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論文摘要 

論文題目：考慮隨機錯誤與惡意攻擊下資訊洩漏程度最小化之近似最佳化防禦資

源配置與資訊切割配置策略 

作者：蘇至浩             九十七年七月 

指導教授：林永松 博士 

 隨著資訊科技的進步以及儲存設備價格的遞減，不管是個人、企業體、或是

政府單位皆大量使用電子化的方式儲存資訊。再者，伴隨著網路使用率的提升以

及電子商務的出現，經由網路竊取資訊的犯罪行為也迅速的增加。像是釣魚行為

或是安裝木馬程式於受害者的電腦以竊取資訊等的犯罪，對個人或企業體皆造成

重大的傷害。因此，如何發展防禦策略以保護儲存在網路上的資訊，已經變成很

重要的議題。 

 在這篇論文中，我們將攻防情境轉化成一個最小-最大化的雙層數學規劃問

題。在內層的問題中，攻擊者想在有限的攻擊能量下藉由竊取資訊對網路造成最

大的傷害；另一方面，在外層的問題中，防禦者想在有限的防禦預算下利用秘密

分享的概念，最佳化防禦資源配置策略以及資訊切割與分配策略來最小化傷害。

除此之外，防禦者也必須考慮到合法使用者對存取資訊的服務品質要求。為了解

決這個問題，我們採用了拉格蘭日鬆弛法以及次梯度法。我們假設防禦策略已知

下，先解決內層攻擊者的選徑問題，再根據內層解完後的結果藉由以次梯度法為

基礎的演算法來調整防禦策略。 

關鍵詞：最佳化、數學規劃、資訊竊取、拉格蘭日鬆弛法、資源配置、資訊切割、

秘密分享 
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Near Optimal Defense Resource Allocation and Information 

Dividing-and-Allocation Strategies to Minimize Information Leakage 

Considering both Random Errors and Malicious Attacks 

 Information technology has been increasingly progressing, and the storage cost 

has been reducing. Thus, individuals, enterprises and government organizations are 

likely to store secret data through electronic way. Moreover, along with the rise of the 

use of network and the prevalence of e-commerce, the crime of information theft 

through network has grown in high-speed. Cyber crimes, like phishing or installing 

Trojan horse in victims’ computers to steal information, will cause serious damage to 

individuals or enterprises. From the above reasons, to protect secret information 

stored on networks becomes an essential issue. 

 In this thesis, we formulate the attack-defense scenario as a min-max 

mathematical programming problem, which is a two-level mathematical problem. In 

the inner problem, the attacker wants to maximize the total damage by stealing 

information under limited attack power. In the outer problem, the defender wants to 
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minimize the total damage by defense resource allocation and information-dividing 

under limited budget. In addition, the defender also has to consider QoS requirements 

of authorized users. In order to solve the considered problem, we use the Lagrangean 

Relaxation method and the subgradient method [14][15]. We solve the inner problem 

under a given defense strategy first, and then propose a subgrandient-based heuristic 

to adjust the defender’s strategy according to attacker’s attack strategy. 

Keywords: Optimization, Mathematical Programming, Information Theft, 

Lagrangean Relaxation, Resource Allocation, Information Dividing, Secret 

Sharing 
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Chapter 1 Introduction 

1.1 Background 

Following with the sizzling growth of Internet, the user group becomes more 

widespread, from exclusive military network (ARPANET) to academic network 

(NSF). Nowadays, network has expanded to commercial use (Internet) [12]. The 

inrush of all social class of users has not only built immeasurable business 

opportunities, but also made the network society a different kind of real-world society. 

Along with the rise of the use of network and the prevalence of e-commerce, the 

criminal act through network has grown in high-speed. Also, there are more and more 

types of attack of cyber crime, as shown on [1], which are listed in Figure 1-1. On the 

other hand, IT has been increasingly progressing, and the storage cost has been 

reducing. Thus, individuals, enterprises and government organizations are likely to 

store secret data through electronic way. However, enterprises may place the data on 

critical points of networks for users to access for the sake of information sharing. The 

convenience network brings usually accompanies threats. Cyber crimes, like phishing 

or installing Trojan horse in victims’ computers to steal information, will cause 

serious damage to individuals or enterprises. From the former reasons, to protect the 

secret information stored on networks becomes an essential issue to discuss. 
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Figure 1-1Type of Attacks or Misuse (2007) 
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Since the hackers can earn profits from stealing private properties and important 

information, almost every user is possibly attacked by all means of information 

stealing, like installing information-stealing components, such as backdoor programs, 

on victim computer or stealing information by alluring users to enter phishing website. 

In [2], it is indicated that Virus attacks, Unauthorized access to information, Theft of 

proprietary information, and Laptops or mobile hardware theft incidents have caused 

74% of all losses, which are shown in Figure 1-2. In the following year, information 

leakage continuously causes great damage [1] as shown in Figure 1-3. 

 

Figure 1-2 Dollar Amount losses by Type (2006) 
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Figure 1-3Dollar Amount losses by Type (2007) 
 

 

 

 

 

 



 

5 

Because the attackers can successfully steal information without affecting the 

normal operation of system, the network operators are usually hard to notice that until 

the information has been revealed or used. Due to that reason, they must spend a lot to 

prevent such attack event, like setting up multilayer firewall to increase the difficulty 

to invade the system or secret sharing theorem [8][9][10][11], to decrease the damage 

when confronting information stealing. Although the defender can strengthen the 

system defense capability by resource allocation, the attacker can always find some 

vulnerability to attack. There is no so-called perfect-safe system. We need new 

metrics to describe the safeness of a system. In recent research, survivability 

[3][4][5][6][7] is one of the most general metric, which will be introduced in Chapter 

1.3. 

 

1.2 Motivation  

With regard to the hazards to information security in recent years, information 

stealing was one of the most frequent incidents. Take Taiwan for example, there have 

been many serious cases [13], like 2 million accounts and passwords of HiNet host 

was stolen, and millions of personal information of users in PTT, which is one of the 

most popular BBS in Taiwan, was stolen, and the secret data of the Ministry of 

National Defense was stolen by hackers. Once the information was stolen, not only 

individual users may lose their rights and interests, the national security may also be 

victimized. In this commercial society, some technologies such as data mining are 
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often used to enhance the relationship with customers. To make those technologies 

work, service providers will ask users to leave more detailed personal data, includes 

cell phone numbers, ID card numbers, and so on. As soon as user data was stolen, the 

attackers can do more things with that information, which make the damage more and 

more terrible. In [1], it is indicated that the loss of customer and proprietary data was 

the second-worst cause of financial loss. Moreover, retailers often speed up their 

transaction processes by wireless network due to its convenience. However, its lack of 

safeness makes it an evident target to hackers. Hackers would pilfer momentous 

information, like credit card numbers, through the vulnerability of wireless network. 

Take year 2007 for example, the American retailer TJX admitted the credit card data 

leakage event was probably through wireless network, and the victimized banks 

estimated that about 100 million accounts was stolen. 

The information stealing will cause serious damage, which enforces the network 

operators to put more resources to prevent it. Nevertheless, attacker can always find a 

vulnerability to attack. Therefore, to the defenders, the main target is to allocate 

defense resources on network components to minimize the damage under limited 

budgets. The research [8] addressed that the secret sharing scheme in cryptography 

may deal with this problem. To sum up, in this paper we would like to discuss about 

how to exploit the concept of secret sharing and how to allocate defense resources to 
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minimize the damage when information was stolen, and to solve it in mathematical 

way. 

 

1.3 Literature Survey 

1.3.1 Survivability 

Nowadays, people depend more on IT system, so its dependability becomes a 

key point. Little harm may be likely to cause great deal of damage, especially for 

critical information systems [5]. The dependability is an integrated metric, which can 

represent reliability, availability, safety, confidentiality, and integrity [3]. It also has 

different meaning in different domain, for example, embedded control system needs 

highly available operation, database system needs highly availability operation, and 

weapons system needs high level of safety [5]. 

However, neither of those metrics can indicate if the system can still provide 

service under attack or threat. Presently, survivability [3][4][5][6][7] is usually used to 

evaluate the ability that the system can continuously provide basic service and recover 

on time from being under attack or damage. In commercial circumstances, it’s 

essential for an IT system to have such ability. Survivability has different meanings 

under different circumstances. For example, in telecommunications systems, its 
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meaning is: 

“A property of a system, subsystem, equipment, process, or procedure that provides a 

defined degree of assurance that the named entity will continue to function during and 

after a natural or man-made disturbance; e.g., nuclear burst. Note: For a given 

application, survivability must be qualified by specifying the range of conditions over 

which the entity will survive, the minimum acceptable level or post-disturbance 

functionality, and the maximum acceptable outage duration [4],”  

while in aircraft combat, its meaning is: 

 “Aircraft combat survivability is the capability of an aircraft to avoid and/or 

withstand a man-made hostile environment. It can be measured by the probability the 

aircraft survives an encounter with the environment, PS. [4]”.  

The most common and general definition was proposed by Ellison in 1999: 

“Survivability is the capability of a system to fulfill its mission, in a timely manner, in 

the presence of attacks, failures or accidents [3].” Other definitions of survivability 

are listed in Table 1-1. 
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Table 1-1 Survivability Definition Summary 

Researcher Definition Year 

Westmark [6] The ability of a given system with a 

given intended usage to provide a pre-specified 

minimum level of service in the event of one or 

more pre-specified threats 

 

2004 

Knight and 

Sullivan [4] [5] 

Survivability is the ability [of a system] to 

continue to provide one or more alternate 

services (possibly degraded, less dependable, 

or different) in a given operating environment 

when various events cause damage to the 

system or its operating environment. 

 

2000 

Moitra, 

Soumyo, and 

Suresh [8] 

The “degree to which a system has been able to 

withstand an attack or attacks, and is still able to 

function at a certain level in its new state after the 

attack.” 

2002 

Caldera and 

Jose [9] 

Defined in terms of a survivable system where it is 

“available to fulfill its mission in a timely manner, in the 

presence of attacks, failures, or accidents.” 

2000 

 

Though there are many kinds of definitions of survivability, we can find there are 

some main components presented as follows [6]: 
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1. System:  

The distributed network system environment for survivability, which has 

been defined, should be mentioned. In addition, whether the system is 

bounded or unbounded should be addressed. 

2. Threat: 

Threats to a system can be categorized as accidental, intentional (malicious), 

or catastrophic. Accidental threats include software errors, hardware errors, 

and human errors. Intentional or malicious threats include sabotage, intrusion, 

or terrorist attacks. Catastrophic threats typically do not allow delivery of 

required service to the user, which includes acts of nature (thunderstorms, 

hurricanes, lightning, flood, earthquake, etc.), acts of war, and power failures. 

3. Adaptability:  

In the event of a threat the system should have the capability to adapt to the 

threat and continue to provide the required service to the user. 

4. Continuity of Service: 

Services should be available to the user as defined by the requirements of the 

system and expected by the user, even in the event of a threat.  

5. Time: 

 Services should be available to the user within the time required by the 
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system and expected by the user. 

 

1.3.2 Secret Sharing 

The concept of secret sharing was first developed and proposed by Adi Shamir 

and George Blakley in 1979 [9][11]. To simply describe it, this is a methodology to 

allocate secrets. The target is to separate secret S into n pieces to n specific individuals. 

We will say that each of those n individuals get a ‘share’ of secret S. In this 

mechanism, there is usually a role named dealer which is responsible for segmenting 

secrets. The dealer distributes the secret to n individuals of the group, and sets a 

threshold t, which means that we need at least t shares to get S, or we cannot get S. 

We usually call such system a (t, n)-threshold scheme or (n, t) secret sharing. From 

the above explanation, we will know that we can appropriately adjust system security 

and operating efficiency through altering threshold t. The system is safer when t is 

lager, and is more efficient otherwise. 

In this era of technology, people exchange lots of information on computers and 

networks. But even in such public circumstance, some information just belongs to a 

specific individual and should not be easily acquired by other people. However, in 

some applications, we may not only need to let an individual to have a secret but also 

let many people could share this information together for safeness or fairness sake. 
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For example, assume there is a bank which stores its cash and gold in a vault with a 

combination to unlock it. For the business requirement and convenience, five 

managers of the bank can unlock the vault; for the safeness, there need to be at least 

three managers present when unlocking the vault. How should the system engineers 

design that combination of the vault of the bank? Now the concept of secret sharing 

may be helpful. One of the possible solutions is to design an algorithm and separate 

the cipher into five parts. The managers need to enter at least three parts of ciphers to 

unlock the vault. This solution thus solves the secret sharing problem. 

In [9], the author shows how to divide data D into n pieces in such way D can be 

recombined from at least k pieces (k ≤  n), but obtaining less than k pieces reveals no 

information about D. In addition, the author indicates some of the useful properties of 

this (k, n) threshold scheme presented as follow: 

1. The size of each piece does not exceed the size of the original data. 

2. When k is fixed, pieces can be dynamically added or deleted without affecting 

the other pieces. 

