics were assessed in terms of the solution quality and 

computation time.  

The parameters of the cooling schedule are α=0.7, β=1.3. The initial value 

of b0 and t0 are 2000 and 0.001, respectively. As well as the frozen temperature 

tf is t0/2000. In addition, sensor cost, ck, is set to one. 
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A. Experiment I 

The first experiment was designed to observe the solution qualities of the 

proposed algorithms. The sensor field topology was based on the above museum 

example, as shown in Figure 4.1.   

For the differential positioning accuracy, the set of discrimination weights 

was set to {0.1, 5, 100}. The discrimination weight between any two service 

points on ROI A was set to the high weight, wh=100. The discrimination weight 

between any two service points, which both on ROIs B, C, D, or E, was set to 

the medium weight, wm=5. The weights between any two service points, which 

both are on ROI F was set to the low weight wl=0.1. The weight between any 

pair of service points on different ROIs was set to the highest weight, wh=100. 

The diameter of the sensor field was set to D=16. Parameter K = 20000.  

 
Table 4.4: The min. required sensors (S) for level 4 QoS in SA_2. 

 single radius adjustable radius 
R 1 2 3 4 5 6 7 8 4~6 3~7 1~8 
S 59 36 30 24 24 24 25 29 25 24 25 

 
 

Table 4.4 demonstrates that the minimum number of sensors for the sensor 

network deployment depends strongly on the detection radius of a sensor, while 

the sensor is with a single radius. Contrary, while an adjustable radius is used, S 

is very stable relatively. With these candidate sets, each service point on the 

field can be completely discriminated when the amount of sensor nodes reaches 

25. This result shows that adapting sensors with adjustable radius for the 

problem is more flexible than using a single radius. This experiment indicates 

that using sensor with radius 3~7 yield the lowest deployment density. 

Figure 4.16 shows the best-found objective value for SA_2. Table 4.3 lists 

the ranges of ZIP4.1. Figure 4.16 indicates that the deployment for the network 

with the differentiated QoS requirement had a lower weighted error-distance 

when the number of deployed sensors was less than 24. It means that the 
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different level of QoS can be satisfied for ROIs according to their service 

priority even with a small number of sensors. Moreover, the QoS degradation 

for ROIs with lower service priority is minimized. In contrast, if a uniform QoS 

for ROIs is requested, then the service priority for the ROIs cannot be 

guaranteed effectively. This result confirms the effectiveness of the proposed 

framework as well as algorithm SA_2. 
 

 

Figure 4.16: Performance comparison between the uniform 
(U) and differentiated (D) QoS services. 
(SA_2, R={3, 4, 5, 6, 7}) 

 
 

 

Figure 4.17: Performance comparison between algorithms 
SA_1 and SA_2. (Differentiated QoS service, 
R={3, 4, 5, 6, 7}) 

 

5 10 15 20 25 30 35
1E-3

0.01

0.1

1

10

100

1000

W
ei

gh
te

d 
er

ro
r d

is
ta

nc
e

# of sensors

 U, SA_2
 D, SA_2

Level 4 QoS

Level 3 QoS

Level 2 QoS

Level 1 QoS

5 10 15 20 25 30 35
1E-3

0.01

0.1

1

10

100

1000

Level 4 QoS

Level 3 QoS

Level 2 QoS

W
ei

gh
te

d 
er

ro
r d

is
ta

nc
e

# of sensors

 D, SA_1
 D, SA_2

Level 1 QoS



 

 118

Figure 4.17 indicates that if algorithm SA_2 is applied, each ROI can get 

level 4 QoS when the amount of sensor nodes reaches 24. However, it requires 

32 sensor nodes if algorithm SA_1 is used. This result shows the SA-based 

algorithm with a surrogated energy function, SA_2, can convergence more 

effectively than SA_1, which applies a simple penalized energy function.  

 

B. Experiment II 

In experiment II, sensor fields 50, 100, 150, and 200 service points were 

used to evaluate the scalability of the proposed algorithm.  

Figure 4.18 shows that the minimal requirements of sensor density for 

various sizes of sensor fields. In the single radius case, the solution spaces of the 

four cases were 250, 2100, 2150, and 2200. However, the four curves in Figure 4.18 

exhibits the same trend and indicate that the solution quality of the proposed 

algorithm is scalable in problem size. 

 

 

 

Figure 4.18: The minimum requires sensor density under 
various sensing radius and sensing area. (SA_2, 
Fixed radius) 
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Figure 4.19 shows the computation time of algorithm SA_2. The solution 

space of the proposed problem exhibited steep growth when candidate radii 

increased slightly. However, the computation time did not increase significantly. 

These findings clearly indicate that SA_2 is scalable in terms of the candidate 

sensing-radius. Moreover, the computation time only increased about 12 times 

when the number of service points grew from 50 up to 200. Results of this 

experiment indicate that the computation time does not increase exponentially as 

the solution space grows exponentially. Therefore, the proposed algorithm is 

also scalable in computation time. 

 

 

Figure 4.19: The solution time (seconds) of SA_2 in various 
areas. 
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4.6 Performance Comparisons 

In this section, due to the previous experiments results, the performance 

and convergence properties of the proposed algorithms, LR algorithm, SA_1, 

and SA_2, will be compared. 

4.6.1 Performance Evaluations  

Figure 4.20 depicts the curves of objective values versus the given 

number of sensors in the case of no placement limitation and R={3, 4, 5, 6, 

7}. Each ROI can get level 4 QoS when amount of sensor is 24, 26, and 32 by 

SA_2, LR, and SA_1, respectively. Therefore, for this problem, the SA_2 

using surrogate energy function overcomes the other algorithms, LR and 

SA_1, in solution quality. 

 

 

Figure 4.20: Comparison of solution quality between SA_1, 
SA_2, and LR algorithms. (Area: 10x15, 
differentiated QoS, R={3, 4, 5, 6, 7}) 
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4.6.2 Convergence Properties Analysis 

Several famous searching methods usually are adopted or modified to cope 

with the unconstrained or constrained nonlinear programming problem, for 

instance, Golden Section Search, Newton’s Method, Steepest Decent Method, 

Gradient Projection Method, et al. These algorithms have a common heritage of 

all being iterative descent algorithms. We mean that the algorithms iteratively 

generate a series of points, each point being calculated on the basis of the points 

preceding it. As well as iteration by iteration, the points corresponding to 

objective function will decrease. Ideally, the sequence of points generated by the 

decent algorithm in this way converges in a finite or infinite number of steps to a 

solution of the original problem. If for arbitrary starting points, the algorithm is 

guaranteed to converge to a solution, then the algorithm is said to be globally 

convergent. In addition, the analysis of convergence rate is another important 

subject. It can be used to evaluate the effectiveness for iterative descent 

algorithm [Lue84].    

In this dissertation, all proposed problems are formulated as combinatorial 

optimization problems. Due to the above mentioned searching methods are not 

applicable to solve these NP-hard problems, we propose Lagrangean relaxation 

based and simulated annealing based algorithms to cope with these problems. 

The proposed algorithms do not belong to iterative descent approach. Iteration 

by iteration, the series of feasible solutions are not monotonic non-increasing. 

Hence, the convergence rate is replaced with convergence trend to observe the 

effectiveness of the proposed algorithms. 

 

(A) Lagrangean Relaxation Algorithm 

The subgradient method is an adaptation of the gradient method in which 

gradients are replaced by sub-gradients. The subgradient method is easy to 

program and has worked well on many practical problems, hence, it has become 

the most popular method for Lagrangean dual problem [Fis81]. 
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In reference papers [HWC74] [Gof77], the convergence properties of the 

subgradient method are discussed. To ensure convergence, all step sizes kt  

have to satisfy the following constraints: 

0
0 and .

k
k k

i
t t

=

→ → ∞∑  

In addition, we observe the convergence trend of Lagrangean relaxation 

algorithm with different values of improvement counter. Based on the map 

shown in Figure 4.1, without placement limitation, in the case of differentiated 

QoS requirement and R= {3, 4, 5, 6, 7}, given number of sensors, 25, we 

observe the upper bounds on objective function under different values of 

improvement counter. We use improvement counters, 20, 30, 40, 50, and 60, in 

our experiments. The experimental results are illustrated in Figure 4.21, only 3 

curves (improvement counter are 40, 50, and 60) are depicted. The improvement 

counter has to be larger than or equal to 50, the proposed LR algorithm will 

convergent and solutions will be less than 0.1.  

 

 

Figure 4.21: Convergence trend of LR algorithm. (Area: 10 
by 15, differentiated QoS, R= {3, 4, 5, 6, 7}, 
number of sensor is 25, I.C.=Improvement 
Counter) 
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Afterwards, the LR algorithm executes using radius sets {5}, {3, 4, 5, 6, 7}, 

and {1~8}, corresponding to 1, 5, and 8 candidate radii. The test improvement 

counters are 20, 30, 40, …, until the feasible solution convergent. We find when 

number of candidate radii increases, the minimum improvement counters for 

convergence will increase, shown in Table 4.5. So the improvement counter 

setting is case by case.  

Therefore, we obtain that the upper bound is dependent on the 

improvement counter setting in terms of problem size. 

 
 

Table 4.5: The minimal improvement counters for 
convergence in 150 grid points sensor field. 

 Candidate radius 
 {5} {3,4,5,6,7} {1~8} 

Min. I. C. 20 50 80 
 

 

(B) Simulated Annealing Algorithm   

The cooling schedule of simulated annealing has to be design carefully for 

obtaining a good approximated optimal solution. Hence, we design a set of 

experiment to observe whether the parameters: initial temperature, cooling ratio, 

and initial number of iteration will affect the convergence properties of SA_2. 

The context of the experiments for observing convergence trend include 150 

service points sensor field without placement limitation, deployed 24 sensors 

with multiple candidate detection radii, R={3, 4, 5, 6, 7}. The SA parameters are 

setting as follows: α =0.75, β =1.3, 0r =2000, 0T =0.000588, and 

fT = 0T /20000. 

Figure 4.22 shows the convergence trend for different cooling ratio α . 

