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論文摘要 

 

論文題目：達成網路存活性最大化之近似最佳化網路防禦資源配置策略 

作者：溫雅芳           九十六年七月 

指導教授：林永松、顏宏旭  博士 

 

由於電腦硬體成本逐漸下降、軟體性能逐漸上昇，大部份的關鍵性網路都已

電腦化控制。這些與日常生活息息相關的網路系統，一旦其毀損，除了對我們的

生活造成極大的不方便，更是在生命與財產方面，引起不小的損失。所以，有效

地評估與衡量關鍵性網路系統的存活性，是現今資訊安全領域中亟需重視的議題。 

有鑑於此，我們提出一個全新且簡單的網路存活性指標—網路分隔度(Degree 

Of Separation, DOS)。這是一種網路傷害指標，用來衡量網路遭受毀損的平均程

度。DOS 值愈大，代表其網路毀損愈嚴重，即表示必須付出更大的代價去修復整

個網路。倘若其損害程度大於某一門檻值，則我們宣稱該網路已全然毀損。 

因此，我們模擬一個網路攻防情境以建立一個最佳化資源配置目標之數學線

性規劃模型，並加入 DOS 指標的概念來評估其存活性。在求解的過程之中，利用

“拉格蘭日鬆弛法”與“梯度法”來幫助我們逐漸找到最佳解。 

最後，經由實驗證明，不僅我們所提出的三階段選擇 (3-Stage Selection, 3SS) 

攻擊演算法能夠有效評估攻擊成本，而且針對不同的網路拓樸所提出的網路資源

配置策略效果顯著。 

 

關鍵詞：網路分隔度、拉格蘭日鬆弛法、網路存活性、最佳化、資源配置、無尺

度網路 
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THESIS ABSTRACT 

 

THESIS TOPIC: Near Optimal Network Defense Resource Allocation Policies for 

Maximization of Network Survivability 

NAME: Ya-Fang Wen           DATE: July, 2007 

ADVISER: Yeong-Sung Lin, Hong-Hsu Yen, Ph.D. 

 

Due to the decreasing cost of computer hardware and the increasing capacity of 

computer software, most critical networks are being progressively computerized. If one 

of these systems were to fail, it would not only cause extreme inconvenience in our 

daily lives, but could even have catastrophic or fatal consequences. Thus, how to 

assess and evaluate the survivability of a system effectively is a crucial issue in the 

field of information security.  

In this thesis, we propose a simple and novel metric of network survivability, 

called Degree of Separation (DOS). DOS is a survivability metric used to measure the 

average damage level of a system; naturally, the larger the DOS value, the more 

serious the network damage will be. If the DOS value is larger than a pre-established 

threshold, we say that the network has been compromised.  

    We express the scenario of network attack-defense as a mathematical linear 

programming model to near-optimize the resource allocation policies. In the process of 

problem solving, we adopt the concept of DOS to assess the network survivability and 

use the Lagrangean Relaxation method and the subgradient method to approach the 

optimal solution.  
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    Finally, based on the experiment results, not only can the 3-Stage Selection (3SS) 

attack algorithm we proposed evaluate the attack cost effectively, but are the results of 

different defense budget allocation policies to different network topologies quite 

significant.  

 

Keywords: Degree of Separation, Lagrangean Relaxation, Network Survivability, 

Optimization, Resource Allocation, Scale-free Network 
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Chapter 1 INTRODUCTION 

 

1.1 Background 

 

How to assess and evaluate the survivability of a critical system effectively is now 

an urgent and crucial issue in the field of information security. With the continuous 

growth of the Internet and the World Wide Web, people are now connected far more 

closely than ever before. Communication networks have become not only a means of 

transmitting information, but also an essential part of our daily lives. As Taylor et al. 

note: “We have become dependent on the computer networks that support our 

daily lives and the reliance on these networks have made us more vulnerable to 

their disruption.” [6] 

Many threats extend from the real world to the cyber space due to the popularity 

of the Internet. Familiar cyber threats include the spread of computer viruses, e-mail 

eavesdropping, information leakage, webpage defacement, and Denial of Service due 
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to malicious attacks. New threats to the Internet are evolving almost daily. Indeed, 

computer viruses are evolving so fast that they cannot always be neutralized or 

eliminated by anti-virus products in a timely manner. The techniques of cyber 

criminals and computer hackers are advancing ceaselessly so that there is no such a 

thing as a perfect anti-intrusion or attack-proof system. 

Due to the decreasing cost of computer hardware and the increasing capacity of 

computer software, most critical infrastructure systems, such as telecommunication 

systems, transportation systems, energy generation systems, banking systems, financial 

systems, medical care systems, and defense systems, are being progressively 

computerized. If one or more of these systems were to fail, it would not only cause 

extreme inconvenience in our daily lives, but could even have catastrophic or and fatal 

consequences.  

A few years ago, the dependability and reliability of a system were important 

measurements of information security; however, these concepts no longer adequately 

express practical needs because they do not explore the notion of degraded service as 

an explicit requirement [1]. In the computer science, dependability is defined as the 

ability to deliver service that can justifiably be trusted [23]. Reliability is a set of 

attributes that bear on the capability of software to maintain its level of performance 

under stated conditions for a stated period of time [5]. Therefore, neither dependability 
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nor reliability is enough to describe the real state of an attacked or a failed system, not 

to mention the Parkerian Hexad, including Confidentiality, Possession or Control, 

Integrity, Authenticity, Availability, and Utility, created by Donn B. Parker 

(http://en.wikipedia.org/wiki/Parkerian_hexad).  We also need to consider the issue of 

survivability. As Knight et al. note: “To deal with events in information systems that 

might disrupt service leads to the notion of survivability.” [3] 

In summary, we must be able to describe system states more exactly after 

disruptive incidents occur. Although the concept of system survivability is not new, 

until recently, it was not deemed an important metric of information security. We 

believe the issue warrants further study and research. 
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1.2 Motivation 

 

A number of questions related to network survivability concern some researchers 

and experts in the field of information security; for example: “How seriously must a 

network be damaged before we say it is compromised?” and “How can we measure the 

survivability of an attacked network in our simulations by using Internet-like graphs?” 

Maybe questions like those above are asked constantly because computerized 

systems, on which we are increasingly dependent, consist of a variety of imperfect 

and heterogeneous components. However, these systems are not necessarily 

completely functional or dysfunctional, but may operate on a spectrum between 

the two extremes. 

The goal of science is to find meaningful simplicity in a situation of chaotic 

complexity. Therefore, in view of the previous questions, we try to create a network 

attack and defense model that maximizes survivability and allocates defense 

resources effectively.  

Actually, in 1970, Zeitlin, a Dutch researcher, regarded the network attack and 

defense issue as an integer resource allocation problem with a min-max objective 

function [21]. However, even though Zeitlin and other contemporary researchers 

devoted themselves to the study of this issue, they did not consider the concept of 
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survivability in their studies. 

In our network attack and defense model, we not only adopt the concept of 

network survivability, but also propose a novel metric, called the Degree of 

Separation (DOS), to calculate network survivability. DOS can be viewed as a 

network damage metric used to measure the average damage level of a network, 

i.e., the larger the DOS value, the more serious the network damage will be. Thus, 

we should make every effort to fully recover a failed network. The DOS value can 

be also used as a threshold to define a network crash; that is, if the DOS value is 

larger than a pre-established threshold, we regard the network as out of control.  

By applying the concept of DOS, we can calculate network survivability simply 

and intuitively, and also allocate limited network resources effectively. 
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1.3 Literature Survey 

 

1.3.1 Network Survivability  

 

With the continuous growth of the Internet and the prevalence of distributed 

networks, an increasing number of information security researchers are focusing on the 

issue of network survivability. While security has traditionally focused on 

confidentiality of information, the problems of greatest concern today relate to the 

availability of information and continued services [8]. 

Most systems have more than two security states; i.e., safe or compromised. 

Between these two extremes, there still exists an enormous vague zone. Thus, we 

should express more explicitly how secure (or vulnerable) a system is when we are 

planning and evaluating the system security blueprint. There are many potential 

problems, such as hardware failures, power failures, operator mistakes, disasters, and 

even sabotage. Therefore, we must be able to evaluate exactly how well a critical 

system can operate under different kinds and different levels of failure.   

Although the definition of network survivability is very important, researchers’ 

opinions differ, as shown by the summary in Table 1-1. 
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Table 1- 1: Summary of Survivability Definition 

Researcher Definition 

J.C. Knight et al. [1] [2] 

[3] 

A system that has the ability to continue providing service 

(possibly degraded or different) in a given operating 

environment when various events cause major damage to 

the system or its operating environment. 

S.C. Liew et al. [4] 

Expected survivability E[S] is the expected value of the 

survivability after a negative event. Worst-case 

survivability sw is the minimum value of survivability; 

r-percentile survivability sr is the probability that 

survivability would be less than r% of the total 

survivability; zero survivability, P0, is the probability that 

survivability would be equal to zero.  

V.R. Westmark [5] 

The ability of a given system with a given intended usage 

to provide a pre-specified minimum level of service in the 

event of one or more pre-specified threats. 

R.J. Ellison et al. [7] 

Survivability is the ability of a network computing system 

to provide essential services in the presence of attacks and 

failures, and recover full services in a timely manner. 

M.S. Deutsch et al. [22] 

Survivability is the degree to which essential functions are 

still available, even though some part of the system is 

down. 

 

From the works cited in Table 1-1, we observe a number of commonly used terms, 

as shown in Table 1-2. 
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Table 1- 2: Terms Commonly Used in Definitions of Survivability 

Term Description 

The degree/ The ability/ The 

capability 

Means that the concept of survivability is 

expressed as a percentage, not a constant. 

A system/ A network Describes the entity that needs to be protected. 

Continuity and recovery of 

essential services/ Fulfillment of 

mission/ Provision of continuous 

operation 

Describes the goal of an entity and to expresses 

the entity’s level of robustness. 