3. It is easy to change the pieces without changing the original data D. 

4. We can get a hierarchical scheme in which the number of pieces needed to 

determine D depends on their importance. 
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1.3.3 Personal Data Objects Management 

Many services and application in the network need personal data of users for 

authentication and other commercial purposes when users connect to these services. 

However, with more Internet services offered, a user may have to maintain the same 

personal data in different places. To overcome this predicament, the methodology 

Personal Data Object Management was proposed [10]. It’s also an application of 

secret sharing, which cuts personal data object into many chunks and restore it to 

complete data with some parts of chunks through encoding way. Moreover, the 

methodology proposed in [10] also can be treated as a global storage service [18], 

which people and applications can use to access required data anywhere and anytime. 

To achieve reliability of data, Erasure Coding can be used [17]. It divides data into m 

fragments and recode them into n fragments, where n > m. Any m of the coded 

fragments are sufficient to reconstruct the original data. The rate of encoding is  

r = m / n, and the storage cost is multiplied by 1 / r.   

 

1.4  Proposed Approach 

 In this paper, we formulate the attack-defense scenario as a min-max 

mathematical programming problem, which is a two-level mathematical problem. 
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In the inner problem, the attacker wants to maximize the total damage by stealing 

information under limited attack power. We name the inner problem as “attack-path 

selecting problem (APS)”. In the outer problem, the defender wants to minimize the 

total damage by defense resource allocation and information-dividing under limited 

budget. In addition, the defender also has to consider QoS requirements of authorized 

users. We name the outer problem as “defense resource allocation and information 

dividing problem (DRAID).” This is a mixed and linear programming problem, which 

is complex and difficult.  

In order to solve it, we use the Lagrangean Relaxation method and subgradient 

method [14][15]. We solve the inner problem under a given defense strategy first, and 

then propose a subgrandient-base heuristic to adjust the defender’s strategy according 

to attacker’s attack strategy. 

We also evaluate a network’s survivability by calculating the percentage of 

un-stolen information. The higher the result is, the better the defense strategy is. The 

comparisons of networks’ survivability under different defense strategies and 

topologies are presented in Chapter 4. 

 

1.5 Thesis Organization 

 The remainder of the thesis is organized as follows. In Chapter 2, the 
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formulations of the APS and the DRAID problems are proposed. In Chapter 3, the 

solution approaches to the APS and the DRAID problems are presented. In Chapter 4, 

the computational results of the APS and the DRAID problems are presented. Finally, 

we present our conclusions and indicate possible directions of future research in 

Chapter 5.  
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Chapter 2 Problem Formulation  

2.1 Problem Description 

 There is a lot of secret information in the real world, which often becomes the 

target of attackers because of its value. With consideration of security, the defender 

can use the technique of secret sharing to divide information. It will enforce attackers 

to make more efforts to recombine information. This makes information like a divided 

treasure map, and the attacker must collect all pieces of this treasure map to 

recombine it completely to find the treasury. But for authorized users, the risk that 

they cannot access information successfully will increase if they also have to get all 

pieces of information. Therefore, how to design the threshold of piece’s number to 

recombine information becomes an important issue. 

 Imagine that there are many connected nodes in a network. Each node constructs 

a domain and each edge represents the inter-domain connection. Namely, this network 

is an Autonomous-System (AS) level Internet. For an attacker, he/she must 

compromise a node first so that he/she can probe the neighbor nodes of this node to 

attack, and so on. This scenario implies the concept of defense-in-depth, which means 

that the attacker has to probe and attack nodes one by one instead of launching attack 

freely. 
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 Therefore, the question that the defender wants to aim at is how to divide secret 

information appropriately and allocate those pieces (divided information) to nodes in 

the network. Additionally, the defender also has to design the threshold (piece’s 

number) to recombine information and allocate defense resource to nodes to 

strengthen their defense capability under limited budget in order to minimize damage, 

which is incurred by information leakage. The defender must consider not only the 

security issue but also the authorized users’ requirements. First of all, an authorized 

user will have different availability requirements for different information, but he/she 

may not access some pieces of information successfully because of random error 

occurring on nodes. Secondly, an authorized user will have different requirements of 

timeliness for different information, but he/she may not get complete information in 

time because of his/her distance to targeted nodes.. From above reasons, the defender 

must consider about both security and the user’s QoS requirements at the same time 

when he/she designs a defense strategy. 

 For the attacker, he/she has to compromise nodes with target pieces one by one 

to recombine information under limited attack power to maximize the damage 

incurred by information leakage to the network.  

 In order to evaluate the performance of the defense strategy, we analyzed the 

survivability and susceptibility of the network. This calculation of these two metrics is 
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shown in the following equations. Sg represents the value of information g, and then 

the metrics of network susceptibility and survivability can be presented as 

 

Susceptibility (%) = 
∑

∑

∈

∈

networktheinormationallg

g

eredreisthatormationg

g

S

S

inf

covinf'

'

 × 100%, and 

  

Survivability (%) = 1 - Susceptibility,  

respectively. Susceptibility represents the percentage that information is 

recovered by the attacker and survivability represents the percentage that 

information is not recovered by the attacker. 
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2.2 Problem Formulation of the DRAID Model 

 In the DRAID Model, we try to transform the attack-defense scenario into an 

optimization problem. The attacker wants to maximize total damage to the network 

with limited attack power; the defender wants to minimize the maximized damage by 

allocating limited defense resource and dividing information. In this scenario, we 

assume that the attacker and the defender have global information about the target 

network. This is the worst case which makes the research more general. 

 Initially, the attacker is on a dummy node o, which is connected to the entry 

nodes of target network by artificial links. The attacker has to compromise one of the 

entry nodes and then interpenetrates the network until his/her attack power is 

exhausted. His/her ultimate goal is to maximize the total damage of the target network 

by stealing information. 

 The defender has to design an information-dividing-and-allocating strategy and a 

defense resource allocation strategy to minimize the maximized damage incurred by 

information leakage. The more defense resource a node is allocated to, the more 

robust it is. In other words, the attacker has to consume more attack power to 

compromise a node. Nevertheless, a node still has some defense capability even if no 

defense resource is allocated to it, so that the attack has to consume some attack 

power to compromise it. The attack-defense scenario is represented in Figures 2-1 ~ 
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2-7. 

The Attack-Defense Scenario 

 

  

 

 

 

 

 

 

 

 
Figure 2-4 Probing Neighbors 

 The attacker probes the neighbors of 
node o to collect information about the 
threshold of attack power to compromise 
them. 

o 

Figure 2-2 Budget Allocation 
The defender allocates the 

defense resources to nodes to 
strengthen their defense capability. 

Figure 2-1 Information Dividing-And-Allocation 
 The defender divides information and allocates 
pieces to nodes in the target network. 

Figure 2-3 Initial State of Attacker 

 Initially, the attacker is on 
dummy node o, which is connected to 
entry nodes of the target network by 
artificial links.  

o 
o

o 
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Victim candidate node 

Uncompromised node 

Attacker’s initial position o 

Compromised node 

Unreachable link 

Reachable link 

Link on the attack tree 

o 

Piece of some information

Node’s defense capacity  

 

 

 

 

 

 

 

 

 

o

Figure 2-5 Attacking a Target 
 The attacker compromises a 
node, which has been probed, to 
steal pieces and then probes its 
neighbors. 

o

Figure 2-7 Attack Tree 

 The attack tree is 
constructed after the attacker 
terminates attacking. 

o 

Figure 2-6 Final State of Network 
The attacker continuously launches 

attack to compromise nodes until 
his/her attack power is exhausted. In the 
meanwhile, the attacker recombines 
some information and causes damage to 
the network.
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Moreover, this problem involves not only malicious attack, but also random error. 

Therefore, there are two kinds of use of defense budget: one is on strengthening 

nodes’ defense capability; the other is on decreasing the probability that random errors 

occur on nodes. Specifically, the defender must consider both users’ QoS 

requirements and system safety at the same time when designing a defense strategy.           

 During the dynamic attack-defense process, the attacker will find the best attack 

path under limited attack power; the defender will adjust defense strategy according to 

attacker’s action to minimize damage. The assumptions and description of this model 

are shown in Table 2-1.   
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Table 2-1 Problem Assumption and Description 
Assumption： 
• Both attacker and defender have complete information about the target network. 

• Both the attacker and the defender have budget limitations. 

• Only node attacks are considered. 

• The target network is at AS-level. 

• A node is only subject to attack if a path exists from attacker’s position to that 
node, and all the intermediate nodes on the path have been compromised. 

• A node is compromised if the attack budget applied to the node is equal to or 
more than the defense capability of the node. 

• Both random error and malicious attacks are considered. 

• A user has different availability requirement to different information.  

• A user has different requirement of the maximal tolerable waiting-time to 

different information when recover information.  

• Each node has a random access error probability to legitimate users.  

• An attacker can recover information only when obtaining at least the fixed 
number of pieces of information. 

• Each node has a capacity limitation. 

 
Given： 
• The defense budget that prevents a node from being compromised and decreases 

the nodal random access error probability  

• Attack budget 

• Damage incurred by information leakage, i.e., the information value 

• Attacker’s initial position o 

• The network topology and the network size 

• The set of all sensitive information  

• The capacity of each node  
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• The minimal time to access pieces on each node 

• Each information’s size 

 

Objective： 

• To minimize the maximized total damage 

 
Subject to： 

• The node to be attacked must be connected to the existing attack tree 

• The total defense cost to prevent node from being compromised and to decrease 
random access error on nodes must be no more than a given value 

• The total attack cost must be no more than a given value 

• The attack budget applied to a node must equal to the node’s defense capability 

• Attacker must obtain at least a given number of pieces when recovering 
information 

• A node contains at most one piece of each information 

• The total number of information pieces on all nodes must equal to the number of 
pieces that information is divided into 

• The threshold of number of pieces to recover information must be no more than 
number of pieces that information is divided into   

• The sum of pieces’ size on a node must be no more than its capacity 

• Each information’s availability must be at least a given value without attacking  

• The minimal waiting time to recover information must be no more than a given 
value without attacking and random access error on nodes 

 

To determine： 

• Defender: budget allocation and information-dividing-and-allocation strategy 

• Attacker: which information to steal, which nodes to attack and how much attack 
budget to apply to nodes 
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We formulate this problem as a min-max mathematical programming problem. 

The given parameters of this model are shown in Table 2-2. 

Table 2-2 Given Parameters of the DRAID Model 

Given Parameters 
Notation Description 
N The index set of all nodes in the network 

W 

The set of all O-D pairs, where the origin is the attacker’s initial 
position (a dummy node o), which is connected to the entry nodes of 
target network by artificial links, and the destinations are the nodes in 
the target network  

Pw The index set of all candidate paths of an O-D pair w, where w∈W 

δpi 
An indicator function, which is 1 if node i is on path p, and 0 otherwise 
(where i∈N, p∈ Pw) 

G The index set of all sensitive information in the network 

Sg 
Damage incurred by leaking at least kg pieces of information g, where 
g∈ G 

mg The size of information g, where g∈G 

ng 
The number of piece that information g will be divided into, where g∈ 
G 

Rg 
The availability requirement of information g without attacking, where 
g∈ G 

Tg 
The maximal tolerable waiting time for a user to recover information g 
without attacking, where g∈ G 

H (kg,mg) The size of each piece of information g, where g∈ G 
A The total attack budget 

B 
The total defense budget to enforce the nodal defense capability and to 
decrease the nodal random access error probability 

vi The capacity of node i, i∈N 
ti The minimal time to access pieces on node i, i∈N 

O(D)j 
The function to retrieve the jth largest object in D, where D is a set with 
comparable objects. 

 

In this problem, if the attacker gets at least the threshold of information pieces to 
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recombine information g which will cause damage, Sg, to the target network. The goal 

of an attacker is to collect at least threshold of information pieces to maximize the 

sum of Sg. The decision variables of this model are shown in Table 2-3. 

 

Table 2-3 Decision Variables of the DRAID Model 
Decision Variables 
Notation Description 
ai The attack budget applied to node i, where i∈N 
xp  1 if path p is selected as the attack path, and 0 otherwise (where p∈Pw) 

Zg 
1 if at least kg pieces of information g are stolen, and 0 otherwise (where 
g∈ G) 

yi 1 if node i is compromised; and 0 otherwise (where i∈N) 

bc
i 

The budget allocated to protect node i from being compromised, where 
i∈N 

be
i 

The budget allocated to node i to make the probability that random 
access error occurs on node i decrease, where i∈N 

)(ˆ i
c

i ba  
The threshold of the attack budget required to compromise node i, i.e., 
the defense capability of node i, where i∈N 

P(be
i) The probability that random access error occurs on node i, i∈N 

kg 
The threshold of the number of information pieces required to recover 
information g, where g∈ G 

giσ  1 if node i contains one piece of information g, and 0 otherwise (where 
i∈N, g∈ G) 

The objective function and constraints are as follows: 
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Objective function: 
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Explanation of the mathematical formulation： 

• Objective function: The objective is to minimize the maximized total damage, 

∑
∈Gg

gg ZS , incurred by compromising at least kg nodes, which have pieces belong 

to information g, where kg is the threshold to recombine complete information g. 