Typically, α  is about 0.75, the higher α  enables a slowly decrease in 

temperature. The spending time of SA_2 from iteration 1 to 104 is very few, 
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about several seconds. In despite of α  being 0.5, 0.6, or 0.7, SA_2 always can 

converge to objective value 0.1 quickly. But only α  is 0.7, SA_2 will converge 

to less than 0.1. Therefore, the value of cooling ratio α  will affect the 

convergence trend in SA_2. 

 

 
Figure 4.22: Convergence trend of SA_2 for different cooling ratio. 

 

 

 

Figure 4.23: Convergence trend of SA_2 for different r0. (N=150) 
 

Figure 4.23 illustrates the convergence trend for different initial number of 

iteration, r0, which determines number of iterations, as well as physically affects 

the balance for each temperature level. We let r0 be multiple of number of grid 
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point, N. In despite of r0 being 1, 5, 10, or 15 multiple of N, SA_2 always can 

converge to objective value 0.1 quickly. But r0 has to be greater than or equal to 

10N, SA_2 will converge to less than 0.1. Therefore, we can obtain the 

convergence trend in SA_2 depends on the parameter r0. 

Finally, we investigate how does the initial temperature T0 affects the 

convergence trend of the SA_2 algorithm. The initial temperature T0 is related to 

initial transition probability 0p , 0 0exp(- / )p E T= Δ . We let EΔ  be the 

minimum difference between any two adjacent levels of objective value, and set 

0p =0.2, 0.5, and 0.8. Then we get three different initial temperatures T0 , (i.e., 

0.001287, 0.000588, and 0.000253), corresponding to three initial transition 

probabilities 0p , (i.e., 0.8, 0.5, and 0.2). In Figure 4.24, we can observe that all 

curves can reach the region of level 4 QoS. This evidence shows that the SA_2 

algorithm is insensitive in the variation of T0.  

 

 
 

Figure 4.24: Convergence trend of SA_2 for different 0T  (or 0p ). 
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4.6.3 Compare with Other Approaches 
 
4.6.3.1 Compare with CIQ Approach 
 

In Section 2.4.1, we review the papers [CIQ01] [CIQ02], which apply the 

coding theory to solve the target location problem in sensor networks. In the 

dissertation, we note the placement method proposed by Chakrabarty et al. as 

“CIQ approach”. The simpleness and quickness are main advantages of CIQ 

placement method. However, CIQ approach can not be used for irregular sensor 

field, and can not use various radii sensors to solve target location problem. In 

addition, it ignores the sensor field boundary effect. Our approach can address 

these difficulties. 

 

 

Figure 4.25: The sensor deployment in a 13x13 sensor field. (a) By CIQ 
approach (79 sensors). (b) By LR approach (68 sensors). 

 

Figure 4.25(a) shows a 13x13 sensor field which is deployed 65 sensors by 

CIQ method. To solve the boundary problem, we deploy 14 extra sensors (total 

79 sensors) for satisfying the completely discrimination constraint. In the same 

scenario, i.e., 13x13 sensor field and uniform discrimination weight, we use 

sensor with radius one to deploy a completely discriminated sensor field by 

(a) (b)
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Lagrangean relaxation algorithm. The deployment by LR approach requires only 

68 sensors; it is illustrated in Figure 4.25(b). We can claim that our approach 

outperform CIQ method in terms of deployment cost. 

 
 
4.6.3.2 Compare with ID-CODE Algorithm 
 

In Section 2.4.1, we have been reviewed the papers [RST04] [RUP03], 

which apply the identifying code to solve the target location problem in sensor 

networks. They propose the “ID-CODE” sensor placement algorithm, and 

design three visiting orders: random, ascending, and descending orders.  

However, ID-CODE approach does not consider sensors with adjustable 

radius for the target location problem. In addition, the algorithm does not also 

take different discrimination quality into account. Contrary, our approach can 

address these issues. 

 

Figure 4.26: Performance of the ID-CODE algorithm in 150 
grid points sensor field. 
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will result in either a larger deviation or too much time consumption to obtain a 

statistical or the best result. Hence, as Figure 4.26 shown, in each experiment, 

we only adopt the ascending and descending orders of the ID-CODE algorithm. 

Furthermore, in each simulation scenario, we take the best results, denoted by 

“ID_CODE_best”, of these two visiting orders as a benchmark of the ID-CODE 

algorithm. The curve denoted “Lower Bound” is a modified version of lower 

bound according to Theorem 1(2) and (3) in [KCL98].  

From Figure 4.27(a) to (d) illustrate performance comparisons between 

ID-CODE, SA_2, and LR algorithms under various areas of sensor fields, i.e. 50, 

100, 150, and 200 grid-points, respectively. We can observe the SA_2 and LR 

algorithms outperform ID_CODE_best in terms of deployment cost, i.e., number 

of sensors. 

 

Figure 4.27: Performance comparisons between ID_CODE_best, SA_2, and LR 
algorithms under various areas of sensor fields. 
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4.6.4 Results Analysis 

 

From the previous experimental results, we are concerned with an 

interesting phenomenon. That is, the minimum required number of sensors for 

the positioning services will increase if the detection radius is larger or smaller, 

as Figure 4.27 shown. We discuss and investigate from two different directions.  

 

1. By theoretical and mathematical analysis 

From information theorem perspective, while sensor detection radius is 

larger or smaller, the corresponding information (or entropy) of the sensor will 

decrease. So that, more sensors are required to satisfy the entropy for 

constructing identifying code in a sensor network. The detail proof is illustrated 

in Appendix B. 

 

2. By experimental observations  

From the experimental results (in Appendix C), we can find that the sensor 

with smaller radius needs more for supporting target positioning. But when the 

detection radius closes to the maximum candidate radius for the size of sensor 

field, the required density will increase according to the boundary effect of the 

sensor field.  
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4.7 Concluding Remarks 

In this chapter, we propose a generic framework for the sensor placement 

problem to support the differentiated QoS and prioritized service for different 

ROIs in a sensor field. The weight is designed to assign the discrimination 

priority of two service points. Under the budget, coverage, and placement 

constraints, the goal is to minimize weighted error distance. Besides the sensor’s 

locations, we consider the detection ranges as decision variables and construct 

the mathematical model for the sensor deployment problem. Next, we develop a 

Lagrangean Relaxation based heuristic, two SA-based algorithms, SA_1 and 

SA_2, to scope with the NP-complete problem.  

Based on the experiment results, we make a summary as follows: 

1. The proposed framework can support a better and differentiated QoS 

than the pervious framework, which can only handle uniform QoS 

requirements. 

2. The performance of the proposed algorithms is almost independent of the 

radius selection when it adapts sensors with an adjustable 

sensing-radius. By the various radii, the proposed algorithm can 

efficiently get well solution quality. Particularly, some locations can’t 

be placed sensors in sensor field, all the proposed algorithms use 

various radii to cope with the problem effectively.  

3. The proposed algorithms are scalable in terms of the number of the 

radius types and the size of the sensor field. 

4. It is independent of the size of sensor field that the sensor density 

requirement will increase if the radius is shorter or longer.  
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5. The proposed SA-based algorithm with a surrogated energy function, 

SA_2, is convergence more effectively than the LR algorithm and SA_1 

in solution quality. It is the same that the LR algorithm overcomes SA_1 

in solution quality.  

6. When size of sensor field is small, the proposed LR algorithm is more 

efficient than SA_1 and SA_2. When size of sensor field increases, the 

efficiency of three proposed algorithms come up with no significant 

difference. 

7. The proposed approaches (LR and SA_2) are more effective and flexible 

than the CIQ and ID-CODE approaches in terms of various sensor radii, 

terrain as well as other deployment constraints. The main drawbacks of 

our approaches are more computation time and less scalability. 
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CHAPTER 5 ENERGY-EFFICIENT 
SENSOR NETWORKS DESIGN 
 
 

5.1 Overview 

Both sensor deployment and energy conservation are key issues for WSNs 

[ASC02a]. This work considers the problem of constructing an energy-efficient 

sensor network for surveillance and target positioning services using the 

controlled placement approach. The design goals are to achieve target 

positioning as well as to prolong sensor network lifetime. To support positioning 

functionality, the sensor field must be completely covered and each unit in the 

field is discriminable. It requires deploying more sensors than to support 

surveillance functionality. However, to keep all sensors in active to support the 

target positioning service is not necessary and waste sensors' energy if intrusion 
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events occur infrequently. Actually, the surveillance service is enough when 

there isn't any intruder in the sensor field. Hence, we try to deploy K 

independent sets of sensors to support positioning service on a sensor field. Each 

of them, is called a cover, can provide complete coverage of the field. Each set 

is activated in turn to monitor the field when no any intruder was existence. 

Once the intrusion event occurs, all sets of sensors are activated and work 

corporately to locate the intruder. Generally, the power consumption for inactive 

sensors can be neglected, and the sensor lifetime can be effectively prolonged up 

to K times.  

In this chapter, we formulate the problem as a 0/1 integer programming 

problem where the objective function is the minimization of the total 

deployment cost required to complete coverage and discrimination constraints 

under a given amount of cover K. The problem is a variant of the set K-cover 

problem and thus is NP-complete [AGP04] [SP01]. Then, the Lagrangen 

Relaxation (LR) based algorithm and Simulated Annealing (SA) based 

algorithm are proposed to address the optimization problem [Egl90]. 

From sensor placement perspective, the energy conservation strategy can 

be considered in “deployment phase” or “post-deployment phase”. This study 

belongs to the former, and focuses on energy efficient sensor network 

deployment. 

From papers review, we find that this study differs from prior works in 

several points. First, we consider both the energy conservation and lifetime 

extending during the sensor deployment phase for target positioning. Second, 

we present a mathematical model to describe the optimization problem. Third, 

the LR-based algorithm and the SA-based algorithm are proposed to solve the 

problem. Fourth, the relationship between the deployment cost and the 

maximum extension of system lifetime is investigated. Finally, the performances 

of the proposed algorithm are evaluated and compared with CPLEX.  
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5.2 Problem Description 

A. Sensor Placement 

In this chapter, we use the controlled deployment method to construct 

WSNs. The sensor field can be represented as a collection of two- or 

three-dimensional grid points [CIQ02] [CL04] [DC03] [DCI02] [LC05], as 

illustrated in Figure 5.1. This approach is called grid-based placement. The 

positioning resolution requirement of application determines the granularity of 

grid point. In this chapter, the distance between two adjacent grid points is 

adopted as a length unit. Therefore the sensor field illustrated in Figure 5.1 has 5 

by 3 grid points. And six sensors are placed on grid point 4, 6, 7, 9, 10, and 12. 