In the face of threats/ In the face 

of adverse environments/ under 

demanding conditions 

Describes a negative event, including natural 

disasters, hostile attacks, or accidental errors. 

Within a specified time period/ In 

a timely manner 

Describes the conditions that must be satisfied. 

 

In summary, the concept of survivability describes the adaptability of a system in 

the event of an abnormal incident. A survivable system is able to continue to provide 

tolerable service after some damage has occurred as a result of malicious attacks or 

unintentional failures. 

Survivability can also be categorized in terms of network performance, network 

connectivity, network capacity, and traffic capacity. Furthermore, [4] formulates a 

general framework that includes and extends the existing definitions of network 
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survivability, such that survivability is expressed as a function, not a single value. 

Therefore, we can derive a number of measurements from the survivability function.  

As noted in [4], the measurement of survivability must be flexible enough to meet 

various conditions. 
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1.3.2 Scale-free Networks 

 

Since the 9/11 terrorist attacks, researchers have focused increasingly on reducing 

the risks or minimizing the consequences of incidents or disasters. It is important to 

understand critical and complex distributed networks in modern society in order to 

explore their vulnerability. Therefore, many researchers spare no effort in trying to 

understand the relationship between a network’s topological features and its 

vulnerability. 

For decades, it has been assumed that many complex and large network 

topologies follow the random graph model (ER model) proposed by Paul Erdos and A. 

Renyi in the  1950s [16]. However, the statistical results of studies of real networks 

reveal that network topologies are far from completely random. The most obvious 

difference is that they follow a power law distribution. Power-laws are expressions of 

the connectivity distribution P(k) ~ k-γ, which is the probability that a node is 

connected to k other nodes and the exponent γ is a constant. 

Actually, power-law distributions are ubiquitous in the real world; for example, 

the Internet [14] [15], the World Wide Web (Figure 1-1a) [18] [19], actor collaboration 

graphs (Figure 1-1b) [19], science citation graphs (Figure 1-1c) [13], Newman’s 

science co-authorship graphs, R.J. Williams et al.’s food web, Liljeros et al.’s web of 
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human sexual contacts, Pareto’s income distribution (which first introduced 

power-laws in 1896), Zipf’s frequency law of English words, the human respiratory 

system, automobile networks, the size and location of earthquakes, stock-price 

fluctuations, biological cellular networks, and many more.  

 

 

Figure 1- 1: Power-law Distribution Samples 

 
 
 
 
 
 
 
 
 

 

Barabási and Albert proposed a scale-free network that can describe the scaling 

properties of networks. They found that new nodes attach preferentially to existing 

nodes that are well connected. This discovery shows that the probability that a new 

node will connect to existing nodes is neither a uniform nor a random distribution.  

(a) WWW graph with 325,729 nodes, where the average connectivity 〈k〉 = 5.46 and the 

slope γ = 2.1 [19].  

(b) Actor collaboration graph in which the nodes denote actors and the links denote joint 

casting with 212,250 nodes; the average connectivity 〈k〉 = 28.78 and the slope γ = 2.3 

[19].  

(c) Science citation graph in which the nodes denote papers and the links denote citations 

from the 783,339 papers in the ISI data set and the 24,296 papers in the PRD data set, with 

the slope γ = 3 [21]. 
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However, there is a rather high probability that a new node will connect to an existing 

node that is well connected. Therefore, a network continuously expands due to the 

addition of new nodes. This is the so-called “rich-get-richer” phenomenon. In other 

words, the development of the power-law scale indicates that two critical factors play 

important roles in network development: growth and preferential attachment.  

In view of the above description, today’s complex networks can be divided into 

two major categories based on their network connectivity: 

 

Table 1- 3: Network Distribution Samples 

Exponential 
Networks 

The P(k) peaks at an average <k> and decays exponentially for 

large k. The examples are the ER random graph model and the 

small-world model of Watts and Strogatz.  

 
Figure 1- 2: Exponential Network [20] 

 

    The ER model of random network yields a network with an 

exponential tail; it has two properties: low clustering coefficient and 

high network diameter [17]. 
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Scale-free 
Networks 

The P(k) decays as a power-law distribution. The probability that a 

node has a huge number of connections is statistically significant in 

scale-free networks. The examples were described earlier in this section. 

 

 
Figure 1- 3: Scale-free Network [20] 

 

The BA model of scale-free networks has a power-law tail; its 

properties are similar to the “small-world” phenomenon: high clustering 

coefficient and low network diameter [17]. 

 

In terms of the “small-world” phenomenon, the interconnectedness of a network 

is described by its diameter, defined as the average number of hops on the shortest path 

between any two nodes in the network. Networks with a huge number of nodes can 

have a rather small diameter; for example the diameter of the WWW, with over 800 

million nodes, is around 19 nodes, while social networks with over six billion people 

have a diameter of around 6 nodes. 

Once we prove the existence of a power-law scale network, we can derive many 



 

 14

advantages, such as designing more efficient network protocols, creating more accurate 

artificial models for simulation purposes, and estimating topological parameters, to 

make sure that our simulations accurately reflect real world scenarios. However, 

Barabási emphasizes that scale-free networks also have a number of vulnerabilities. 

Removal of 80% of the least-connected nodes would have little effect on the stability 

of a network; however, compromising some hubs, i.e., the most-connected nodes, can 

cause a network to crash. Scale-free networks with a high error tolerance of random 

failure come at a high price — they are extremely vulnerable to attack because an 

attacker targets the hubs in order to incur the most severe damage.  

In other words, the error tolerance comes at the expense of survivability [20]. 

 

1.4 Thesis Organization 

 

The remainder of the thesis is organized as follows. The next chapter explains and 

illustrates the concept of DOS. Chapter 3 uses a mathematical model to implement 

network attack and defense scenario with the concept of DOS. Chapter 4 introduces the 

Lagrangean Relaxation (LR) method for solving the model proposed in Chapter 3. 

Chapter 5 describes the computing experiment. Finally, in Chapter 6, we present our 

conclusions and discuss future work. 
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Chapter 2 DEGREE OF SEPARATION 

 

2.1 Introduction 

 

In [9], the author proposed two extreme survivability metrics to measure network 

survivability. The first metric is based on the connectivity of all critical 

Origin-Destination (OD) pairs. However, it is too strict to comply with the real case; 

thus, the second metric only considers the connectivity of at least one OD pair. 

Based on [9], we believe that we can develop a more flexible metric for network 

survivability, no matter how many OD pairs are connected or disconnected. The 

proposed survivability metric, which assesses the average damage level of a network, 

is called the Degree of Separation (DOS); it is also called the Degree of Segmentation, 

Degree of Segregation, or Degree of Disconnectivity. 

We begin by describing for the concept of DOS, and how it is calculated.  
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2.2 Illustration 

 

    In this section, we describe the concept and the calculation of DOS and provide 

some illustrations. Initially, the example network is intact (see Figure 2-1). We assume 

there is one OD pair (O is the source, and D is the destination) that can exist on more 

than one path between O and D. However, the transmission cost of the shortest path 

(thick line) is 7ε (the transmission cost of each link or each node is 1ε) and the DOS 

value, denoted as S’, is zero; that is, there is no any damage to this OD pair. 

 
Figure 2- 1: Initial Network (1) 

 

After the network has suffered a malicious attack, one node is dysfunctional 

(shown as a dotted circle in Figure 2-2), so the transmission cost turns into M, a 

enormous number. Therefore, the path of the smallest cost of this OD pair has to be 

changed to another route (thick line), whose path cost is 9ε. The S’ is still zero, which 

means the OD pair remains interconnected. 
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Figure 2- 2: Attacked Network with One Dysfunctional Node 

 

In a more serious case (see Figure 2-3), the network is attacked such that two 

nodes, shown as dotted circles, are dysfunctional. At this time, if the OD pair wishes to 

keep communicating, it must pass through one broken node; that is, we must pay a 

cost to fully recover this OD pair. Therefore, the transmission cost of this pair is 

1M+8ε, and the S’=1. 

 

Figure 2- 3: Attacked Network with Two Dysfunctional Nodes 

 

In the worst case (see Figure 2-4), the network is attacked so that three nodes are 

dysfunctional. The smallest transmission cost of this OD pair is 2M+5ε (thick line), 

and the S’=2; that is, we have to fully recover two nodes to ensure that this OD pair 

can communicate. 
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Figure 2- 4: Attacked Network with Three Dysfunctional Nodes (1) 

 

 
Figure 2- 5: DOS Legend (1) 

 

The above illustrations are for one OD pair in the network. We elaborate on the 

DOS calculation of a network with two dysfunctional pairs (see Figure 2-6). Initially, 

the network is intact and there exist two OD pairs (O1-D1 and O2-D2). The smallest 

transmission costs of the two OD pairs, respectively, are CostO1-D1=11ε and 

CostO2-D2=9ε; and the S’ O1-D1=0 and S’ O2-D2=0. That is, the two OD pairs keep 

communicating. 
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Figure 2- 6: Initial Network (2) 

 

After the network has suffered a malicious attack, for example, three nodes are 

dysfunctional and two OD pairs are therefore disconnected (see Figure 2-7), and the 

smallest transmission costs respectively are CostO1-D1=3M+8ε and CostO2-D2=2M+7ε; 

and S’O1-D1=3 and S’O2-D2=2. The average damage to the whole network is 

S’network=(3+2)/2=2.5; that is, each OD pair has to pay 2.5 times the cost, on average, 

to fully recover network communications. 

 
Figure 2- 7: Attacked Network with Three Dysfunctional Nodes (2) 
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Figure 2- 8: DOS Legend (2) 

 

The DOS value, denoted as S’, is the average number of broken nodes of each OD 

pair, calculated as                                        That is, the DOS 

value is the mean cost that each OD pair has to pay in order to communicate in an 

attacked network.  