In the inner problem, an attacker tries to maximize the damage to the target 

network by deciding which nodes or groups to attack, i.e., the yi value of each 

node i and the zg value of each group g. In the outer problem, the defender tries 

to minimize the damage caused by the attacker by allocating the defense 

resources, bc
i and be

i, to each node appropriately and designing the information 

dividing-and-allocating strategy (kg, giσ ). 

• Constraint (IP 1.1) restricts that a node is chosen for attack if and only if the 

attacker finds a path between his initial position o and the target node. 
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• Constraint (IP 1.2) restricts that at most one of the candidate paths of an OD pair 

w is selected. 

• Constraint (IP 1.3) restricts that a node can be transited at most |N|-1 times. This 

constraint also ensures that there is no cycle and all nodes on the attack path are 

compromised.   

• Constraints (IP 1.4) and (IP1.5) are integer constraints, both of which restrict that 

the value of xp, yi to be 0 or 1.  

• Constraints (IP 1.6), (IP 1.7), and (IP 1.8) restrict the amount of defense budget, 

bc
i and be

i, that can be allocated to each node i. The total allotted defense 

budget,∑
∈Ni

i
cb and ∑

∈Ni
i

eb , must not exceed the defense budget B.  

• Constraint (IP 1.9) restricts that attack budget ai can be applied to node i cannot 

exceed the node’s defense capacity )(ˆ i
c

i ba . 

• Constraint (IP 1.10) restricts that the total allotted attack cost, ∑
∈Ni

ia , must not 

exceed the attack budget A. 

• Constraint (IP 1.11) restricts that a node is compromised if and only if attack 

budget applied to it is no less than its defense capability. 

• Constraint (IP 1.12) restricts that information g is recover successfully if and 

only if the attacker compromises at least kg nodes which have pieces of 

information g. 

• Constraint (IP 1.13) restricts that a node can contain at most one piece of the 

same group. 

• Constraint (IP 1.14) restricts that the threshold of number of information pieces 



 

30 

to recover information cannot exceed the number of pieces that information is 

divided into. 

• Constraints (IP 1.15) and (IP 1.16) are integer constraints both of which restrict 

that the value of Zg, σgi to be 0 or 1. 

• Constraint (IP 1.17) restricts that the total size of pieces on node i cannot exceed 

its capacity. 

• Constraint (IP 1.18) is a QoS constraint, which restricts the information’s 

availability . 

Constraint (IP 1.19) is a QoS constraint, which restricts the maximal tolerable waiting 

time to recover information.  
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2.3 Problem Formulation of the APS Model 

In APS model, we formulate an attacker’s behavior as a mathematical 

optimization problem, which is the inner problem of DRAID model. We can predict 

the future actions of an attacker by resolving this problem and then design the best 

defense strategy (budget allocation strategy and pieces allocation strategy). After this 

problem has been solved, its outcome is regarded as an input for DRAID problem. We 

can use the outcome from solving APS problem to develop a better defense strategy 

for DRAID model. 

The assumptions and attack procedures of APS problem are the same as those of 

DRAID problem. We formulate APS problem as a mathematical maximization 

programming problem. Table 2-4 shows the given parameters. 

Table 2-4 Given Parameters of the APS Model 
Given Parameters 
Notation Description 
N The index set of all nodes in the network 

W 
The set of all O-D pairs, where the origin is a dummy node o, which is 
connected to the entry nodes of target network by artificial links, and the 
destinations are the nodes in the target network 

G The index set of all sensitive information in the network 
Pw The index set of all candidate paths of an O-D pair w, where w∈W 
A The total attack power 

Sg 
Damage incurred by stealing at least kg pieces of information g, where g∈ 
G 

)(ˆ i
c

i ba  
The threshold of the attack power required to compromise node i, i.e., the 
defense capability of node i, where i∈N 

kg The threshold of information pieces required to recombine complete 
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information g, where g∈ G 

δpi 
An indicator function, which is 1 if node i is on path p; and 0 otherwise 
(where i∈N, p∈ Pw) 

giσ  An indicator function, which is 1 if node i has one piece of information g, 
and 0 if node i has no piece of information g (where i∈N, g∈ G) 

 Note that )(ˆ i
c

i ba , kg, and giσ  are decision variables in DRAID model but 

given parameters in APS model. )(ˆ i
c

i ba  is a function of bc
i increasing with bc

i, 

which represents the defense capability of node i. kg is a threshold of piece’s number 

required to get complete information g. giσ  indicates if node i has one piece of 

information g.  

Table 2-5 shows the decision variables of the APS model, and the formulation of the 

APS model is shown below it.  

 

Table 2-5 Decision Variables of the APS Model 
Decision Variables 
Notation Description 
ai Attack power applied to node i, where i∈N 
yi 1 if node i is compromised; and 0 otherwise, where i∈N 

Zg 
1 if at least kg pieces of information g are stolen, and 0 otherwise, where 
g∈ G 

xp 1 if path p is selected as the attack path; and 0 otherwise, where p∈ Pw 
 
 
 
 
 
 
 
 
 
Objective function: 
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Explanation of the mathematical formulation： 
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• Objective function: The objective of the formulation is to maximize the total 

damage by getting more complete information. First the attacker selects which 

information to steal and then compromises nodes which have pieces of related 

information. 

• Constraints (IP 2.1) ~ (IP 2.5) are the same as Constraints (IP 1.1) ~ (IP1.5) in 

the DRAID model. Combination of these constraints restrict attacker must 

compromise nodes one by one and ensure there is no cycle.  

• Constraints (IP 2.6), (IP 2.7), and (IP 2.8) are the same as Constraints (IP 1.10), 

(IP 1.11), and (IP 1.12) in the DRAID model. These constraints restrict the attack 

budget which is applied to each node.  

• Constraints (IP 2.9) and (IP 2.10) are the same as Constraints (IP 1.13) and (IP 

1.16) in the DRAID model. These constraints restrict attacker must get at least 

the threshold of number of information pieces to recover information. 
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Chapter 3 Solution Approach 

3.1 Solution Approach for the APS Model 

3.1.1 Lagrangean Relaxation Method 

 In order to solve large-scale mathematical programming problems, many 

approaches had been proposed in the 1970s [16]. Most of them used the 

divide-and-conquer technique to separate a complex problem into several relatively 

uncomplicated sub-problems and solve them respectively, and Lagrangean relaxation 

method is one of those excellent approaches. Due to Lagrangean relaxation method’s 

flexibility and ability to help us to find the bounds of the optimal objective value, it 

has become one of the most popular tools for solving optimization problems. Besides, 

it can also assist us to develop effective heuristic algorithms to our problems. It can be 

used to solve integer programming, linear programming, combinatorial optimization, 

and non-linear programming problems [15]. 

 The basic concept of Lagrangean relaxation method is to remove some 

complicated constraints to objective function of the primal problem (P) with 

associated multipliers (μ), and then the original primal problem (P) will be 

transformed into a so-called Lagrangean relaxation problem (LRμ). This concept 
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would be inspired because of the observation that many complex integer 

programming problems can be formulated as a relatively easy problem that is 

complicated by a set of side constraints. After the transformation, we can decompose 

the mathematical model into several independent sub-problems which can be solved 

optimally by any well-known algorithm or methodology. Figure 3-1 illustrates the 

major concepts of the Lagrangean relaxation method. 

 As mentioned above, we can use Lagrangean relaxation method to get some 

hints about the boundary of the objective function value. For the minimization 

problems, the optimal value, ZD (μ), of the (LRμ) is always a lower bound (LB) of the 

original problem. In order to get the tighter LB to close the optimal value of (P), we 

can repeatedly tune the multipliers to make ZD (μ) as large as possible, which is 

so-called “Lagrangean dual problem.” During this process, we can obtain values of 

the decision variable and multipliers, which can help us to design appropriate 

heuristics to tune the infeasible solution to a feasible one. This step is called “getting 

primal feasible solution,” and each feasible solution we found is the upper bound (UB) 

of the original problem. Therefore, the optimal value of (P) is guaranteed to be 

between the LB and UB. There will be an area between the LB and the UB, call “gap”. 

In order to make the gap tightest, we have to design the best algorithm for each 

sub-problem and best heuristic for original problem. 
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 In order to tune the multipliers, the subgrandient method is often to be used. 

Initially, the scalar which can modulate the step size of tuning multipliers in iteration 

is relatively bigger, so the vibration of multipliers is bigger. However, it will reduce in 

later period and at last tend to be stable and converges to one value, and thus 

Lagrangean relaxation method will be stopped. Figure3-2 shows the detail process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 The Major Concepts of Lagrangean Relaxation Method 
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3-2 Flow Char for Lagrangean Relaxation Method 

T 

Z* - Best know feasible solution value of primal problem = Initial feasible solution 
μ0 - Initial multiplier value       = 0 
K - Iteration count        = 0 
i - Improvement count       = 0 
LB - Lower bound of primal problem     = -∞ 

λ0 - Initial step size coefficient      = 2 

Initialization

 If xk is feasible in (P), the resulting 
value is a UB of (P). 

 If xk is not feasible in (P), adjust it 
by heuristic. 

Get Primal Feasible Solution 

1. Solve each subproblem of (LRμ
k) 

optimal. 
2. Get decision variables xk and optimal 

value ZD (μk). 

Solve Lagrangean Relaxation 
Problem 

1. Z*  = min (Z*, UB) 
LB = max (LB, ZD (μk)) 

2. i = i + 1 if LB does not change. 

Update Bounds 

1. If i reaches Improve Counter Limit,  
λ = λ/2, i = 0 

2. Tk = 2

* ))((

bAx

ZZ
k

kDk

+

− μλ
 

3. μk+1 = max (0, μk + tk (Axk + b)) 
4. k = k +1 

Adjustment of Multiplier 

Check Termination 
If (|Z* - LB|) / min (|LB|,| Z*|) <εor
k reaches Iteration Counter Limit or

LB ≧ Z* ? 

STOP 
F 
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3.1.2 First-Stage Lagrangean Relaxation 

In order to obtain tighter UBs and LBs, we adopt two-stage Largrangean 

relaxation procedure. In the first stage, we relax four constraints of (IP 2), and the 

details are described in 3.2.1.1. 

 

3.1.2.1 Lagrangean Relaxation 

As applying Lagrangean relaxation method to solve the problem (IP 2) of the 

APS model, we relax Constraints (IP 2.1), (IP 2.3), (IP 2.8), (IP 2.9) and replace them 

to objective function with the associated Lagrangean multipliers, μi
1, μi

2, μi
3, μg

4, 

respectively. Therefore, the original problem (IP 2) of the APS model is transformed 

into the following Lagrangean relaxation problem (LR 1).  

Optimization problem： 
ZD (μ1, μ2, μ3, μ4)                 (LR 1) 

= min - ∑
∈Gg

gg ZS + ∑ ∑
∈ ∈

−
Ni Pp

ipi
io

yx ][
),(

1μ  + ∑ ∑∑
∈ ∈ ∈

−−
Ni Ww Pp

ipipi
w

yNx ])1([2 ςμ  + 

∑
∈

−
Ni

iii
c

ii ayba ])(ˆ[3μ  + ∑ ∑
∈ ∈

−
Gg Ni

igiggg yZku ][4 σ   

 

 

Subject to:  
    

1
w

p
p P

x
∈

≤∑      w W∀ ∈           (LR 1.1) 

0 1px or=      ,wp P w W∀ ∈ ∈             (LR 1.2) 
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0 1iy or=      i N∀ ∈                     (LR 1.3) 

)(ˆ0 i
c

ii baa ≤≤     i N∀ ∈         (LR 1.4) 

i
i N

a A
∈

≤∑                (LR 1.5)

 Zg = 0 or 1     .Gg ∈∀               (LR 1.6) 

Constraints (IP 2.2), (IP 2.4) ~ (IP 2.7), and (IP 2.10) of the objective function 

(IP2) of the APS model are not relaxed, but denoted as (LR 1.1) ~ (LR 1.6) in the LR 

problem. The Lagrangean multipliers μ1, μ2, μ3, and μ4 are the vectors of {μi
1}, {μi

2}, 

{μi
3}, and {μg

4}, in which μ2, μ3, and μ4 are non-negative and the variable μ1 is 

unrestricted. In order to solve (LR 1), we decompose it into four independent 

sub-problems, which can be respectively solved optimally as showing below. 

 
 
Subproblem 1.1 (related to decision variable xp) 
ZSub1 (μ1, μ2) = min p

Ni Ww pp
piip

Ni Pp
i xx

wio

∑∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

+ ςμμ 21

),(

              (Sub 1.1) 

 
Subject to： 

1
w

p
p P

x
∈

≤∑      w W∀ ∈         (Sub 1.1.1) 

0 1px or=      ., WwPp w ∈∈∀           (Sub 1.1.2) 
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In this problem, we want to determine the value of xp individually for each O-D 

pair. Note that Constraint (Sub 1.1.1) allows only one path to be chosen for an O-D 

pair. As described in the notations, each O-D pair w originates from an attacker’s 

position o and ends at one target node i, where i∈N. Thus, ∑ ∑
∈ ∈Ni Pp

pi
io

x
),(

1μ  can be 

transformed into ∑∑
∈ ∈Ww Pp

pi
w

x1μ  As described in the notations, each O-D pair w 

originates from an attacker’s position o and ends at one target node i, where i∈N. 