 

 

Figure 5.1: A complete coverage/discrimination sensor field. 

 

This study assumes that the sensor detection model is 0/1 model [CIQ02] 

[CL04] [LC05]. The coverage is assumed to be complete (1) if the distance 

between the grid point and the sensor is less than the detection radius of the 

sensor. Otherwise, the coverage is assumed to be incomplete (0). For example, 

the radius of the sensors illustrated in Figure 5.2 is assigned to one. It is a 

homogeneous sensor network. Therefore sensor 4 covers grid point 3, 4, 5, and 9, 

sensor 7 covers grid point 2, 6, 7, 8, and 12, sensor 9 covers grid point 4, 8, 9, 10, 
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and 14, and so on. If any grid point in a sensor field can be detected by at least 

one sensor, the field is called completely covered sensor field. 

 

 

 

Figure 5.2: A grid-based sensor field with 3 covers: (a) Overall 
placement. (b) Cover 1. (c) Cover 2. (d) Cover 3. 

 

To locate an intruder, we define a unique power vector for each grid point. 

The power vector of a grid point is constructed according to the deployment of 

sensors. If a sensor covers the grid point, constituent of the power vector of the 

grid point, which is corresponding to the sensor, is set to 1, otherwise 0. For 

example, as illustrated in Figure 5.2, the power vectors of grid point 1 and 8 are 

<0, 1, 0, 0, 0, 0> and <0, 0, 1, 1, 0, 0> corresponding to sensor 4, 6, 7, 9, 10, and 

12, respectively. After all of the sensors are deployed, the power vectors for 

each grid point in the sensor field are constructed and stored on the database at 

the back-end of the network. Once an intruder was detected, sensor has to report 

the information to the sink nodes. According to the received information, the 

back-end can obtain a power vector to determine the position of the intruder. If 

each grid point has a unique power vector in a sensor field, the sensor field is 

called completely discriminated. The sensor field in Figure 5.2 is completely 

covered/discriminated by the sensor network, which can provide surveillance 

and target positioning services. 
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B. Energy-Efficient Sensor Networks 

The duplicate placement approach is an intuitive method to extend system 

lifetime in deployment phase. The algorithm deploys K duplicate sensor 

networks, which provide surveillance and target positioning services in turn to 

prolong lifetime by K times. However, the total cost is increased by K times 

accordingly. 

This study attempts to construct the sensor network such that it includes K 

mutually exclusive sets (number K is given). These sets are called cover [SP01]. 

Figure 5.3 shows the state transitions of the sensor network. From the network 

viewpoint, two operation states exist: the surveillance and positioning states. 

When no any intruder exists in the sensor field, the network operates in the 

surveillance state. At the period, the K covers of sensors are activated in turn to 

monitor the whole sensor field. Each sensor may be in sleeping or monitoring 

states. Once the intrusion event occurs, the network transits to the positioning 

state. All covers of the sensors are activated and work corporately to locate 

intruder. At the period, all sensors on the network operate in active state. 

Figure 5.3: The state diagram of the sensor network. 
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We assume that a sensor has multiple power states, active, monitoring, and 

sleeping state [SCI01]. There are three main components in sensor nodes: 

processor, sensor, and radio transceiver. Table 5.1 presents the working modes 

of the sensor's components corresponding to the three different power states. If 

there is not any intruder approaching to the sensor field, only one set of sensors 

operates at monitor state and the others operate at sleeping state. Once intrusion 

event occurs, all of the sensors transit to active state. In this study, we assume 

that the intrusion event is infrequently, so only monitor and sleep power states 

of sensors must be focused. 

 

Table 5.1: The working modes on three states for the sensor node. The radio is 
dominant power consumer. 

Components of sensor node 
Working modes 

Processor Sensor Radio 
Active Active On Tx/Rx 

Monitor Idle On Rx 
Power 
states 

Sleep Sleep Off Sleep 

 

The main power consumption for a sensor node contains three domains: 

sensing, data processing and communication. The communication depletes 

much more energy than the sensing and processing, so the radio transceiver is 

dominant power consumer in sensor node. The energy consumption for sensing 

device and processor can be neglected [EGH99]. 

Typically, there are four working modes for radios: transmitting (Tx), 

receiving (Rx), idle, and sleeping. The required power to idle is about the same 

as the power to receive. Usually, sleep mode power consumption is much less 

than the transmitting and receiving power consumption (one to four orders of 

magnitude) [MV04]. So the power consumption of radio transceiver in sleeping 

sensor is less than the monitor and active states.  
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Therefore we can assume that power depletion is negligible in the sleep 

state. However, the network lifetime can be effectively prolonged by K times. 

For example, if the lifetime of sensor network illustrated in Figure 5.1 is 

prolonged by three times using duplicate placement approach, the number of 

sensors will be increased to 18. Our algorithm placed only 14 sensors in the 

same field and can also prolong sensor network lifetime by three. The whole 

sensor network is composed of three covers (as illustrated in Figure 5.2), each of 

them provides complete coverage. Obviously the proposed algorithm provides 

an economical solution to deploy an energy efficient sensor network. 

Afterwards this study discusses the possible number of covers in a sensor 

network. First the amount of covering grid points of sensor with a specific 

detection radius has been discussed and the following propositions have been 

obtained. 

 
Proposition 5.1: Suppose a sensor has detection radius r, 0r > , 

r Integer∈ , then, the number of covering grids, Gr, 

for the sensor in an infinite sensor field can be 

represented as  

2 2

1
2 1 2 (2 1)

r

r
y

G r r y
Δ =

⎢ ⎥= + + − Δ +
⎣ ⎦∑  

, where r represents the detection radius of the 

sensor and Δy, 0yΔ > , y IntegerΔ ∈ , is the 

distance from the sensor to one grid point in y axis, 

as shown in Figure 5.4.  

 

Proposition 5.2: A grid point can be covered by a set of sensors. The 

maximum cardinality of the set exactly equals the 

number of covering grids of a sensor that is allocated 

in the grid point. 
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For example, in an infinitive field, the radiuses of the sensor are 1, 2, 3, and 

the numbers of covering grid points are 5, 13, and 29, respectively. Moreover, a 

grid point can be covered by 5, 13, and 29 sensors at most. 

Generally, it is impractical to use an infinite sensor field. This study 

focuses on the case of the rectangular sensor field with a finite area. For a finite 

sensor field, the upper bound of the number of covers is determined by critical 

grid points in the field. A critical grid point is a particular grid point which is 

covered by a sensor set with smaller cardinality than other sensor sets. 

 

 

Figure 5.4: Sensor and its coverage. (The distance 
between any two adjacent grid points is 
used as one length unit.) 

 

Proposition 5.3: On a rectangular sensor field with a finite area, the 

critical grid points are located at the corner of the 

field. Therefore, the upper bound, Ur, is  
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, where r represents the detection radius of the 

sensor and Δy is the distance from the sensor to a 

grid point in y-axis.  
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In a sensor field with 3 by 5 service points, as illustrated in Figure 5.2, the 

radius of sensor is assumed to be 1, while the critical grid points are 1, 5, 11, 

and 15. According to Proposition 5.3, the upper bound of the number of covers, 

U1, is 3. In Figure 5.2, grid point 1 can only be covered by sensors placed in grid 

points 1, 2, and 6. Meanwhile, the corner grid points are all covered by 3 sensors 

maximally. In the case, the sensor network can be partitioned into a maximum 

number of covers, 3 covers. Clearly, as shown in Figure 5.2, we can deploy the 

minimum number of sensors, 14 sensors, for the sensor network with 3 by 5 grid 

points. 

 

Table 5.2: The theoretic upper bound of the number of covers in 
10x10 sensor field. 

Radius (r) 1 2 3 4 5 6 7 
Ur 3 6 11 17 26 35 45 

 

 

To achieve complete discrimination, the sensor radius must be smaller than 

a half of the diameter of the sensor field. Therefore, we vary the radius (from 1 

to 7) to compute the theoretic upper bound of the number of covers Ur in a 10 by 

10 sensor field. Table 5.2 shows the theoretic upper bound of the number of 

covers. Theoretically, if radius is 7, we can deploy a sensor network including 

45 covers such that the lifetime can be extended by 45 times. 

The solution space of the problem is O((K+1)m). When field size m and the 

number of cover K increase gradually, the solution space increases rapidly. 

Hence, we develop an effective algorithm to cope with the problem. 



 

 142

5.3 Mathematical Model 

The notations used to model the problem are listed as follows. 

 
Given Parameters: 
A : Index set of the service points in the sensor field. 
B : Index set of sensors’ candidate locations, B⊆A. 
C : Index set of sensor cost. 
K : The number of covers required for the sensor network. 
aij 
 

: Indicator function which is 1 if service point i can be covered by sensor j 
and 0 otherwise. 

cj : Cost function of sensor j, jc C∈ . 

 
Decision Variables: 
xjk : 1 if sensor j is allocated on cover k of the sensor network. 
yj 
 

: Sensor allocation decision variable which is 1 if sensor j is allocated in the 
sensor network. 