The concept of DOS can be viewed as not only an “index of network damage” but 

also as a “metric of network survivability”. For example, according to some network 

properties, the threshold of a network crash is established. Afterwards, should the 

network suffer from attack or failure, we can calculate the eventual average damage by 

the DOS concept. If the DOS value is larger than the pre-defined threshold, we say that 

the network is out of control. Therefore, the greater the DOS value, the smaller the 

network survivability. The DOS value represents not only the average damage level 

of all OD pairs in a network, but also the average cost we should pay to fully recover 

all OD pairs. 

.
NetworkaofPairsODAllof No.

Pair) ODEach  of NodesBroken  of (No.
S' ∑=
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2.3 Lemma 

 

The upper bound of the DOS value is subject to the network’s topology. The DOS 

value must be related to |V| or |L|, where |V| and |L| are the numbers of nodes and links, 

respectively. We describe how to calculate the upper bound of the DOS value by the 

following two lemmas. 

 

Lemma 1: 

If the network’s topology is simple and regular, for example, linear or ring, we can 

easily deduce the formulation of the upper bound of the DOS value, denoted as  .  

1. Linear topology: 

 

2. Ring topology: 

 

 

 

 

Lemma 2: 

If the network’s topology is irregular, i.e., an arbitrary undirected, connected graph, 
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(for example, scale-free and random), we can make every OD pair run the shortest path 

algorithm to find its minimal hop count. The DOS value is the sum of the minimal hop 

count of each OD pair divided by |W|, i.e., the number of OD pairs. The entire 

procedure is numerical, so the time complexity is in polynomial time. 
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Chapter 3 PROBLEM FORMULATION 

 

Network operators must decide how to allocate their limited defense budgets to 

prevent malicious attacks or intrusions (see 3.2 Model 2). We simulate the role of an 

attacker who wants to compromise a targeted network at the minimal cost (see 3.1 

Model 1). 

 

3.1 Model 1 

 

3.1.1 Problem Description and Assumptions 

 

To defend a network against attack, the network operator uses the concept of DOS 

described in the preceding chapter to calculate the network’s survivability. We know 

the measurement of survivability can be categorized as: network performance, network 

connectivity, network capacity, traffic capacity, and so on. The field of network 

survivability we discuss here focuses on network connectivity. 



 

 24

In Model 1, we assume that the allocated defense budget for each node, bi, in the 

network is a given parameter. After an attack is launched, if node i should be 

compromised, the minimal attack cost will be iâ . Naturally, the relationship between 

the defense cost bi and the attack cost iâ  of node i is inter-dependent. 

After an attack, the network operator can calculate the DOS value of the network. 

If the value is larger than a given parameter, S, the network operator can determine if 

the network is compromised and which nodes are the most vulnerable to attack. 

 

Table 3- 1: Problem Description of Model 1 

Given: 

1. The network topology (for example, the network size, a set of OD pairs, and 

a set of candidate paths for each OD pair) 

2. The damage threshold at which the network can be compromised 

3. The cost of compromising a node is a function of the budget allocated to it. 

4. The defense budget allocation policy 

Objective: 

An attacker is to minimize the total attack cost. 

Subject to: 

The average damage of the target network being greater than a given threshold, S 

To determine: 

Which nodes will be attacked 

 

Table 3- 2: Problem Assumptions of Model 1 
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1. Any two nodes in the network can form an OD pair. 

2. Both the attacker and the defender have complete information about the 

targeted network topology.  

3. We consider static networks only. (We do not consider the growth of the 

network over time.) 

4. We consider node attacks only. (Link attacks are not considered.) The 

transmission cost of an uncompromised node is ε, which is a small enough 

number; conversely, the cost of a compromised node is M, which is a large 

enough number. 

5. We consider intelligent malicious attacks only. (Random errors are not 

considered.) 

6. The defender’s budget allocation policy is a given parameter. (In Model 1, we 

only consider the attacker’s behavior, not that of the defenders.) 

 

3.1.2 Mathematical Model  

 

Table 3- 3: Given Parameters of Model 1 

Notation Description 

V The index set of all nodes in the network 

W The index set of all OD pairs in the network 

Pw The index set of all candidate paths of an OD pair w, where w∈W 

M A large enough number that indicates a node has been compromised 

ε A small enough number that indicates a node is functional 

δpi An indicator function, which is 1 if node i is on path p, and 0 
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otherwise, where i∈V, p∈Pw 

iâ  The threshold of attack cost leading to a successful node attack 

S 
The threshold of a network crash, which is the average damage level 
of all OD pairs 

Rw The weight of OD pair w 

 

Table 3- 4: Decision Variables of Model 1 

Notation Description 

yi 1 if node i is compromised, and 0 otherwise, where i∈V 

twi 1 if node i is used by an OD pair w, and 0 otherwise, where i∈V, w∈W

xp 1 if path p is chosen, and 0 otherwise, where p∈Pw 

ci 
The transmission cost of node i, which is ε if node i is functional, and 
M if node i is broken, where i∈V 

 

We formulate the problem as follows:  

 

Objective function:  

,ˆmin∑
∈Vi

iiy
ay

i
 (IP 1)  

Subject to: 

ε)1( iii yMyc −+=  Vi ∈∀  (IP 1.1)  

∑∑
∈∈

≤
Vi

ipi
Vi

iwi cct δ  ,  wp P w W∀ ∈ ∈  (IP 1.2)  
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∑
∈

=
wPp

wipip tx δ  WwVi ∈∈∀ ,  (IP 1.3)  

S
MW

ctR
Ww Vi

iwiw

≥
×

∑ ∑
∈ ∈

||
  (IP 1.4) 

1
w

p
p P

x
∈

=∑  w W∀ ∈  (IP 1.5) 

0 or 1px =  ,  wp P w W∀ ∈ ∈  (IP 1.6) 

0 or 1iy =  Vi ∈∀  (IP 1.7) 

10 ortwi =  ., WwVi ∈∈∀  (IP 1.8) 

 

Explanation of the objective function: 

(IP 1) is to minimize the total attack cost. That is, an attacker tries to minimize the 

objective value by deciding which node, denoted by yi, should be 

compromised.  

 

Explanation of the constraints: 

(IP 1.1)  describes the definition of the transmission cost of node i, which is ε if i is 

functional, and M if i is compromised.  

(IP 1.2)  requires that the selected path for an OD pair w should be the minimal cost 

path. 
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(IP 1.3) denotes the relationship between twi and xpδpi. To simplify the 

problem-solving procedure, we use the auxiliary set of decision variables twi 

to replace the sum of all xpδpi. 

(IP 1.4) determines whether a target network has been compromised. 

(IP 1.5) and (IP 1.6)   jointly require that only one of the candidate paths of an OD pair 

w is selected. 

(IP 1.7) determines whether node i is compromised. 

(IP 1.8) determines whether node i is used to form the minimal cost path of an OD 

pair w. 
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3.1.3 Problem Reformulation 

 

To solve Model 1 more efficiently, we reformulate the original problem. Note that 

the attack cost of node i, iâ , is a function of the defense budget of node i, bi (where 

i∈V); therefore, we replace iâ  with )(ˆ ii ba . Additionally, we adjust some constraints 

slightly without influencing the original problem structure and the optimal solution. 

Therefore, Model 1 is reformulated as follows: 

 

Objective function:  

,)(ˆmin∑
∈Vi

iiiy
bay

i
 (IP 2)  

Subject to: 

ε)1( iii yMyc −+≤  Vi ∈∀  (IP 2.1)  
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ipi
Vi
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0 or 1px =  ,  wp P w W∀ ∈ ∈  (IP 2.6) 

0 or 1iy =  Vi ∈∀  (IP 2.7) 

10 ortwi =  WwVi ∈∈∀ ,  (IP 2.8) 

εorMci =  .Vi ∈∀  (IP 2.9) 

 

Explanation of the objective function: 

(IP 2) is the adjusted result, according to the relationship between attack cost and 

defense cost. 

 

Explanation of the constraints: 

(IP 2.1)  is the relaxed result of (IP 1.1). Note that the relaxation of the equation into 

an inequality does not violate its optimal solution. 

(IP 2.3) is the relaxed result of (IP 1.3). To simply the problem-solving process, we 

slightly adjust this constraint from an equation into an inequality, i.e. from 

‘=’ into ‘≦’, without violating its optimal solution.  

(IP 2.9)  is a redundant constraint, since the value of each ci should be either ‘ε’ or 

‘M’. This constraint will be used in Lagrangean relaxation problem-solving. 
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3.2 Model 2 

 

3.2.1 Problem Description and Assumptions 

 

Due to the limited budget, how a network operator allocates the defense budget to 

each node of the network to maximize the defense is a significant issue. An intelligent 

and experienced attacker ceaselessly explores ways to minimize his/her attack costs. 

Naturally, a defender should continually try to maximize the attacker’s costs by 

implementing an effective defense budget allocation policy. 

For this model, a problem with a max-min structure is formulated in Model 2. As 

with Model 1, we use the concept of DOS to calculate the network’s survivability. 

Recall that we focus on network connectivity. 

    The problem description and the assumptions of Model 2 are listed below: (Italic 

font indicates that the point is different to Model 1) 

 

Table 3- 5: Problem Description of Model 2 

Given: 

1. The network topology (for example, the network size, a set of OD pairs, and a 

set of candidate paths for each OD pair) 

2. The cost of compromising a node is a function of the budget allocated to it. 

3. The damage threshold at which the network can be compromised 
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4. The total defense budget 

Objective: 

A defender is to maximize the attacker’s minimal attack cost  

Subject to: 

1. The average damage to the target network being greater than a given 

threshold so that the network will be compromised. 

2. The total budget of the defender 

To determine: 

1. Which nodes will be attacked by an attacker 

2. The defender’s budget allocation policy 

 

Table 3- 6: Problem Assumptions of Model 2 

1. Any two nodes in the network will form an OD pair. 

2. Both the attacker and the defender have complete information about the 

targeted network topology.  

3. We consider static networks only. (We do not consider the growth of a 

network over time.) 

4. We consider node attacks only. (Link attacks are not considered.) The 

transmission cost of an uncompromised node is ε, which is a small enough 

number; conversely, the cost of a compromised node is M, which is a large 

enough number. 

