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論文摘要 

論文題目：考慮智慧型攻擊者權限提升及經驗累積下網路強韌性之最大化 

作者：陳奐廷                                             九十七年七月 

指導教授：林永松 博士 

 

網路的日益普及，帶來了日常生活上的便利，卻也伴隨而來更多的網路犯罪，

因此網路安全及其強韌性之衡量已逐漸受到重視；對網路營運者而言，如何能有

效的評估攻擊者行為及威脅也已日趨重要。 

在本篇論文中，我們提出一個兩階的數學規劃模型來描繪網路攻防情境以及

攻擊者行為；其中內層問題，我們探討攻擊者欲利用最小攻擊成本來攻克網路上

多個核心節點，而在其攻擊過程中，會不斷的累積攻擊經驗，使未來的攻擊成本

有效的降低；此外，在攻擊者攻克某一節點後，亦可在此節點上進行權限提昇，

如此攻擊者便可擁有足夠的權限來探測更多此節點上的資訊；在此，亦衡量這些

資訊可能會對網路所造成的影響，亦即，攻擊者在攻克多個核心節點時，會同時

讓這些資訊所造成的影響，達到一定程度的傷害；而在外層問題中，目標網路的

管理者則能有效配置其有限防禦資源，使攻擊者需花費的攻擊成本最大化。為了

求得此問題的最佳解，我們採用以模擬退火法為基礎的演算法來處理此問題，並

設計出多種不同的初始解以及尋找鄰近解的方法，藉此獲得近似最佳解。 

 

 

 

 

關鍵詞：網路攻防、存活度、多核心節點、權限提升、累積經驗、模擬退火法、

最佳化 
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Maximization of Network Robustness Considering the Effect of Escalation and 

Accumulated Experience of Intelligent Attackers 

Internet has become much more important and worldwide, but it gives cyber 

criminals opportunities to crash a network system and conduct other cyber-crimes. 

Therefore, the issues of network security and robustness have come into notice. It is 

necessary for a network operator to understand the attacker behavior in order to 

efficiently allocate his limited budget. 

In this thesis, we propose a two-level mathematical programming model to 

describe the network attack and defense scenario. In the inner problem, an attacker’s 

objective is to compromise multiple core nodes using the minimum total attack cost. 

During the attack actions, the attacker may gain some experience from previous attacks 

to further reduce the attack costs in the future. Moreover, he can also pay extra fee to 

escalate on a compromised node to get higher user privileges, so that he will have 

higher authority to access more information on the node. We also measure the impact 

incurred by such information leakage in our model. As a result, the attacker will try to 
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compromise multiple core nodes and collect valuable information, so that the total 

impact incurred by information leakage will exceed a threshold. Meanwhile, in the outer 

problem, the network operator of the target network allocates limited defense resources 

appropriately to maximize the total attack cost of the attacker. We adopt some Simulated 

Annealing-based algorithms to solve the problem and develop some initial solutions and 

several kinds of methods for searching neighbor solutions. 

 

 

 

 

 

 

 

Key words: Network Attack and Defense, Survivability, Multiple Core Nodes, 

Escalation, Accumulated Experience, Simulated Annealing, Optimization. 
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Chapter 1 Introduction 

 

1.1 Background 

Internet has become worldwide and indispensable in our daily lives. It provides us 

with many convenient services, such as online chatting, video conference, file transfer, 

and E-commerce. However, it also brings us some threats. Cyber criminals can connect 

to others’ computers to steal information and modify some important data via Internet. 

They can intrude vital systems and crash servers in the competitive corporations. 

Therefore, the research of network security is more and more important. 

 

According to the CSI/FBI Computer Crime and Security Survey (2007) [1], the 

number that the respondents detected more than 10 incidents jumps from 9 to 26 percent 

in 2007. In addition, observing from Figure1-1 [1], we may find out the trend that 

organizations start using some technologies to protect their information systems. It may 

indicate that the network security issues have already come into notice. Since these 

network security incidents are often caused by attackers, if a network operator can 
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understand the attacker behavior and the patterns of the attacks well, he may be able to 

maintain networks and resist malicious attacks more efficiently. 

 

The issues of network security usually focus on the situation that whether systems 

are compromised or not. Therefore, the states of these issues were often defined as safe 

or compromised [2]. Because the information systems are usually in unbounded 

environments [3], the attackers may use the vulnerabilities of a system to reach the 

purpose that interrupts the service it provides. Thus, we start to pay more attention to 

how a system can sustain normal service under malicious attacks or random error 

conditions. As a result, the binary definition of network security is no longer sufficient 

describing the availability of information system nowadays. Thus, the concept of 

network security has been considered as the conditions of the availability of information 

service under malicious attacks and generalized as a subject of survivability [4, 5, 6] in 

recent years. 
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Figure 1-1 [1] Security Technologies Used 

 

Although a great deal of research has been conducted on the field of survivability, 

unfortunately, the definitions of survivability are too diverse to unify into a general one. 

The most familiar definition proposed by Ellison et al. [7] is “the capability of a system 
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to fulfill its mission, in a timely manner, in the presence of attack, failures, or 

accidents.” The more details about survivability will be discussed in Section 1.3.2. 

 

1.2 Motivation 

Since the Internet has become essential to business operations, more and more 

trades are accomplished through computer network. Thus, some critical data are usually 

stored in computers or other multimedia devices. Therefore, protecting these data is an 

important issue for enterprises. To ensure systems can continuously provide service or 

quickly recover from some disaster or malicious attacks, remote backup is a useful way. 

Remote backup means that organizations may regularly backup their critical data at 

different places. By applying this manner, the critical data of enterprises can be copied 

and stored in different centers, and all of these centers can provide the main service 

individually. It can avoid that all of the data destroy at the same time. Consequently, an 

attacker who wants to completely crash business service or networks may need to 

compromise all of these centers which have the capability of providing essential service. 

For this reason, the attacker’s target may be multiple core nodes but single core node. 

For example, the company that the most quickly recovered from the 911 terrorist attacks 

is Morgan Stanley, a global financial service firm. That is because the company has a 

backup center at New Jersey. 



 

 5

 

Furthermore, in an attack scenario, the attacker may decide the best strategy to 

conduct a malicious attack. After compromising a node, the attacker can choose whether 

to probe this node or not. He can not only treat the compromised node as an 

intermediate node of the selected attack path, but also try to raise his control of the node 

in order to access more valuable information. For instance, the attacker may gain some 

useful information like the routing tables which can help him to get the whole picture of 

the network topology or help him to know more the outgoing and incoming links of the 

compromised node, which he did not know initially. Another example is that the 

attacker may access some vital information like the customer data of an E-commerce 

company or the secret information about business operations. When this kind of 

information is stolen, it not only causes some privacy issues but also leads to financial 

loss. For these reasons, to avoid the attacker enhancing his rights to access more 

information is very important. 

 

In order to get more control of a compromised node, the attacker may need to 

conduct some escalation to enlarge his authority of the node. It means that the attacker 

can pay extra attack power to gain higher user rights/privileges. Once the attacker 

escalates to a higher level of user rights, he will be able to access more information on 
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the compromised node. The higher level of user rights the attacker gains, the more costs 

he should pay. For example, operation systems, Windows, have different levels of user 

rights. More powerful user level represents that users at this level can do more tasks 

than he at a lower one, such as modify secret files and create new accounts. It also 

indicates that a higher level of user rights includes all the rights of lower levels. If the 

attacker gets a higher level of rights, he needs not to spend another budget getting a 

lower level of rights. Table 1-1 [8] lists several levels of user rights of Windows 2003. 

 

While the attacker compromises a node, he may learn some experience from this 

attack. Besides, he can also gain another kind of experience from escalation. Using the 

experience efficiently he can reduce the attack costs of future attacks. For example, 

when the attacker compromises a node, he may learn how to intrude other systems via 

the same kind of vulnerabilities on the compromised node or he may be able to infer 

that other systems, which is near the compromised node in the same intranet of an 

enterprise, might use the same security mechanism with the compromised node, such as 

firewall or intrusion detection system. So the attacker can make use of this information 

to compromise another node more quickly and effectively, in other words, he can reduce 

the attack costs in the future. 
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Table 1-1 [8] Default user rights of Windows 2003 

Group Description and Default user rights 
Description: Members of this group have full control of the server and can assign user rights and 

access control permissions to users as necessary. The Administrator account is also a default member. 

When this server is joined to a domain, the Domain Admins group is automatically added to this group. 

Because this group has full control of the server, add users with caution  

Administrators 
Default user rights: Access this computer from the network; Adjust memory quotas for a process; 

Allow log on locally; Allow log on through Terminal Services; Back up files and directories; Bypass 

traverse checking; Change the system time; Create a pagefile; Debug programs; Force shutdown from 

a remote system; Increase scheduling priority; Load and unload device drivers; Manage auditing and 

security log; Modify firmware environment variables; Perform volume maintenance tasks; Profile single 

process; Profile system performance; Remove computer from docking station; Restore files and 

directories; Shut down the system; Take ownership of files or other objects. 

Description: Members of this group can create user accounts and then modify and delete the accounts 

they have created. They can create local groups and then add or remove users from the local groups 

they have created. They can also add or remove users from the Power Users, Users, and Guests groups. 

Members can create shared resources and administer the shared resources they have created. They 

cannot take ownership of files, back up or restore directories, load or unload device drivers, or manage 

security and auditing logs. 

Power Users 

Default user rights: Access this computer from the network; Allow log on locally; Bypass traverse 

checking; Change the system time; Profile single process; Remove computer from docking station; Shut 

down the system. 

Description: Members of this group can perform common tasks, such as running applications, using 

local and network printers, and locking the server. Users cannot share directories or create local 

printers. By default, the Domain Users, Authenticated Users, and Interactive groups are members of this 

group. Therefore, any user account created in the domain becomes a member of this group. 
Users 

Default user rights: Access this computer from the network; Allow log on locally; Bypass traverse 

checking. 

Description: Members of this group can back up and restore files on the server, regardless of any 

permissions that protect those files. This is because the right to perform a backup takes precedence over all 

file permissions. They cannot change security settings. 
Backup 

Operators 
Default user rights: Access this computer from the network; Allow log on locally; Back up files and 

directories; Bypass traverse checking; Restore files and directories; Shut down the system. 

Description: Members of this group will have a temporary profile created at log on, and when the 

member logs off, the profile will be deleted. The Guest account (which is disabled by default) is also a 

default member of this group. 
Guests 

Default user rights: No default user rights. 
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From a defender’s view, while a business considers the network security issues, it 

has become to expand its strategies to risk management. That is because risk 

management not only measures the security events and the potential threats but also 

evaluates the values of asset and the impact incurred by network events. By applying 

such management, a business can more efficiently set up the defense strategies which 

protect some mission-critical systems from malicious attacks and random errors. 

 

In addition, because the defender only has finite budget, it is important for him to 

allocate his budget efficiently. In order to decide the best defense budget allocation 

strategy, the defender must consider the best attack strategy the attacker would adopt. 

For these reasons, it is necessary for the defender to understand the attacker behavior. 

However, there are seldom theoretical studies modeling the attacker behavior and the 

offense-defense scenarios in mathematical ways [9]. Therefore, we propose a two-level 

mathematical model considering defense resource allocation strategy and attacker 

behavior in terms of risk management. It describes and formulates the attack-defense 

scenarios and provides the defender with defense strategies to allocate limited budget 

efficiently to maximize the network robustness. 

 

1.3 Literature Survey 
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In this section, we review some related works about risk management, survivability, 

and attacker behavior. 

 

1.3.1 Risk Management  

Nowadays, how to efficiently allocate limited budget to the assets in the purpose of 

defending some critical resources has raised more notices at organizations and society. 

Therefore, risk management has become an important issue recently. Risk management 

should be concerned with a series of process which describes the relationship with the 

potential threats of particular vulnerabilities, the values of critical assets and the impact 

or damage incurred by losing such assets under some events.  