 
 

Problem (IP5.1): 
 

ZIP5.1 = min j jk
j B k K

c x
∀ ∈ ∀ ∈
∑ ∑    (IP5.1)

subject to: 
 

ij jk
j B

a x
∀ ∈
∑ ≥ 1 ,∀i∈A, k K∈   (5.1)

 
jk

k K
x

∀ ∈
∑ ≤ 1 ,∀j∈B (5.2)

 yj = jk
k K

x
∀ ∈
∑  ,∀j∈B (5.3)

 2( )ij j j
j B

a a y
∀ ∈

−∑ ≥ 1 ,∀i, ∈A, i≠  (5.4)

 xjk, yj = 0 or 1 ,∀j∈B, k K∈   (5.5)
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Physical meanings of the objective function and constraints are briefly 

described as follows. Problem (IP5.1) presents that the objective is to minimize 

the total cost of sensors. Constraint (5.1) requires that each service point must be 

covered in every cover of the sensor network. Constraint (5.2) and (5.3) ensure 

that each sensor only belongs to one cover of the sensor network. The 

discrimination constraint is 2( ) 1ij j j
j B

a a y
∀ ∈

− ≥∑  that requires the Hamming 

distance between each pair of service points in the sensor network must be 

greater than one. And the discrimination constraint can be rewritten as constraint 

(5.4). Constraint (5.5) requires integer property of the decision variables with 

respect to xjk and yj. 
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5.4 Lagrangean Relaxation Approach 

5.4.1 Relaxation 

This section presents the algorithm for solving the proposed sensor 

placement problem. An approach based upon Lagrangean relaxation is 

considered. Lagrangean relaxation is a method for obtaining lower bounds (for 

minimization problems) as well as good primal solutions in integer 

programming problems. A Lagrangean relaxation is obtained by identifying in 

the primal problem a set of complicated constraints whose removal will simplify 

the solution of the primal problem. Each of the complicated constraints is 

multiplied by a multiplier and added to the objective function. This mechanism 

is known as dualizing the complicating constraints [Fis81] [Fis85] [Geo74] 

[HWC74].  

Using the Lagrangean relaxation, this investigation chooses to dualize 

Constraints (5.1), (5.3), and (5.4), and establishes the following Lagrangean 

relaxation problem. 

Problem (LR5.1) 

1 2 3 1 2( , , ) min (1 ) ( )    D j jk ik ij jk j j jk
j B k K i A k K j B j B k K

Z u u u c x u a x u y x
∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

⎧
= + − + −⎨

⎩
∑ ∑ ∑ ∑ ∑ ∑ ∑

 

3 2

,
   

                             (1 ( ) )                                  (LR5.1)    i ij j j
i A A j B

i

u a a y
∀ ∈ ∀ ∈ ∀ ∈

≠

⎫
⎪+ − − ⎬
⎪⎭

∑ ∑ ∑  

subject to: 
 

jk
k K

x
∀ ∈
∑ ≤ 1 j B∀ ∈  (5.2)

 
jkx = 0 or 1 ,j B k K∀ ∈ ∈  (5.5)
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jy = 0 or 1 j B∀ ∈  (5.6)

 

The multipliers u1, u2, and u3 are the vectors of { 1
iku }, { 2

ju }, and { 3
iu }, 

respectively. Notably, the constraints (5.1) and (5.4) are dualized such that the 

corresponding multipliers u1and u3 are nonnegative. 

(LR5.1) can be decomposed into two independent and easily solvable 

subproblems, where only the xjk decision variables are involved in the first 

subproblem and only the yj decision variables are involved in the second 

subproblem. Note that, the constant terms, 1
ik

i A k K
u

∀ ∈ ∀ ∈
∑ ∑  and 3

,
   

i
i A A

i

u
∀ ∈ ∀ ∈

≠

∑ ∑ , were 

omitted from the objective function in the subproblems. 

Subproblem 5.1: for xjk 

1 2 2 1
5.1( , ) min ( )           (SUB5.1)SUB j j ik ij jk

j B k K i A
Z u u c u u a x

∀ ∈ ∀ ∈ ∀ ∈

⎧ ⎫⎛ ⎞
= − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ∑ ∑  

subject to: 

 
jk

k K
x

∀ ∈
∑ ≤ 1 j B∀ ∈  (5.2)

 
jkx = 0 or 1 ,j B k K∀ ∈ ∈  (5.5)

 

Subproblem 5.2: for yj 

2 3 2 3 2
5.2

,
   

( , ) min ( ( ) )            (SUB5.2)SUB j i ij j j
j B i A A

i

Z u u u u a a y
∀ ∈ ∀ ∈ ∀ ∈

≠

= − −∑ ∑ ∑  

subject to: 
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jy = 0 or 1 j B∀ ∈  (5.6)

 

Subproblem 5.1 comprises |B| (one for each sensor) problems. To simplify 

descriptions of the procedures for solving Subproblem 5.1, pjk is used to 

represent the following function: 

2 1( )jk j j ik ij
i A

p c u u a
∀ ∈

= − − ∑
.
 

For each sensor, first we assume sensor j is allocated and jkp  is calculated 

for each cover k. Then the minimal jkp  of sensor j in all cover (min jkp ) is 

determined and the corresponding cover number k’ can be obtained. If the 

minimal jkp  in all cover is negative, we assign xjk’ to 1. It means that sensor j is 

allocated and belongs to cover k’. Otherwise, all xjk are assigned to 0. 

Subproblem 5.2 also comprises |B| problems. Let qj be the coefficient of yj 

in (SUB5.2). 

2 3 2

,
   

( )           j j i ij j
i A A

i

q u u a a
∀ ∈ ∀ ∈

≠

= − −∑ ∑
.

 

For each sensor j, if qj is negative, we assign yj to 1. Otherwise, let yj be 

zero. 

For any (u1, u3)≥0, using the weak Lagrangean duality theorem, the optimal 

objective function value of (LR5.1), ZD1(u1, u2, u3), is a lower bound on ZIP5.1 . 

The dual problem then is 

1 3

1 2 3
5.1 1

( , ) 0
max ( ,  ,  ).                                 (D5.1)D D

u u
Z Z u u u

≥
=  

(D5.1) is solved to find the highest lower bound. Several methods exist for 
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solving the dual problem (D5.1). One of the most popular methods is the 

subgradient method. Let a ( | | | | | | | | | |A K B A A× + + × ) vector g represent a 

subgradient of ZD5.1(u1, u2, u3). In iteration m of the sugradient optimization 

procedure, the multiplier vector π is updated by 

1 .m m m mt gπ π+ = +  

The step size tm is determined by 

*
5.1

2

( ( ))m
m IP D

m

Z Zt
g

λ π−
= , 

where Z*
IP5.1 represents an upper bound on the primal objective function value, 

obtained by applying a heuristic to (IP5.1), and λ is a scalar satisfying 0≤ λ ≤ 2. 

 

5.4.2 Getting Primal Feasible Solutions 

After optimally solving the Lagrangean dual problem, a set of decision 

variables can be found in each round. Since some of the constraints are relaxed, 

the solutions are infeasible for the primal problem. However, efficient heuristic 

algorithms must be developed to adjust the optimal dual solutions. A set of 

feasible solutions of the primal problem (IP5.1) then can be obtained. With 

increasing number of iterations, the better primal feasible solution is an upper 

bound (UB) of the problem (IP5.1), while the Lagrangean dual problem 

provides the lower bound (LB) of the problem (IP5.1). 

In this section, we propose a heuristic for obtaining primal feasible 

solutions. The algorithm is shown as follows. 

Step 1: Check constraint (5.3) for each sensor. If yj=1 and 

0jk
k K

x
∀ ∈

=∑  for sensor j, sensor j is added to cover k’ such 

that 'ikp  is the minimum of ikp  for all covers on sensor j. 
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If yj=0 and 1jk
k K

x
∀ ∈

=∑  for sensor j, then let yj be one, and the 

sensor j is allocated. 

Step 2: For each cover k of the sensor network, check coverage 

constraint (5.1). If the coverage constraint is violated, then 

sensor-addition-procedure are repeated, or 

sensor-exchanged-procedure are repeated until the coverage 

constraint is satisfied. Then, we try to drop sensors, which are 

redundant in terms of coverage constraint. 

Step 3: Check the discrimination constraint (5.4) for the whole sensor 

network. If constraint (5.4) is violated, a lot of sensors are 

added to achieve the completely discriminated sensor 

network. Afterwards, this algorithm attempts to drop some 

sensors that are redundant for coverage and discrimination 

constraints. 

 
 
5.4.3 Computational Results 

To evaluate the performance of the proposed algorithm, we conduct a serial 

of experiments. The performance is assessed in terms of lifetime of sensor, 

deployment cost, and computation time. 

5.4.3.1 Scenario 

The proposed algorithm is coded in C under a Microsoft® Visual C++ 6.0 

development environment. All the experiments are performed on a Pentium 

IV-1.4GHz PC running Microsoft Window XP. The algorithm was tested on a 

10 by 10 senor area. To achieve complete discrimination, the sensor radius must 

be smaller than a half of the diameter of the sensor area. The distance between 

two adjacent grid points defines the length unit. Hence, seven sets of 

experiments are conducted, which consider sensor radius r ranging from 1 to 7. 
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According to Proposition 5.3, each set of experiments is investigated under a 

given K cover, which ranges between 1 and the theoretic upper bound on 

maximum number of covers, Ur, 1≤ r ≤ 7, as listed in Table 5.3. The parameters 

about LR algorithm include: 0 2λ< ≤ , improvement counter is 35, and the 

amount of iteration is 1000. 

 

5.4.3.2 Results 

A. Maximum Increasing Lifetime of Sensor 

We first investigate whether the theoretic upper bound of covers, Ur, can be 

found. Based on our assumptions, the maximum lifetime of sensor is almost 

proportional to the number of covers that can be found. The experimental results 

are listed in Table 5.3. In the first five cases, the sensor radius ranges from 1 to 5, 

and the proposed algorithm can always obtain the solution under the given upper 

bound of cover. Moreover, little difference exists between the situations where 

the sensor radius is 6 and 7. The degradation of the solution quality is less than 

4.4%. From this perspective, the proposed algorithm is very effective for 

maximizing the lifetime of sensor. 

 

Table 5.3: Comparison of Ur between the theoretical 
and the best found values. 

Radius (r) 1 2 3 4 5 6 7

Ur (theoretic) 3 6 11 17 26 35 45

Ur (the best found) 3 6 11 17 26 34 43

Degradation (%) 0 0 0 0 0 2.9 4.4

 
 
 
B. Deployment Cost 

This study shows the best found for the minimum deployment cost by the 

proposed algorithm. Since all sensors have the same deployment cost, the 
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overall deployment cost can be simplified as the number of deployed sensors. 

This section instead uses a normalized term, sensor density, as a performance 

metric. Sensor density can be defined as follows: 

1Sensor density (%) ( ) 100%jk
j B k K

x
n ∀ ∈ ∀ ∈

= ×∑ ∑
.
 