5. We consider intelligent malicious attacks only. (Random errors are not 

considered.) 
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3.2.2 Mathematical Model 

 

The notations in Model 2 (Table 3-7 and Table 3-8) are partially the same as those 

in Model 1, except that the give parameter iâ  in Model 1 becomes a decision variable 

iâ  in Model 2; however, but it still denotes the cost of attacking node i. In addition, 

we add a new given parameter, B, to limit the defense budget. 

 

Table 3- 7: Given Parameters of Model 2 

Notation Description 

V The index set of all nodes in the network 

W The index set of all OD pairs in the network 

Pw The index set of all candidate paths of an OD pair w, where w∈W 

M A large enough number that indicates a node has been compromised 

ε A small enough number that indicates a node is functional 

δpi 
An indicator function, which is 1 if node i is on path p, and 0 
otherwise, where i∈V, p∈Pw 

iâ  The threshold of attack cost leading to a successful node attack 

S 
The threshold of a network crash, which is the average damage level 
of all OD pairs 

Rw The weight of OD pair w 

B The total defense budget 
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Table 3- 8: Decision Variables of Model 2 

Notation Description 

yi 1 if node i is compromised, and 0 otherwise, where i∈V 

twi 1 if node i is used by an OD pair w, and 0 otherwise, where i∈V, w∈W

xp 1 if path p is chosen, and 0 otherwise, where p∈Pw 

ci 
The transmission cost of node i, which is ε if node i is functional, and 
M if node i is broken, where i∈V 

ib  The budget allocated to node i 

 

We formulate the problem as follows:  

 

Objective function:  

,ˆminmax
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 (IP 3)  
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0 or 1px =  ,  wp P w W∀ ∈ ∈  (IP 3.6) 

0 or 1iy =  Vi ∈∀  (IP 3.7) 

10 ortwi =  WwVi ∈∈∀ ,  (IP 3.8) 

∑
∈

=
Vi

i Bb
  (IP 3.9) 

Bbi ≤≤0  .Vi ∈∀  (IP 3.10) 

 

Explanation of the objective function: 

(IP 3) is to maximize the attacker’s minimal attack cost. 

 

Explanation of the constraints: 

(IP 3.1)  defines the transmission cost of node i, which is ε if i is functional, and M if i 

is compromised.  

(IP 3.2)  requires that the selected path for an OD pair w should be the minimal cost 

path. 

(IP 3.3) denotes the relationship between twi and xpδpi. We use the auxiliary set of 

decision variables twi to replace the sum of all xpδpi in order to simplify the 

problem-solving procedure. 

(IP 3.4) determines whether a target network has been compromised. 
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(IP 3.5) and (IP 3.6)   jointly require that only one of the candidate paths of an OD pair 

w is selected. 

(IP 3.7) determines whether node i has been compromised. 

(IP 3.8) determines whether node i is used to form the minimal cost path of an OD 

pair w. 

(IP 3.9) reflects that the optimality condition for the defender holds if and only if the 

total budget, B, is fully used. 

(IP 3.10) requires that the set of decision variables, bi, is continuous and bounded by 0 

and B. 
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3.2.3 Problem Reformulation 

 

To solve Model 2 more efficiently, we reformulate the original problem. Note that 

the attack cost of node i, iâ , is a function of the defense budget of node i, bi (where 

i∈V); therefore, we replace iâ  with )(ˆ ii ba . Additionally, some constraints can be 

slightly adjusted without affecting the original problem structure or the optimal 

solution. 

Model 2 is reformulated as follows: 

 

Objective function: 
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0 or 1px =  ,  wp P w W∀ ∈ ∈  (IP 4.6) 

0 or 1iy =  Vi ∈∀  (IP 4.7) 

10 ortwi =  WwVi ∈∈∀ ,  (IP 4.8) 

∑
∈

=
Vi

i Bb
  (IP 4.9) 

Bbi ≤≤0  Vi ∈∀  (IP 4.10) 

εorMci =  .Vi ∈∀  (IP 4.11) 

 

Explanation of the objective function: 

(IP 4) is the adjusted result, according to the assumption of the relationship 

between the attack cost and the defense cost. 

 

Explanation of the constraints: 

(IP 4.1)  is the relaxed result of (IP 3.1). Note that the relaxation of an equation into 

an inequality does not violate its optimal solution. 

(IP 4.3) is the relaxed result of (IP 3.3). To simplify the problem solving process, we 

slightly adjust this constraint from an equation into an inequality, i.e. from 

‘=’ into ‘≦’, without violating its optimal solution. 

(IP 4.11) is a redundant constraint, since the value of each ci should be either ‘ε’ or 
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‘M’. This constraint will be used in Lagrangean relaxation problem-solving. 
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Chapter 4 SOLUTION APPROACH 

 

4.1 Lagrangean Relaxation Method 

 

In recent decades, Lagrangian Relaxation (LR) has evolved from a complete 

theoretical concept into a very practical tool that is the backbone of a number of 

large-scale applications. It is one of the few problem-solving methods for optimization 

that cuts across the domains of linear and integer programming, combinatorial 

optimization, and non-linear programming [10]. 

When we encounter great difficulty in solving large-scale and complicated 

problems, which are usually solved in exponential time and are normally formulated as 

optimization objective functions with a set of side constraints, the LR method is 

regarded as an effective problem-solving tool. It makes use of a “decomposition” or 

“divide-and-conquer” technique to make the original problem easier to solve. Such 

problems are usually solved in polynomial time. 

LR is based on the observation that many difficult integer programming problems 
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can be modeled as relatively easy problems complicated by a set of side constraints 

[12]. Next, we explain how LR simplifies complicated problems: 

1) To simplify a problem, we can relax one or more complicated constraints and 

combine them with the associated Lagrangian multipliers “u” into the primal objective 

function. Therefore, the primal problem (P) is transformed into a Lagrangian relaxation 

problem (LR). The value of the objective function of the primal problem, Z, is also 

transformed into the LR problem, ZD(u). 

2) Based on the different decision variables, we can decompose, or “divide”, the 

Lagrangian relaxation problem (LR) into several easily-solvable and stand-alone 

smaller problems, called “sub-problems”. 

3) Each sub-problem can be optimally solved, or “overcome” by well-known 

algorithms, such as Dijkstra’s algorithm. 

4) Aggregating the optimal solutions of all the sub-problems, we obtain the 

optimal objective function value, ZD(u). 

However, the optimal objective function value, ZD(u), obtained by relaxing the 

constraints may be not a feasible solution of the primal problem. The LR problem may 

provide a lower bound (LB, for a minimization problem) of the optimal value of the 

original problem. Although the LB may be not a feasible solution, fortunately, we can 

obtain some valuable hints from the Lagrangian multipliers “u” to explore a real 
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feasible solution. That is, we can raise the LB to the feasible solution area by 

constantly adjusting the Lagrangian multipliers “u”. The procedure, called the 

“subgradient method”, is illustrated in Figure 4-2.  

In addition, we can obtain an upper bound (UB, for a minimization problem) of 

the primal problem heuristically. This UB can be regarded as a limitation of the LB. 

Then, the area constructed by LB and UB, called the “gap”, is the feasible solution area. 

The optimal objective function value of the primal problem will fall in this gap. 

Therefore, to obtain the tightest gap, we must search the best algorithm for each 

sub-problem and the best heuristic for the original problem. 

The complete procedure of LR is shown in Figure 4-1. The advantages of the LR 

solution strategy are as follows: 

1)  It is a comparatively quick and flexible problem-solving method. 

2)  It can develop a comparatively tight gap on the optimal value of the objective 

function. 

3)  Each decomposed sub-problem is regarded as stand-alone model. 

4) It can provide hints about devising effective heuristic solution methods for 

solving complex combinatorial optimization problems and integer programs [11]. 
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Figure 4- 1: Lagrangean Relaxation Method [12] 
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Figure 4- 2: Flow Chart for Lagrangean Relaxation Method 
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4.2 Solution Approach for Model 1 

 

4.2.1 Lagrangean Relaxation 

 

In Model 1, we use LR to solve the problem. We relax Constraints (IP 2.1), (IP 

2.2), (IP 2.3), and (IP 2.4) and combine them, respectively, with the associated 

Lagrangean multipliers, u1, u2, u3, and u4 of primal problem (P) to obtain the 

Lagrangean relaxation problem (LR) as follows:  
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1
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=∑  w W∀ ∈  (LR 1) 

xp = 0 or 1 ,  wp P w W∀ ∈ ∈  (LR 2) 
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yi = 0 or 1 i V∀ ∈  (LR 3) 

twi = 0 or 1 WwVi ∈∈∀ ,  (LR 4)  

ci = M orε .Vi ∈∀  (LR 5)  

 

Constraints (IP 2.5) ~ (IP 2.9) of the objective function (IP 2) of Model 1 are not 

relaxed, but denoted as (LR 1) ~ (LR 5) in the LR problem. The Lagrangean 

multipliers u1, u2, u3, and u4 are, respectively, the vectors of { 1
iu }, { 2

wpu }, { 3
wiu }, and 

{ 4u }. According to the procedure mentioned above, we decompose the dual problem 

into three sub-problems, which we describe below.  
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4.2.1.1 Subproblem 1 (related to decision variable xp) 

 

Subproblem 1: 

,min)( 33
1 ∑∑∑

∈ ∈ ∈

=
Ww Vi Pp

ppiwiSub
w

xuuZ δ  (Sub 1) 

Subject to: 

1
w

p
p P

x
∈

=∑  w W∀ ∈  (Sub 1.1) 

0 or 1px =  
., Wwpp w ∈∈∀  (Sub 1.2) 

 

Subproblem 1 is decomposed into |W| smaller problems of the independent 

shortest cost path. We can individually determine the value of xp for each OD pair, and 

3
wiu  is assigned as the cost of node i in OD pair w. We adopt Dijkstra’s algorithm to 

find the value of xp for each |W| OD pair. The time complexity of Dijkstra’s algorithm 

is O(|V|2), where |V| is the number of nodes; therefore, the time complexity of 

subproblem 1 is O(|W|×|V|2). 