 

Therefore, we discuss the vulnerabilities on a system first. An attacker usually 

exploits unpatched vulnerabilities to intrude a system and he can also use vulnerabilities 

to escalate from a lower privilege level to a higher privilege level [10]. In [11], the 

author used a quantitative evaluation of risk reduction estimation on a system. They 

proposed a compromise graphic where each node represents an attack event and each 

edge represents the expected time an attacker would need to gain some level of privilege 

on the corresponding system device. The expected time is modeled as a function of 

different types of vulnerabilities, the number of vulnerabilities and the attacker skill 
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level. This research also indicated that the number of vulnerabilities which are 

exploitable externally would influence the risk level of a system. Similarly, according to 

[12], the author measured the effect of vulnerabilities by the total number of them on a 

system and proposed a time-based model to quantitatively evaluate the relationship 

between the time of discovering vulnerabilities and the number of vulnerabilities. 

Therefore, managing and patching vulnerabilities well would be an important mission in 

computer security. In [13], the author summarized patch management of system 

vulnerabilities and proposed a model of vulnerability life cycle based on response time 

and related risk level. Besides, as shows in Figure 1-2 [13], it pointed out that the 

number of reported vulnerabilities has increased quickly in the recent years. In 

accordance with [13], it takes about 5.54 days on average to patch a vulnerability which 

has been evaluated its importance. It also indicated that if we manage the vulnerabilities 

on a system well, we can reduce the costs and risk level of this system and increase 

system availability. Thus, we use the number of vulnerabilities on a system as our 

measurement metric. 
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Figure 1-2 [13] Number of vulnerabilities reported from 1995 to 2002 

 

Next, we consider some risk management approaches. In [14], the risk 

management is measured by a mixed qualitative and quantitative approach in order to 

describe attack scenarios and evaluate the risk of a system accurately. They analyzed the 

attacker behavior by using the defense trees which are modified from the attack trees. 

Traditionally, the attack tree is used to describe the attack strategy which is represented 

by the relationships among the vulnerabilities, the goal of an attack, the subgoal of this 

attack process, and the probability associated with each attack. The subgoal means the 

intermediate process of an attack, i.e., the attacker would need to combine different 

types of attacks to achieve the attack goal. Therefore, the defense tree is an extension of 

the attack tree with some countermeasures against different attacks. They also use some 

quantitative indexes to compute the return on investment value (ROI) for defenders and 
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the return on attack value (ROA) for attackers. This approach can be useful for the 

defender to understand the efficacy of each countermeasure and provide information for 

the defender to make a more efficient decision during the risk management process. 

 

Similarly, a different method to evaluate the ROI and other risk metrics is proposed 

in [15]. In accordance with [15], the impact of an attack to the critical network asset is 

evaluated by money lost in some network events. These kinds of quantitative 

approaches, which measure the economic impact of security risk, are also presented in 

other researches such as [16]. 

 

1.3.2 Network Survivability 

Since the robustness of a network cannot be clearly and definitely measured, we 

use a quantification method, survivability, to evaluate it. Thus, the higher survivability 

means the higher robustness of networks. 

 

Although there is no consistent definition of the concept of survivability, it still can be 

generalized as a context-specific one proposed by Westmark [17], which is “the ability 

of a given system with a given intended usage to provide a pre-specified minimum level 

of service in the event of one or more pre-specified threats.” In addition, Westmark also 
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generalized measurements of survivability as three major categories: connectivity, 

network performance, and a function of other quality or cost measures. 

 

Thus, the definitions of survivability under other considerations are listed as 

Table1-2.  

Table 1-2 Survivability Definition Summary 

Researcher Definition Year

Knight and Sullivan [4] 

A system that has the ability to continue to 
provide service (possibly degraded or 
different) in a given operating environment 
when various events cause major damage to 
the system or its operating environment. 

2000

Ellison, Fisher, and Linger 
[2] 

Survivability is the capability of a system 
of a system to fulfill its mission, in a timely 
manner, in the presence of attack, failures, 
or accidents. 

1999

Liew and Lu [18]  

If the selected feature of network is 
quantified by x, survivability S is measured 
by the fraction of x that remains after an 
instance of the disaster type under 
consideration has happened. 

1992

Westmark [17] 

Survivability is the ability of a given 
system with a given intended usage to 
provide a pre-specified minimum level of 
service in the event of one or more 
pre-specified threats. 

2004

 

As it was mentioned above, the concept of survivability can be summarized as the 

availability of a system that is under abnormal conditions, i.e., an ideal survivable 
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system should provide continuous service after some malicious attacks or random 

errors. 

 

Because higher risk level usually means lower survivability level and in order to 

evaluate risk level of the network, we consider survivability using the point of view of 

risk management in our research and measure the impact factor by the loss and damage 

resulting from information leakage. Therefore, we use the minimized total attack cots as 

our evaluation metric to measure the network survivability and robustness. 

 

1.3.3 Attacker Behavior and Privilege Escalation  

In order to set up the defense strategy, it is important for a network operator to 

understand the attacker behavior well. In [19], the author conducted some intrusion 

experiment to get empirical data. By analyzing the collected data, the author split the 

intrusion process into three phases based on attacker behavior: the learning phase, the 

standard attack phase, and the innovation phase. They pointed out that the most of the 

breaches were occurred at the standard attack phase, and the statistical test on the 

collected data also indicated that the times between consecutive breaches during 

standard attack phase are distributed exponentially. Similarly, McDermott et al. [20] 

pointed out that potential intelligent intruders will more probably attack the target as 



 

 15

time goes by. Therefore, the intruder can not compromise the target today may be more 

likely to compromise the target in the future. 

 

The attacker behavior may be a series of intrusions, in other words, to reach the 

goal the attacker must perform different types of attacks to collect the information that 

he needs. In [10], the author analyzed the attack behavior and found some characters: an 

attacker in the low user-level may usually exploit several vulnerabilities on a computer 

system to get a certain privilege escalation, and then he will be able to reach the high 

user-level without authorization. They also indicated that the attacker at a certain user- 

level owned the corresponding user privileges and resources of that system. Similar 

issues can be found on other research. According to [21], while the attacker successfully 

compromised a system, he would like to continuously perform other attacks to gain root 

privileges so that he can access the system resources which he is really interested in. 

Similarly, McQueen et al. [11] also indicated that attacks can be divided into several 

parts. One of them is escalation on a machine via the corresponding vulnerabilities. 

Once the attacker escalates to the root level, he can gain all other privileges. In [22], the 

author combined the evaluation of the potential risk and user privileges. They pointed 

out that the typical goal of the attacker is to change the security configuration from State 

A to desired State B, where State B is an escalated level and has more privileges than 
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State A. Thus, they proposed a Risk Potential Formulation that measured the potential 

risk on an operating system by quantify four metrics. According to the formulation, 

there are a direct proportional relationship with the number of privileges the user can 

gain at the new access level (state) and an inverse proportional relationship with the 

total number of rights the user can acquire at the original level. As a result, we define 

the process of an attacker raising his user rights and gaining more information as a term, 

escalation, in this research. 

 

1.4 Proposed Approach  

We propose a max-min mathematical programming model to describe the Defense 

Resource Allocation problem (DRA) and the attack strategy problem in which we 

consider the effect of Accumulated Experience and Escalation of attackers (AEE) in a 

quantitative way.  

 

In the DRA Model, we formulate that a network defender would try to find the best 

defense resource allocation strategy to maximize the total attack cost. The more costs an 

attacker pays, the more robust the network is. In the AEE Model which is the inner 

problem of the DRA Model, we assume that the attacker may accumulate attack 

experience and escalate on each compromised node. Thus, the attacker’s objective is to 
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compromise multiple core nodes and minimize the total attack cost, which includes the 

cost of compromising nodes and escalating on compromised nodes. We also use a term, 

impact, to evaluate the total loss incurred by information leakage. We apply the 

Simulated Annealing method to solve this problem. 

 

1.5 Thesis Organization 

The remainder of this thesis is organized as follow. In Chapter 2, a max-min 

mathematical formulation of the defense-attack scenario is proposed. In Chapter 3, 

solution approaches based on the Simulated Annealing methods are presented. The 

computational results of the problem are showed in Chapter 4. Finally, Chapter 5 is the 

conclusions and future work about this research. 
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Chapter 2 Problem Formulation of the DRA and 

AEE Models 

In this chapter, we propose a two-level mathematical model with specific 

assumptions and problem objective. In this Model, we consider that a network defender 

would allocate resources appropriately to defend networks so that an attacker would 

need to pay more costs to compromise the target network. The attacker’s objective is to 

compromise multiple core nodes in the given network and to minimize the total attack 

cost as possibly as he could. In addition, he may gain experience from his previous 

attacks to reduce the costs of the future attacks. During the attack actions, the attacker 

may not only compromise a node but also pay an extra fee to conduct some escalation 

on the compromised node to get more powerful user rights, so that he is able to access 

more useful information (e.g., routing tables or the network’s topology) to further 

reduce the costs of attacks and accumulate impact incurred by information leakage. As a 

result, while the attacker decides his attack strategy, the network defender would adjust 

the resource allocation strategy again to resist the attacks. In response, the attack will 

change his strategy again to find the best policy. Thus, it is an interaction between the 
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defender and the attacker. 

 

2.1 Problem Description and Assumption of the DRA 

Model 

The problem we consider here is how a defender can use his resources efficiently 

to resist an attacker to compromise all the core nodes in the Autonomous System (AS) 

level network under the consideration that the attack costs might be reduced by 

accumulated experience and the loss incurred by information leakage must be greater 

than a given threshold. By adjusting defense strategies continuously in the battle with 

the attacker, the defender could finally find the best strategy to defend the networks and 

enhance the network robustness. Thus, in order to defend the network efficiently, the 

defender may need to understand the attacker behavior well.  

 

At the AS level, a network domain is represented by a node and an inter-domain 

connection is represented by an edge. To reach a destination node, the attacker must find 

a path from the source node to the destination node and compromise all the intermediate 

nodes on the path. That is, the attacker needs to choose an attack path for each core 

node. 
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Because the number of vulnerabilities on each node is different, an attacker who 

wants to compromise a node may need to pay different costs related to the defense 

budget allocated to the node and the vulnerabilities on it. Besides, the attacker will gain 

experience from compromising a node which could further reduce the attack costs, in 

other words, he can make use of the accumulated experience to compromise other nodes 

more efficiently. 

 

Moreover, we also consider a more realistic situation. When the attacker launch 

attacks on a computer system, he may not only treat the compromised node as an 

intermediate one but also use the node as efficiently as possible. For this reason, the 

attacker could pay extra costs to do some privilege escalation to access more 

information and get more control power of the node. Knowing this information, the 

attacker can understand the network topology more clearly and collect some 

information that would help him to know the security mechanisms of the same systems 

or collect the partial information to get a whole picture.  

 

As it was mentioned before, while the attacker conducts some escalation on a 

compromised node, he may know more clearly about the network topology. In other 

words, he could be conscious of more the outgoing and incoming links of the node that 
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he did not know initially. It indicates that the attacker can compromise farther nodes 

which he cannot reach before escalating on the node. 

 

Because there are several levels of user privileges on a system, an attacker could 

pay various levels of extra budget to do different levels of escalation. The more costs he 

pays, the more user rights he could gain. Besides, the attacker may also gain some 

experience from escalation. This kind of experience can help the attacker to reduce the 

further escalation costs. That is, the attacker could gain two kinds of experience, one 

comes from compromising a node, and the other comes from escalating on a 

compromised node. 

 

Considering the information an attacker access from a compromised node, if it 

contains some important financial data of an enterprise or some secret files, such as 

personnel data, or the password of a network administrator, it may cause critical loss of 

the network and the enterprise. For this reason, we also consider the information value 

corresponded to an impact factor to evaluate the damage incurred by information 

leakage in this model. 

 

We describe the attack scenario in detail by Figures 2-1 to 2-4. Initially, the 
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attacker starts on node o (Figure 2-1) and begins the attack actions by compromising 

nodes (Figure 2-2). After compromising a node, he can choose whether to escalate or 

not (Figure 2-3). If he escalates to a higher privilege level, he might be able to access 

more information on the node, so that he could know some critical information or 

understand more the outgoing and incoming links of the node. Thus, he can use this 

information to attack other nodes more efficiently. Finally, for each core node, the 

attacker would find out an attack path and compromise all the intermediate nodes on the 

attack path, and then some impact related to information leakage will occurred during 

his attack actions. The attacker’s objective is to compromise multiple core nodes using 

the minimum total attack cost under the consideration that the total impact must exceed 

a given threshold (Figure 2-4). Therefore, if the attacker exactly finds an attack path 

towards each core node and minimizes the total attack cost, all the attack paths will 

naturally join into an attack tree that consists of all the core nodes. During the attack 

procedure, the attacker may accumulate some experience about compromising nodes 

and escalation. Therefore, he can use this experience to reduce the further attack costs 

and escalation costs. Diagrams of the attack behavior are presented below. 