Table 5.4 lists the selected results of experiments, which shows the sensor 

density requirements with specific sensor radius and the number of cover. For 

example, the sensor radius is 1 in the first experiment, and the number of covers 

is 1, 2 and 3. From average sensor density perspective, the average sensor 

density per cover is higher while the number of covers is few, as shown in 

Figure 5.5 and Figure 5.6. But while the cover quantity increases, the average 

sensor density per cover decreases progressively and achieves stability. 

Therefore, the proposed sensor placement algorithm is extremely effective for 

minimizing the sensor density increase in extending lifetime. 

 

Table 5.4: Selected sensor densities obtained in the experiment. 

Sensor radius # of covers 1 2 3 4 5 6 7 
1 0.40 0.28 0.25 0.19 0.22 0.25 0.25 
3 0.8 0.41 0.29 0.22 0.22 0.25 0.25 
6  0.8 0.43 0.31 0.25 0.26 0.26 
11   0.78 0.51 0.39 0.31 0.33 
17    0.79 0.61 0.43 0.4 
26     0.97 0.65 0.53 
34      0.97 0.75 
43       0.97 

 

Moreover, from the energy efficiency and deployment cost perspectives, 

the proposed algorithm demonstrates a significant improvement compared with 

duplicate deployment approach. This study uses the required number of sensors 

for one cover as a base, then the times of lifetime extension and cost increase of 

duplicate deployment approach compare with the proposed approach’s, as listed 

in Table 5.5. Obviously, the times of cost increase for the proposed approach is 
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lower than that for duplicate deployment approach. For sensor radius 7, the 

required number of sensors is as low as 8.4% of duplicate deployment approach. 

 

 

Figure 5.5: Proportion of the lifetime extending times to 
average sensor density per cover. (LR, R=1~4) 

 

 

 

Figure 5.6: Proportion of the lifetime extending times to 
average sensor density per cover. (LR, R=5~7) 
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Table 5.5: Performance comparison between the duplicate deployment and 

the proposed sensor placement approach. 

The duplicate deployment The proposed approach Radius #Duplication Increased cost #Cover Increased cost 
1 3 3 3 2.00 
2 6 6 6 2.71 
3 11 11 11 3.04 
4 17 17 17 4.16 
5 26 26 26 4.41 
6 34 34 34 3.88 
7 43 43 43 3.88 

 
 
 
C. Computation Time 

The study observes the computation time for the proposed algorithm. Table 

5.6 lists the execution time of each set of experiments. The solution time of the 

algorithm is below 100 seconds in all cases. The efficiency of the algorithm thus 

can be confirmed. 

 
Table 5.6: The execution time of each set experiments. 

Sensor radius 1 2 3 4 5 6 7 

Solution time (Second) 43 61 85 38 25 91 51 
 
 
 
D. Density vs. Different Radius 

Next, we observe the experimental results that the number of covers is one, 

as illustrated in Figure 5.7. The sensor radius varies from 1 to 7, and the sensor 

densities first decrease and then increase. In radius 4, the sensor density 

requirement is the lowest in all cases. It is reasonable for sensors with smaller 

radiuses to have smaller covered areas, and thus more sensors are required to 

cover the whole sensor field. Meanwhile, a larger sensor radius requires more 

sensors to satisfy the discrimination constraint. 
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Figure 5.7: Variant of the sensor radius and the 
corresponding density requirement. (LR, K=1) 

 

 

 
E. Scalability 

 

 

Figure 5.8: The solution time for 10x10 sensor area. (R=4) 
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10 sensor field. The sensor radius is 4. In this experiment, the solution space 

ranges between O(2100) and O(18100). The results indicate that the solution times 

are very stable when K value increases. Actually, in all cases, the solution times are 

below 40 seconds. 

The second experiment explores the solution time of the proposed 

algorithm under various sensor fields. The solution space extends from O(2100) 

to O(4200). The results show that the solution time increases very slowly, as 

shown in Figure 5.9, when the solution space extends greatly. The maximum 

solution time in this experiment is only 542 seconds. These experiments indicate 

the proposed algorithm has excellent solution time and highly scalable. 

 

 

Figure 5.9: The solution time for various sensor areas. (LR, R=1) 
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5.5 Simulated Annealing Approach 

5.5.1 Algorithm 

Simulated annealing (SA) is a highly reliable method for solving hard 

combinatorial optimization problems [KGM83]. The concept of SA is applied to 

derive an efficient method for solving the problem approximately. To simplify 

the solution procedure, we try to relax the coverage and discrimination 

constraints (i.e., constraints (5.1) and (5.4)) by penalizing objective function 

ZIP5.1.  

The penalty for coverage constraint (constraint (5.1)) is 

1 ik
k K i A

p g
∀ ∈ ∀ ∈

+ ∑ ∑  

, where ,  | |p p B≥ , is a constant. Variable ,  ,  ikg i A k K∀ ∈ ∈ , indicates 

whether grid point i  was covered by sensors in cover k . 1ikg = , if 

0,  ij jka x j B= ∀ ∈ . Otherwise, 0ikg = . 

The penalty for constraint (4) is 2
min1 (1 )p d+ − . Where mind  represents 

the minimum Hamming distance between each pair of service points. If 
2

1, ,
min ( ) 1m

ij j jji A i
a a y

=∀ ∈ ≠
− ≥∑ , min 1d = . Otherwise, min 0d = . Hence, energy E 

can be defined as  

2
min(1 )(1 (1 ))ik j jk

k K i A j B k K
E p g p d c x

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

= + + −∑ ∑ ∑ ∑ . 

Table 5.7 shows a pseudo code of the algorithm. We will use the following 

symbols regarding any feasible solution x: 
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0 { | 0,  }jk
k K

S j x j B
∀ ∈

= = ∀ ∈∑ , 1 { | 1, }k jkS j x j B= = ∀ ∈ , and 1 1k
k K

S s
∀ ∈

= ∪ . 

 
 

Table 5.7: The SA pseudo code for sensor placement. 

1. Let 1jkx , j A,← ∀ ∈  if mod 1(j  K) k+ = . 
2.  Calculate S0, S1, and s1k, k K∀ ∈ . 
3.  oldz E← . 
4. Let min oldz z←  and save the current configuration as the solution. 
5. 0 0,  t t b b← ←  
6. While ft t>  do 
7.   Repeat b times 
8.   If ∅≠0S  then choose 0Ssnew ∈  randomly. 
9.     Choose 1Ssold ∈  randomly. 
10.   Choose covers c1 and c2, 12 cc ≠ , in [1, K] randomly. 
11.   Choose an action ac , }3 ,2 ,1{∈ac , randomly. 
12.     If 1ac ≠  and ∅≠0S  then 1 1 newS S s← ∪ , 

2 21 1| |k k c k k c news s s= =← ∪ ,  0 0 newS S s← − . 
13.     If 2ac ≠  and 1S ≠ ∅  then 

11 1 1| |k k c k k c olds s s= =← − , 

2 21k 1 s | |k c k k c olds s= =← ∪ . 
14.     newz E← , new oldE z zΔ ← − . 
15.     Generate random variable γ  uniformly distributed in (0, 1). 
16.     If 0≤ΔE  or )/( tEe Δ−<γ  then  
17.       old newz z←  
18.        If minnewz z<  then min newz z←  and save the current 

configuration as the solution. 
19. else recover the change for 0 1,  S S , and 1 ,  ks k K∈ , that were 

made in steps (12) and (13).  
20. End  
21. *b b β← ; If oldz n<  then 1*t t α←  else 2*t t α← . 
22. End. 

 

Initially, we assume the sensors are deployed at all grid points. In each loop, 

one of three actions (i.e., remove, add, and exchange) will be chosen randomly. 

Each action attempts to change the deployment status of one sensor. The 

solution with the minimum energy, zmin, is saved as the best found solution. 

While frozen temperature, tf, is reached, the algorithm stops. If minz m≤ , the 
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best found solution is a feasible solution to this problem. 

The SA-based algorithm is a stochastic process. Computing time for the 

algorithm is relative to the selection of the cooling schedule, the desired solution 

quality, and the optimization problem itself. Hence, as the size of the problem 

increases, the time complexity of the problem will become increasingly 

irrelevant. In the proposed problem, the evaluation for discrimination constraint 

(i.e., constraint (5.4)) dominates the solution speed of the algorithm. To check 

whether the constraint is satisfied, we have to calculate the Hamming distance of 

power vectors for each pair of grid points in a sensor field. Therefore, the time 

complexity for the evaluation is O(n3), where n is number of grid points in the 

field. 

 

5.5.2 Computational Results 

To evaluate the performance of the proposed algorithm, we conduct a serial 

of experiments. The performance is assessed in terms of solution quality, 

efficiency, and scalability. We also make the same experiments by a well-known 

optimization software package, ILOG CPLEX 9.0. Afterward, we compare the 

performance of the SA algorithm with that of CPLEX. 

 
5.5.2.1 Scenario 

We assume that all sensors have the same deployment cost, the overall 

deployment cost can be simplified as the amount of deployed sensors. This 

section uses a normalized term, sensor density, as a performance metric to 

evaluate the solution quality of the algorithm. The average sensor density (%) is  

1Average sensor density (%) ( ) 100%jk
j B k K

x
Kn ∀ ∈ ∀ ∈

= ×∑ ∑  

. The solution time is used to evaluate efficiency of the algorithm. We observe 

the variation of solution quality and performance under the situation that sensor 

field is increased gradually to assess scalability of the SA algorithm. ILOG 
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CPLEX 9.0 is also used to solve the problem. Afterward, we use the solution by 

CPLEX to be benchmark and evaluate the performance of the SA algorithm. 

We develop two sets of experiments to evaluate the performance of the 

proposed algorithm under various system parameters: field size, sensor radius, 

and number of covers. First, the algorithm was tested on a 10 by 10 service area. 

The sensor radius r ranges between 1 and 7. According to Proposition 5.3, each 

set of experiments is investigated under a given K cover which ranges between 1 

and the theoretic upper bound on maximum number of covers, Ur , as listed in 

Table 5.8. The main purpose of the experiments is to examine the solution 

quality and efficiency of the algorithm. In second sets of experiments, the radius 

r is set to 1 and 7, the number of covers k is from 1 to Ur and the field size is 

varied from 5 by 5 to 15 by 15. The purpose of the experiment is to examine 

whether the algorithm has scalability while the solution space increasing. 