Thus, we can further decompose (Sub 1) into |W| independent sub-problems. For each 

O-D pair w = (o, i), i∈N and w∈W, 

Zsub1' (μ1, μ2) = min ∑ ∑
∈ ∈

+
wPp

p
Nj

pjji x)( 21 ςμμ          (Sub 1.1') 

Subject to: 

1
w

p
p P

x
∈

≤∑        w W∀ ∈     (Sub 1.1.1') 

0 1px or=       ,wp P w W∀ ∈ ∈ .      (Sub 1.1.2') 

In order to solve (Sub 1.1'), we design an algorithm as Table 3-1 shows. 

 

 
Table 3-1 Algorithm to Solve (Sub 1.1') 

Step 1: For each O-D pair w∈W, we find the minimum cost shortest path using  

μj
2 as the node weight by Dijkstra’s minimum cost shortest path 

algorithm. The total cost of a path is the sum of the weights of the nodes 

on that path. 
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Step 2: For each O-D pair w∈W, we set the xp value of each path p to zero except 

for the one already chosen to be the minimum cost shortest path for some 

O-D pair w, since not more than one path can exist between them. 

Step 3: For each O-D pair w∈W, we examine the sum of its minimum path cost 

and the μi
1 value of its destination node. If the resulting value is 

non-positive, the xp value of the minimum cost shortest path p between 

the O-D pair is set to one, because this is a minimization problem. The 

value of xp is set to zero if its associated parameter is positive. 

The time complexity of Dijkstra’s algorithm is O(|N|2). Since the source of each 

path is the same, Dijkstra’s algorithm only needs to be implemented once since its 

outcome is the minimum cost shortest path tree; thus, the total time complexity of 

(Sub 1.1) is O(|N|2). 

 

Subproblem 1.2 (related to decision variable Zg) 
ZSub2 (μ4) = min g

Gg
ggg ZkS∑

∈

+− ][ 4μ          (Sub 1.2) 

 
Subject to： 

 Zg = 0 or 1     .Gg ∈∀         (Sub 1.2.1) 

 (Sub 1.2) can be further decomposed into |G| independent sub-problems, for 

which we must decide the Zg value of different information g∈G. Since (Sub 1.2) is a 

minimization problem, and the value of each Zg is either zero or one, we can solve the 

problem by examining the associated parameters of Zg easily and optimally. For each 
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information g∈G, if (-Sg +μg
4kg) is positive, the value of Zg is set to zero. On the other 

hand, if the sum of the parameters is non-positive, Zg is set to one. Therefore, the 

value of this sub-problem can be minimized. To sum up, the rule to decide the value 

of Zg is shown below. 

                1, if (-Sg + μg
4kg) < 0 

         Zg = 
0, if (-Sg + μg

4kg) ≥ 0 

The time complexity of (Sub 1.2) is O (|G|). 

 

Subproblem 1.3 (related to decision variable ai) 

ZSub3 (μ3) = min i
Ni

i a∑
∈

− )( 3μ                     (Sub 1.3) 

 
Subject to： 

)(ˆ0 i
c

ii baa ≤≤     i N∀ ∈          (Sub 1.3.1) 

.∑
∈

≤
Ni

i Aa             (Sub 1.3.2) 

 

By its nature, (Sub 1.3) is a fractional knapsack problem, in which the original 

maximized positive profit is replaced by minimized negative loss. In order to solve 

(Sub 1.3) optimally, we propose an algorithm which is shown in Table 3-2. 
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Table 3-2 Algorithm to Solve (Sub 1.3) 

Step 1: We sort each node i∈N by the parameter of each ai and ai itself in ascending 

order with ( 3- iμ ) as the primary key. Because of the non-negativity of 3
iμ , 

the parameter of each ai will be non-positive. 

Step 2: We check the array of sorted nodes from the left, and set the value of each ai 

to )(ˆ i
c

i ba . 

Step 3: We stop once the sum of ai reaches A, or there is insufficient space to set the 

next ai to to )(ˆ i
c

i ba . In such a case, the next ai is set to (A − the summation 

of ai that have already been given a value), and the remainder are set to zero. 

The time complexity of (Sub 3) is O(|N|2). 

 
Subproblem 1.4 (related to decision variable yi) 
ZSub4 (μ1, μ2, μ3, μ4)                 (Sub 1.4) 

 = min i
Ni Gg

gigi
c

iiii ybaN∑ ∑
∈ ∈

−+−−− ))(ˆ1( 4321 σμμμμ       

 

Subject to: 

0 1iy or=      .Ni ∈                   (Sub 1.4.1) 

(Sub 1.4) can be further decomposed into |N| independent sub-problems, for 

which we must decide the yi value of different information i∈N Since (Sub 1.4) is a 

minimization problem, and the value of each yi is either zero or one, we can solve the 

problem by examining the associated parameters of yi easily and optimally. For each 

information i∈N, if ))(ˆ( 4321 ∑
∈

−+−−
Gg

gigi
c

iiii baN σμμμμ  is positive, the value of yi 
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is set to zero so that the value of this sub-problem can be minimized. On the other 

hand, if the sum of the parameters is non-positive, yi is set to one. To sum up, the rule 

to decide the value of yi is shown below.  

       1, if ∑
∈

<−+−−−
Gg

gigi
c

iiii baN 0))(ˆ1( 4321 σμμμμ  

 yi =    

0, if 0))(ˆ1( 4321 ≥−+−−− ∑
∈Gg

gigi
c

iiii baN σμμμμ
 

The time complexity of (Sub 1.4) is O (|N|). 

 

3.1.2.2 The Dual Problem and the Subgradient Method 

According to the weak duality theorem of Lagrangean relaxation method [16], 

for any set of the multipliers (μ1, μ2, μ3, μ4) is a lower bound on ZIP 2. Therefore, we 

construct a dual problem (D 1) to calculate the tightest LB and solve it by the 

subgradient method [14][15]. 

 

Dual Problem (D 1), 

ZD = max ZD (μ1, μ2, μ3, μ4)           (D 1) 

Subject to:. .0,0,0 432 ≥≥≥ μμμ  

Let a vector m be a subgradient of ZD (μ1, μ2, μ3, μ4) . Then, in iteration k of 
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the subgradient procedure, the multiplier vector μk = (μ1
k, μ2

k, μ3
k, μ4

k) is updated by 

 μk+1 = μk + tkmk, 

where  

mk (μ1
k, μ2

k, μ3
k, μ4

k) = 

( ∑∑ ∑∑
∈∈ ∈ ∈

−−−−−
Ni

igiggiii
c

ii
Pp Ww Pp

pipip yZkaybayNxyx
w w

σς ,)(ˆ,)1(, ); 

and the step size, tk, is determined by 

*
IP 2 D

2

( )k
k

k

Z Z vt
m

λ −= . 

Z*IP 2 represents the best UB on the primal objective function value found by 

iteration k. and λ  is a scalar between 0 and 2. it is usually initiated with the value of 

2 and halved if the best objective function value does not improve within a given 

iteration count. 

3.1.2.3 Getting Primal Feasible Solutions 

 During first stage lagrangean relaxation, LB rises again and again. However, we 

also have to lower UB by improving our heuristic to the APS model. Thus, we use the 

multipliers and the result of solving subproblem in (LR1) to help us design the 

algorithm for solving the APS model. The algorithm, denoted as Heuristic_LR_1, is 

described below. 

Step 1. For each path p, if it is selected to attack in (Sub 1.1), add each node on 
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p to the attack tree. 

Step 2. Calculate the total attack cost on the attack tree. If it is less than total 

attack budget, go to step 3; otherwise go to step 7. 

Step 3. Initiate victim_candidate_set. 

Step 4. Select node i whose defense capacity is no more than the difference 

between total attack budget and total attack cost from 

victim_candidate_set by the node’s weight. If we can not find any one 

of which, terminate.  

Step 5. Compromise node i and add it to the attack tree. 

Step 6. Update the total attack cost, victim_candidate_set, and node’s weight. 

Go to Step 4. 

Step 7. Recursively remove leaf nodes and update each node’s weight until the 

total attack cost is no more than total attack budget.  

In the heuristic, we use the result of solving (Sub 1.1) to derive the final 

solution. Initially, we add the nodes on paths which are selected in (Sub 1.1) to 

the attack tree. If the total attack cost of the attack tree is less than the total 

attack budget, the tree can be expanded further; otherwise we have to remove 

some nodes from the attack tree. 

In the first case, the problem is which node is better for the attacker to 
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choose in the current run. To answer this question, we design a dynamic weight 

of each node i, which is (( )(ˆ i
c

i ba + |N| * ν2
i) / (nodeDamage2 + nodeDamage / 

ai)). Note that only the unrecovered information will be calculated into 

nodeDamagei. This formula implies that the node which has the best 

cost-benefit ratio will be the target. Also, it drives the attacker to compromise 

nodes which have pieces of to-be-recovered information. 

In the second case, we have to recursively remove leaf nodes until the total 

attack cost is no more than the total attack budget. Similarly, the node’s 

dynamic weight is used to help the attacker make decision. Note that the 

damage of recovered information, whose number of stolen pieces is equal to its 

threshold, will be enhanced. It drives the attacker not to remove nodes which 

contain pieces of weak information, which is the information whose number of 

stolen pieces is equal to its threshold. 

The time complexity of calculating each node’s weight is O(|N|*|G|). The 

times of calculating each node’s weight are |N|. Thus the time complexity of the 

algorithm is O(|N|2*|G|). 

Table 3-4 describes the detail of the heuristic. 
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Table 3-3 Heuristic_LR_1 Algorithm 

//Initialization 
FOR each attack_path p { 
 IF (xp in Subproblem 1.1 is set to one) { 
  Add each node i on p to the attack_tree; 
 } 
} 
FOR each information g { 
 g.currentDiffToThreshold = kg; 
} 
FOR each node i which is on attack_tree { 
 FOR each information g { 
  IF ( node i contains g’s piece ) { 
   g.currentDiffToThreshold--; 
  } 
 } 
} 
Calculate total_attack_cost of the attack_tree; 
Initialize victim_candidate_set; 
IF (total_attack_cost < TOTAL_ATTACK_BUDGET) { 
 WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 
   uncompromised nodes) { 
  FOR each node i which is in victim_candidate_set { 
   FOR each information g whose currentDiffToThreshold > 0{ 
    i.nodeDamage += Sg / currentDiffToThreshold; 
   } 
   IF (nodeDamage == 0) 

    weight = ( )(ˆ i
c

i ba + |N| * ν2
i); 

   ELSE 

     weight = ( )(ˆ i
c

i ba + |N| * ν2
i)/(nodeDamage2 + nodeDamage / ai); 

  } 
  Find node i, whose weight is the smallest among all other nodes’ weight in  
        victim_candidate_set AND whose defense_capability is no more than  
       (TOTAL_ATTACK_BUDGET – total_attack_cost); 
  Compromise node i and add it to the attack_tree; 
  FOR each information g { 
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   IF (node i contains g’s piece) 
    g.currentDiffToThreshold--; 
  } 
  total_attack_cost += defense_capability of node i; 
  Update victim_candidate_set; 
 } 
} 
ELSE { 
 WHILE (total_attack_cost > TOTAL_ATTACK_BUDGET) { 
  FOR each leaf_node i { 
   FOR each information g { 
    IF (currentDiffToThreshold = = 0) 
     i.nodeDamage += Sg

2; 
    ELSE 
     i.nodeDamage += Sg; 
   } 
   IF (nodeDamage == 0) 

    weight = ( )(ˆ i
c

i ba + |N| * ν2
i); 

   ELSE 

     weight = ( )(ˆ i
c

i ba + |N| * ν2
i)/(nodeDamage2 + nodeDamage / ai); 

  } 
  Find node i, which is a leaf_node of the attack_tree AND whose weight is  
    the largest among all leaf_nodes; 
  Remove node i from the attack_tree; 
  total_attack_cost -= defense_capability of node i; 
  FOR each information g { 
   IF (node i contains g’s piece) 
    g.currentDiffToThreshold++; 
  } 
 } 
} 
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3.1.3 Second-Stage Relaxation 

 After finishing the first stage relaxation procedure, we obtain an UB and a 

legitimate LB. In order to narrow the gap between UB and LB, we take the second 

stage relaxation. In this stage, the initial UB and the initial LB are the best UB and the 

best LB of the first-stage relaxation respectively. The details are described in 3.2.2.1.  

 

3.1.3.1 Lagrangean Relaxation 

As applying Lagrangean relaxation method to solve the problem (IP 2) of the 

APS model, we relax Constraints (IP 2.1), (IP 2.3), (IP 2.7), (IP 2.9) and replace them 

to objective function with the associated Lagrangean multipliers, νi
1, νi

2, ν3, νg
4, 

respectively. Therefore, the original problem (IP 2) of the APS model is transformed 

into the following Lagrangean relaxation problem (LR 2).  