 

Furthermore, the attack cost which the attacker needs to apply to each node to 

compromise it would depend on the budget allocated to it. That is, the more defense 
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resources the defender allocates to a node, the more powerful defense capability the 

node has. Thus, how to distribute the defense resources effectively would be an 

important mission for the network operator. 

 

Knowing the attacker behavior is helpful for a network operator to allocate limited 

defense budget, because an intelligent attacker will adjust his attack strategy to 

minimize the total attack cost, i.e., he will choose the best way to reach his goal. The 

process of defending against attackers is not static. The defender would allocate his 

budget to protect nodes and maximize the minimized total attack cost. In response, the 

attacker will search for another way to reach his goal based on the defense strategy. 

According to these reasons, the more attacker behavior the defender knows, the better 

strategy he can adopt. That is, know your enemy, know yourself. 

 

For the reasons we discussed above, in this model we address the problem that the 

defender’s objective is to maximize the minimized total attack cost of the attacker by 

allocating the defense resources well. Similarly, the attacker’s objective is to 

compromise multiple core nodes using the minimum attack cost under the consideration 

that different attack sequence would result in different accumulate experience. Thus, the 

attacker may need to find the best strategy to decide which nodes, privilege levels and 
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attack sequence he should adopt. Moreover, the robustness of a network will also be 

evaluated by the minimized attack cost in this problem. A more robust network means 

the attacker would need to pay more costs to compromise the target network. The 

description and assumptions of this model are given in Table 2-1 and Table 2-2. 
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Figure 2-1 Initial State  

The attacker is on node o, and c means the 
node is core node. 

Figure 2-2 Attacking a Target  

The attacker compromises a node 
successfully. 

Figure 2-3 Escalation  

The attacker escalates on the compromised 
node (nodes with multi-layers), and 
accesses information from it. After 
escalating, the attacker can know some 
links (gray lines) he did not know initially.

Figure 2-4 Successful Attack  

Continuing the attack until the core nodes 
are compromised and the accumulated 
impact exceed the given threshold. 

o
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Table 2-1 Problem Description 

Given 

• Core nodes 

• The network topology and the network size 

• The number of vulnerabilities on each node 

• The experience the attacker could gain after compromising a node and/or 
escalating on a compromised node 

Objective 

• To maximize the minimized total attack cost 

Subject to 

• Only one node can be compromised at each stage 

• The node to be attacked must be connected to the existing attack tree 

• The total impact of the target network must be greater than a given threshold 

• The sum of the defense budget allocated to protect nodes from being 
compromising and escalating must be no more than total defense budget 

To determine 

Core node 

Uncompromised node 

Attacker’s initial position o 

Compromised node 

Link that is reachable only on 
some higher privilege levels 

Link on the attack path 

o The first level privilege 

The second level privilege 

The third level privilege 

Reachable link 

c 
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Table 2-2 Problem Assumption  

Defender： 

• Budget allocation strategy 

Attacker： 

• Which nodes to attack 

• Which levels to escalate on a compromised node 

• Attack sequence 

Assumption 

• The defender has complete information about the network. 

• The defender has budget limitations. 

• The attacker is on node o. 

• There are some core nodes in the network which are the targets of the attacker. 

• A node is subject to attack only if a path exists from node o to that node, and all the 
intermediate nodes on the path have been compromised (they can be viewed as hop 
sites for attacking the targets). 

• Only nodal attacks are considered. 

• Only malicious attacks are considered. 

• The target network is at AS-level. 

• The attack cost of a node is affected by the number of vulnerabilities on that node 
and the defense budget allocated to it. 

• A node is compromised if the attack budget applied to the node is equal to or more 
than the defense capability of the node. 

• After compromising a node, the attacker can pay extra attack budget to escalate to 
a higher privilege level, so that he can access more valuable information which 
may cause additional damage to the target network. 

• The attacker can access different levels of information after obtaining different 
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2.2 Problem Formulation of the DRA Model 

We model the above problem as a max-min mathematical programming problem. 

The given parameters are defined as Table 2-3. 

Table 2-3 Given Parameters of the DRA Model 

Given Parameters 
Notation Description 

N The index set of all nodes in the network 
D The index set of all core nodes in the network 

W 
The index set of all Origin-Destination pairs (O-D pairs), where the origin 
is node o; and the core nodes are d (where d∈D) 

Ei 
The index set of all the privilege levels on node i (e.g., 0, 1, 2, …), where 
i∈N and level 0 means node i is compromised without escalation. 

Li The index set of all the level on node i exclusive of level 0, where i∈N 
Pw The index set of all candidate paths of an O-D pair w, where w∈W 

δpijl 
An indicator function, which is 1 if node j (at privilege level l) is the 
pervious node of node i on path p, and 0 otherwise (where i, j∈N, p∈ Pw, 
l∈Ei) 

levels of privileges. 

• The higher privilege level includes all the privileges the attacker could gain at 
other lower levels on the same node. 

• The higher privilege level the attacker tries to escalate to, the more budget he 
should pay. 

• Total impact is measured by the sum of the damage incurred by information 
leakage after the attacker probing a compromised node.  

• Total attack cost is the sum of the cost of compromising a node and the cost of 
escalating on a compromised node. 

• The attacker gains and accumulates experience from compromising a node and/or 
from escalating on a compromised node to further reduce the costs of future 
attacks. 
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σpil 
An indicator function, which is 1 if of node i (at privilege level l) is on path 
p, and 0 otherwise (where p∈Pw, i∈N, l∈Ei) 

S The index set of all stages 
S(k) The index set of the stage 1 to stage k-1, where k∈S 

e
ile  

The experience gained by the attacker after escalating to level l on node i, 
where i∈N, l∈ Ei 

c
ie  

The experience gained by the attacker after compromising node i, where 
i∈N 

ilI  
The impact incurred by accessing information from level l on node i after 
being escalated, where i∈N, l∈Ei 

T 
The threshold of total impact, which is the damage level that the attacker 
needs to reach. 

B The total defense budget 
 

We will focus on which nodes and levels would be compromised and which attack 

order the attacker would adopt. In this formulation, the attack sequence is represented 

by a term, stage. Stage n means the attack is launched on the n-th step of the attack 

action. In other words, if there are m nodes in the network, we need at most m stages to 

represent the entire attack action. We define a set S to stand for these stages. The 

attacker’s objective is to minimize the total attack cost by deciding which node and 

level should be attack at each stage. As noted earlier, once the attacker escalates to a 

higher level on a compromised node, he might know the network topology more, i.e., he 

might know some links he did not know before escalating to the level. Thus, the 

network we modeled here can be viewed as an artificial two-dimensional network. 

Higher levels on each node may have more links connecting to other nodes. 
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The decision variables are defined as Table 2-4. 

Table 2-4 Decision Variables of the DRA Model 

Decision Variables 
Notation Description 

ysil 
1 if node i is compromised at stage s and escalated to level l of the node,  
and 0 otherwise (where s∈S, i∈N, l∈Ei) 

xp 1 if path p is selected as the attack path, and 0 otherwise (where p∈ Pw) 

c
ib  

The defense budget allocated to protect node i from being compromised, 
where i∈N 

e
ilb  

The defense budget allocated to protect node i from being escalated, where 
i∈N, l∈Li 

ˆ ( )c c
i ia b  

The threshold of the attack budget required to compromise node i, where 
i∈N 

ˆ ( )e e
il ila b  

The threshold of the attack budget required to escalate to level l on node i, 
where i∈N, l∈Li 

 

Our proposed model is as follows. 
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Explanation of the mathematical formulation: 

 Objective function: The objective is to maximize the minimized attack cost by 

adjusting the defense budget allocated to each node. In the inner problem, an 

attacker tries to compromise multiple core nodes using the minimized total attack 

cost, which includes the total compromised cost 

( )
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∑ ∑ ∑ ∑∏  and the total escalation 

cost ( )
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e e e e
il i i kil jl sjm
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a b V y e y
∈ ∈ ∈ ∈ ∈∈

⎛ ⎞
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⎝ ⎠

∑ ∑ ∑∑∏ , by deciding which nodes and 

levels to escalate and which attack sequence to adopt, i.e., deciding the ysij value of 

each node at each stage. The compromised costs and escalation costs would be 

reduced by experience factor, c
ie and e

ile , which are values between 0 and 1. The 

effect of the experience would be showed as accumulated multiplied forms, 
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( )
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c
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( ) ik

e
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e y
∈ ∈∈
∑ ∑∏ . 

 Constraint (IP 1.1) requires that if a node is on the selected attack path, it must be 

compromised at one stage by the attacker, i.e., 1sil
s S

y
∈

=∑ . 

 Constraints (IP 1.2) and (IP 1.3) enforce that there should be one and only one 

attack path for each core node. 

 Constraint (IP 1.4) requires that if a node is compromised at stage k, i.e., 

1
i

kil
l E

y
∈

=∑ , the ancestor node of that node on the selected attack path must have 

been compromised at one of the stages 1 to k-1 before. It enforces that the attacker 

must find a path between the source node and the current target node, in other 

words, the attack action must be in sequence. 

 Constraints (IP 1.5), (IP 1.6) and (IP 1.7) enforce that only one node could be 

compromised and only one level on the compromised node could be escalated by 

the attacker at each stage.  

 Constraint (IP 1.8) requires that the sum of the impact incurred by information 

leakage on each compromised node should be greater than or equal to a given 

threshold T. 

 Constraint (IP 1.9) restricts the sum of defense resources allocated to each node 

must not exceed the total defense budget B. 
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Since the attack tree is naturally constructed by joining each attack path which is 

towards each core node, and the attacker’s objective is to minimize the total attack cost, 

we do not need to set up some constrains which would enforce the absence of a cycle on 

the attack tree in this formulation. If the attacker chooses some paths that would form 

cycles, the attack resources would be wasted on unnecessary nodal compromise, i.e., in 

this situation, there will be more than one way to reach some nodes, but it violates the 

attacker’s minimum cost objective. 

 

2.3 Problem Formulation of the AEE Model 

Solving the proposed two-level mathematical problem is difficult because the 

attack strategy is unknown. Thus, we formulate attacker behavior as an optimization 

problem, the AEE Model, which is the inner problem of the DRA Model. According to 

this problem, we can get some information to simulate the future actions of the attacker 

and then we can develop the best defense strategy for network defenders. Hence, we 

will use the result of the AEE Model as the input of the DRA Model to solve this 

two-level problem. 

 

The assumptions and attack scenarios of the AEE Model are the same with the 

DRA Model. We model the above problem as a mathematical programming problem 
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which is the inner problem of the DRA Model. The given parameters are defined as 

Table 2-5. 

Table 2-5 Given Parameters of the AEE Model 

Given Parameters 
Notation Description 

N The index set of all nodes in the network 
D The index set of all core nodes in the network 

W 
The index set of all Origin-Destination pairs (O-D pairs), where the origin 
is node o; and the core nodes are d (where d∈D) 

Ei 
The index set of all the privilege levels on node i (e.g., 0, 1, 2, …), where 
i∈N and level 0 means node i is compromised without escalation. 

Li The index set of all the level on node i exclusive of level 0, where i∈N 
Pw The index set of all candidate paths of an O-D pair w, where w∈W 

δpijl 
An indicator function, which is 1 if node j (at privilege level l) is the 
pervious node of node i on path p, and 0 otherwise (where i, j∈N, p∈ Pw, 
l∈Ei) 

σpil 
An indicator function, which is 1 if of node i (at privilege level l) is on path 
p, and 0 otherwise (where p∈Pw, i∈N, l∈Ei) 

S The index set of all stages 
S(k) The index set of the stage 1 to stage k-1, where k∈S 

e
ile  

The experience gained by the attacker after escalating to level l on node i, 
where i∈N, l∈ Ei 

c
ie  

The experience gained by the attacker after compromising node i, where 
i∈N 

ilI  
The impact incurred by accessing information from level l on node i after 
being escalated, where i∈N, l∈Ei 

T 
The threshold of total impact, which is the damage level that the attacker 
needs to reach. 