The parameters of the cooling schedule for the SA algorithm are 1 0.5α = , 

2 0.75α = , 1.3β = , and 20b n= . 0t  is set to 0.5 | |rG B . The frozen 

temperature, ft , is set to 0.001. | |p B=  and the cost of sensor 1jc = , 

j B∀ ∈ . 

 
 
5.5.2.2 Results 
 
A. Solution Quality 

We first investigate whether the theoretic upper bound of covers, Ur, can be 

found. Based on our assumptions, the maximum lifetime of sensor is almost 

proportional to the number of covers that can be found. The experimental results 

are listed in Table 5.8. In all cases, the SA algorithm can always obtain the 

solution under the theoretic upper bound of cover. From this perspective, the 

proposed algorithm is very effective for maximizing the network lifetime. 
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Table 5.8: Comparison of Ur between the theoretical and the best found values. 

Radius (r) 1 2 3 4 5 6 7

Ur (theoretic) 3 6 11 17 26 35 45 

Ur (the best found) 3 6 11 17 26 35 45 

Degradation (%) 0 0 0 0 0 0 0

 

 

Table 5.9 lists the selected results of experiments, which shows the sensor 

density requirements with specific sensor radius and the number of cover. 

Moreover, from the energy efficiency and deployment cost perspectives, the 

proposed algorithm demonstrates a significant improvement compared with 

duplicate deployment approach. This study uses the required number of sensors 

for one cover as a base, then the times of lifetime extension and cost increase of 

duplicate deployment approach compare with the proposed approach’s, as listed 

in Table 5.10. Obviously, the times of cost increase for the SA algorithm is 

lower than for duplicate deployment approach. For sensor radius 7, the required 

number of sensors is as low as 10.58% of duplicate deployment approach. 

 

Table 5.9: Selected sensor densities obtained in experiment. 

Sensor radius # of covers 1 2 3 4 5 6 7 
1 0.39 0.23 0.20 0.16 0.19 0.20 0.21 
3 0.79 0.37 0.25 0.19 0.19 0.20 0.21 
6  0.71 0.37 0.28 0.21 0.21 0.21 
11   0.73 0.47 0.36 0.27 0.26 
17    0.81 0.60 0.38 0.35 
26     0.97 0.64 0.52 
35      1.00 0.70 
45       1.00 

 

 

From average sensor-density perspective, the average sensor density per 

cover is higher while the number of covers is few, as shown in Figure 5.10 and 

Figure 5.11. While the cover quantity increases the average sensor-density per 
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cover decreases progressively and achieves stability. Therefore, the proposed 

sensor placement algorithm is extremely effective for minimizing the sensor 

density increase in extending lifetime. 

 
 

Table 5.10: Performance comparison between the duplicate deployment 
and the SA-based sensor placement algorithm. 

The duplicate deployment The SA algorithm Radius #Duplication Increased cost #Cover Increased cost 
1 3 3 3 2.03 
2 6 6 6 3.09 
3 11 11 11 3.65 
4 17 17 17 4.94 
5 26 26 26 5.16 
6 35 35 35 5.00 
7 45 45 45 4.76 

 
 
 

 

Figure 5.10: Average deployment density for 10x10 sensor 
field. (SA, R=1 ~ 4) 
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approaches is very little. In some case, SA algorithm is better than CPLEX, and 

vice versa. These results indicate both SA algorithm and CPLEX has the same 

solution quality in terms of the sensor density. 

 

 

 

Figure 5.11: Average deployment density for 10x10 sensor 
field. (SA, R=5 ~ 7) 

 
 
 

 

Figure 5.12: The requirement sensor density compares 
between the SA algorithm and CPLEX. 
(R=4) 
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Figure 5.13: The requirement sensor density compares 
between the SA algorithm and CPLEX. 
(R=5) 

 
 
 

 

Figure 5.14: The requirement sensor density compares 
between the SA algorithm and CPLEX. 
(R=6) 
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Figure 5.15: The requirement sensor density compares 
between the SA algorithm and CPLEX. 
(R=7) 

 
 
 
B. Solution Time 

We investigate the solution time of the SA algorithm with various radius 

and k value in a 10 by 10 field. Table 5.11 lists the minimum, maximum, and 

average solution times of each set of experiments, which has same radius and 

different k. The solution space in this experiment ranges from O(2100) to 

O(46100). The average solution time of our algorithm is only several hundreds of 

seconds. The maximum solution time is no more than 1600 seconds. We can 

also find out that the maximum difference among all cases is only about 50 

times. Therefore, the proposed algorithm is efficient in terms of solution time. 

 

Table 5.11: The solution time of the SA algorithm. 

Sensor radius Solution time 
(Seconds) 1 2 3 4 5 6 7 

Average 94 267 227 265 298 478 587 
Maximum 141 593 537 463 676 1557 1437 
Minimum 44 71 55 36 91 87 149 
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C. Scalability 
 

In the second set experiments, we set sensor radius to be 1 and attend to 

investigate the sensor density solved by SA algorithm and CPLEX with different 

size of fields. Because of the computing time of CPLEX is so long, even more 

than several hours. We stop it while execution time exceeds 10,000 seconds and 

adopt the feasible solution at that moment. Figure 5.16 to Figure 5.18 show the 

sensor density under different field size with the number of covers, k, is 1, 2, 

and 3, respectively. From the sensor density perspective, the proposed algorithm 

is better than CPLX. The proposed algorithm always can get lower sensor 

density than CPLX. In addition, CPLEX can not always obtain feasible solution 

in 10000 seconds. Figure 5.18 shows CPLEX does not obtain feasible solutions 

when sensor field is 12 by 12 or 15 by 15 with K is 3.  

 
 

 

Figure 5.16: The required sensor density for various sensor 
fields. (K=1, R=1) 

 

The solution time about the second set experiments is illustrated in Figure 

5.19. When sensor field increases from 5x5 to 15x15, the solution space extends 

from 225 to 2225. However, the solution time of the proposed algorithm increases 
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slowly when the solution space extends greatly. Contrarily, the solution time of 

CPLEX increases very rapidly when sensor field increases. Therefore, the 

proposed algorithm is highly scalable in terms of number of cover and field size 

for sensor density and solution time. 

 

 

Figure 5.17: The required sensor density for various sensor 
fields. (K=2, R=1) 

 

 

Figure 5.18: The required sensor density for various sensor 
fields. (K=3, R=1) 
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Figure 5.19: The solution time for various sensor fields 
(K=1). 
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5.6 Concluding Remarks 

In this chapter, we study energy efficient sensor placement problem for 

surveillance and positioning service. By Lagrangean relaxation method and 

Simulated Annealing meta-heuristic, we develop two algorithms to address this 

problem. As the best of our knowledge, the proposed algorithms are truly novel 

as it has not been discussed in previous research.  

At first, this study formulates the problem as a 0/1 integer programming 

problem, and then proposes a Lagrangean relaxation (LR) based heuristic and a 

simulated annealing (SA) algorithm for solving the optimization problem. And 

CPLEX also is used to solve the problem.   

The proposed Simulated Annealing approach can almost prolong the 

working life of a sensor up to its theoretical upper bound without surveillance 

quality degradation. In the worst case, the proposed LR approach has 4.4% 

degradation.  

About solution time, the proposed LR approach outperforms the SA 

approach. CPLEX is the worst in solution time. Both the proposed LR and SA 

approach are scalable in terms of solution quality and solution time, but CPLEX 

isn’t. 

The required average sensor density of one cover is effectively minimized; 

the maximal deployment cost is just 10.58% of that of using the duplicate sensor 

placement approach. Furthermore, using the same deployment density for a 

single-cover sensor network, we can deploy an energy-efficient sensor network 

such that its’ lifetime can be extended up to 3 times.  

The computational results indicate that the sensor placement approach is 

effective and the proposed algorithm is highly efficient, effective as well as 

scalable. Obviously, this study contributes to deploying a sensor network for 

target positioning with maximum lifetime.
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CHAPTER 6 CONCLUSION AND 
FUTURE WORK 

6.1 Summary 

In this dissertation, we focus on the sensor deployment problems to support 

environment surveillance and target positioning services from various 

perspectives.  

First, we addressed the homogeneous sensor placement problem for 

environment surveillance and target positioning. The problem was formulated as 

a min-max mathematical optimization model. The maximum error distance was 

used to measure the positioning accuracy of a WSN. Then, a 

simulated-annealing-based algorithm has been proposed to solve the 

optimization problem. The experimental results reveal that the proposed 

algorithm not only can efficiently obtain a high-quality solution but also is 

effective, scalable, and robust. Afterward, we considered adjusting the sensing 
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radius for individual sensor in a randomly deployed sensor network and 

proposed a simulated annealing (SA) algorithm to cope with the problem as well. 

The experimental results indicate, sensors with adjustable sensing radius can 

actually improve the quality of positioning service when locations are given. 

Next, the dissertation focuses on supporting differentiated quality of 

positioning service for WSNs. The work dealt with the differentiated QoS 

requirements for each region of interesting (ROI). The goal of the problem is 

either to guarantee QoS requirement of all ROIs or to minimize the QoS 

degradation for ROIs based on its’ level of priority. We have developed three 

heuristics, including one Lagrangean-Relaxation-based (LR-based) algorithm 

and two SA-based algorithms, to address this problem. The experimental results 

show that when the given resource is scarce, the sensor deployment approach 

with differentiated QoS requirements can obtain better QoS solution than that 

with the uniform QoS requirement. Furthermore, for a sensor field with 

placement limitations, using sensors with adjustable radius can obtain higher 

level of QoS than adopting fixed radius sensors. 

The third topic focuses on the energy efficiency issue. K independent sets 

of sensors (K covers) monitor a sensor field in turn and locate the target together. 

The problem was formulated as a mathematical optimization model, where the 

sensor cost was objective. We have developed a LR-based heuristic and a 

SA-based algorithm to solve the problem. The experimental results indicate that 

the proposed strategy is very effective for energy conservation. And the 

deployment cost is just 9% of that using the duplicate sensor deployment 

approach when radius and number of cover increase. Furthermore, using the 

same deployment density for a single-cover sensor network, we can construct an 

energy-efficient sensor network such that its lifetime can be extended up to at 

least 3 times. 