 

 



 

 48

4.2.1.2 Subproblem 2 (related to decision variable yi) 

 

Subproblem 2: 
 

[ ] ,)()(ˆmin

)()(ˆmin

)(

11

11
2

1

∑

∑∑∑

∈
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−++=

−++=

Vi
iiiii

Vi
ii

Vi
ii

Vi
iii

Sub

yMuuba

Myuyubay

uZ

ε

ε  
(Sub 2) 

Subject to: 

0 or 1iy =  .Vi ∈∀  (Sub 2.1) 

 

    Subproblem 2 can also be decomposed into |V| smaller problems. We can 

determine the value of decision variable yi by its coefficient [ ])()(ˆ 11 Muuba iiii −++ ε . 

If the coefficient is positive, yi is set as zero; otherwise it is set to one. The time 

complexity of Subproblem 2 is O(|V|). 
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4.2.1.3 Subproblem 3 (related to decision variable twi, ci) 

 

Subproblem 3: 
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(Sub 3) 

Subject to: 

10 ortwi =  WwVi ∈∈∀ ,  (Sub 3.1) 

εorMci =  .Vi ∈∀  (Sub 3.2) 

 

Subproblem 3 is decomposed into |V| smaller problems. However, according to 

Constraints (Sub 3.1) and (Sub 3.2), decision variables twi and ci have two choices, 

depending on which combination results in the smallest value derived by the 

exhaustive search. The time complexity is O(|V|×|W|). 
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4.2.2 The Dual Problem and the Subgradient Method 

 

    According to the weak Lagrangean duality theorem, for any set of multipliers, (u1, 

u2, u3, u4) 0, Z≧ D(u1, u2, u3, u4) is a lower bound on ZIP2. We explore the maximal 

lower bound to tighten the gap between the upper bound and the lower bound; that is, 

the area of feasible solutions. Thus, the dual problem is constructed as follows: 

 

Dual Problem: 

ZD = max ZD(u1, u2, u3, u4), (D) 

Subject to:   

(u1, u2, u3, u4) 0≧ .  

 

    Although there are many ways to solve dual problem (D), we adopt the 

subgradient method because it is simple and intuitive. Table 4-1 defines the notations 

used to solve the dual problem (D).   

 

Table 4- 1: Notations for Subgradient Method 

Notation Description 

k A vector, which is a subgradient of ZD(u1, u2, u3, u4) 

p The iteration counter of the subgradient procedure 
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pt  The step size 

*
IPz  

The best upper bound on the primal objective function value after the 
pth iteration. 

λ 
A value between 0 and 2, which is initially 2 and halved whenever the 
best objective function value does not improve within a given iteration 
count 

 

In iteration p of the multiplier vector, u = (u1, u2, u3, u4) is updated by 

 pppp ktuu +=+1 , 

where the step size pt  is calculated by 

2

* )(
p

p
DIPp

k

uZzt −= λ . 
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4.2.3 Getting Primal Feasible Solutions 

 

 To get an optimal heuristic, we partition the problem-solving procedure into 

three stages, called 3-Stage Selection (3SS). Assume that there are two buckets, one is 

for the nodes not yet attacked, called the Safety-Bucket, and the other is for the nodes 

already attacked, called the Attacked-Bucket. Stage 1 describes how we select nodes 

from the Safety-Bucket to transfer to the Attacked-Bucket. Recall that Subproblem 

1 is used to solve decision variable xp (p∈Pw), which determines the path to be chosen 

for an OD pair. With this hint from Subproblem 1, we can count the number of times a 

node is traversed by all paths and then decide the attack order. That is, the more times a 

node is traversed, the more likely it will be attacked. Each time we transfer a node 

from the Safety-Bucket to the Attacked-Bucket, we must rerun the Dijkstra’s algorithm 

to calculate the total transmission cost (TC). The time complexity of Stage 1 is O(|V|3), 

where |V| is the number of nodes. The algorithm for Stage 1 is detailed in Table 4-2. 

 
Table 4- 2: Algorithm for Stage 1 of 3SS 

1. //Initiate all parameters for the stop condition, (IP2.4) 
2. TC (Transmission Cost)= ε, (M, if attacked.); 

3. SumOfRTC (the result of ∑ ∑
∈ ∈Ww Vi

iwiw ctR )= 0; 

4. Threshold (a given parameter)= (S×|W|×M); 
 
5. WHILE (SumOfRTC < Threshold) 
6. { 
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7.    Find “ToBeIn”, the node that has been traversed the most times by all paths, 
called the “Popular Node (PN)”; 

8.    Change PN’s TC as M; 
9.    Apply Dijkstra’s algorithm to calculate the SumOfRTC value; 
 
10.    IF (every node in the Safety-Bucket is chosen) 
11.    { 
12.       break; 
13.    } 
14.    else 
15.    { 
16.     Find the next “ToBeIn” from the Safety-Bucket. 
17.    } 
18.  }//end of while 

 

Stage 2 of 3SS is used to adjust the nodes transferred to the Attacked-Bucket 

from the Safety-Bucket in Stage 1. In Stage 1, we chose some nodes to attack based 

on their popularity. However, we can not guarantee that the result will be optimal 

because the most popular node may not have the smallest attack cost. To get optimal 

solution, we adjust the result of Stage 1 by comparing the node with the largest attack 

cost in the Attacked-Bucket with the most popular node (PN) in the Safety-Bucket. By 

repeating this procedure, we can derive the value of the minimal objective function, i.e., 

the minimal attack cost. The time complexity of Stage 2 is O(|V|4). 

 

Table 4- 3: Algorithm for Stage 2 of 3SS 
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1. WHILE (any node in the Safety-Bucket is not checked) 
2. {   
3.    In the Attacked-Bucket, find “ToBeOut”, the node with the largest attack cost 

(AC); 
4.    In the Safety-Bucket, find “ToBeIn”, the most popular node (PN);   
5.    Use Dijkstra’s algorithm to calculate new SumOfRTC value; 
 
6.    IF (SumOfRTC > Threshold) 
7.    {   
8.       IF (AC [ToBeIn] < AC [ToBeOut]) // which has the smaller AC? 
9.       {   
10.          Choose “ToBeIn” into the Attacked-Bucket; 
11.          Discard “ToBeOut”;  
12.       } 
13.       ELSE 
14.       { 
15.          Keep “ToBeOut” in the Attacked-Bucket; 
16.          Keep “ToBeIn” in the Safety-Bucket; 
17.       } 
18.    }  
19.    ELSE 
20.    { 
21.       Keep “ToBeIn” in the Safety-Bucket; 
22.       Find the next “ToBeIn” from the Safety-Bucket; 
23.    } 
24. }//end of while 

 

In the previous two stages, we only required that the ∑ ∑
∈ ∈Ww Vi

iwiw ctR value of the 

chosen nodes should be larger than the threshold, ( MWS ×× || ). However, in the last 

stage, we want to make sure the ∑ ∑
∈ ∈Ww Vi

iwiw ctR value is greater than and the closest to 

threshold. So we try to discard the least popular node in the Attacked-Bucket and see if 

the new ∑ ∑
∈ ∈Ww Vi

iwiw ctR value is still greater than the threshold. If it is, we keep 
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discarding the next node until the ∑ ∑
∈ ∈Ww Vi

iwiw ctR value is smaller than the threshold. 

The time complexity of Stage 3 is O(|V|3). Table 4-4 details this stage. 

 

Table 4- 4: Algorithm for Stage 3 of 3SS 

1. Find “ToBeOut”, the least popular node, in the Attacked-Bucket;  
2. Use Dijkstra’s algorithm to calculate the new SumOfRTC value; 
 
3. WHILE (SumOfRTC > Threshold) 
4. { 
5.    Discard “ToBeOut” from the Attacked-Bucket; 
6.    Find “ToBeOut”, the least popular node, from the Attacked-Bucket;  
7.    Use Dijkstra’s algorithm to calculate new SumOfRTC value;  
8. }//end of while 

 

    In summary, the time complexity of whole heuristic is O(|V|4). The flow chart of 

the procedure for getting the primal feasible solution is shown below. Figures 4-3, 4-4, 

and 4-5 are, respectively, the flow charts of Stage 1, 2, and 3 of 3SS algorithm.  
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Figure 4- 3: Flow Chart for Stage 1 of 3SS 

 
Figure 4- 4: Flow Chart for Stage 2 of 3SS 
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Figure 4- 5: Flow Chart for Stage 3 of 3SS 
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Chapter 5 COMPUTATIONAL EXPERIMENTS 

 

5.1 Simple Algorithm  

 

In the previous chapter, by using the Lagrangean Relaxation (LR) method and the 

Subgradient method, we not only derived a lower bound (LB) of the primal objective 

function value, we also obtained good hints for getting primal feasible solutions.  

The algorithm derived from those hints and proposed in Section 4.2.3 Getting 

Primal Feasible Solutions is called 3SS. The objective function value derived from 

3SS is regarded as an upper bound (UB) of the primal objective function (IP 2).  

To prove our 3SS is effective, we propose two simple algorithms, namely, “5.1.1 

DAA” and “5.1.2 PAA”, and compare their performances with that of 3SS.  
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5.1.1 Degree-based Attack Algorithm (DAA) 

 

Recall that in Section 3.1.3 Problem Reformulation, the stop condition of the 

whole experiment on Model 1 is confined to Constraint (IP2.4) S
MW

ctR
Ww Vi

iwiw

≥
×

∑ ∑
∈ ∈

||
, 

and we let the result of the Objective Function (IP 2) ∑
∈Vi

iiiy
bay

i

)(ˆmin  be minimal. 

Intuitively, our attack order is from the node with the largest number of degrees, 

because we assume that it will help us achieve the requirement of Constraint (IP2.4) 

more quickly. The time complexity of DAA is O(|V|4). 