B The total defense budget 

c
ib  

The defense budget allocated to protect node i from being compromised, 
where i∈N 

e
ilb  

The defense budget allocated to protect node i from being escalated, where 
i∈N, l∈Li 

ˆ ( )c c
i ia b  

The threshold of the attack budget required to compromise node i, where 
i∈N 
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ˆ ( )e e
il ila b  

The threshold of the attack budget required to escalate to level l on node i, 
where i∈N, l∈Li 

 

The cost function and budget allocated to each are decision variables in the DRA 

Model, but we treat them as given parameters in the AEE Model. In other words, we 

assume the attack would know the defense budget allocation strategy here. A node can 

be compromised/escalated if the attacker applies more resources than the 

ˆ ( )c c
i ia b / ˆ ( )e e

il ila b  to it.  

 

The decision variables of the AEE Model are defined as Table 2-6. 

Table 2-6 Decision Variables of the AEE Model 

Decision Variables 
Notation Description 

ysil 
1 if node i is compromised at stage s and escalated to level l of the node, 
and 0 otherwise (where s∈S, i∈N, l∈Ei) 

xp 1 if path p is selected as the attack path, and 0 otherwise (where p∈ Pw) 

 

Our proposed model is as follows. 

  

Objective: 

( ) ( )
( ) ( )

, , ,

ˆ ˆmin ( ) ( )
sil p

i i i ik k

c c c e e e
i i kil j sjm il il kil jl sjmy x i N l E k S j N m E i N l L k S j N m Ls S s S

a b y e y a b y e y
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈∈ ∈

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑∑ ∑ ∑ ∑∑∏ ∏ (IP 2)

Subject to:   

w

p pil sil
p P s S

x yσ
∈ ∈

≤∑ ∑  , , ii N w W l E∀ ∈ ∈ ∈  (IP 2.1)
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1
w
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p P

x
∈

=∑  w W∀ ∈  (IP 2.2)

0 1px or=    ,wp P w W∀ ∈ ∈  (IP 2.3)

( )i k i

kil sjl pijl
l E s S j N l E

y y δ
∈ ∈ ∈ ∈

≤∑ ∑ ∑∑  , , ,wi N k S p P w W∀ ∈ ∈ ∈ ∈  (IP 2.4)

1
i

sil
s S l E

y
∈ ∈

≤∑∑  i N∀ ∈  (IP 2.5)

1
i

sil
i N l E

y
∈ ∈

≤∑∑  s S∀ ∈  (IP 2.6)

0 1sily or=   , , ii N s S l E∀ ∈ ∈ ∈  (IP 2.7)

i

il sil
i N l E s S

T I y
∈ ∈ ∈

≤∑∑∑ .  (IP 2.8)

 

Explanation of the mathematical formulation: 

 Objective function: The attacker’s objective is to compromise multiple core nodes 

using the minimized total attack cost by deciding which nodes and levels to attack 

and which attack sequence to adopt. The result of the AEE Model is the same with 

the result of the inner problem in the DRA Model. 

 Constraint (IP 2.1) ~ Constraint (IP 2.3) are the same with Constraint (IP 1.1) ~ 

Constraint (IP 1.3) in the DRA Model, and together form the path constraints. 

 Constraint (IP 2.4) ~ Constraint (IP 2.8) are equal to Constraint (IP 1.4) ~ 

Constraint (IP 1.8) in the DRA Model. 
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Chapter 3 Solution Approach  

3.1 Simulated Annealing Method 

The Simulated Annealing method is an approach that was used to solve a number 

of complex combinatorial problems. Because solving these problems directly is difficult 

and inefficient, many large-scale combinatorial optimization problems are often solved 

by some divide-and-conquer or iterative improvement approaches. The Simulated 

Annealing method belongs to the latter.  

 

Simulated Annealing (SA) approach is proposed by Kirkpartrick et al. [23] to solve 

large-scale combinatorial problems. SA is a procedure that simulates the process of 

material cooling and crystallizing to steady state. The procedure is used to solve 

combinatorial problems. Its main concept is iterative improvement operated by standard 

rearrangement operations. In the annealing process, initially, the material is heated to 

higher temperature with a higher energy state, so that the structure of atoms is unsteady 

and the atoms are more unstuck. Then, the cooling procedure is controlled to lower the 

temperature slowly to yield crystal, so that atoms would have lower thermal mobility 
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and the structure of atoms would be tighter. To reach a stable energy state and structure, 

the procedure needs to proceed long enough and reach equilibrium at each temperature. 

If the annealing temperature does not decrease slowly enough, the material might trap 

into an unsteady state and the material may crystallize with some defect. Therefore, the 

energy state may not be the lowest one.  

 

For a minimization problem, the objective function is analog to internal energy 

state. Thus, each feasible solution and its objective value are treated as the state of 

material and the internal energy on the state. 

 

Initially, the SA method randomly generates an initial feasible solution, and set the 

parameters which are related to cooling procedure, such as initial temperature, final 

temperature, cooling ratio. At each state, SA randomly generates a new solution which 

is a neighbor of the current solution, and the procedure will then examine the feasibility 

of the neighbor solution which is rearranged from the original solution; in other words, 

the new solution is generated based on the current solution. If the new solution satisfies 

all of the constraints and the objective value (energy state) of new solution is smaller 

than or equal to the original one, the current state will be changed and the new solution 

will be accepted. If the objective value of new solution is larger than original one, there 
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will be a probability to decide to accept the solution or not. The accept probability is 

defined as p = exp(-ΔE/Tt), where ΔE is the difference of the energy state between the 

new state and the original one, i.e., the difference of the objective value, and Tt is 

current temperature. A random number is generated each iteration. If the random 

number is larger than or equal to the p, the current state will be changed. Therefore, the 

heuristic has some opportunities to accept worse new solutions. The purpose of the 

probability function is to avoid local optimum. Besides, two parameters α and β are 

used to control the number of iterations at each temperature, where α < 1 and β > 1. At 

temperature Tt, the procedure will repeat b(Tt) iterations, and then executes cooling 

procedure to assign Tt+1 to α ×  Tt and set b(Tt+1) to β × b(Tt). When the temperature 

reaches the frozen temperature Tf, the system will be frozen and an approximated 

optimal solution will be obtained. 

 

The Simulated Annealing procedure is described as Figure 3-1. 
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Figure 3-1 Simulated Annealing Method Procedure 

STOP 

If Ei+1 ≤ Ei 
or 

p < exp(-ΔE/Tt) 

• Z*  – Best known feasible solution value of (P) = Initial feasible solution 
• T0   – Initial temperature        = 1 
• Tf   – final temperature        = T0 / b 
• α   – Annealing ration      = 0.8 
• β   – Annealing ration      = 1.3 
• Ei   – Energy function         = objective function 
• b(T0)  – Initial repetition time        = 1000 

Initialization 

Search a neighbor solution and generate a random number 

Yes 

No

• Calculate energy function, Ei+1 
• Random number p 

Save the best solution

• Z* = Zi+1 
• E* = Ei+1 

 

If reach b(Tt) times 

Cooling procedure 

• Tt+1 = α * Tt 
• b(Tt+1) =β * b(Tt) 

 

If reach the stopping criterion 

Yes 

No

Yes 

No
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3.2 Solution Approach for the AEE Model 

In this section, we will solve the AEE Model by SA-based heuristics. Details about 

the algorithm are described as Table 3-1. We set the objective function as the energy 

state in SA and use some two-phase approaches to solve the problem. At the first phase, 

we initially generate an initial feasible solution by several approaches which we will 

discuss later. Then, we randomly generate a random number p and choose a neighbor 

solution and examine the feasibility of the new solution. If it is a feasible solution, we 

calculate the difference of the objective value between the new solution and the current 

one, i.e., ΔE. If ΔE is smaller than or equal to 0, the new solution is accepted. If ΔE is 

larger than 0, we compare p with exp(-ΔE/T), if exp(-ΔE/T) is larger than p, the worse 

new solution will be accepted. At the first phase, the approaches of generate neighbor 

solutions are not restricted, i.e., we would randomly search for new solutions by 

changing the sequence of an attack tree, the topology of the attack tree, or the escalation 

levels on the compromised nodes. By comparing the value of each accepted solution, 

we save the best ten solutions as the results of the first phase procedure. After 

conducting the complete first phase SA procedure, we run the second phase procedure. 

At this phase, we use the 10 best results of the first phase as the initial solutions. And 

we would search neighbor solutions by changing the sequence of the initial solutions 

only. That is, for a complete two-phase SA-based approach, we will run the SA 
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procedure one time to search for the attack trees, the attack sequence and the escalation 

levels, and we will then use these results as the input of the second round SA procedure 

to adjust the attack sequence. Finally, we save the smallest objective value and its state 

as our best solution.  

 

In our approaches, we use three different kinds of initial solutions and several 

methods for searching neighbor solutions. Among these, the first initial solution is an 

algorithm which is similar to Prim’s Algorithm. Initially, we use the Prim’s Algorithm to 

generate a minimum cost spanning tree. Next, we prune the unnecessary nodes of the 

spanning tree, i.e., nodes which are not core nodes and not the intermediate nodes on the 

paths towards core nodes. Finally, we adjust the escalation levels to satisfy the 

corresponding constraints. The second approach is a random-based algorithm. The 

difference between this solution and the first one is the criteria of choosing next node. 

Here, when choosing the next target node, we always randomly choose a reachable node 

as the next attack node instead of choosing the smallest weight node. The last one is 

also similar to the first approach. But it modifies the weight of each node from the 

attack cost to the ratio of the cost and experience. The time complexity of all the initial 

solutions is O(|N|log|N|). 
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Because the SA emphasizes that the neighbor solution is generated based on the 

pervious solution randomly, we will use these properties to develop our heuristics for 

searching neighbor solutions. The solutions could be divided into three parts which are 

the change of the attack sequence, the change of the attack tree, and the change of the 

escalation levels on compromised nodes. About the change the attack sequence, we use 

two different ways. One is to rearrange the whole traversal sequence. We start from the 

source node and randomly choose a compromised node that can be reached from the 

source node and re-label the sequence of that node. We will then repeat this process 

until all the compromised nodes are visited again. The other one is to exchange the 

attack sequence of two compromised nodes randomly. We also divide methods of 

changing the attack tree into two parts. One is large-range change and the other is 

small-range change. The large-range change means that we will randomly choose a 

compromised node and reset the nodes, which are compromised after the selected node 

on the attack tree by the attacker, to uncompromised. Then, we will start from the 

chosen node to find other paths randomly in order to complete the attack. Therefore, the 

new attack tree will be just the same with the original one before the chosen node. The 

small-range change is only to adjust small parts of the original attack tree. Here, we 

propose two different methods to do this. One is to change the path between two 

compromised nodes which are adjacent to each other in the attack tree and adjust the 
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attack sequence if necessary. The other is to compromise an additional node which is 

not necessary for the original attack tree or remove an unnecessary node from the 

original attack tree. This is reasonable because the attacker may gain some additional 

experience from the extra attack and the experience of the attack may be helpful for him 

to reduce the future attack costs. Hence, it is not inevitable that the total attack cost of 

the attack tree with some additional unnecessary nodes will more than the total attack 

cost of the tree which only contains necessary nodes forming the original attack tree. 

Finally, we also develop two ways to change the escalation levels. One is to randomly 

exchange the escalation levels on two compromised nodes. The other is to escalate to a 

higher level or drop to a lower level on a randomly chosen compromised node. 

Although we develop several methods to search neighbor solutions, we will only 

randomly choose one approach for searching neighbor solution at each loop. The time 

complexity of searching for neighbor solutions is O(|N|log|N|). 