ZD (ν1, ν2, ν3, ν4) 

= min - ∑
∈Gg

gg ZS + ∑ ∑
∈ ∈

−
Ni Pp

ipi
io

yx ][
),(

1ν  + ∑ ∑∑
∈ ∈ ∈

−−
Ni Ww Pp

ipipi
w

yNx ])1([2 ςν  + 

][3 ∑
∈

−
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i Aav  + ∑ ∑
∈ ∈

−
Gg Ni

igiggg yZk ][4 σν         (LR 2) 

 
 
Subject to:  
    

1
w

p
p P

x
∈

≤∑      w W∀ ∈           (LR 2.1) 
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0 1px or=      ,wp P w W∀ ∈ ∈             (LR 2.2) 

0 1iy or=      i N∀ ∈                     (LR 2.3) 

)(ˆ0 i
c

ii baa ≤≤     i N∀ ∈         (LR 2.4) 

iii
c

i ayba ≤)(ˆ                  i N∀ ∈         (LR 2.5) 

Zg = 0 or 1     .Gg ∈∀               (LR 2.6) 

 

The Lagrangean multipliers ν1, ν2, and ν4 are the vectors of {νi
1}, {νi

2}, and {νg
4}, 

in which ν2 and ν4 are non-negative and the variable ν1 is unrestricted. The 

Lagrangean multipliers ν3 is non-negative. In order to solve (LR 2), we decompose it 

into three independent sub-problems, which can be respectively solved optimally as 

showing below. 

 

Subproblem 2.1 (related to decision variable xp) 
ZSub1 (ν1, ν2) = min p

Ni Ww pp
piip

Ni Pp
i xx

wio

∑∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

+ ςνν 21

),(

              (Sub 2.1) 

 
Subject to： 

1
w

p
p P

x
∈

≤∑      w W∀ ∈         (Sub 2.1.1) 

0 1px or=      ., WwPp w ∈∈∀           (Sub 2.1.2) 
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 This sub-problem is the same as (Sub 1.1) in the first stage relaxation, so we can 

adopt the algorithm proposed in Section 3.1.2.1 to solve (Sub 2.1).  

 The time complexity of (Sub 2.1) is O(|N|2).  

 

Subproblem 2.2 (related to decision variable Zg) 
ZSub2 (ν4) = min g

Gg
ggg ZkS∑

∈

+− ][ 4ν          (Sub 2.2) 

 
Subject to： 

 Zg = 0 or 1     .Gg ∈∀         (Sub 2.2.1) 

  
The problem is the same as (Sub 1.2) in the first relaxation, so we can adopt the 

rule in Subproblem 1.2 to decide the value of Zg. 
 
 
Subproblem 2.3 (related to decision variable ai, yi) 
ZSub4 (ν1, ν2, ν3, ν4)               (Sub 2.3) 

 = min ∑∑ ∑
∈∈ ∈

+−−−−
Ni

ii
Ni Gg

gigii ayN 3421 )1( νσννν       

 

Subject to: 

0 1iy or=      .Ni ∈∀                   (Sub 2.3.1) 

)(ˆ0 i
c

ii baa ≤≤     i N∀ ∈       (Sub 2.3.2) 

iii
c

i ayba ≤)(ˆ                  i N∀ ∈       (Sub 2.3.3) 

 This problem contains two decision variables (yi and ai) and they are bound by 

constraint (Sub 2.3.3). We can design a rule to decide their values according to (Sub 
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2.3.2) and (Sub 2.3.3). First of all, we decide the value of yi depending on examining 

the associated parameters of yi. Since this is a minimization problem, and the value of 

each yi is either zero or one, so the rule to decide the value of each yi is shown as 

below. 

           1, if (-νi
1 - νi

2 |N-1| -∑ igg σν 4 ) < 0 

   yi = 

0, if (-νi
1 - νi

2 |N-1| -∑ igg σν 4 ) ≥ 0 

After deciding the value of yi, we can determine the value of ai. Since ν3 is 

non-negative, and we want to minimize (Sub 2.3), the rule to determine ai is as below. 

        )(ˆ i
c

i ba , if (yi = 1 and -νi
1 - νi

2 |N-1| -∑ igg σν 4 + )(ˆ3
i

c
i baν < 0) 

ai = 

0,     if (yi = 0 or (yi = 1 and - νi
1 - νi

2 |N-1|-∑ igg σν 4 + ≥)(ˆ3
i

c
i baν 0)) 

 The time complexity of (Sub 2.3) is O(|N|). 

3.1.3.2 The Dual Problem and the Subgradient Method 

According to the weak duality theorem of Lagrangean relaxation method [16], 

for any set of the multipliers (ν1, ν2, ν3, ν4) is a lower bound on ZIP 2. Therefore, we 

construct a dual problem (D 2) to calculate the tightest LB and solve it by the 

subgradient method [14][15]. 
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Dual Problem (D 1), 

ZD = max ZD (ν1, ν2, ν3, ν4)           (D 1) 

Subject to:. .0,0,0 432 ≥≥≥ ννν  

Let a vector m be a subgradient of ZD (ν1, ν2, ν3, ν4). Then, in iteration k of the 

subgradient procedure, the multiplier vector νk = (ν1
k, ν2

k, ν3
k, ν4

k) is updated by 

νk+1 = νk + tkmk, 

where  

mk (ν1
k, ν2

k, ν3
k, ν4

k) = 

( ∑∑∑ ∑∑
∈∈∈ ∈ ∈

−−−−−
Ni

igigg
Ni

ii
Pp Ww Pp

pipip yZkAayNxyx
w w

σς ,,)1(, ); 

and the step size, tk, is determined by 

*
IP 2 D

2
( )k

k

k

Z Z vt
m

λ −= . 

Z*IP 2 represents the best UB on the primal objective function value found by 

iteration k. and λ  is a scalar between 0 and 2. It is usually initiated with the value of 

2 and halved if the best objective function value does not improve within a given 

iteration count. 
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3.1.3.3 Getting Primal Feasible Solutions 

 In order to lower the UB further, we design another heuristic, denoted as 

Heuristic_LR_2, which is described as below. 

Since the attacker wants to construct an attack tree to maximize damage under 

limited attack budget, he/she must try to get the number of information’s pieces which 

exactly equals to threshold to recover information as possible as he/she can. In order 

to carry out this objective we mentioned above, we take the following steps: 

Step 1. Construct a minimum cost spanning tree. 

Step 2. Select information by its weight to recover and mark it 

Step 3. Recursively remove unmarked leaf nodes which do not contain pieces 

belonging to the information selected in Step 2.  

Step 4. If the attack tree contains exactly the number of selected information’s 

pieces which equals to threshold or each leaf node is marked, go to 

Step 5; otherwise remove unmarked leaf nodes by its weight and go to 

Step 3. 

Step 5. If the cost of attack tree is no more than total attack budget, mark each 

node on the attack tree and set selected information obtainable.  

Step 6. Calculate the number of other unmarked information’s pieces which 

are on the current attack tree. If there is information whose number of 
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pieces on the current attack tree equals or more than the threshold to 

recover it, mark it and set it obtainable.   

Step 7. If there is unmarked information, go to Step 1. 

Step 8. Compromise marked nodes and add them to the attack tree, and 

recover obtainable information. 

In Step 2, we have to select information each by each, and the question is 

how to determine information’s priority. Thus, we assign each information g a 

dynamic weight, (
g

gg

g

g

k
Zn

ldfToThreshocurrentDif
S ∗

+ ). Zg is the solution 

obtained from (LR 2); currentDiffToThresholdg is the difference between the 

number of pieces you have gotten and the threshold of number of pieces to 

recover information g. This formula implies that information which has the best 

cost-benefit ratio in current run would be the target to steal. In addition, the ratio 

of total number of information’s pieces to the threshold to recover information is 

considered. That means the more pieces information is divided into and the less 

pieces information needs to recover will be good for information’s weight. 

Moreover, the formula also considers the hints obtained from the result of 

solving (LR 2). If information g is selected in (LR 2), the weight of which will be 

improved. 

In Step 4, we have to remove leaf node with piece of selected information. 
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Thus, we design a rule to decide which one would be removed. Similar to the 

above, the design of dynamic node’s weight is concerned, which is 

(
iii

ii

anodeDamagepathDamage
NpathCost

/
|| 2

+
∗+ μ

) and nodeDamagei / ai is set to zero if ai is 

equal to zero. pathCosti represents the cost that the attack compromise node i 

have to consume on path; nodeDamagei is the sum of pieceDamage on node i, 

where pieceDamage is equal to Sg / currentDiffToThresholdg; pathDamagei is 

the sum of nodeDamage on path. Note that weight of node i is set to (pathCosti + 

|N|*μ2
i) if pathDamagei is equal to zero. This formula implies that node i whose 

cost-benefit ratio on its attack path is the worst would be remove. Moreover, the 

formula considers the hints obtained from the result of solving (LR 2). If the 

attacker applies non-zero attack budget to a node in (LR 2), the node is tending 

to be a target. |N|*u2
i reflects the penalty of inconsistency between xp and yi, 

which means node i is selected to be a target but there is no attack path to it. 

In Step 1, we can duplicate this spanning tree and use it repeatedly, so we 

only have to create it one time. The total time complexity of Prim’s algorithm to 

construct a minimum cost spanning tree is O(|N|log|N|). The complexity of 

Checking all information is O(|G|). The complexity of calculating each node’s 

weight is O(|N |*|G|). Thus, the complexity of the algorithm is O(|G|2*|N|). 

Table 3-3 describes the detail of this heuristic. 
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Table 3-4 Heuristic_LR_2 Algorithm 
//Initialization 
FOR each information g { 
 Set g to unmarked; 
 Set g to unobtainable; 
    currentDiffToThreshold = kg; //set initial threshold 
  containPieceNum = ng; //set initial number of pieces 
} 
 
// check all information 
WHILE (there exists unmark information) { 
 Prim(); //construct the minimum cost spanning tree rooted at o 
 FOR each information g which is unmarked { 
  weight = pieceDamage = Sg / currentDiffToThreshold; 
  IF (Zg in Subproblem 2.2 is set to one) 
   weight += ng / kg; 
 } 
 FOR each node i { 
  FOR each information g which is unmarked { 
   IF (i has g’s piece) { 

nodeDamage += pieceDamage; 
   } 
  } 

}  
 FOR each node i { 

pathDamage = summation of nodeDamage of all nodes which is 
unmarked on i’s path; 

pathCost = summation of defense capability of all nodes which is unmarked 
on i’s path; 

  weight = (pathCost + |N|*u2
i) / (pathDamage + nodeDamage/ai); 

 } 
 Find information g, which is unmarked AND whose weight is the largest among 
   all unmarked information; 
 Set g to marked; 
 Recursively remove unmarked leaf_nodes without g’s pieces from the 
   attack_tree until all leaf_nodes of the attack_tree contain g’s pieces; 
 
 WHILE (g’s containPieceNum > g’s currentDiffToThreshold) { 
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 Find node i, which is an unmarked leaf_node of the attack_tree AND  
   whose weight is the largest among all leaf_nodes; 
 Remove i from attack_tree; 
 g.containPieceNum--; 
 Recursively remove unmarked leaf_nodes without g’s pieces from the  
      attack_tree until all leaf_nodes of the attack_tree contain g’s pieces; 
 } 
 Calculate the total_attack_cost of the attack_tree; 
 IF (total_attack_cost ≤ TOTAL_ATTACK_BUDGET) { 
  FOR each information g { 
      currentDiffToThreshold = kg; //set initial threshold 
    containPieceNum = ng; //set initial number of pieces 

} 
  FOR each node i which is on attack_tree { 
   Set node i to marked; 
   FOR each information g { 
    IF (i has g’s piece) { 
     currentDiffToThreshold--; 
     containPieceNum--; 
    } 
   } 
  } 
  FOR each information g { 
   IF (currentDiffToThreshold ≤ 0) { 
    Set g to marked; 
    Set g to obtainable; 
   } 
  } 
 } 
} 
Compromise each marked node and add them to the attack tree; 

3.1.4 Summary of the Solution Approach for APS Model 

3.1.4.1 Lagrangean Relaxation-based Algorithm 

We solve the APS model by adopting Lagrangean relaxation-based algorithms 



 

61 

we propose, and denote it as LR. First of all, we relax some complex constrains and 

put them into objective function with respective multipliers. Secondly, we decompose 

the complex mathematical model into several stand-along subproblems, and optimally 

solve them to get a LB for the primal problem. Lastly, two heuristic are adopted to 

derive the feasible solutions to the primal problem, which is a UB for the primal 

problem. In addition, we tighten the gap between the LB and the UB by solving dual 

problem. The LR procedure is repeated until the stop condition is satisfied. Table 3-5 

describes the detail of LR algorithm. 