The contributions of this dissertation are summarized as follows. 

1. We first introduced the positioning ability as QoS parameter in WSNs 

designs from application perspective, also proposed the error distance to 
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measure the positioning ability. 

2. A generic framework for sensor placement problem has been proposed to 

support the differentiated QoS and prioritized service in WSNs. 

3. The mathematical optimization models were proposed to define the 

problems clearly. 

4. Base on Lagrangean Relaxation and Simulated Annealing methods, we 

developed many heuristics to solve these optimization problems. 

5. The results of this dissertation could be used as references or guidelines for 

sensor network builders and researchers. 
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6.2 Future Work 

Even though we have dealt with a series of sensor deployment problems for 

surveillance and positioning services, there are still many open issues to be 

investigated worthily. We point out three challenging issues to be tackled in the 

future.  

1. Fault Tolerant Sensor Networks Design for Surveillance and 

Positioning Services 

We assume the survivability requirement for each ROI in sensor field 

is different. We will try to design the sensor network, which has to remain 

complete coverage, when number of sensors k1 fail, as well as to maintain 

a specific positioning quality when number of sensors k2 fail. And the 

redundant sensors will be used to enlarge network lifetime.  

2. Scalable Sensor Networks Design for Target Location Services 

The large scale sensor network design is an important and difficult 

problem. We will attempt to adopt the divide-and-conquer heuristic to 

reduce problem size and solution time. The trade off between solution time 

and deployment cost can be investigated.  

3. Mobile Sensor Networks Design 

Recently the issue about mobile sensors is attended intensively. We 

will assume the sensor network mixed with a lot of mobile sensors and 

some stationary sensors. How to optimize the coverage and quality of 

service of the sensor network under the moving energy constraint is one of 

key challenges.   

We will strictly formulate the above three future issues as mathematical 

optimization models. The Lagrangean relaxation method and some 

meta-heuristics will be used to address these optimization problems.  
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APPENDIX A: SET-COVER AND 
SET K-COVER PROBLEMS 
 
 
Set-Cover Problem 
 

The set covering problem is a classical problem in computer science and 

complexity theory. Given several sets, its may have some elements in common. 

You must select a minimum number of these sets so that the sets you have 

picked contain all the elements that are contained in any of the sets in the input.  

More formally, problem Set-Cover takes a collection of m sets S1, S2, …, Sm 

and an integer parameter k as input, asks whether there are is a sub-collection of 

k sets 
1i

S , 
2i

S , …, 
ki

S , such that  

1 1

.
j

m k

i i
i j

S S
= =

=∪ ∪  

That is, the union of the sub-collection of k sets includes every element in the 

union of the original m sets [GT02]. 

In the set covering optimization problem, the input is a collection of m sets, 

and the task is to find a set covering which uses the fewest sets. The decision 

version of set covering is NP-complete, and the optimization version of set 

cover is NP-hard. 

 
 
Set K-Cover Problem 
 

The Set K-Cover problem is a known problem in combinatorial algorithms 

and is defined as follow [SP01]:  

 

INSTANCE: Collection C of subsets of a set A, positive integer K. 
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QUESTION: Does C contain K disjoint covers for A, i.e. covers C1, C2, ..., CK, 

where Ci ⊆ C such that every element of A belongs to at least one 

member of each of Ci?  

The Set K-Cover problem has been proved that is NP-complete problem 

using polynomial time transformation from the minimum cover problem [GJ79]. 
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APPENDIX B: THEOREM A.1 

From Figure 4.3, Figure 4.14, Figure 4.18, Figure 4.26, and Figure 4.27, we 

can observe that at the beginning and ending of all curves will trend to up, and 

the middle of these curves is lower than that. That means the required sensor 

density is high when we deploy sensors with a smaller or larger radius. In this 

Appendix, we will discus the relationship between the required number of 

deployed sensors and sensor radius from a theoretic viewpoint. Table A.1 lists 

the notations used in this Appendix. 

 
 

Table A.1: Lists of Notations used in Appendix B. 

Notations Descriptions 

NA The number of grid points in a sensor field. 

Cj The number of grid points which can be covered by 
sensor with detection radius rj. 

jCN  The number of sensors with detection radius rj that 
required to uniquely identify every grid points. 

Xk The random variable of outcome for sensor k, Xk=1, 
when sensor k can cover a given grid point, otherwise, 
Xk=0,  k∈ jCN . 

( )1 2,  ,  ...,  C jN
X X X  The power code of outcome of the all sensors. 

Y The random variable of outcome for grid point 
identification, which is 0 if no grid point is identified, 
and it is j if j-th grid point is identified.  

 
 

First, we review backgrounds of the information theory that will be used in 

Theorem A.1 [CT06]. The mutual information I(X; Y) is the reduction in the 
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uncertainty of X due to the knowledge of Y. It can be expressed as follows. 

I (X; Y) = H(X) − H(X|Y). 

The mutual information of a random variable with itself is the entropy of 

the random variable. This is the reason that entropy is sometimes referred to as 

self-information. Hence, we have the following lemma. 

 
Lemma A.1: (Mutual information and entropy) [CT06] 
 

I (X; Y) = H(X) − H(X|Y)  
I (X; Y) = H(Y) − H(Y|X)  
I (X; Y) = H(X) + H(Y) − H(X,Y)  
I (X; Y) = I (Y; X)  
I (X; X) = H(X).                                            

 

The relationship between H(X), H(Y), H(X, Y), H(X|Y), H(Y|X), and I (X; Y) 

is expressed in a Venn diagram, as shown in . Notice that the mutual 

information I (X; Y) corresponds to the intersection of the information in X with 

the information in Y. 

 
 

 

Figure A.1: Relationship between entropy 
and mutual information. 

H(X|Y) I(X; Y) H(Y|X) 

H(X) H(Y)

H(X,Y)
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We now show that the entropy of a collection of random variables is the 
sum of the conditional entropies. 

 

Lemma A.2:  (Chain rule for entropy) [CT06] 

Let X1, X2, …, Xn be drawn according to p(x1, x2, …, xn). Then  

1 2 1 2 1
1

( ,  ,  ...,  ) ( | ,  ,  ...,  ).
n

n i i i
i

H X X X H X X X X− −
=

= ∑            

 
Lemma A.3: (Conditioning reduces entropy) (Information can’t hurt) [CT06] 

H(X|Y) ≤ H(X) 

with equality if and only if X and Y are independent.                  
 

Now, the relationship between the required number of deployed sensors and 

sensor radius can be expressed as Theorem A.1. 

 

Theorem A.1:  

For a sensor field with NA grid points, let C1 < C2 < …< Cj < …< CR. If the 

boundary effect of sensor field is ignored, then  

(1) log( 1) 
1

jCj
A

A

C
h N N

N
⎛ ⎞

⋅ ≥ +⎜ ⎟+⎝ ⎠
  

   , where 2 2( ) log (1 ) log (1 )h x x x x x= − − − −  is the binary entropy function. 

(2) Let 1 2
1...

2
A

j
NC C C +

< < < ≤  and 1
1  ...  

2
A

j R
N C C+

+
≤ < < , then 

1 2 ...> jCC CN N N> >  and 1 2<  < ...< j j RC C CN N N+ + . 

Proof: 

Part (1): 

It is a special case of [KCL98, Theorem 1.2]. We denote by Xk (k=1, 2, …, 
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jCN ) the result of the (identification) test performed by the i-th sensor. Each Xk 

is a binary random variable, Xk = {0, 1}. Denote by Y the random variable which 

is equal to 0 when no grid point is to be identified and j (j = 1, 2, …, NA) if the 

j-th grid point is to be identified, as Figure A.2 shown. We assume that all NA+1 

cases are equiprobable. Thus the entropy 2( ) = log ( 1)AH Y N + . Figure A.3 

illustrates an example of ideal identifying code for 7 grid points and 3 

codewords.  

 

Figure A.2: Random variables Xk (sensor k) and Y 
(grid point identification). 

 

 

Figure A.3: An example of ideal identifying code. 

 

Now, denote the mutual information by ( )1 2,  ,  ...,  ;  C jN
I X X X Y , which 

means the reduction in uncertainty of 1 2,  ,  ...,  C jN
X X X  due to the knowledge 

Coverage of X3

Power vector of grid point 2
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of Y. According to Lemma A.1, we denote mutual information as Equation (A.1) 

and illustrate in Figure A.4. 

 

( )
( )

1 2

1 2

,  ,  ...,  ;  

( )  / ,  ,  ...,  .                                          (A.1)

C j

C j

N

N

I X X X Y

H Y H Y X X X= −
               

 

 

 

Figure A.4: Mutual information and entropy in Equation (1). 

 

If a lot of grid points cannot be uniquely identified, then 

( )1 2/ ,  ,  ...,  0C jN
H Y X X X ≠ , as Figure A.5 shown. In this dissertation, the grid 

point in sensor field is uniquely determined by the given power 

code, ( )1 2,  ,  ...,  C jN
X X X , so that ( )1 2/ ,  ,  ...,  C jN

H Y X X X is 0 and shows in 

Figure A.6. We rewrite Equation (A.1) as the follows:  

1 2

1 2

2

( ,  ,  ...,  ;  )

( ) - ( / ,  ,  ...,  )

( )
log ( 1).                                                                        (A.2)

C j

C j

N

N

A

I X X X Y

H Y H Y X X X

H Y
N

=

=
= +

 

1 2( , ,..., ; )C jN
H X X X Y

1 2( / , ,..., )C jN
H Y X X X

( )H Y

1 2( , ,..., ; )C jN
I X X X Y

1 2( , ,..., )C jN
H X X X

1 2( , ,..., / )C jN
H X X X Y
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Figure A.5: A lot of grid points cannot be uniquely identified. 

 

 

 

Figure A.6: Mutual Information and entropy for Equation (2). 

 

 

Afterwards, due to Lemma A.1 again, we get Equation (A.3).  