 

All of the methods for searching neighbor solutions are based on the principles 

“random” and “neighbor.” The property, random, is the reason that we always apply a 

random manner while adjusting the attack tree, the attack sequence and the escalation 

levels. Because of the property of neighbor, we need to divide the methods into three 

categories, so that we could apply only a small random change to searching new 
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solutions and use the new accepted solution as the starting point of the next step. If we 

change the attack sequence, the attack tree and the escalation levels on compromised 

nodes at the same time, the new solution we obtained might be too far from the original 

one. In other words, the difference between the structure of new solution and the 

structure of the original one will be too huge. 

 

For each initial solution, we will run a completely SA procedure with the proposed 

methods for searching neighbor solutions; in other words, we will use three SA-based 

heuristics and compare the results of them. The computational results will be described 

in chapter 4. 

Table 3-1 Two-Phase SA-based Heuristic 

1. // Start the first phase SA 
2. // Set the initial configuration 
3. Set the SA parameters, t0, tf, α, β; 
4. // Generate the initial feasible solution 
5. According to the path constraints, choose an attack tree including all of the core 

nodes; 
6. Choose an escalation level on each compromised node and check the impact 

constraint;  
7. Calculate initial energy function Eold, Emin  Eold; save the initial configuration as 

the best solution; 
8. t  t0, b  b0; 
9. // Cooling procedure 
10. While t > tf do  
11.    Loop b times 
12.       // Search neighbor solutions 
13.       Randomly alter the solution configuration (escalation level or topology of 
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the attack tree or attack sequence); 
14.       If the configuration does not violate any constraints, then  
15.          Calculate Enew, and EΔ  = Enew – Eold; 
16.          Generate a random number p, where 0 < p < 1; 
17.       Else  
18.          Recover the action in Step (13); 
19.       If 0EΔ ≤ or p < exp( /E t−Δ ), then 
20.          Eold  Enew; 
21.          If Eold < Emin, then  
22.             Emin  Eold, save current configuration as the best solution; 
23.             Save the best ten solutions; 
24.       Else  
25.          Recover the action in Step (13); 
26.    End loop 
27.    b  b β× , t  t α× ; 
28. End While 
29.  
30. // End the first phase SA procedure and start the second phase SA procedure 
31.  
32. Reset SA parameters to initial condition; 
33. Loop 10 times 
34.    Take one solution from the best ten solutions of the first phase SA as the initial 

solution; 
35.    t  t0, b  b0; 
36.    While t > tf do 
37.       Loop b times 
38.          Randomly alter the solution configuration (attack sequence only); 
39.          If the configuration does not violate any constraints, then  
40.             Calculate Enew, and EΔ  = Enew – Eold; 
41.             Generate a random number p, where 0 < p < 1; 
42.          Else  
43.             Recover the action in Step (38); 
44.          If 0EΔ ≤ or p < exp( /E t−Δ ), then 
45.             Eold  Enew; 
46.          If Eold < Emin, then  
47.             Emin  Eold, save current configuration as the best solution; 
48.             Save current configuration as the best solution; 
49.          Else  
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3.3 Solution Approach for the DRA Model 

The main objective of the DRA Model is to maximize the minimized total attack 

cost. Thus, the best solution of the AEE Model can be used as an input of the DRA 

Model and we will then adjust the budget allocation strategy according to the current 

attack strategy. After the adjustment, we solve the AEE Model again to gain an attack 

strategy corresponding to the new defense budget allocation strategy. In other words, it 

is a battle between the defender and the attacker. While the attacker determines the best 

attack strategy, the defender would adjust the defense strategy against the attacks. In 

response, the attacker will then change his attack strategy again. Thus, the AEE Model 

is used to decide the best attack strategy, and the DRA Model is used to simulate the 

interaction between the attacker and the defender.  

 

The main concept of the adjustment procedure is to extract a small proportion of 

the budget from the uncompromised nodes, and then allocate it to compromised nodes. 

The reason is that if a node is not compromised, it indicates that the node may be not 

50.             Recover the action in Step (38); 
51.       End loop 
52.       b  b β× , t  t α× ; 
53.    End While 
54. End loop 
55. Zip  Emin; 
56. End 
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profitable for the attacker or the budget allocated to the node may be too much.  

 

In order to deduct some resources from uncompromised nodes, we assign a weight 

to each node to compare the importance of nodes. Because the problem we addressed 

here is to evaluate the experience from attacks, it is important to measure the sequence 

of attacks. Hence, we will consider the attack sequence as a factor of the weight of 

nodes. In addition, how many times that a node has been compromised during the 

interaction between the attacker and the defender may also be useful information to 

evaluate the weight of the node. Thus, we use the attack sequence and the number of 

times a node has been compromised as the metric of the weight.  

 

We calculate the average frequency that a node has been compromised during the 

interaction between the defender and the attacker. If a node is compromised each 

iteration, its average frequency of being compromised is one. And then, we measure the 

impact of sequence. First, we sort nodes by their compromised sequence and classify 

every three nodes into a group and set the corresponding impact. For example, if there 

are 21 nodes in the attack tree, we would classify them into 7 groups. The first group 

contains three nodes which are the first, the second and the third nodes the attacker 

compromised in the attack tree. Next, the impact of the first group is set to 1 and the 



 

 49

second group is set to 6/7. Thus, the impact of the last group is assigned to 1/7. After 

calculating the impact of average attack frequency and attack sequence, we consider the 

two factors jointly. That is, we set the weight of each node to Fi ×  a
iS , where Fi is the 

average frequency that node i has been compromised, and a
iS  is the impact of the 

attack sequence of node i. Consequently, the budget extracted from node i would be a 

proportion, (1 )a
i iF Sα × − × , of the budget allocated to it. 

 

After extracting budget from nodes, we will then allocate the extractive budget to 

the nodes on the current attack tree. We propose three kinds of reallocation strategies 

here. The first one is to uniformly reallocate the extractive budget to compromised 

nodes and we denote this reallocation strategy as R_Uni. The second strategy denoted as 

R_Deg is to allocate budget according to nodal degree. The last one is a sequence-based 

strategy reallocating budget in accordance with the attack sequence and this strategy is 

denoted as R_Se. The time complexity of the adjustment procedure is O(|N|). 
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Chapter 4 Computation Experiments 

4.1 Computation Experiments with the AEE Model 

4.1.1 Simple Algorithms 

To measure the effective of our proposed algorithms, we design the following 

simple algorithms. 

 

Simple algorithm 1 is also an SA-based heuristic and it can be divided into an outer 

part and an inner part. Initially, at outer loop, we ignore the effect of experience and 

then run the Prim’s Algorithm. Thus, we can know the total cost of the tree. Next, we 

reset the weight on each node using the experience factor. We start from the source 

node and replace the weight of the first node the attacker would compromise with the 

value that the original nodal cost subtracts the effect of its experience. The effect would 

be calculated by the experience factor of the current target node multiplying the total 

attack cost of all the nodes which are compromised after the current node on the attack 

tree. This weight means whether the effect of experience on a node can balance its cost 

or not. After repeating this action and applying this weight to each node, we run the SA 
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procedure which is the inner loop of this heuristic to adjust the sequence and escalation 

levels. Then, modify the weight of each node again and repeat these actions several 

times. The pseudo code of simple algorithm 1, which is denoted as S1, is presented 

below. 

Table 4-1 Simple Algorithm 1 

 

 Other simple algorithms are derived from our two-phase SA-based algorithms. We 

use the first phase SA procedures and each initial solution as the comparisons and 

evaluate the improvement ratio. We also use different initial solutions to distinguish our 

approaches. The first one is the Prim-based algorithm, which is denoted as Prim_based, 

and its corresponding one-phase and two-phase SA approaches are denoted as SA_Prim 

and TSA_Prim respectively. The second initial solution is the approach which randomly 

chooses the next node to compromise, and we denote it as Random and its 

corresponding SA solutions are denoted as SA_Random and TSA_Random. The last one, 

While ( there is no improvement after b iterations)  
Prim’s Algorithm(); // Generate a spanning tree 
For each node i  

      // Update weight 
      weight  [cost - experience * (total cost of its descendants)]; 

End For 
// Adjust sequence and escalation level 
SA procedure();  

End While 
End 
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denoted as Weight, is the solution using the ratio between the experience and the cost of 

a node and its one-phase and two-phase approaches are denoted as SA_Weight and 

TSA_Weight respectively Therefore, we use S1, Prim_based, SA_Prim, Random, 

SA_Random, Weight and SA_Weight as our simple algorithms. 

 

4.1.2 Experiment Environment 

The proposed algorithms are coded in C++ and executed on a PC with Intel(R) 

Pentium 4 3.00GHz CPU and 512MB RAM. The SA parameter α is set to 0.7, and β is 

set to 1.3. The initial temperature T0 is initialized to 1.0 and the final temperature is set 

to T0/1000. At each temperature, we control the SA to repeat b0 times, and initialize b0 to 

1000. We randomly assign the experience value and the number of vulnerabilities on 

each node. We assume that there are three escalation levels on each node. 

 

In order to evaluate the quality of our approaches, we compare our solutions to the 

exhaustive search in three small size networks. The first network is a grid network 

which is a 3*3 square; the second one is a random network with 9 nodes; and the last 

one is a scale-free network with 9 nodes. We consider one escalation level at these three 

types of networks due to the efficiency of exhaustive search. Because these networks 

are small enough, we are able to use the exhaustive search to find the optimal solutions. 
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Thus, by comparing these optimal solutions with our solutions, we can measure the 

efficiency of our algorithms. 

 

Besides, in other larger size networks, we use two ways to evaluate the quality of 

our solutions. One is to compare the solutions of our approaches with some simple 

algorithms and measure the improvement ratio of the two-phase SA procedures. The 

other is to design some particular networks in which we can find the optimal solutions 

intuitively. In other words, we can easily find the optimal attack trees and the optimal 

attack sequence in these networks.  

 

For instance, in Figure 4-1, nodes of this topology can be divided into four types. 

We set the experience of the first type nodes to 1.0 and the costs to 20. The experience 

values of the second type nodes are set to 0.98 and costs are set to 5; the experience 

values of the third type are set to 1.0 and costs are set to 20; the fourth type are the 

nodes whose experience value are set to 0.96 and costs are set to 5. We set the second 

type and the third type nodes and the last node of the first type nodes as core nodes. 

Because the experience of first type nodes are 1 and these nodes are the necessary nodes 

to reach the core nodes, we can ignore the effect of experience of these nodes. Similarly, 

the third type nodes are all core nodes and the experience values are all one, so this type 
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should be compromised after other nodes are all compromised. As the figure shows, 

there are two choices to reach node 3 from node 1. One is to go along with node 1, node 

2 and node3. The other path is directly from node 1 to node 3. Comparing these two 

paths, if we do not consider the effect of experience, the better choice would be from 

node 1 to node 3 directly. Once we further to evaluate the effect of experience, the 

choice would not be the same. The attacker compromises node 2 can gain experience 

0.96 and he only needs to pay cost 5. Therefore, this experience can be applied to 

compromising node 3, i.e., the attacker needs to pay cost 20 × 0.96 = 19.2 to 

compromise node 3 and an additional cost of compromising node 2. In this case, the 

attacker may still choose from the node 1 to node 3 directly, but if we consider the 

whole network, the choice might be changed. For example, if there are five nodes 

belong to the first type nodes and three nodes are the third type nodes in the network. 

The third type and the second type nodes are all needed to be compromised. Thus, if the 

attacker compromises node 2 first and then compromises other nodes which must be 

compromised in the network, he can reduce the cost from 160 (20  5  20  3× + × ) to 158.6 

(0 . 96  (20  5  20  3)  5× × + × + ). Thus, he would choose to compromise the additional node to 

reduce his total attack cost. The smallest case we measure here are totally 47 nodes 

where 16 first type nodes, 8 second type nodes, 8 third type nodes and 15 fourth type 

nodes. 8 third type nodes would be compromised last because of the experience values 
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of them are 1. So, for the last node of the fourth type nodes, compromising it or not 

depends on the difference between its cost and how much experience the attacker can 

gain to reduce the future attack costs. Thus, its experience would be applied to 8 third 

nodes at least. Due to the calculation above, the attacker should choose to compromise 

this additional node. In other words, to reach the last node of the first type nodes, the 

attacker would choose a more winding path but a straightforward path. Next, consider 

the second type nodes, the costs of these nodes are 5 and experience values are 0.98. 