Table 3-5 LR Algorithm 
Initialize the Lagrangean multiplier vectors (μ1, μ2, μ3, μ4) and (ν1, ν2, ν3, ν4) to be zero  

vectors; 
UB = 0; LB = -SUM_OF_VALUE_OF_ALL_INFORMATION; 
improvement_counter = 0 
λ = 2; //step size coefficient 
Initiate_Budget_Allocation_Strategy(); 
 
//Main LR procedure 
FOR iteration = 1 TO ITERATION_COUNTER_LIMIT { 
 IF (iteration ≤ (ITERATION_COUNTER_LIMIT / 2)) { 
  Solve (Sub 1.1); 

Solve (Sub 1.2); 
Solve (Sub 1.3) 
Solve (Sub 1.4); 
Z*

IP 2 = –Heuristic_LR_1();  
 } 
 ELSE { 
  Solve (Sub 2.1); 

Solve (Sub 2.2); 
Solve (Sub 2.3); 
Z*

IP 2 = –Heuristic_LR_2(); 
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} 
Calculate ZD; 
 
//Update bounds 
IF (ZD > LB) { 
 LB = ZD; 

improvement_counter = 0; 
} 
ELSE { 
 improvement_counter ++; 
} 
IF (Z*

IP 2 < UB) { 
 UB = Z*

IP 2; 
} 
 
//Update step size and Lagrangean multipliers 
IF (improvement_counter = IMPROVEMENT_COUNTER_LIMIT) { 
 improvement_counter = 0; 

λ = λ / 2; 
} 
Update_Step_Size(); 
Update_Lagrangean_Multiplier(); 

} 

 

 

3.2 Solution Approach for the DRAID Model 

 After solving the APS model, we can obtain the best strategy for the attacker. In 

order to solve the DRAID model, the optimal solution of the APS model can be used 

as the input of it. We adjust defense budget allocation strategy and pieces allocation 

strategy according to the current attack strategy. After the adjustment, we solve the 
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APS model again and obtain another attack strategy which is aimed at the new 

defense strategy. The interaction between the attacker and the defender continues until 

it reaches a balance. Table 3-6 describes the detail of the adjustment procedure. 

 Since we have to design both budget allocation strategy and pieces allocation 

strategy, we take the two stages adjustment. First of all, we reallocate defense budget 

to nodes. The budget reallocation strategy which we adopt is based on the concept of 

the subgrandient method. If nodes are uncompromised, it means we allot too much 

budget to them; on the other hand, nodes are allotted insufficient budget if they are 

compromised. Thus, we take back parts of defense budget from uncompromised 

nodes and reallocate it to compromised nodes. The question is how to decide the 

proportion of defense budget which is taken back from uncompromised node. 

Obviously, if a node has more number of times used to be a hop-site, the more 

important it is. So an impact factor is used to normalize the number of times a node 

was used as a hop-site. The formula of the factor is (wi / wmax), where wi is the average 

frequency that node I has been used as a hop-site up to now, and wmax is the average 

number of nodes which are compromised by the attacker up to now. The higher the 

impact factor of a node, the lower the proportion of the defense budget will be taken 

from it if it is uncompromised in current run. How to reallocate the extra budget to 

compromised nodes is also important. Here we propose two heuristics for comparison. 
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One, denoted as damage_based reallocation algorithm, reallocates the extra budget 

according to number of pieces on compromised nodes. The more the number of pieces 

on a compromised node is, the more important it is. The other one, denoted as 

bonus_base reallocation algorithm, reallocates the extra budget according to the bonus 

that nodes bring when allocating additional budget to them. Table 3-7 describes the 

detail of the defense budget reallocation strategy. 

 If there is no improvement under defense budget reallocation procedure during a 

period, we take the pieces reallocation procedure. The concept of reallocating pieces 

is to make the attacker collect pieces more difficultly. For information, if it is 

recovered successfully by the attacker, that means the pieces allocation of it is easy 

for the attacker to collect these pieces. Thus, we reallocate some pieces to other nodes 

which are uncompromised and have few pieces. After reallocating pieces of recovered 

information, we verify if it satisfies QoS requirement of legitimate users and correct it. 

We do the adjustment and then solve APS model repeatedly until the improvement 

does not occur during a period, and switch to the defense budget reallocation 

procedure. The switch between two procedures will be terminated when maximal 

iteration is reached. The detail of pieces reallocation strategy is described in Table 3-8. 

The time complexity of pieces_reallocation algorithm is O(|N|*|G|). The time 

complexity of defense budget reallocation is O(|N|). 
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Table 3-6 Heuristic_DRAID Algorithm 
//Initialization 
UB = –LR(); //the return value of LR() is negative due to the objective function 

transformation in the AS model 
improvement_counter = 0 
reallocate_budget = true; 
 
//Main Heuristic_DRAS procedure 
FOR iteration = 1 TO ITERATION_COUNTER_LIMIT { 
 IF (reallocate_ budget) { 
  Reallocate_Defense_Budget();//as shown in Table 3-7 

} 
 ELSE { 

 Reallocate_Pieces(); //as shown in Table 3-8 
   Initiate_Budget_Allocation_Strategy(); 
 } 
 

Z*
IP 1 = –LR(); 

 
//Update UB 
IF (Z*

IP 1 < UB) { 
UB = Z*

IP 1; 
improvement_counter = 0; 

} 
ELSE { 

improvement_counter ++; 
} 
//Update step size 
IF improvement_counter = IMPROVEMENT_COUNTER_LIMIT { 

improvement_counter = 0; 
IF (reallocate_ budget) //change to pieces_ reallocation strategy 

reallocate_ budget = false; 
  ELSE //change to budget_ reallocation strategy 

reallocate_ budget = true; 
} 

} 
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Talbe 3-7 Reallocate_Defense_Budget Algorithm 
//Initialization 
total_defense_cost = 0; 
FOR each node i { 

IF (node i is uncompromised) { 
 bi = bi * (1- wi / wmax) 
} 
total_defense_cost += bi; 

} 
remaining_defense_budget = TOTAL_DEFENSE_BUDGET – total_defense_cost 
 
//Reallocation of defense budget 
FOR each node i { 

IF (node i is compromised) { 
bi += remaining_defense_budget * Budget_Reallocation_Strategy(); 

to compromised node according to reallocation strategy 
} 

} 

 

Table 3-8 Reallocate_Pieces Algorithm 
//Initialization 
FOR each compromised node i { 
 FOR each information g which is recombined successfully by attacker { 

 IF (node i contain g’s piece) 
  Take g’s piece back from node i and put it into PieceBasket;  
}  

} 
FOR each information g whose pieces are in PieceBasket { 
 Update each uncompromised node’s nodeDamage; 
 WHILE (there are g’s pieces in PieceBasket AND there exists uncompromised  

nodes which do not contain g’s piece and capable for g’s piece) { 
  Find uncompromised node i, which do not contain g’s piece AND whose 

nodeDamage is smallest AND whose remaining capacity is capable for  
g’s piece; 

  Allocate one piece which belong to g to i; 
 } 
} 
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FOR each information g whose pieces are in PieceBasket { 
 Update each compromised node’s nodeDamage; 

WHILE (there are g’s pieces in PieceBask ) { 
   Find compromised node i, which do not contain g’s piece AND whose 

nodeDamage is smallest AND whose remaining capacity is capable for  
g’s piece; 

} 
} 
VerifyQoS(); 
Initial_budget_allocation(); 
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Chapter 4 Computational Experiments 

4.1 Computational Experiment with the APS Model 

 In order to show our heuristics’ superiority, we design two simple algorithms for 

comparison purpose. 

4.1.1 Simple Algorithm 1 

Simple algorithm 1 is based on the concept of the greedy method, in which the 

node has the smallest weight will be selected as a target. However, the formula of 

node’s weight is different from which we proposed in former heuristics. Table 4-1 

shows the pseudo code of simple algorithm1, which is denoted as SA1. 

Table 4-1 SA1 Algorithm 
FOR each node i { 
 FOR each information g { 

 IF (node i contain g’s piece) 
  nodeDamagei += Sg / kg;  
} 

weight = 2

)(

i

i
c

i

nodeDamage
ba

; 

} 
 
Add source o to attack_tree;  
 
//Construction of attack_tree 
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 

uncompromised nodes) { 
 Find uncompromised node i, whose weight is the smallest; 
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path_cost = summation of defense capability of all uncompromised nodes on i’s  
path; 

 IF (path_cost + total_attack_cost ≤ TOTAL_ATTACK_BUDGET) { 
Compromised nodes on i’s path and add them to the attack_tree; 

  total_attack_cost += path_cost of node i; 
 } 
} 

 

4.1.2 Simple Algorithm 2 

 The concept of simple algorithm 2 is derived from the heuristic of second-stage 

Lagrangean relaxation shown in Section 3.1.3.3. The differences between them are the 

formula of the weight and the initial attack tree. The formula of the weight 

is 2

)(

i

i
c

i

nodeDamage
ba

, and the node in victim_candidate_set has the smallest weight will 

be selected as a target. The initial attack tree only contains the attacker’s initial 

position o, and then expends by degrees. Table 4-2 shows the pseudo code of simple 

algorithm2, which is denoted as SA2. 

Table 4-2 SA2 Algorithm 
WHILE (total_attack_cost < TOTAL_ATTACK_BUDGET AND there are still 
  uncompromised nodes) { 
 FOR each node i which is in victim_candidate_set { 
  FOR each information g whose currentDiffToThreshold > 0 { 
   i.nodeDamage += Sg / currentDiffToThreshold; 
  } 
  IF (nodeDamage == 0) 

   weight = ( )(ˆ i
c

i ba ); 

  ELSE 
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    weight = ( )(ˆ i
c

i ba )/(nodeDamage2); 

 } 
 Find node i, whose weight is the smallest among all other nodes’ weight in  
   victim_candidate_set AND whose defense_capability is no more than  
   (TOTAL_ATTACK_BUDGET – total_attack_cost); 
 Compromise node i and add it to the attack_tree; 
 FOR each information g { 
  IF (node i contains g’s piece) 
   g.currentDiffToThreshold--; 
 } 
 total_attack_cost += defense_capability of node i; 
 Update victim_candidate_set; 
} 

 

4.1.3 Experiment Environment 

 We transform the proposed algorithms for solving the APS model into codes in 

Visual C++ and execute them in a PC with an INTEL Pentium 4, 3GHz CPU. The 

Iteration Counter Limit and Improve Counter Limit are set to 1000 and 100 

respectively. The first-stage relaxation procedure and the corresponding getting primal 

algorithm are executed in iteration 1~500; the second-stage relaxation procedure and 

the corresponding getting primal algorithm are executed in iteration 501~1000. We 

initiate the step size scalar, λ, as 2 and halve it if the improvement of the objective 

function value, ZD, does not occur during a period of Improve Counter Limit. 

 We adopt three different types of network topology as attack targets. The first is a 

grid network, which is composed by k×k nodes; the second is a random network, in 
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which nodes connect to nodes randomly and the average degree of each node is set to 

four; the third is a scale-free network, in which each newly added node connects to 

two different nodes which have the biggest degree in the network, and the scale-free 

network is most close to the network of the real world. 

 To choose a better strategy of total defense budget allocation, we design ten 

different ratios of the budget, B1, for decreasing random access error on nodes to the 

budget, B2, for enhancing nodes’ defense capability. In addition, each ratio is 

collocated with three budget allocation strategy of B2, which are uniform based, 

degree based, and damage based. We choose the best one as our budget allocation 

strategy. 

 We evaluate the effects of three different functions of defense capability on the 

budget allocation strategy. The first is a concave function; the second is a linear 

function; the third is a convex function. 

 The parameters and scenarios used in our experiments are described in Table 4-3 
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Table 4-3 Experiment Parameter Settings for the APS Model 

Parameters of LR 

Parameters Value 
Iteration Counter Limit 1000 
Improve Counter Limit 100 
Initial UB 0 
Initial Multiplier Value μ1

0 = μ2
0 = μ3

0 = μ4
0 = 0 

ν1
501 =μ1

500, ν2
501 =μ2

500, ν4
501 =μ4

500 
ν3

501 = 0 
Initial Scalar of Step Size λ 2 
Test Platform CPU: INTEL Pentium 4, 3GHz 

RAM: 1GB 
OS: Microsoft Windows XP 

Parameters of the APS Model 

Parameters Value 
Testing Topology Grid network, Random network, Scale-free 

network 
Number of Nodes |N| 25, 64, 100 
The Total Defense Budget B Equal to Number of Nodes 
The Ratio of B1 to B2 0, 0.1 ,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

1 
Total Attack Budget A Equal to Total Defense Budget 
Budget Allocation Strategy Uniform allocation (b1), Degree-based 

allocation (b2), Piece-based allocation (b3) 

Defense Capability )(ˆ i
c

i ba  Concave: )(ˆ i
c

i ba = log(10bc
i+1) + ε, 

Linear:  )(ˆ i
c

i ba = 3bc
i + ε, 

Convex: )(ˆ i
c

i ba  = (bc
i)2.5 + ε, 

bc
i is the budget allocated to node i to protect 

it from being compromised, Ni ∈∀  
Error probability on node i P(be

i) P(be
i) = p0

i × )5.0( ×− i
ebe , 

p0
i is initial random access error probability on 

node i; be
i is the budget allocated to node i to 

decrease random access error probability on 
it, Ni ∈∀  
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4.1.4 Experiment Results 

In order to compare the attack effectiveness under different attack scenarios, 

we use the network susceptibility metric, which is defined in chapter 2.1. To 

evaluate the quality of LR based algorithms, we calculate the gap between LR 

and LB by %100×−
LR

LRLB , where LR represents the susceptibility under 

executing LR based algorithms. We also calculate the improvement ratio of LR 

to SA1 and SA2 by %100
1

1 ×
−

SA
SALR , %100

2

2 ×
−

SA
SALR . 