 

Table 5- 1: Degree-based Attack Algorithm (DAA) 
1. getDAA() 
2. { 
3.    //Set initial values of all parameters 
4.    TC (Transmission Cost) = ε, (M, if attacked); 

5.    SumOfRTC (the result of ∑ ∑
∈ ∈Ww Vi

iwiw ctR ) = 0; 

6.    Threshold = (S*|W|*M); 
 
7.    WHILE (SumOfRTC < Threshold) 
8.    { 
9.       Transfer “ToBeIn”, the node with the largest number of degrees (DN), from 

the Safety-Bucket to the Attacked-Bucket;  
10.       Set its TC as M ; 
11.       Apply Dijkstra’s algorithm to recalculate the SumOfRTC value; 
12.       IF (every node in the Safety-Bucket is chosen) 
13.       { 
14.          break; 
15.       } 
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16.       ELSE 
17.       { 
18.          Transfer the next “ToBeIn” from the Safety-Bucket to the 

Attacked-Bucket; 
19.       } 
20.    } 
21.  }//end of getDAA() 
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5.1.2 Popularity-based Attack Algorithm (PAA) 

 

To further prove of the performance of 3SS, the second simple algorithm is 

extracted from the Stage 1 of 3SS. With PAA, we can observe more clearly the 

effectiveness of the Stage 2 and 3 of 3SS. We define “popularity” as the number times 

that a node is traversed by all OD pairs in a network. The time complexity of PAA is 

O(|V|4).  

 

Table 5- 2: Popularity-based Attack Algorithm (PAA) 

1. getPAA()  
2. { 
3.    //Set initial values of all parameters 
4.    TC = ε, (M, if attacked); 
5.    SumOfRTC = 0; 
6.    Threshold = (S*|W|*M); 
 
7.    WHILE (SumOfRTC < Threshold) 
8.    { 
9.       Transfer “ToBeIn”, the most popular node, from the Safety-Bucket to the 

Attacked-Bucket;  
10.       Set its TC as M; 
11.       Apply Dijkstra’s algorithm to recalculate the SumOfRTC value; 
12.       IF (every node in the Safety-Bucket is chosen) 
13.       { 
14.          break; 
15.       } 
16.       ELSE 
17.       { 
18.          Transfer the next “ToBeIn” from the Safety-Bucket to the 

Attacked-Bucket; 
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19.       } 
20.     } 
21.  }//end of getPAA() 
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5.2 Experiment Environment  

 

    All the proposed algorithms are implemented in Dev-C++ IDE and run on a PC 

with an Intel(R) Pentium(R) 4 CPU 3.00GHz & 2.99GHz, 504 MB RAM, and MW XP 

Professional V2002 SP2.  

    Three kinds of the network topologies (NT) are simulated as attacked targets, 

namely, a grid network (GD), a scale-free network (SF), and a random network (RD). 

The GD is a relatively regular network; the SF features each newly added node 

connected to the nodes with the largest number of degrees; and the RD features each 

newly node connected to arbitrary nodes. For comparison, the total number of degrees 

of a RD is the same as that of a SF. 

    There are two initial budget allocation policies (BAP): uniform (Uni) and 

degree-based (Deg).  

However, to observe the effect of the budget re-allocation policy (BRAP), we also 

propose three mechanisms. The first is the uniform (Uni), where the budget uniformly 

extracted from un-attacked nodes will be uniformly distributed to attacked nodes. The 

second is degree-based (Deg), where the higher the degree of an un-attacked node, the 

lower the budget extracted from it. The extraction percentage (EP), the proportion of 

budget extracted from each un-attacked node, is formulated as  
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Conversely, the higher the degree of an attacked node, the greater the budget 

distributed to it will be. The distribution percentage (PD), the proportion of extra 

budget distributed to each attacked node, is formulated as 

 

 

The third mechanism is popularity-based (Pop). The higher the popularity of a 

un-attack node, the lower the budget extracted from it. The EP is formulated as 

 

 

Conversely, the higher the popularity of an attacked node, the greater the budget 

distributed to it will be. The DP is formulated as  

 

 

Because of time considerations, we only select two kinds BRAP to implement: 

Uni and Deg. Additionally, we set the attack cost of each node as a function of its 

defense budget, denoted as )(ˆ ii ba . The step size scalar, λ, is initialized as 2, and is 

halved if the objective function value, ZD, does not improve after performing iterations 

.
Nodes Unattacked of No.

1)
Nodes Unattacked of No. Degree Total

Node Unattacked of No. Degree
-(1EP i ×=

 .
Nodes  Attackedof No. Degree Total

Node  Attakcedof No. Degree
 DP i=

.
Nodes Unattacked of No.

1 )
Nodes Unattacked Of No. Popularity Total

Node Unattacked of No. Popularity
-(1EP i ×=

 .
Nodes  AttackedOf No. Popularity Total

Node  Attakcedof No. Popularity
 DP i=
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up to the Max Improvement Count. The Percentages of Damage (PD) are different 

damage levels of the network leading to different network crashes.  

More parameters are shown below: 

 

Table 5- 3: Experiment Parameter Settings 

Parameters Value 

Test Platform 

1. CPU: Pentium(R) 3.0GHz & 
2.99GHz 

2. RAM: 504MB 
3. OS: MS Win XP Professional 2002 

Network Topology (NT) 
1. Grid (GD) 
2. Scale-free (SF) 
3. Random (RD) 

Budget Allocation Policy (BAP) 
1. Uniform (Uni) 
2. Degree-based (Deg) 

Budget Re-allocation Policy (BRAP) 
1. Uniform (Uni) 
2. Degree-based (Deg) 

Total Defense Budget (B) |V|, (No. of nodes) 

Attack Cost Function mbba iii +=)(ˆ ,  (m: a constant) 

Initial Scalar of Step Size (λ) 2.0 
Initial Transmission Cost (ε) 0.1 
Transmission Cost after Attack (M) |V|×ε  
Max Outer Counter  500 
Max Inner Counter  5000 
Max Improvement Counter  1000 
Percentages of Damage (PD) 80%, 60%, 40%, 20% 
No. of OD pairs (|W|) 72, 240, 600, 1260 
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5.3 Experiment Results and Discussion 

 

    We present all experiment results in tabular form. The notations used in the tables 

of the experiment results are defined as follows: APL denotes the Average Path Length; 

S, calculated by (APL×PD), is the damage threshold at which a network can be 

compromised; ZIP is the upper bound of the objective function value and calculated by 

3SS attack algorithm; LB is the lower bound of the objective function value and 

calculated by the LR problem; Gap is calculated by %)100( ×−
LB

LBZIP . ZDAA and 

ZPAA are the results of DAA and PAA, respectively; and ImpR.D and ImpR.P, which 

denote the Improvement Rate of DAA and PAA, respectively, are calculated by 

%)100( ×−
ZIP

ZIPZDAA  and %)100( ×−
ZIP

ZIPZPAA .  
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5.3.1 Experiment Results of Model 1 

 

    The purpose of this experiment is to compare the performance of 3SS with that of 

two other simple algorithms, DAA and UAA, under two budget allocation policies 

(BAP), Uni and Deg.  

   

Case 1: Extra-small-scale Networks (|W|= 72)                                 

Table 5- 4: Experiment Results of Extra-small-scale Networks for Model 1 

APL = 3 NT = 3×3 GD  

PD 20% 40% 60% 80% 
S 0.60 1.20 1.80 2.40 

ZIP 2.0000 4.0000 5.0000 7.0000 
ZDAA 2.2500 4.2750 5.4000 7.0714 
ImpR.D 12.50 6.88 8.00 1.02 
ZPAA 2.2500 4.0500 6.1200 8.1000 
ImpR.P 12.50 1.25 22.40 15.71 

BAP = Uni 

Gap 6.12 5.80 3.18 1.10 
PD 20% 40% 60% 80% 
S 0.60 1.20 1.80 2.40 

ZIP 1.5000 3.7500 5.2500 7.5000 
ZDAA 2.3625 4.6312 6.1500 7.5536 
ImpR.D 57.50 23.50 17.14 0.71 
ZPAA 2.1375 4.2750 6.4500 8.3250 
ImpR.P 42.50 14.00 22.86 11.00 

BAP = Deg 

Gap 6.95 6.00 3.29 1.12 

APL = 2. 61 NT = SF 

PD 20% 40% 60% 80% 
S 0.52 1.04 1.57 2.09 

BAP = Uni 

ZIP 2.0000 3.0000 4.0000 7.0000 
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ZDAA 2.7000 3.6000 5.4000 7.2000 
ImpR.D 35.00 20.00 35.00 2.86 
ZPAA 2.2500 4.5000 5.1750 7.2000 
ImpR.P 12.50 50.00 29.38 2.86 

Gap 6.35 5.10 2.99 2.10 
PD 20% 40% 60% 80% 
S 0.52 1.04 1.57 2.09 

ZIP 1.2000 2.4000 5.1000 7.2000 
ZDAA 3.2400 4.3200 6.3400 7.8343 
ImpR.D 170.00 80.00 24.31 8.81 
ZPAA 2.4300 5.1300 6.1950 7.8343 
ImpR.P 102.50 113.75 21.47 8.81 

BAP = Deg 

Gap 4.89 4.10 2.00 1.03 

APL = 2.61 NT = RD 

PD 20% 40% 60% 80% 
S 0.52 1.04 1.57 2.09 

ZIP 2.0000 3.0000 5.0000 7.0000 
ZDAA 2.1000 4.2000 6.1200 7.9714 
ImpR.D 5.00 40.00 22.40 13.88 
ZPAA 2.7000 3.9000 6.8400 7.9714 
ImpR.P 35.00 30.00 36.80 13.88 

BAP = Uni 

Gap 2.98 2.40 1.11 0.13 
PD 20% 40% 60% 80% 
S 0.52 1.04 1.57 2.09 

ZIP 1.8000 3.3000 5.1000 7.2000 
ZDAA 2.4300 4.6700 6.4020 8.0743 
ImpR.D 35.00 41.52 25.53 12.14 
ZPAA 2.5200 3.5200 6.3420 7.4743 
ImpR.P 40.00 6.67 24.35 3.81 