After compromising a first type node, the attacker can choose to attack a second type 

node or a fourth type node. Because the costs are the same, the decision would be based 

on the experience. That means the attacker would compromise a fourth type node first 

and then compromises a second type node. Thus, in this kind of network, we can easily 

evaluate the optimal attack tree and optimal the attack sequence. 

 

Figure 4-2 is another example. In this network, we can use a backtracked method 

to calculate the optimal solution. In order to compromise the core node, the attacker 

must pass through each intermediate node. There are two paths from each intermediate 

node to the next one. One is to pass through the right path and the other is through the 

left path. The total attack cost of the descendants of an intermediate node would be the 

same no matter what path the attacker chooses. So, the attacker can decide to pass 
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through which path to the next intermediate node just under the consideration that the 

node on the right side or on the left would bring better effect. For instance, if the 

attacker is at node 1 and the target is node 4, he can attack node 2 or node 1 to reach 

node 4. Assume that the cost of node 2 is 9 and the experience is 0.6; and the cost of 

node 3 is 8 and experience is 0.8. The cost of node 4 is 10. In this condition, the total 

attack cost of all the descendants of current node is 10 (the cost of node 4). If the 

attacker chooses the right path, he needs to pay cost 16 (8  1 0  0 . 8+ × ), but if he chooses 

the other way, he only needs to pay cost 15 (9  1 0  0 . 6+ × ). Clearly, a better choice would 

be the left path. After calculating these nodes, we add the cost 15 to the pervious 

intermediate node, here that is node 1. By applying this procedure, we can continuously 

repeat this manner to backtrack to the source node and find the optimal solution. 

 

We also consider other networks such as grid networks, random networks and 

scale-free networks with nodes from 25 to 144 to evaluate the robustness of these 

networks. Because our purpose here is to evaluate some general scenarios, we would 

measure the networks with three escalation levels on each node. 

 

There may be several types of the cost functions, such as linear functions, convex 

functions and concave functions. The cost functions here are set to concave functions. 
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Because the effect of additional budget allocated to nodes may declines as the defense 

budget increases. Thus, concave functions, e.g. log functions may describe the real 

situation more accurately. Besides, we evaluate the effect of the number of the 

vulnerabilities on each node in our cost function. The more number of the 

vulnerabilities a node has, the less cost the attacker should pay to compromise it. 

Similarly, the effect of the vulnerabilities should decrease as the number of the 

vulnerabilities increases. Thus, we define the cost function here as a form, 

ln( 1)i

i

b M
V
×

+ , where bi is the budget allocated to node i and Vi is the number of the 

vulnerabilities on node i and M is a constant to adjust the proportion of bi and Vi. The 

cost functions of different escalation levels on nodes are also defined as this form. 

 

In addition, we also design different budget allocation strategies. The first policy is 

a uniform allocation strategy. In this strategy, each node is allocated the same defense 

budget. The second strategy is a degree-based budget allocation. Each node is allocated 

budget according to the percentage of its degree over the total degree of the network. 

The last strategy is a vulnerability-based budget allocation. Budget allocated to each 

node depends on the ratio of the vulnerabilities on each node and total vulnerabilities in 

the networks. Because there are several levels on a node, the budget allocated to each 

level on a node is also different. As noted earlier, the network can be viewed as a 
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two-dimensional network. Thus, while allocating defense budget to escalation levels, 

we can treat the different levels on a node as different nodes in this artificial 

two-dimensional network. Consequently, we can easily use this property to allocate 

budget to each level in degree-based and uniform defense budget allocation strategies.  

 
Figure 4-1 Experiment Topology 1 

 

Figure 4-2 Experiment Topology 2 
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The parameters and related environment used in our experiments are detailed 

below. 

Table 4-2 Experiment Parameter Settings 

Parameters of SA 
Parameters Value 
Initial Temperature 1.0 
Initial Iterations  b0 = 1000 
Final Temperature Initial Temperature / b0 

Cooling Parameter 
α = 0.7 
β = 1.3 

Test Platform 
CPU: INTELTM Pentium 4 3.0GHz 

RAM: 512 GB 

OS: Microsoft Windows XP 

Parameters of the Model 
Parameters Value 
Testing Topology Grid networks, Random networks, Scale-free networks 
Number of Nodes |N| 9, 25, 49, 81, 100, 144 
Total Defense Budget Equal to 2 Times the Number of Nodes 

Budget Allocation Strategy 
Uniform allocation (Uni), Degree-based allocation 
(Deg), Vulnerability-based (Vul) 

Defense Capability ˆ ( )i ia b   
ˆ ( , ) ln( 1)i

i i i
i

b Ma b V
V
×

= + , bi is the budget allocated to 

node i and Vi is the vulnerabilities on node i, i N∀ ∈  
Total Escalation Levels on 
Each Node 

3 

 

4.1.3 Experiment Results  

To evaluate the robustness of different networks, we use the minimized total attack 

cost as our metric. That is, the higher minimized total attack cost the attacker pays, the 

more robust the network is. TSA value means the total attack cost calculated by the 
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two-phase SA-based process. The SA value means the first phase results of our solutions. 

The Ini. value means the results of initial solutions. To evaluate the quality of TSA, we 

calculate the improvement ratio of TSA to SA and Ini. by 100%SA TSA
TSA
−

×  and 

. 100%Ini TSA
TSA
−

×  respectively. 
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Table 4-3 Experiment Results of Networks with 9 nodes and 1 escalation level 

Network 
 Topology 

Budget 
 Allocation 

Initial Solution TSA 

Improvement 
Ratio to 

 SA 

Exhaust 
Search 

Error 
Rate 

Prim_based 8.30945 0.00% 0.00%
Weight 8.30945 0.00% 0.00%Uni 

Random 8.30945 0.00% 

8.47228 

0.00%
Prim_based 8.47228 0.00% 0.00%

Weight 8.47228 0.00% 0.00%Deg 

Random 8.47228 0.00% 

8.47228 

0.00%
Prim_based 8.58804 0.00% 0.00%

Weight 8.58804 0.00% 0.00%

Grid 
 Networks 

Vul 
Random 8.58804 0.00% 

8.58804 

0.00%

Prim_based 7.30564 0.00% 0.00%
Weight 7.30564 0.00% 0.00%Uni 

Random 7.30564 0.00% 

7.30564 

0.00%
Prim_based 7.6147 0.00% 0.00%

Weight 7.6147 0.00% 0.00%Deg 

Random 7.6147 0.00% 

7.6147 

0.00%
Prim_based 7.80811 0.00% 0.00%

Weight 7.80811 0.00% 0.00%

Random  
Networks 

Vul 
Random 7.80811 0.00% 

7.80811 

0.00%

Prim_based 6.91938 0.00% 0.00%
Weight 6.91938 0.00% 0.00%Uni 

Random 6.91938 0.00% 

6.91938 

0.00%
Prim_based 7.17378 0.00% 0.00%

Weight 7.17378 0.00% 0.00%Deg 

Random 7.17378 0.00% 

7.17378 

0.00%
Prim_based 6.89044 0.00% 0.00%

Weight 6.89044 0.00% 0.00%

Scale-free 
 Networks 

Vul 
Random 6.89044 0.00% 

6.89044 

0.00%
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Table 4-4 Experiment Results of Experiment Topology 1 and Experiment Topology 2 

Network  
Topology 

Node  
Number 

Initial Solution TSA 
Improvement 
Ratio to SA

Optimal 
Solution 

Error 
Rate 

Prim_based 390.176 0.14% 0.00%

Weight 390.176 0.00% 0.00%47 

Random 390.176 0.20% 

390.176 

0.00%

Prim_based 488.518 0.01% 0.02%

Weight 488.547 0.07% 0.02%80 

Random 488.636 0.08% 

488.432 

0.04%

Prim_based 584.31 0.00% 0.12%

Weight 583.733 0.06% 0.02%

Experimental 
Topology 1 

101 

Random 583.733 0.00% 

583.59 

0.02%

Prim_based 99.39 0.00% 0.00%

Weight 99.39 0.00% 0.00%10 

Random 99.39 0.00% 

99.39 

0.00%

Prim_based 427.965 0.00% 0.00%

Weight 427.965 0.00% 0.00%49 

Random 427.965 0.00% 

427.965 

0.00%

Prim_based 588.929 0.00% 0.00%

Weight 588.929 0.00% 0.00%82 

Random 588.929 0.00% 

588.929 

0.00%

Prim_based 650.622 0.00% 0.00%

Weight 650.622 0.00% 0.00%

Experimental 
 Topology 2 

100 

Random 650.622 0.00% 

650.622 

0.00%
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Table 4-5 Experiment Results of Networks with 25 nodes 

Network  
Topology 

Budget  
Allocation 

Initial  
Solution 

TSA 

Improvement 
Ratio to 

 Ini. 

Improvement 
Ratio to 

SA 

S1 

Prim_based 17.067 49.36% 0.42% 

Weight 16.3045 65.16% 0.00% Uni 

Random 17.067 67.30% 0.47% 

16.3045

Prim_based 16.1115 85.56% 0.00% 

Weight 15.7374 71.60% 0.00% Deg 

Random 15.7374 41.14% 0.00% 

17.3475

Prim_based 13.6048 73.02% 3.99% 

Weight 13.6048 81.26% 0.00% 

Grid  
Networks 

Vul 

Random 13.6048 80.74% 0.00% 

13.6048

Prim_based 13.6477 12.04% 0.00% 

Weight 13.6453 30.24% 0.00% Uni 

Random 13.6477 56.08% 0.17% 

15.1472

Prim_based 14.6404 90.17% 0.00% 

Weight 14.6404 28.94% 3.05% Deg 

Random 14.6404 83.15% 0.00% 

15.4821

Prim_based 13.0879 40.85% 0.00% 

Weight 13.0951 76.97% 0.06% 

Random  
Networks 

Vul 

Random 13.1004 62.96% -0.10% 

13.0879

Prim_based 11.793 17.63% 0.07% 

Weight 11.793 54.38% 0.00% Uni 

Random 11.793 35.69% 0.00% 

14.3948

Prim_based 14.0495 72.12% 0.23% 

Weight 14.0495 51.18% 0.00% Deg 

Random 14.0495 27.15% 0.00% 

15.4361

Prim_based 10.3934 1.42% 0.16% 

Weight 10.3934 11.67% 0.16% 

Scale-free 
Networks 

Vul 

Random 10.3934 12.75% 0.00% 

11.9421
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Table 4-6 Experiment Results of Networks with 49 nodes 

Network  
Topology 

Budget  
Allocation 

Initial  
Solution 

TSA 

Improvement 
Ratio to 

 Ini. 

Improvement 
Ratio to 

SA 

S1 

Prim_based 18.3298 108.44% 3.07% 

Weight 18.0553 88.82% 0.00% Uni 

Random 18.1337 53.19% 2.27% 

21.9722

Prim_based 18.1227 39.10% 0.00% 

Weight 18.1227 65.41% 0.95% Deg 

Random 18.1227 95.13% 0.00% 

23.0121

Prim_based 16.8577 67.71% 0.00% 

Weight 16.8338 48.01% 0.14% 

Grid  
Networks 

Vul 

Random 16.8577 57.05% 0.78% 

18.558 

Prim_based 17.5207 77.45% 2.18% 

Weight 17.8796 76.80% 0.00% Uni 

Random 17.4353 120.80% 0.00% 

22.2319

Prim_based 18.2307 75.52% 0.00% 

Weight 18.2307 102.88% 0.00% Deg 

Random 18.2307 79.87% 0.00% 

24.3793

Prim_based 16.4035 101.00% 1.45% 

Weight 16.7009 95.87% 1.41% 

Random 
 Networks 

Vul 

Random 16.2982 73.11% 0.00% 

19.4409

Prim_based 17.0068 70.36% 1.30% 

Weight 16.4659 84.38% 0.00% Uni 

Random 16.8559 38.94% 0.09% 

25.3068

Prim_based 18.2237 47.95% 0.00% 

Weight 17.9234 73.27% 0.42% Deg 

Random 17.9234 73.86% 4.62% 

27.2766

Prim_based 15.2985 80.22% 3.53% 

Weight 16.063 64.15% 0.34% 

Scale-free 
Networks 

Vul 

Random 15.8402 52.35% 0.23% 

20.6346
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Table 4-7 Experiment Results of Networks with 81 nodes 

Network  
Topology 

Budget  
Allocation 

Initial  
Solution 

TSA 

Improvement 
Ratio to 

 Ini. 