 

 

Because entropy is larger than or equal to zero, we can obtain Inequality 

1 2( , ,..., )C jN
H X X X

1 2( / , ,..., ) 0C jN
H Y X X X =∵

1 2( ) ( , ,..., ; )C jN
H Y I X X X Y=

1 2( / , ,..., ) 0C jN
H Y X X X ≠

1 2

1 2 1 2

( , ,..., ; )

( , ,..., ) ( , ,..., | )                         (A.3)
C j

C Cj j

N

N N

I X X X Y

H X X X H X X X Y= −
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(A.4) and illustrate in Figure A.7. 

 

 

 

 

 

 

Figure A.7: Mutual information and entropy of Inequality (4). 

 

 

Then based on chain rule for entropy (Lemma A.2), we can obtain Equation 

(A.5).  

 

 

 

 

1 2 2( , ,..., ) log ( 1)C j AN
H X X X N≥ +

1 2

2

( , ,..., ; )

log ( 1)
C jN

A

I X X X Y

N= +

1 2

1 2 1 2

1 2

2

( , ,..., )

( , ,..., ; ) ( , ,..., | )

( , ,..., ; )

log ( 1)                                                                      (A.4)

C j

C Cj j

C j

N

N N

N

A

H X X X

I X X X Y H X X X Y

I X X X Y

N

= +

≥

≥ +

1 2

1 2 1 11

1 1
1

( , ,..., )

( ) ( | ) ... ( | ,..., )

( | ,..., )                                                     (A.5)

C j

C Cj j

C j

N

N N

N

k k
k

H X X X

H X H X X H X X X

H X X X

−

+
=

= + + +

= ∑
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From the Lemma A.3, H(X|Y) ≤ H(X), we obtain Inequality (A.6) and 

illustrates in Figure A.8. 

 

 

 

 

 

Figure A.8: The conditioning reduces entropy of Inequality (6). 
 

 

However, the probability { }Pr 1
1

j
k

A

C
X

N
= =

+
, which is determined by the 

ratio of the coverage to the amount of grid points for sensor k. Hence, 

( )
1

j
k

A

C
H X h

N
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
. Therefore, Inequality (6) can be rewritten as Inequality 

(A.7). 

 

 

1 2
1

( , ,..., ) ( )
C j

C j

N

kN
k

H X X X H X
=

≤ ∑

1( )H X

( )C jN
H X

2( )H X
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. 
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1 2

1 1
1 1
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( | ,..., ) ( )                        (A.6)

C j

C Cj j

N

N N
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H X X X
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1 2

1

( , ,..., )

( )                                  (A.7)
1
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H X X X
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Hence, due to Inequalities (A.4) and (A.7), we can obtain that the number of 

sensors jCN  for identifying each grid point completely has to satisfy the 

following inequality. 

2log ( 1)
1

jCj
A

A

C
h N N

N
⎛ ⎞

⋅ ≥ +⎜ ⎟+⎝ ⎠
. 

 

 

Part (2): 

When the entropy 
1

j

A

C
h

N
⎛ ⎞
⎜ ⎟+⎝ ⎠

 increases, the minimum number of sensor 

for discrimination will decrease. The value of 
1

j

A

C
N +

 is between 0 and 1. As 

well as the maximum entropy approximates to 1, while 1
1 2

j

A

C
N +

, i.e. the 

sensor coverage ratio is about 0.5 of number of grid points. In this case, the 

number of sensor for discrimination can be minimized. Contrarily, while 

1
j

A

C
N +

 approaches to 0 or 1, the entropy will decrease, even approach to 0. It 

means that the sensor coverage ratio is either smaller or larger, the entropy will 

decrease and the number of sensor required for discrimination will increase.   

 

 
 

Example A.1: In a sensor field with 150 grid points, sensors with 1, 2, 3, 4, 5, 6, 

and 7 detection radii are adopted to construct a completely 

discriminated sensor field. The minimum required sensors for 

each radius are listed in . The trend of the minimum required 

sensors for each radius is drawn as .  
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Table A.2: The minimum required sensors for various radii. 

r 
coverage

jC  
Coverage ratio

/( 1)j AC N +  

Entropy of 
each sensor

1( )j

A

C
NH +

2

1

log (151)
( )j

A

C
NH +

Min. number of 
sensors 

min  jCN  

1 5 0.033113 0.209769 34.50655 35
2 13 0.086093 0.423292 17.10026 18
3 29 0.192053 0.705746 10.25639 11
4 49 0.324503 0.909212 7.961185 8
5 81 0.536424 0.996169 7.266242 8
6 113 0.748344 0.813892 8.893569 9
7 149 0.986755 0.101609 71.23783 72

    
 
 

Figure A.9: The minimum required sensors vs. sensor radius in 
a 10x15 sensor field. 
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APPENDIX C: 
 

Deploying minimum sensors to support target positioning service, why the 

minimum number of deploying sensors will increase while the detection radius 

is larger or smaller? We conduct a set of experiments to investigate this problem.  

In a rectangular sensor field, the width is divided into 15 grid points and the 

height increases from one grid point to 15 grid points. The uniform quality of 

positioning service is required, and the set of candidate detection radius depends 

on the size of the sensor field. In Table A.3, by our algorithm (SA_2), we obtain 

the minimum density of sensors required to deploy a sensor network for 

supporting target positioning in the various detection radius and height of sensor 

field. The blank in Table A.3 means the radius does not be used in the sensor 

field with the height. From Table A.3, we can obtain the following remarks. 

 

(1) Observing any detection radius (each column): 

While the height of sensor field increases, the boundary effect for sensors 

moderates. As well as the trend of the sensor density requirements is descending, 

then moderate, and even moving up and down. In addition, the height of sensor 

field increases, we find the density of the sensor density is descending and even 

lower than the density of sensors with smaller radius. For example, when the 

heights are 1 to 4, the densities of sensors with radius 3 are higher than sensors 

with radius 2, but when the height (H) is more than 4, the densities of sensors 

with radius 3 are lower than sensors with radius 2.  

 

(2) Observing the detection radius 1 to 5 (columns 1 to 5): 

Although, the height of sensor field increases, the boundary effect for 

sensors moderates. Observing these relatively small radii, the required densities 
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decrease while detection radii increase. For example, the required minimum 

sensor density is about 38.6% for radius 1, 23% for radius 2, 18.2% for radius 3, 

and 13.3% for radius 5. We deduct that the required sensor density for deploying 

a sensor network to support target positioning will decrease when sensor’s 

radius increase under the boundary effect being insignificant.  

 

Table A.3: The minimum sensor density (%) for various sizes of sensor field. 
(The width of sensor field is 15.) 

  Detection radius 
H 1 2 3 4 5 6 7 8 9 10 

1 53.33 60.00 53.33 60.00 73.33 86.67 93.33       

2 46.67 40.00 46.67 40.00 50.00 60.00 70.00       

3 40.00 28.89 44.44 35.56 44.44 53.33 62.22       

4 41.67 26.67 30.00 33.33 50.00 60.00 70.00       

5 40.00 25.33 24.00 24.00 40.00 48.00 56.00       

6 40.00 25.56 21.11 20.00 30.00 36.67 43.33       

7 40.00 25.71 19.05 20.00 20.00 20.00 23.81 41.90     

8 39.17 24.17 19.17 18.33 18.33 19.17 19.17 35.00     

9 39.26 23.70 19.26 17.78 16.30 17.04 18.52 20.74     

10 39.33 23.33 20.00 16.00 15.33 16.67 17.33 19.33     

11 39.39 23.64 20.00 16.36 15.15 15.15 16.36 17.58 19.39   

12 39.44 23.33 18.89 17.22 14.44 14.44 15.00 17.22 17.78   

13 39.49 23.08 18.97 16.92 13.33 13.85 14.36 15.90 16.41   

14 39.05 23.33 19.05 16.67 13.81 13.33 13.81 14.76 15.24   

15 38.67 23.11 18.22 16.44 14.22 12.89 12.89 14.67 15.11 17.33 

 
 

(3) Observing the detection radius 6 to 10 (columns 6 to 10): 

We can find the following two points which support the boundary effect is 

more significant for the sensors with larger detection radius.  

i. The maximum candidate radius is increasing when the height of 

sensor field increases. For example, the sensors with radius 8 can’t 
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be used when the height is less than 7, the sensors with radius 9 

can’t be used when the height is less than 11.  

ii. In a sensor field, the detection radius is more close to the maximum 

candidate detection radius, the boundary effect is more significant, 

and the required deploying density is more.  
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APPENDIX D: LIST OF 
NOTATIONS 
 

Notation Description 

A Index set of the service points in the sensor field. 
B Index set of the sensor’s candidate locations, B⊆A. 

C Index set of sensor cost. 

D The diameter of a sensor field.  

E(x) The energy function of solution structure x. (for SA 
algorithm) 

EΔ  The energy difference between new and current solution 
structures. (for SA algorithm) 

G  Budget limitation. 

Gr The number of covering grids of a sensor with detection 
radius r. 

K Index of covers required for the sensor network. 

K  A large number. 

N The maximum number of sensors, N=G/cmin . 

R Set of candidate detection radiuses for sensor. 

0T  The initial temperature. (for SA algorithm) 

Tf The frozen temperature. (for SA algorithm) 

Ur The upper bound on number of covers in a rectangular 
sensor field where deploys sensors with detection radius r. 

W Set of the discrimination weight. 

aij 
 

Indicator function which is 1 if service point i can be 
covered by sensor j and 0 otherwise. 

ck The cost of sensor located at position k; k∈B, ck∈C. 

cmin The minimum cost of sensors. 

ijd  Euclidean distance between location i and j; i, j∈ A. 
( )r T  The number of iterations on temperature T. (for SA 

algorithm) 
rk Detection radius of sensor located at k, k∈B. 
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Notation Description 

t0 The initial temperature. (for SA algorithm) 

tf The frozen temperature. (for SA algorithm) 

wh The discrimination weight for the highest-level QoS in a 
sensor field. 

wi The discrimination weight for the i-th level QoS in a sensor 
field. 

wij Discrimination weight, i,j∈A, wij∈W. 

xjk 1 if sensor j is allocated on cover k of the sensor network. 

ky  1, if a sensor is allocated at location k and 0 otherwise, k∈B.

α  The cooling ratio, 1α < . (for SA algorithm) 

β  The cooling speed control parameter, 1β > . (for SA 
algorithm) 

λ A scalar for the LR-based algorithm, 0≤ λ≤ 2. 

  
  
 