BAP = Deg 

Gap 2.77 1.76 0.78 0.01 
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Case 2: Small-scale Networks (|W|= 240)                                     

Table 5- 5: Experiment Results of Small-scale Networks for Model 1 

APL = 3.67 NT = 4×4 GD 

PD 20% 40% 60% 80% 
S 0.73 1.47 2.20 2.93 

ZIP 4.0000 7.0000 10.0000 13.0000 
ZDAA 5.3000 8.1143 10.2800 13.1769 
ImpR.D 32.50 15.92 2.80 1.36 
ZPAA 5.3000 7.8857 11.3400 14.0769 
ImpR.P 32.50 12.65 13.40 8.28 

BAP = Uni 

Gap 19.88 15.28 9.44 5.26 
PD 20% 40% 60% 80% 
S 0.73 1.47 2.20 2.93 

ZIP 3.3333 6.6667 10.0000 13.3333 
ZDAA 5.7000 9.1333 11.2267 14.1128 
ImpR.D 71.00 37.00 12.27 5.85 
ZPAA 5.0833 8.3333 11.5267 14.3795 
ImpR.P 52.50 25.00 15.27 7.85 

BAP = Deg 

Gap 18.95 12.22 8.00 4.29 

APL = 2.94 NT = SF 

PD 20% 40% 60% 80% 
S 0.59 1.18 1.77 2.35 

ZIP 2.0000 4.0000 8.0000 12.0000 
ZDAA 3.4000 5.7000 8.6000 12.2667 
ImpR.D 70.00 42.50 7.50 2.22 
ZPAA 5.2000 5.3000 9.3000 12.2667 
ImpR.P 160.00 32.50 16.25 2.22 

BAP = Uni 

Gap 35.11 28.40 11.66 7.39 
PD 20% 40% 60% 80% 
S 0.59 1.18 1.77 2.35 

ZIP 2.2069 6.8966 9.6552 12.9655 
ZDAA  5.7172 8.6759 12.0138 13.7724 
ImpR.D 159.06 25.80 24.43 6.22 

BAP = Deg 

ZPAA  6.7034 8.1793 11.3000 13.7724 
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ImpR.P  203.75 18.60 17.04 6.22 
Gap 40.71 30.34 15.25 6.79 

APL = 3.1 NT = RD 

PD 20% 40% 60% 80% 
S 0.62 1.24 1.86 2.48 

ZIP 3.0000 5.0000 8.0000 12.0000 
ZDAA 4.3000 6.3600 9.3000 12.1333 
ImpR.D 43.33 27.20 16.25 1.11 
ZPAA 3.6000 8.1600 11.1000 15.1000 
ImpR.P 20.00 63.20 38.75 25.83 

BAP = Uni 

Gap 20.73 13.81 7.99 3.18 
PD 20% 40% 60% 80% 
S 0.62 1.24 1.86 2.48 

ZIP 1.6552 5.2414 8.2759 12.4138 
ZDAA 4.9655 7.9448 11.0455 13.9586 
ImpR.D 200.00 51.58 33.47 12.44 
ZPAA 2.9793 7.2690 10.8359 15.0069 
ImpR.P 80.00 38.68 30.93 20.89 

BAP = Deg 

Gap 15.81 11.00 6.07 4.44 
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Case 3: Medium-scale Networks (|W|= 600)                                   

Table 5- 6: Experiment Results of Medium-scale Networks for Model 1 

APL = 4.33 NT = 5×5 GD 

PD 20% 40% 60% 80% 
S 0.87 1.73 2.60 3.47 

ZIP 7.0000 11.0000 15.0000 20.0000 
ZDAA 8.9857 12.6182 16.5667 20.3750 
ImpR.D 28.37 14.71 10.44 1.88 
ZPAA 7.9143 12.8364 16.9667 22.1750 
ImpR.P 13.06 16.69 13.11 10.88 

BAP = Uni 

Gap 66.67 40.43 20.23 10.11 
PD 20% 40% 60% 80% 
S 0.87 1.73 2.60 3.47 

ZIP 5.6250 10.3125 15.6250 20.6250 
ZDAA 9.4018 13.9176 17.5898 21.6219 
ImpR.D 67.14 34.96 12.58 4.83 
ZPAA 8.2009 13.4347 17.6719 22.5188 
ImpR.P 45.79 30.28 13.10 9.18 

BAP = Deg 

Gap 52.01 33.33 19.11 9.43 

APL = 3.21 NT = SF 

PD 20% 40% 60% 80% 
S 0.64 1.28 1.92 2.57 

ZIP 3.0000 6.0000 10.0000 17.0000 
ZDAA 5.2667 7.9000 11.5000 18.4059 
ImpR.D 75.56 31.67 15.00 8.27 
ZPAA 5.2667 8.3833 13.9500 18.4059 
ImpR.P 75.56 39.72 39.50 8.27 

BAP = Uni 

Gap 72.22 44.22 28.94 15.64 
PD 20% 40% 60% 80% 
S 0.64 1.28 1.92 2.57 

ZIP 5.8511 10.9043 15.9574 20.2128 
ZDAA 9.6543 12.4012 18.0036 21.3298 
ImpR.D 65.00 13.73 12.82 5.53 

BAP = Deg 

ZPAA 9.1223 13.0661 17.6499 21.3298 
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ImpR.P 55.91 19.83 10.61 5.53 
Gap 51.89 30.01 19.02 11.43 

APL = 3.4 NT = RD 

PD 20% 40% 60% 80% 
S 0.68 1.36 2.04 2.72 

ZIP 5.0000 9.0000 13.0000 18.0000 
ZDAA 6.0000 9.7667 14.9077 18.5611 
ImpR.D 20.00 8.52 14.67 3.12 
ZPAA 7.3000 13.3667 17.9308 21.8833 
ImpR.P 46.00 48.52 37.93 21.58 

BAP = Uni 

Gap 79.01 51.77 30.29 19.82 
PD 20% 40% 60% 80% 
S 0.68 1.36 2.04 2.72 

ZIP 3.9894 8.7766 15.1596 20.2128 
ZDAA 7.7872 11.4894 17.9293 21.6013 
ImpR.D 95.20 30.91 18.27 6.87 
ZPAA 7.2287 13.1804 16.6698 21.2010 
ImpR.P 81.20 50.18 9.96 4.89 

BAP = Deg 

Gap 76.66 52.22 30.93 19.83 
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Case 4: Large-scale Networks (|W|= 1260)                                    

Table 5- 7: Experiment Results of Large-scale Networks for Model 1 

APL = 5 NT = 6×6 GD 

PD 20% 40% 60% 80% 
S 1.00 2.00 3.00 4.00 

ZIP 12.0000 16.0000 22.0000 28.0000 
ZDAA 15.0000 19.8000 24.7091 29.5714 
ImpR.D 25.00 23.75 12.31 5.61 
ZPAA 12.6000 19.3500 25.1182 32.0143 
ImpR.P 5.00 20.94 14.17 14.34 

BAP= Uni 

Gap 49.09 41.11 28.18 10.33 
PD 20% 40% 60% 80% 
S 1.00 2.00 3.00 4.00 

ZIP 9.9000 16.2000 22.5000 29.7000 
ZDAA 15.4575 22.4220 26.6632 31.0231 
ImpR.D 56.14 38.41 18.50 4.45 
ZPAA 12.9975 18.6840 25.4305 32.6948 
ImpR.P 31.29 15.33 13.02 10.08 

BAP = Deg 

Gap 63.33 50.05 31.00 17.01 

APL = 3.58 NT = SF 

PD 20% 40% 60% 80% 
S 0.72 1.43 2.15 2.87 

ZIP 6.0000 10.0000 16.0000 25.0000 
ZDAA 9.9000 13.5000 18.6750 26.4240 
ImpR.D 65.00 35.00 16.72 5.70 
ZPAA 8.7000 15.8400 20.0250 27.3240 
ImpR.P 45.00 58.40 25.16 9.30 

BAP = Uni 

Gap 88.28 64.44 48.23 31.11 
PD 20% 40% 60% 80% 
S 0.72 1.43 2.15 2.87 

ZIP 8.0870 16.4348 23.2174 28.9565 
ZDAA 13.8410 20.1534 27.8750 30.8288 
ImpR.D 71.15 22.63 20.06 6.46 

BAP = Deg 

ZPAA 13.4311 21.4838 26.2370 31.0375 
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ImpR.P 66.08 30.72 13.01 7.19 
Gap 89.44 70.03 45.98 29.19 

APL = 3.74 NT = RD 

PD 20% 40% 60% 80% 
S 0.75 1.49 2.24 2.99 

ZIP 8.0000 13.0000 19.0000 25.0000 
ZDAA 10.3500 15.9231 21.0316 26.8560 
ImpR.D 29.38 22.49 10.69 7.42 
ZPAA 9.4500 17.7923 24.4421 30.7800 
ImpR.P 18.13 36.86 28.64 23.12 

BAP = Uni 

Gap 90.22 77.89 67.00 42.22 
PD 20% 40% 60% 80% 
S 0.75 1.49 2.24 2.99 

ZIP 5.4783 14.3478 21.9130 29.7391 
ZDAA 12.2087 19.7530 26.2462 31.7037 
ImpR.D 122.86 37.67 19.77 6.61 
ZPAA 8.9217 19.6904 24.4201 30.7906 
ImpR.P 62.86 37.24 11.44 3.54 

BAP= Deg 

Gap 81.23 60.61 55.11 49.77 

 



 

 75

5.3.2 Discussion of Experiment Results for Model 1 
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NT GD SF RD 

BAP=Uni & SA=DAA 12.69 29.25 17.84 

BAP=Uni & SA=PAA 14.18 37.91 32.76 

BAP=Deg & SA=DAA 28.87 44.75 46.86 

BAP=Deg & SA=PAA 22.44 43.81 31.66 

* This table is the summary of the Table 5-4 ~ Table 5-7.   
Figure 5- 1: Improvement Rates under Different Attack Algorithms 

 

The greater the improvement rate, the better the performance of 3SS. From Figure 

5-1, we observe the following phenomena: 

 According to three kinds of network topologies, the performance of 3SS is the 

best in the SF topology, on average. 