Improvement 
Ratio to 

SA 

S1 

Prim_based 24.1036 26.55% 0.00% 

Weight 22.7427 96.82% 2.43% Uni 

Random 22.4084 112.19% 0.00% 

29.1466

Prim_based 22.0132 63.64% 3.80% 

Weight 22.9025 66.21% 2.41% Deg 

Random 22.5665 82.71% 3.04% 

28.156 

Prim_based 19.3422 67.24% 3.14% 

Weight 19.3632 46.14% 0.00% 

Grid  
Networks 

Vul 

Random 19.3422 124.02% 0.00% 

28.0975

Prim_based 23.165 136.49% 2.26% 

Weight 22.2234 168.03% 0.00% Uni 

Random 22.665 122.46% 1.38% 

29.4004

Prim_based 22.7699 108.04% 3.31% 

Weight 22.3458 141.07% 0.00% Deg 

Random 22.4739 48.81% 4.87% 

29.9849

Prim_based 19.8119 107.97% 2.03% 

Weight 20.5151 116.71% 0.00% 

Random  
Networks 

Vul 

Random 20.3446 118.00% 0.37% 

30.7614

Prim_based 18.3464 109.14% 0.93% 

Weight 19.2383 149.72% 1.53% Uni 

Random 18.3999 116.71% 3.68% 

32.405 

Prim_based 22.5509 98.87% 2.84% 

Weight 21.2131 116.43% 4.98% Deg 

Random 21.2131 86.11% 6.69% 

33.5005

Prim_based 17.6088 104.44% 3.32% 

Weight 17.0667 100.34% 7.64% 

Scale-free 
Networks 

Vul 

Random 17.9647 90.70% 2.48% 

26.4876
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Table 4-8 Experiment Results of Networks with 100 nodes 

Network  
Topology 

Budget  
Allocation 

Initial  
Solution 

TSA 

Improvement 
Ratio to 

 Ini. 

Improvement 
Ratio to 

SA 

S1 

Prim_based 31.5009 85.18% 0.00% 

Weight 29.6952 80.86% 0.00% Uni 

Random 30.6794 69.42% 6.14% 

41.6078

Prim_based 32.3269 119.94% 0.00% 

Weight 29.137 91.21% 0.86% Deg 

Random 30.0537 75.05% 4.43% 

42.5538

Prim_based 28.8378 104.50% 2.48% 

Weight 25.2229 89.47% 0.00% 

Grid  
Networks 

Vul 

Random 26.4644 123.87% 1.04% 

34.6427

Prim_based 29.1791 85.40% 1.97% 

Weight 27.422 124.96% 0.00% Uni 

Random 27.9177 57.30% 0.38% 

39.2367

Prim_based 29.3654 150.85% 1.91% 

Weight 29.594 115.00% 0.00% Deg 

Random 29.4845 53.55% 1.74% 

46.0847

Prim_based 23.2003 114.32% 0.00% 

Weight 25.0353 119.93% 0.00% 

Random  
Networks 

Vul 

Random 24.8418 79.92% 0.32% 

34.9472

Prim_based 26.7715 89.53% 0.00% 

Weight 26.121 116.65% 0.00% Uni 

Random 26.0372 65.72% 0.88% 

39.414 

Prim_based 29.333 65.91% 0.00% 

Weight 28.3074 116.77% 0.00% Deg 

Random 28.0432 114.92% 3.71% 

38.0386

Prim_based 25.2489 112.34% 2.50% 

Weight 24.2604 119.91% 2.15% 

Scale-free 
Networks 

Vul 

Random 24.2124 96.59% 8.73% 

34.1402
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Table 4-9 Experiment Results of Networks with 144 nodes 

Network  
Topology 

Budget  
Allocation 

Initial  
Solution 

TSA 

Improvement 
Ratio to 

 Ini. 

Improvement 
Ratio to 

SA 

S1 

Prim_based 38.0503 125.06% 1.14% 

Weight 39.5596 101.20% 0.27% Uni 

Random 38.511 74.08% 1.26% 

50.3497

Prim_based 39.782 82.85% 0.00% 

Weight 39.0366 82.51% 0.30% Deg 

Random 39.5608 79.85% 0.59% 

50.3017

Prim_based 36.4206 52.13% 0.00% 

Weight 35.7813 50.39% 0.04% 

Grid  
Networks 

Vul 

Random 35.3611 88.45% 0.21% 

41.9704

Prim_based 34.9907 116.76% 0.04% 

Weight 34.4164 103.76% 0.43% Uni 

Random 33.9935 67.84% 0.00% 

50.6679

Prim_based 41.4724 109.41% 2.37% 

Weight 37.128 121.73% 0.36% Deg 

Random 39.5733 70.20% 0.00% 

60.0891

Prim_based 34.4716 56.87% 1.51% 

Weight 33.3454 57.28% 0.30% 

Random  
Networks 

Vul 

Random 31.1273 89.82% 0.31% 

40.4979

Prim_based 33.14 74.24% 1.04% 

Weight 32.1484 77.87% 0.00% Uni 

Random 35.2476 62.99% 1.51% 

50.6356

Prim_based 36.9738 117.34% 0.15% 

Weight 37.1385 111.05% 0.00% Deg 

Random 41.1268 48.58% 2.44% 

50.2134

Prim_based 32.4377 81.54% 0.39% 

Weight 27.5028 116.66% 0.63% 

Scale-free 
Networks 

Vul 

Random 32.3247 74.60% 0.74% 

44.0077
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Table 4-10 The Elapsed Time of the Proposed Approaches 

Network  
Topology 

 Number of 
Nodes 

SA 
(Sec.) 

TSA 
(Sec.) 

25 25 157 

49 46 238 

81 88 412 

100 129 748 

Grid 
Networks 

144 284 1334 

25 26 155 

49 60 265 

81 103 424 

100 144 604 

Ransom 
Networks 

144 309 1250 

25 26 153 

49 56 217 

81 90 335 

100 135 763 

Scale-free 
Networks 

144 265 1113 

 

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

47 80 101

Number of Nodes

E
rr

or
 R

at
e TSA_Prim

TSA_Weight

TSA_Random  

Figure 4-3 The Error Rate of Different Solution Approaches under Experimental Networks 1   
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Figure 4-4 The Difference of the Error Rate between the SA_Prim and TSA_Prim under Experimental 

Networks 1 
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Figure 4-5 The Difference of the Error Rate between the SA_Weight and TSA_Weight under Experimental 

Networks 1 
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Figure 4-6 The Difference of the Error Rate between the SA_Random and TSA_Random under 

Experimental Networks 1 
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Figure 4-7 The Error Rate of Different Solution Approaches under Experimental Networks 2  
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Figure 4-8 Total Attack Costs of Different Solution Approaches under Grid Networks with Degree-based 

Defense Budget Allocation Strategy 
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Figure 4-9 Total Attack Costs of Different Solution Approaches under Random Networks with 

Degree-based Defense Budget Allocation Strategy 
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Figure 4-10 Total Attack Costs of Different Solution Approaches under Scale-free Networks with 

Degree-based Defense Budget Allocation Strategy 
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Figure 4-11 Total Attack Costs of Grid Networks under Different Defense Budget Allocation Strategies 
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Figure 4-12 Total Attack Costs of Random Networks under Different Defense Budget Allocation 

Strategies 
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Figure 4-13 Total Attack Costs of Scale-free Networks under Different Defense Budget Allocation 

Strategies 
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Figure 4-14 Total Attack Costs of Uniform Defense Budget Allocation Strategies under Different 

Networks 
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Figure 4-15 Total Attack Costs of Degree-based Defense Budget Allocation Strategies under Different 

Networks 
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Figure 4-16 Total Attack Costs of Vulnerability-based Defense Budget Allocation Strategies under 

Different Networks 

 

4.1.4 Discussion of Results  

Tables 4-3 to 4-4 and figures 4-3 to 4-7 show the quality of our solutions under the 

target networks. Because it is unpractical to compare our approaches under some 

general networks with exhaustive search, we could use these special cases as an 

alternative measurement. From these figures and tables, we observe: 

 The error rate of our solutions of these particular experiment networks is 

approximate under 0.1%. Besides, from Table 4-3, we can find that the results 

of our solutions under small networks with 9 nodes and 1 escalation level are 

all the same with the results of exhaustive search under these networks. These 

results show that our approaches under these networks could obtain 

near-optimal solutions. It also indicates that the quality of our solutions under 

these scenarios is quite good.  
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Figures 4-8 to 4-10 compare the quality of the proposed SA-based algorithms with 

simple algorithm 1 (S1) under the degree-based budget allocation strategy in different 

networks.  

 In all kinds of network topologies, our heuristics perform better than simple 

algorithm 1 obviously. The S1 also performs well in small size networks with 

25 nodes, but when the network becomes large, the gap between our solutions 

and S1 increases in most cases.  

 Generally, the total attack cost increases with the growth of the networks. It 

shows a monotone increase. This is due to the growth of attack tree. When the 

networks become large, the attack path towards each core node would also 

become more complex. 

 On average, the quality of the results of the approach TSA_Weight is better 

than other approaches. But the variations of the three proposed approaches are 

quite slight. Since these approaches are only different in initial solutions, it 

might be concluded that the initial solution of SA in this problem is not a very 

vital factor affecting the quality of the solutions. 

 

Thus, we use the approach TSA_Weight as the solution approach in the following 
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comparisons. For Figures 4-11 to 4-13, we could observe several trends. 

 Networks with degree-based defense budget allocation strategy are the most 

robust. It means that the attacker who wants to compromise these networks 

needs to pay the most cost. In other words, it is the most difficult for the 

attacker to compromise. This finding is reasonable. The defense budget 

should allocate to the vital nodes in the networks, i.e., budget should be 

allocated according to the importance of each nodes. This allocation is also 

based on the characteristics of networks. If a node with more connectivity, it 

may be also a shortcut in a network. Thus, the attacker could use this node to 

reach his targets more quickly. According to this, if the defender protects these 

kinds of nodes more, it would become more difficult to reach the target nodes 

from the source node for the attacker. 

 For grid networks, the robustness of the degree-based and uniform defense 

budget allocation strategies is close. That is because the characteristic of grid 

networks that the degree of each node is almost the same except the edge 

nodes. Thus, the budget allocated to each node under uniform and 

degree-based strategy is similar. 

 Therefore, we could observe the effect of allocating budget in accordance 

with the characteristics of network topologies more clearly in scale-free 
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networks. We could find that the degree-based defense budget allocation is 

obviously more robust than other two budget allocations in the scale-free 

networks. This is due to the characteristics of networks we discussed above. If 

the defender allocated more defense budget in those higher degree nodes, the 

attacker would loss the shortcuts to the target nodes. Therefore, the 

degree-based budget allocation strategy could make scale-free networks more 

difficultly to compromise. 

 The vulnerability-based defense budget allocation is the most vulnerable way 

to protect all kinds of networks. That is because this allocation strategy is 

based on the fragility of a node but network. The attacker’s objective is to 

compromise some targets, so he would need to compromise some other nodes 

first to reach his goal. It means that the attacker would consider the attack 

strategy in a more general way. For instance, if a node is very vulnerable, it 

may be allocated much budget in this budget allocation strategy. But it may be 

meaningless. If the node is on the edge of the network and the attacker could 

also reach his goal without compromising it. Thus, the budget allocated to the 

node is wasteful. So, it is reasonable that this budget allocation strategy is the 

most vulnerable. 
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For Figures 4-14 to 4-16, we could also find some results: 

 Under uniform defense budget allocation strategy, scale-free networks are less 

robust and easier to attack. On the other hand, grid networks are the most 

robust under this strategy. This finding is consistent with the results we 

mentioned above. The reason is also due to the characteristics of networks. 

 Degree-based budget allocation causes similar total attack cost in these three 

kinds of networks. This result also shows that the degree-based allocation 

could provide similar defense level in all networks. Again, it is because this 

allocation could defend the networks according to the characteristics of the 

networks. 