Table 4-4 show the susceptibility under concave defense capability function, 

different network topologies, different budget allocation strategies and different 

ratios of B1 to B2.  
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Table 4-4 Experiment Result under concave defense capability function (|N| = 25) 

Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Grid 
Networks 

0 

b1 82.42% 5.04% 74.36%  25.93% 

b2 82.42% 10.3% 74.36%  103% 

b3 65.45% 2.858% 38.46% 61.19% 

0.1 

b1 47.27% 0.009938% 9.859% 110.8% 

b2 64.24% 0.008459% 58.21% 58.21% 

b3 47.27% 0.009402% 9.859% 110.8% 

0.2 

b1 65.45% 0.009974% 0% 38.46% 

b2 64.24% 0.009155% 158.5% 186.5% 

b3 47.27% 0.009264% 110.8% 110.8% 

0.3 

b1 65.45% 0.009217% 38.46% 38.46% 

b2 64.24% 0.009565% 35.9% 58.21% 

b3 47.27% 0.009133% 90.24% 110.8% 

0.4 

b1 65.45% 0.009391% 38.46% 0% 

b2 64.24% 0.009987% 35.9% 58.21% 

b3 64.24% 0.009346% 38.46% 38.46% 

0.5 b1 65.45% 0.1514% 52.11% 66.15% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Grid 
Networks 

0.5 
b2 65.45% 0.4709% 191.9% 66.15% 

b3 64.24% 0.01307% 49.3% 63.08% 

0.6 

b1 82.42% 17.41% 0% 0% 

b2 82.42% 19.3% 0% 0% 

b3 82.42% 0.7499% 0% 0% 

0.7 

b1 100% 0% 83.33% 83.33% 

b2 100% 0% 83.33% 83.33% 

b3 54.55% 0.5336% 0% 0% 

0.8 

b1 54.55% 0.8394% 0% 0% 

b2 54.55% 1.57% 0% 0% 

b3 54.55% 0.00973% 0% 0% 

0.9 

b1 100% 0% 55.66% 0% 

b2 100% 0% 55.66% 0% 

b3 64.24% 47.1% 0% 0% 

1 

b1 100% 0% 0% 21.32% 

b2 100% 0% 0% 21.32% 

b3 82.42% 7.139% 0% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Random 
Networks 

0 

b1 96.67% 0.8537%  58.9% 22.11% 

b2 96.67% 2.901% 58.9% 22.11% 

b3 79.17% 11.13% 30.14% 30.14% 

0.1 

b1 79.17% 0.8337% 0% 0% 

b2 78.33% 1.24% 28.77% 28.77% 

b3 64.17% 0.009593% 5.479% 5.479% 

0.2 

b1 79.17% 0.2539% 30.14% 30.14% 

b2 78.33% 2.906% 28.77% 28.77% 

b3 64.17% 0.009554% 5.479% 5.479% 

0.3 

b1 79.17% 0.6143% 30.14% 30.14% 

b2 79.17% 1.976% 30.14% 30.14% 

b3 64.17% 0.009842% 5.479% 5.479% 

0.4 

b1 81.18% 2.539% 30.14% 30.14% 

b2 84.98% 7.342% 30.14% 30.14% 

b3 70.35% 0.5007% 15.07% 15.07% 

0.5 b1 79.17% 3.86% 30.14% 30.14% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2(%) 

Random 
Networks 

0.5 
b2 79.17% 9.141% 30.14% 30.14% 

b3 79.17% 0.6328% 30.14% 30.14% 

0.6 

b1 96.67% 2.848% 0% 0% 

b2 100% 0% 3.448% 3.448% 

b3 96.67% 1.841% 84.13% 84.13% 

0.7 

b1 100% 0% 44.58% 44.58% 

b2 100% 0% 44.58% 44.58% 

b3 69.17% 1.541% 0% 0% 

0.8 

b1 69.17% 0.4669% 0% 0% 

b2 69.17% 16.4% 0% 0% 

b3 69.17% 0.009619% 0% 0% 

0.9 

b1 100% 0% 0% 0% 

b2 100% 0% 42.86% 0% 

b3 70% 32.77% 0% 0% 

1 

b1 100% 0% 3.448% 0% 

b2 100% 0% 3.448% 0% 

b3 100% 0% 3.448% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Scale-free 
Networks 

0 

b1 86.89% 4.343% 0% 26.19% 

b2 86.89% 7.401% 26.19% 26.19% 

b3 71.31% 3.952% 3.571% 50% 

0.1 

b1 53.28% 0.009052% 66.67% 12.07% 

b2 68.85% 0.09828% 115.4% 44.83% 

b3 53.28% 0.009158% 66.67% 12.07% 

0.2 

b1 68.85% 0.009971% 115.4% 44.83% 

b2 68.85% 0.4998% 115.4% 44.83% 

b3 54.92% 0.009651% 71.79% 15.52% 

0.3 

b1 68.85% 0.00993% 115.4% 44.83% 

b2 68.85% 6.29% 115.4% 44.83% 

b3 54.92% 0.009609% 71.79% 15.52% 

0.4 

b1 68.85% 0.3342% 0% 44.83% 

b2 68.85% 7.198% 115.4% 44.83% 

b3 68.85% 0.009326% 0% 44.83% 

0.5 b1 79.17% 3.86% 30.14% 30.14% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Scale-free 
Networks 

0.5 
b2 79.17% 9.141% 30.14% 30.14% 

b3 79.17% 0.6328% 30.14% 30.14% 

0.6 

b1 78.69% 22.35% 0% 0% 

b2 78.69% 25.45% 57.38% 0% 

b3 78.69% 1.48% 174.3% 0% 

0.7 

b1 100% 0% 125.9% 125.9% 

b2 100% 0% 125.9% 79.41% 

b3 55.74% 0.6083% ∞ 25.93% 

0.8 

b1 55.74% 1.945% 0% 0% 

b2 55.74% 7.043% 0% ∞ 

b3 55.74% 0.009686% ∞ ∞ 

0.9 

b1 100% 0% 64.86% 0% 

b2 100% 0% 64.86% 0% 

b3 60.66% 40.86% 0% 0% 

1 

b1 100% 0% 27.08% 0% 

b2 100% 0% 27.08% 0% 

b3 100% 0% 27.08% 0% 
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Table 4-5 Experiment Result under concave defense capability function (|N| = 64) 

Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Grid 
Networks 

0 

b1 84.03% 18.02% 25.48% 25.48% 

b2 100% 0% 49.33% 49.33% 

b3 66.96% 21.9% 45.16% 56.61% 

0.1 

b1 87.9% 10.92% 46.93% 46.93% 

b2 87.9% 12.07% 46.93% 46.93% 

b3 59.82% 5.677% 0% 102.3% 

0.2 

b1 87.9% 10.96% 0% 0% 

b2 87.9% 12.31% 0% 0% 

b3 59.82% 3.974% 97.7% 0% 

0.3 

b1 84.03% 11.33% 0% 0% 

b2 84.03% 17.23% 0% 0% 

b3 42.76% 19.22% 3.606% 0% 

0.4 

b1 84.03% 13.41% 0% 0% 

b2 84.03% 18.3% 0% 0% 

b3 42.76% 20.72% 0% 0% 

0.5 b1 100% 0% 0% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Grid 
Networks 

0.5 
b2 100% 0% 91.63% 0% 

b3 52.18% 2.611% 0% 0% 

0.6 

b1 100% 0% 99.1% 0% 

b2 100% 0% 0% 0% 

b3 50.23% 3.182% ∞ 0.9042%

0.7 

b1 100% 0% 0% 0% 

b2 100% 0% 0% 0% 

b3 57.04% 0.8398% 0% 0% 

0.8 

b1 100% 0% 35.85% 0% 

b2 100% 0% 35.85% 0% 

b3 73.61% 0.07861% 0% 0% 

0.9 

b1 100% 0% 19.01% 0% 

b2 100% 0% ∞ ∞ 

b3 84.03% 0.7088% ∞ ∞ 

1 

b1 100% 0% ∞ 0% 

b2 100% 0% ∞ 0% 

b3 100% 0% 526.1% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Random 
Networks 

0 

b1 82.99% 19.87% 30.41% 30.41% 

b2 82.99% 19.91% 30.41% 30.41% 

b3 63.64% 29.11% 45.77% 45.77% 

0.1 

b1 90.46% 8.101% 43.37% 51.58% 

b2 90.46% 9.726% 0% 51.58% 

b3 59.68% 7.57% 84.68% 118.1% 

0.2 

b1 90.46% 6.9% 43.37% 0% 

b2 90.46% 8.566% 43.37% 0% 

b3 63.1% 5.026% 95.26% 105% 

0.3 

b1 80.65% 14.28% 0% 0% 

b2 80.65% 15.73% 0% 0% 

b3 42.48% 17.23% 0% 11.32% 

0.4 

b1 80.65% 16.52% 0% 0% 

b2 80.65% 20.78% 0% 0% 

b3 42.48% 17.24% 0% 11.32% 

0.5 b1 100% 0% 99.1% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2(%) 

Random 
Networks 

0.5 
b2 100% 0% 0% 0% 

b3 50.23% 3.182% ∞ 0% 

0.6 

b1 100% 0% 99.1% 0% 

b2 100% 0% 0% 0% 

b3 50.23% 3.182% ∞ 0.9042%

0.7 

b1 100% 0% 0% 0% 

b2 100% 0% 82.73% 0% 

b3 54.73% 1.01% 0% 0% 

0.8 

b1 100% 0% ∞ 0% 

b2 100% 0% 49.93% 0% 

b3 66.7% 0.06017% ∞ 0% 

0.9 

b1 100% 0% 24% 0% 

b2 100% 0% 24% 0% 

b3 80.65% 0.2883% 0% 0% 

1 

b1 100% 0% 10.55% 0% 

b2 100% 0% 0% 0% 

b3 90.46% 9.133% 0% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Scale-free 
Networks 

0 

b1 87.77% 13.22% 21.35% 21.35% 

b2 87.77% 12.44% 21.35% 21.35% 

b3 72.33% 18.91% 31.82% 31.82% 

0.1 

b1 84.92% 13.9% 36.97% 36.97% 

b2 77.08% 14.49% 24.33% 24.33% 

b3 62% 5.913% 68.93% 68.93% 

0.2 

b1 84.92% 10.89% 0% 36.97% 

b2 84.92% 8.397% 36.97% 36.97% 

b3 62% 3.671% 0% 0% 

0.3 

b1 71.85% 23.38% 0% 0% 

b2 71.85% 11.68% 70.42% 0% 

b3 42.16% 6.746% 0% 0% 

0.4 

b1 71.85% 27.64% 0% 0% 

b2 71.85% 11.31% 2.196% 0% 

b3 42.16% 8.575% 0% 0% 

0.5 b1 100% 0% ∞ 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Scale-free 
Networks 

0.5 
b2 51.19% 71.69% ∞ 4.866% 

b3 51.19% 3.227% ∞ 4.866% 

0.6 

b1 100% 0% ∞ 0% 

b2 51.19% 71.69% ∞ 4.866% 

b3 51.19% 3.227% ∞ 4.866% 

0.7 

b1 100% 0% 69.42% 0% 

b2 59.03% 59.52% 0% 0% 

b3 59.03% 0.8287% 0% 0% 

0.8 

b1 100% 0% 54.78% 0% 

b2 64.61% 22.24% ∞ 0% 

b3 64.61% 0.06414% 0% 0% 

0.9 

b1 100% 0% 39.17% 0% 

b2 71.85% 32.7% 0% 0% 

b3 71.85% 0.2233% 0% 0% 

1 

b1 100% 0% 17.76% 0% 

b2 100% 0% 0% 0% 

b3 84.92% 8.659% 0% 0% 
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Table 4-6 Experiment Result under concave defense capability function (|N| = 100) 

Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Grid 
Networks 

0 

b1 91.26% 7.809% 51.94% 2.711% 

b2 92.81% 7.079% 34.68% 16.57% 

b3 77.25% 17.85% 41.16% 11.32% 

0.1 

b1 76.1% 15.01% 39.44% 4.317% 

b2 74.77% 25.54% 74.27% 2.489% 

b3 69.25% 20.11% 44.86% 23.59% 

0.2 

b1 85.92% 10.32% 67.92% 0% 

b2 85.92% 11.41% 67.92% 0% 

b3 68.58% 19.24% 85.66% 0.817% 

0.3 

b1 84.44% 17.29% 4.589% 0% 

b2 84.44% 17.85% 29.56% 0% 

b3 65.17% 16.27% 42.66% 50.6% 

0.4 

b1 84.44% 18.1% 29.56% 0% 

b2 84.44% 18% 29.56% 0% 

b3 65.17% 17.33% 42.66% 4.206% 

0.5 b1 88.85% 5.685% 98.51% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Grid 
Networks 