 As a whole, when BAP=Deg and SA=DAA, the performance of 3SS is the best. 
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The reason is that attack order of a node in accordance with the defense budget on 

it will result in the growth of total attack cost. If we use the 3SS attack algorithm, 

we can avoid this problem, and can decrease our attack cost effectively.     
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PD 20% 40% 60% 80% 

SA= DAA 67.1533 30.2634 17.1227 5.6408 

SA= PAA 55.8176 33.7921 21.6060 10.6350 

* This table is the summary of the Table 5-4 ~ Table 5-7.  
Figure 5- 2: Improvement Rates under Different Percentages of Damage 

 

    From Figure 5-2, we observe that the lower the percentage of damage, the better 

the performance of 3SS. That is, an attacker using 3SS could decide which nodes could 

be attacked more precisely than using the other two algorithms.   
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5.3.3 Experiment Results of Model 2 

 

    Because of time considerations, we only adopt the Uni budget allocation policy 

(BAP) in the implementation of Model 2, not the Deg policy. To compare the results of 

Model 2, we adopt two budget re-allocation policies (BRAP): Uni and Deg. ImpR.1 

and ImpR.2, which denote the Improvement Rate of Uni and Deg, respectively, are 

calculated by %)100( ×−
Deg

DegUni  and %)100( ×−
Uni

UniDeg . 

   

Case 1: Extra-small-scale Networks (|W|= 72)                                 

Table 5- 8: Experiment Results of Extra-small-scale Networks for Model 2 

PD NT BRAP 
20% 40% 60% 80% 

Uni 1.6497 3.7401 5.4093 7.6520 
Deg 1.5018 3.3918 5.2823 7.0149 

ImpR.1 0.0985  0.1027  0.0240  0.0908  
GD 

ImpR.2 -0.0897  -0.0931  -0.0235  -0.0833  
Uni 1.6497 3.3617 5.5002 8.1047 
Deg 1.4827 3.0630 5.5848 8.9996 

ImpR.1 0.1126  0.0975  -0.0151  -0.0994  
SF 

ImpR.2 -0.1012  -0.0889  0.0154  0.1104  
Uni 1.5673 3.4815 5.0463 6.5007 
Deg 1.6497 3.6625 5.2149 7.5530 

ImpR.1 -0.0499  -0.0494  -0.0323  -0.1393  
RD 

ImpR.2 0.0526  0.0520  0.0334  0.1619  

 

Case 2: Small-scale Networks (|W|= 240)                                     
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Table 5- 9: Experiment Results of Small-scale Networks for Model 2 

PD NT BRAP 
20% 40% 60% 80% 

Uni 3.3909 6.5495 9.7925 13.5510 
Deg 2.9369 6.2285 9.3253 12.7187 

ImpR.1 0.1546  0.0515  0.0501  0.0654  
GD 

ImpR.2 -0.1339  -0.0490  -0.0477  -0.0614  
Uni 2.4958 5.7234 9.0558 14.2382 
Deg 3.2896 6.9390 10.8232 15.8095 

ImpR.1 -0.2413  -0.1752  -0.1633  -0.0994  
SF 

ImpR.2 0.3181  0.2124  0.1952  0.1104  
Uni 2.6918 6.2410 11.6403 14.8549 
Deg 2.5248 7.0672 14.4417 15.8846 

ImpR.1 0.0661  -0.1169  -0.1940  -0.0648  
RD 

ImpR.2 -0.0620  0.1324  0.2407  0.0693  

 

Case 3: Medium-scale Networks (|W|= 600)                                     

Table 5- 10: Experiment Results of Medium-scale Networks for Model 2 

PD NT BRAP 
20% 40% 60% 80% 

Uni 5.0460 11.1238 15.2407 22.1697 
Deg 5.6562 10.2497 15.3211 21.8958 

ImpR.1 -0.1079  0.0853  -0.0052  0.0125  
GD 

ImpR.2 0.1209  -0.0786  0.0053  -0.0124  
Uni 5.3884 10.1925 19.1700 22.9000 
Deg 5.6064 12.2871 19.5696 24.1486 

ImpR.1 -0.0389  -0.1705  -0.0204  -0.0517  
SF 

ImpR.2 0.0405  0.2055  0.0208  0.0545  
Uni 4.6034 9.9127 16.4048 23.8316 
Deg 4.7489 9.9405 18.1490 24.4907 

ImpR.1 -0.0306  -0.0028  -0.0961  -0.0269  
RD 

ImpR.2 0.0316  0.0028  0.1063  0.0277  
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Case 4: Large-scale Networks (|W|= 1260)                                     

Table 5- 11: Experiment Results of Large-scale Networks for Model 2 

PD NT BRAP 
20% 40% 60% 80% 

Uni 8.8942 16.1263 22.4339 30.6775 
Deg 9.4200 16.1976 22.6252 30.0161 

ImpR.1 -0.0558  -0.0044  -0.0085  0.0220  
GD 

ImpR.2 0.0591  0.0044  0.0085  -0.0216  
Uni 8.1336 23.6278 31.2036 32.5037 
Deg 10.6275 23.6471 32.1730 32.5131 

ImpR.1 -0.2347  -0.0008  -0.0301  -0.0003  
SF 

ImpR.2 0.3066  0.0008  0.0311  0.0003  
Uni 6.6333 14.5887 24.4705 30.8294 
Deg 7.7851 14.6457 23.6859 31.6248 

ImpR.1 -0.1479  -0.0039  0.0331  -0.0252  
RD 

ImpR.2 0.1736  0.0039  -0.0321  0.0258  
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5.3.4 Discussion of Experiment Results for Model 2 

 

Figure 5- 3: Attack Costs under Different Percentages of Damage and Different Network Topologies 

 
 

    In the Grid graph of Figure 5-3, all the blue lines are a little higher than the red 

lines under different topology scales. After comparison, the performance of Uni BRAP 

is 0.58% as good as that of Deg BRAP.  

    In the Scale-free and Random graphs of Figure 5-3, all the blue lines are lower 

than the red lines under different topology scales. After comparison, the performance 

of Deg BRAP is 1.43% as good as that of Uni BRAP in the Scale-free graph. The 

performance of Deg BRAP is 1.02% as good as that of Uni BRAP in the Random 

graph. 
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Chapter 6 SUMMARY AND FUTURE WORK 

 

6.1 Summary 

 

In this work, we address two issues. First, we want to determine how to evaluate 

the survivability of a network effectively and efficiently. Second, we want to find a 

good budget re-allocation policy leading to a more robust ability of network defense.  

The main contributions of this work are as follows: 

1. A new survivability metric – DOS (Degree of Separation) 

 The DOS metric is an intuitively-realized and simply-calculated tool for 

measuring network survivability, shown as Section 2.1 and 2.2. 

 Some lemmas derived from DOS can be applied directly to calculate the upper 

bound of the DOS value, including for linear topology, ring topology, shown 

as Section 2.3. 

2. A double-layer mathematical model – max-min model 

 The double-layer model demonstrates a subtle relationship between an 
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attacker and a defender. By this double-layer model, we can understand the 

policy change of both parties over time. That is, through this model, we can 

see how a defender defends a target network will affect how an attacker 

attacks it, and vice versa.   

 In the inner-layer of the model, we proposed a 3-Stage Selection (3SS) 

heuristic. We not only know what the minimal attack cost of the attacker is, 

but also realize how robust the network of a defender is. That is, the greater 

the minimal attack cost, the more robust the network will be   

 In the outer-layer of the model, we provide network operators two budget 

re-allocation policies. 
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6.2 Future Work 

 

1. Other DOS Metrics                                                     

Based on the quantitative method, we can propose other DOS metrics to calculate 

the damage level of a network. In addition to “average DOS” described in Chapter 2, 

there are two other survivability metrics: Longest Damaged Path (LDP) and 

Minimal Recovery Node (MRN).  

LDP-DOS metric used to measure the damage level of the OD pair with the most 

damaged among all OD pairs. The LDP-DOS value can be regarded as the most effort 

we should pay to recover the most damaged OD pair in a network. For example, in 

Figure 6-1, there are only two disconnected OD pairs: O1-D1 and O2-D2. The damage 

level of the first pair is four (marked by the thick and red line), and that of the second 

is two. Then, the LDP-DOS value is the damage level value of the first pair, i.e., four.  

 

Figure 6- 1: Longest Damaged Path (LDP) 

 

In addition, we define the MRN-DOS value as the minimal number of nodes that 
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must be recovered to ensure that all OD pairs reconnect. That is, we must repair the 

least number of nodes to ensure that all OD pairs can communicate. For example, in 

Figure 6-2, the network has three disconnected OD pairs and three broken nodes. We 

only recover one node (circled by the thick and red line) so that the three OD pairs can 

reconnect. Therefore, the MRN-DOS value is one. 

 
Figure 6- 2: Minimal Recovery Node (MRN) 

 

2. Another Survivability Metric –Greatest Residual Region (GRR)                             

The GRR is also used to measure network survivability. In contrast to DOS, the 

GRR is used to measure the sound level of a network. For example, in Figure 6-3, the 

left-hand side is an intact network and the right-hand side is the attacked network with 

two broken nodes (colored black). The result of right-hand graph of Figure 6-3 is that 

whole network breaks into three regions and each region contains 5, 4 and 3 nodes, 

respectively. Because the GRR value is defined as the sound level of the biggest region 

of a broken network, we can see that the GRR value of Figure 6-3 is five. Naturally, if 
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the GRR value is smaller than a given threshold, we say the network is compromised.  

 

Figure 6- 3: Greatest Residual Region (GRR) 
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