 

The experimental execution elapsed time is presented as Table 4-10. All the 

numbers showed in Table 4-10 represent the total elapsed seconds while executing our 

approach coded by us.  

 Although the time complexity of the proposed two-phase SA-based 

approaches is the same with the only one-phase SA procedures, the two-phase 

approaches would need more time to obtain a solution, but these approaches 

could improve about 0-5 % of the quality of the solutions. Thus, it may be a 

trade-off for the network operator. If the quality of the solutions is a strict 
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demand for the operator and he has adequate resources to adopt the two-phase 

approaches, he could choose these kinds of approaches to decide his defense 

budget allocation strategies. On the other hand, if the quality is not restricted 

strictly, it may be sufficient for the defender to use the one-phase SA-based 

approaches. This is because the difference of the solutions between the 

one-phase SA-based approaches and two-phase SA-based is slight.  

 

4.2 Computation Experiments with the DRA Model 

4.2.1 Experiment Environment 

The proposed algorithms for the DRA Model are coded in C++ and executed on a 

PC with Intel(R) Pentium 4 3.00GHz CPU and 512MB RAM. The SA parameter α is set 

to 0.7, and β is set to 1.3. The initial temperature T0 is initialized to 1.0 and the final 

temperature is set to T0/1000. At each temperature, we control the SA to repeat b0 times, 

and initialize b0 to 1000. The iteration counter is set to 50. We randomly assign the 

experience value and the number of vulnerabilities on each node. We assume that there 

are three escalation levels on each node. 

 

In the DRA Model, the attacker would try to compromise multiple core nodes 

using the minimized attack cost. Thus, we use the degree-based defense budget 
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allocation strategy, which is the best of the three given strategies, as the initial budget 

allocation strategy in this model. In addition, the performance of the proposed approach 

TSA_Weight is better than the performance of other approaches on average. We use the 

approach as the solution approach for the inner problem of this model to generate attack 

strategy. 

 

After each attack, the defender would adjust his allocation strategy according to the 

attack strategy. Here, three reallocation strategies are chosen to adjust the budget 

allocated to each node. The strategies are uniform, degree-based and sequence-based 

reallocation strategies which we discussed before. 

Table 4-11 Experiment Parameter Settings 

Parameters of the DRA Model 
Parameters Value 
Testing Topology Grid networks, Random networks, Scale-free networks 
Number of Nodes |N| 25, 49, 81, 100, 144 
Total Defense Budget Equal to 2 Times the Number of Nodes 
Initial Budget Allocation 
Strategy 

Degree-based allocation 

Budget Reallocation 
Strategy 

Uniform allocation (R_Uni), Degree-based allocation 
(R_Deg), Sequence-based (R_Se) 

Defense Capability ˆ ( )i ia b   
ˆ ( , ) ln( 1)i

i i i
i

b Ma b V
V
×

= + , bi is the budget allocated to 

node i and Vi is the vulnerabilities on node i, i N∀ ∈  
Total Escalation Levels on 
Each Node 

3 
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4.2.2 Experiment Results 

In this experiment, we use Initial Attack Cost value as the total attack cost under 

the degree-based budget allocation strategy, and the value Opt. Attack Cost is the total 

attack cost after the defender adjusting the defense budget allocation strategy. The 

improvement ratio of Opt. Attack Cost to Initial Attack Cost is calculated by 

.    100%
  

Opt Attack Cost Initial Attack Cost
Initial Attack Cost

−
× . 
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Table 4-12 Experiment Results of Networks with 25 Nodes 

Network  
Topology

Initial  
Attack Cost

Budget  
Reallocation

Opt. Attack 
Cost 

Improvement  
Ratio of Opt. 
Attack Cost 

R_Uni 18.5868 18.11% 

R_Deg 18.5078 17.60% 
Grid  

Networks
15.7374 

R_Se 18.4212 17.05% 

R_Uni 18.1024 23.65% 

R_Deg 20.8437 42.37% 
Random  

Networks
14.6404 

R_Se 20.1834 37.86% 

R_Uni 17.3452 23.46% 

R_Deg 19.9577 42.05% 
Scale-free  
Networks

14.0495 

R_Se 19.5507 39.16% 

 

Table 4-13 Experiment Results of Networks with 49 Nodes 

Network  
Topology

Initial  
Attack Cost

Budget  
Reallocation

Opt. Attack 
Cost 

Improvement  
Ratio of Opt. 
Attack Cost 

R_Uni 22.4249 22.58% 

R_Deg 21.109 15.38% 
Grid  

Networks
18.2946 

R_Se 21.612 18.13% 

R_Uni 23.3908 28.30% 

R_Deg 25.0837 37.59% 
Random  

Networks
18.2307 

R_Se 25.4136 39.40% 

R_Uni 22.057 22.54% 

R_Deg 23.5961 31.09% 
Scale-free 
Networks

17.9993 

R_Se 24.7593 37.56% 
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Table 4-14 Experiment Results of Networks with 81 Nodes 

Network  
Topology

Initial  
Attack Cost

Budget  
Reallocation

Opt. Attack 
Cost 

Improvement  
Ratio of Opt. 
Attack Cost 

R_Uni 28.8376 25.91% 

R_Deg 26.107 13.99% 
Grid  

Networks
22.9025 

R_Se 25.6143 11.84% 

R_Uni 28.7168 28.51% 

R_Deg 31.1373 39.34% 
Random  
Networks

22.3458 

R_Se 30.2038 35.17% 

R_Uni 27.5676 23.79% 

R_Deg 28.865 29.62% 
Scale-free 
Networks

22.2694 

R_Se 29.6259 33.03% 

 

Table 4-15 Experiment Results of Networks with 100 Nodes 

Network  
Topology

Initial  
Attack Cost

Budget  
Reallocation

Opt. Attack 
Cost 

Improvement  
Ratio of Opt. 
Attack Cost 

R_Uni 34.9833 19.05% 

R_Deg 35.8021 21.83% 
Grid  

Networks
29.3864 

R_Se 34.2001 16.38% 

R_Uni 36.0661 21.87% 

R_Deg 38.4503 29.93% 
Random  
Networks

29.594 

R_Se 39.5487 33.64% 

R_Uni 34.5632 22.10% 

R_Deg 36.7125 29.69% 
Scale-free 
Networks

28.3074 

R_Se 37.8339 33.65% 
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Table 4-16 Experiment Results of Networks with 144 Nodes 

Network  
Topology

Initial  
Attack Cost

Budget  
Reallocation

Opt. Attack 
Cost 

Improvement  
Ratio of Opt. 
Attack Cost 

R_Uni 46.2397 18.45% 

R_Deg 44.1372 13.07% 
Grid  

Networks
39.0366 

R_Se 43.9814 12.67% 

R_Uni 43.113 16.12% 

R_Deg 47.939 29.12% 
Random  
Networks

37.128 

R_Se 47.336 27.49% 

R_Uni 43.6026 17.41% 

R_Deg 47.7711 28.63% 
Scale-free 
Networks

37.1385 

R_Se 47.5039 27.91% 
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Figure 4-17 Total Attack Costs of Grid Networks under Different Defense Budget Reallocation Strategies 
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Figure 4-18 Total Attack Costs of Random Networks under Different Defense Budget Reallocation 

Strategies 
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Figure 4-19 Total Attack Costs of Scale-free Networks under Different Defense Budget Reallocation 

Strategies 

 

4.2.3 Discussion of Results 

Figures 4-17 to 4-19 show the cost that the attacker needs to pay after the defender 

reallocating defense budget under different topologies. From the figures, we can 

observe: 
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 The degree-based and sequence-based budget reallocation strategies may be 

the better choices for the defender to protect the networks because under these 

two strategies, the attacker may need to pay more attack costs to reach his 

goal. The sequence-based reallocation strategy would allocate the budget 

according to the sequence of the attacks, so that the nodes which would be 

compromised in the beginning are reallocated budget first. In addition, due to 

the effect of the accumulated experience we evaluated here, the reduced cost 

of each attack would increase while the accumulated experience becomes 

more and more. Thus, allocating budget to the nodes near the attack source 

would be reasonable in this problem. Besides, degree-based reallocation 

strategy is also a good strategy here. The reason is that the importance of 

nodes depends on their degree and this is similar to the above discussions. 

Therefore, the rich get richer, and the poor get poorer may be also a good way 

to reallocate defense budget. 

 Another finding is that the improvement ratio in the grid networks is the 

smallest of the three network types. This is also due to the characteristics of 

the grid networks. The attacker can not easily find a shortcut to reach his goal 

but it also implies that once a path is allocated much budget, the attacker can 

easily find another path as the substitute path.  
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 The random and scale-free networks can be more robust than the grid 

networks by applying our proposed defense resource reallocation strategy. It 

also indicates that the random and scale-free networks can be very robust if 

the network defender uses the appropriate budget allocation strategy. 

 The uniform reallocation strategy improves less under the random and 

scale-free networks, but it performs as well as other two strategies under the 

grid networks. As noted earlier, it is because the grid networks are some 

regular patterns. Thus, the quality of the three reallocation strategies under 

grid networks is close. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusions  

The widespread use of the Internet and computer networks brings not only some 

convenience but also opportunities for network criminals to easily reach their targets. 

Thus, understanding the attacker behavior is helpful to minimize the damage from 

network attacks.  

 

In this research, we have addressed the issues of attacker behavior under network 

defense-attack scenario. We focus on the learning skill of intelligent attackers and how 

it could help the attackers to reduce their costs in the future. This concept is generalized 

as a term, experience, in this thesis. Besides, we also modeled the escalation of attackers 

and evaluated the impact incurred by probing information at different escalation levels. 

As a result, the attacker would try to minimize the total attack cost under these issues. In 

response, the network defender would try to maximize the total attack cost by a proper 

defense budget allocation strategy.  
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The key contribution of this thesis is the development of a max-min mathematical 

model which well formulated the interaction between attackers and defenders in the real 

world and the concept of escalation and the experience of attackers. We have also 

solved this model by several proposed heuristics. To the best of our knowledge, very 

little research is done to model the real-world attack behavior in the offense-defense 

sceneries by this approach. 

 

Another contribution is that we have evaluated the robustness of different network 

topologies by the minimized total attack cost. In addition, to the measure the robustness 

on different defense resource allocation strategies, we used uniform, degree-based, and 

vulnerability-based defense strategies to observe the value of the minimized total attack 

cost.  

 

Moreover, we have developed an engineering guideline for the network defender. It 

provides the defender with the information that the best defense budget reallocation 

strategy should be based on the nodal degree and the attack sequence of nodes on the 

attack tree. Besides, we also provide the network operator with different approaches for 

difference considerations. While the operator needs a higher quality solution, he may try 

to use our TSA approaches. If the operator does not need that kind of solution, he may 
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apply our SA approaches, because the quality of these solutions is also good enough. 

 

5.2 Future Work  

In the following, we summarize several issues which could be further researched. 

Information issues 

We assumed that information probed from each level on a compromised node 

would not be duplicated. Thus, the experience and the impact of information would 

be accumulated continuously. By this assumption, an attacker is very skillful and 

intelligent that he would not pay any unless fee to gain duplicated information. 

Therefore, we could further discuss the duplicated information issues in our 

research. Since the information could be measured in a more complex way, impact 

incurred by information leakage might also be evaluated in some more practical 

methods. That is we could also consider the effect of duplicated information while 

measuring the impact of probing information by the attacker. 

 

Experience of attackers and defenders 

We considered the experience of attackers by a value between o and 1 which 

is similar to a discount on each attack cost. This attribute is set in accordance with 

attack skill which the attackers could learn from each node. However, we should 
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further measure the attack skill the attacker has already accumulated before 

launching each attack. That is, if the attacker compromises a node in the beginning, 

he could gain an experience value about 0.5, but in the same situation, if he 

compromises it after attacking several nodes, he might only gain an experience 

value about 0.9. What the attacker can learn in the second case is less than that in 

the first case. That is because the attack skill he could learn from the node might be 

already learned from other nodes.  

 

In addition, not only attackers but also defenders could learn something from 

their pervious efforts. In other words, the defenders can gain some experience from 

protecting nodes. According to these two reasons, we could study the effect of the 

experience learned by the attackers in different time and the experience of 

defenders in the future.    
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