0.5 
b2 88.85% 6.289% 0% 0% 

b3 69.77% 6.398% 171.7% 46.99% 

0.6 

b1 88.85% 7.607% 98.51% 0% 

b2 88.85% 10.62% 33.52% 0% 

b3 69.77% 10.04% 55.88% 0% 

0.7 

b1 88.85% 7.607% 98.51% 0% 

b2 88.85% 10.62% 33.52% 0% 

b3 69.77% 10.04% 55.88% 0% 

0.8 

b1 88.85% 12.13% 98.51% 0% 

b2 88.85% 12.09% 27.35% 0% 

b3 69.77% 13.85% 55.88% 0% 

0.9 

b1 100% 0% 87.69% 0% 

b2 100% 0% 221.7% 0% 

b3 100% 0% 87.69% 0% 

1 

b1 100% 0% 88.09% 0% 

b2 100% 0% 31.53% 0% 

b3 100% 0% 309.6% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Random 
Networks 

0 

b1 91.37% 6.319% 29.36% 8.378% 

b2 90% 10.61% 27.65% 12.03% 

b3 78.93% 14.78% 37.98% 31.07% 

0.1 

b1 76.41% 15.18% 115.9% 18.97% 

b2 76.41% 27.93% 67.12% 4.757% 

b3 65.63% 18.38% 85.41% 2.186% 

0.2 

b1 79.72% 14.89% 0% 0% 

b2 85.21% 16.03% 31.23% 6.891% 

b3 65.06% 18.41% 0.1908%  0% 

0.3 

b1 81.74% 20.59% 33% 0% 

b2 81.74% 21.9% 0% 0% 

b3 61.46% 19.95% 0.2695% 0% 

0.4 

b1 81.74% 21.84% 2.539% 0% 

b2 100% 0% 25.57% 22.33% 

b3 61.46% 20.9% 50.15% 0.1346%

0.5 b1 88.31% 5.826% 33.96% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2(%) 

Random 
Networks 

0.5 
b2 88.31% 7.703% 29.42% 0% 

b3 68.24% 8.215% 49.1% 0% 

0.6 

b1 88.31% 8.895% 33.96%  0% 

b2 88.31% 12.25% 29.42% 0% 

b3 68.24% 11.98% 48.83% 0% 

0.7 

b1 88.31% 8.895% 33.96% 0% 

b2 88.31% 12.25% 29.42% 0% 

b3 68.24% 11.98% 48.83% 0% 

0.8 

b1 88.31% 12.8% 29.42% 0% 

b2 100% 0% 25.12% 13.24% 

b3 68.24% 15.79% 0% 0% 

0.9 

b1 100% 0% 28.91% 0% 

b2 100% 0% 0% 0% 

b3 100% 0% 28.91% 0% 

1 

b1 100% 0% 154% 0% 

b2 100% 0% 46.82% 0% 

b3 100% 0% 154% 0% 



 

90 

Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%) 

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Scale-free 
Networks 

0 

b1 91.48% 6.312% 28.4% 0% 

b2 91.48% 8.97% 43.12% 10.06% 

b3 78.38% 14.37% 41.08% 9.394% 

0.1 

b1 77.5% 13.53% 69.36% 0% 

b2 77.5% 25.42% 62.03% 1.143% 

b3 72.7% 16.68% 48.47% 17.48% 

0.2 

b1 84.79% 10.59% 60.2% 0% 

b2 86.06% 13.58% 69.76% 2.03% 

b3 71.96% 12.81% 84.58% 45.14% 

0.3 

b1 83.91% 18.17% 25.49% 1.152% 

b2 83.91% 18.3% 96.18% 1.152% 

b3 66.87% 15.11% 49.51% 0% 

0.4 

b1 83.91% 18.74% 25.49% 1.152% 

b2 83.91% 18.41% 87.62% 1.152% 

b3 66.87% 15.37% 49.51% 0% 

0.5 b1 87.89% 6.39% 33.84% 0% 
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Network 
Topology 

Ratio of 
B1 to B2 

Budget 
Allocation

LR (%) Gap (%)

Improve- 
ment 

Ratio to 
SA1 (%) 

Improve-
ment 

Ratio to 
SA2 (%)

Scale-free 
Networks 

0.5 
b2 87.89% 7.125% 82.4% 0% 

b3 70.41% 5.585% 46.12% 0% 

0.6 

b1 87.89% 8.7% 253.7% 0% 

b2 87.89% 9.623% 82.4% 0% 

b3 70.41% 9.252% 183.3% 0% 

0.7 

b1 87.89% 8.7% 253.7% 0% 

b2 87.89% 9.623% 82.4% 0% 

b3 70.41% 9.252% 183.3% 0% 

0.8 

b1 87.89% 13.12% 33.84% 0% 

b2 87.89% 12.75% 295.5% 0% 

b3 76.66% 8.366% 59.09% 8.88% 

0.9 

b1 100% 0% 88.09% 0% 

b2 100% 0% 31.53% 0% 

b3 100% 0% 309.6% 0% 

1 

b1 100% 0% 43.08% 0% 

b2 100% 0% 55.77% 0% 

b3 100% 0% 43.08% 0% 
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Table 4-7 Experiment of different defense capability function (|N| = 100) 

Network 
Topology 

Ratio of B1 toB2 
defense capability 

function 
LR (%) 

Grid 
Networks 

0 
concave 77.25% 
linear 39.46% 
convex 26.45% 

0.1 
concave 69.25% 
linear 39.24% 
convex 39.13% 

0.2 
concave 68.58% 
linear 36.38% 
convex 19.04% 

0.3 
concave 65.17% 
linear 23.79% 
convex 21.9% 

0.4 
concave 65.17% 
linear 43.28% 
convex 35.05% 

0.5 
concave 69.77% 
linear 40.87% 
convex 41.39% 

0.6 
concave 69.77% 
linear 47.98% 
convex 88.85% 

0.7 
concave 69.77% 
linear 47.98% 
convex 88.85% 

0.8 
concave 69.77% 
linear 69.77% 
convex 100% 

0.9 
concave 100% 
linear 100% 
convex 100% 

1 
concave 100% 
linear 100% 
convex 100% 
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Network 
Topology 

Ratio of B1 toB2 
defense capability 

function 
LR (%) 

Random 
Networks 

0 
concave 78.93% 
linear 39.03% 
convex 31.72% 

0.1 
concave 65.63% 
linear 35.89% 
convex 35.89% 

0.2 
concave 65.06% 
linear 36.38% 
convex 30.19% 

0.3 
concave 61.46% 
linear 33.17% 
convex 20.65% 

0.4 
concave 61.46% 
linear 41.1% 
convex 38.91% 

0.5 
concave 68.24% 
linear 45.85% 
convex 45.85% 

0.6 
concave 68.24% 
linear 45.85% 
convex 88.31% 

0.7 
concave 68.24% 
linear 45.85% 
convex 88.31% 

0.8 
concave 68.24% 
linear 68.24% 
convex 100% 

0.9 
concave 100% 
linear 100% 
convex 100% 

1 
concave 100% 
linear 100% 
convex 100% 
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Network 
Topology 

Ratio of B1 toB2 
defense capability 

function 
LR (%) 

Scale-free 
Networks 

0 
concave 78.38% 
linear 39.71% 
convex 35.48% 

0.1 
concave 72.7% 
linear 42.45% 
convex 43.05% 

0.2 
concave 71.96% 
linear 39.15% 
convex 34.49% 

0.3 
concave 66.87% 
linear 42.77% 
convex 39.19% 

0.4 
concave 66.87% 
linear 44.72% 
convex 41.14% 

0.5 
concave 70.41% 
linear 45.56% 
convex 54.44% 

0.6 
concave 70.41% 
linear 64.56% 
convex 87.89% 

0.7 
concave 70.41% 
linear 64.56% 
convex 87.89% 

0.8 
concave 76.66% 
linear 70.41% 
convex 100% 

0.9 
concave 100% 
linear 100% 
convex 100% 

1 
concave 100% 
linear 100% 
convex 100% 
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Figure 4-1 Susceptibility of Grid Networks under Different Scenarios (|N| = 25) 

 

Figure 4-2 Susceptibility of Random Networks under Different Scenarios (|N| = 25) 

 
Figure 4-3 Susceptibility of Scale-free Networks under Different Scenarios (|N| = 25) 
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Figure 4-4 Susceptibility of Grid Networks under Different Scenarios (|N| = 64) 

 

Figure 4-5 Susceptibility of Random Networks under Different Scenarios (|N| = 64) 

 
Figure 4-6 Susceptibility of Scale-free Networks under Different Scenarios (|N| = 64) 
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Figure 4-7 Susceptibility of Grid Networks under Different Scenarios (|N| = 100) 

 

Figure 4-8 Susceptibility of Random Networks under Different Scenarios (|N| = 100) 

 
Figure 4-9 Susceptibility of Scale-free Networks under Different Scenarios (|N| = 100) 
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Figure 4-10 Susceptibility of Grid Networks under Different defense capability function 

(|N| = 100) 

 

Figure 4-11 Susceptibility of Random Networks under Different defense capability 
function (|N| = 100) 

 
Figure 4-12 Susceptibility of Scale-free Networks under Different defense capability function (|N| = 100) 
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Figure 4-13 Susceptibility of diffrernt Networks and Topologies 

4.1.5 Discussion of Results 

Figures 4-1 to 4-9 show the susceptibility of the targeted network under 

concave defense capability function and different topology types, nodes, and 

ratios of B1 to B2. From these figures, we observe: 

•  Network with pieces based defense budget allocation strategy are the 

robust that means it is difficult for the attacker to recover information. 

Since the attacker’s objective is to collect pieces to recover information, 

he/she will compromise nodes containing more pieces. Therefore, to 

allocate more defense budget to nodes which contain more pieces will 

be better for the defender. 

•  The susceptibilities of different topologies have similar trends under 

pieces based defense budget allocation strategy with the same number of 
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nodes. 

•  Generally, it is the best defense budget allocation strategy when the ratio 

of B1 to B2 is equal to 0.3. It means that to set B2 twice as much as B1 

is a more appropriate strategy. 

•  Degree based and uniform based budget allocation strategies do not 

work under information dividing scenario. Because the important nodes 

(nodes with more pieces on them) are not allocated enough defense 

budgets to them.   

•  Generally, it is easier for the attacker to recover information when the 

great part of defense budget is allocated to decrease nodes’ random error 

probability. 

Figure 4-10 to 4-12 show the susceptibility under different defense capability 

function and topologies, we observe: 

•  It is easier for the attacker to recover information when the ratio of B1 

to B2 is more than 0.5 under convex defense capability function. This is 

due to the reason that most nodes are allocated to less than one unit 

defense budget.  

•  Generally, the susceptibility is increasing progressively under linear and 

convex defense capability. 
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•   The susceptibility is increasing rapidly when the ratio of B1 to B2 

exceeding 0.7. 

•  Generally, the shape of graph is “U” under concave defense capability. 

  Figure 4-13 compares the solution quality of LB based algorithm with 

 simple algorithm 1 and 2. It also shows the gap between LRs and UBs. The value 

 of each point on figure 4-13 is the average susceptibility of different budget 

 allocation strategies, ratios of B1 to B3 under same network size and topology. 

 From the figure, we observe: 

• The performance of LR based algorithm is better than other 

algorithms. 

• The gaps between LRs and UBs are small, which shows that our 

proposed approach for the APS model is near optimal. 

• The performance of SA2 is better than SA1. In SA2, the attacker can 

find the best one to compromise, it make the attacker easier recover 

information. 
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4.2 Computational Experiment with the DRAID Model 

4.2.1 Experiment Environment 

We transform the proposed algorithms for solving the DRAID model into 

codes in Visual C++ and execute them in a PC with an INTEL Pentium 4, 3GHz 

CPU. The Iteration Counter Limit, Improve Counter Limit, and Switch Counter 

Limit are set to 100, 10, and 20 respectively.. We initiate the step size scalar, Ө, as 

0.5 and halve it if the improvement of the objective function value, ZD, does not 

occur during a period of Improve Counter Limit. 

In the DRAID Mode, the defender wants to minimize the maximized damage 

incurred by the attacker. Initially, we use the result from solving the APS model as 

input of the DRAID model to adjust the defense allocation strategy and pieces 

allocation strategy. After the adjustment, we solve the APS model again according 

to the current defense strategy. The interaction is repeated until Iteration Counter 

Limit is reached. Since damage based defense budget allocation strategy is the 

best one for the defender in the APS model, we adopt this strategy to solve 

DRAID model. In addition, we adopt 0.3 ratio of B1 to B2 to solve DRAID model 

because it is also the best ratio for the defender in the APS model. 

We adopt three reallocation strategies for comparison. The first is degree 
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based; the second is pieces based; the third is bonus based. The parameters and 

scenarios used in our experiments are described in Table 4-7. 

Table 4-8 Experiment Parameter Settings for the DRAID Model 

Parameters of Adjustment_Procedure 

Parameters Value 
Iteration Counter Limit 100 
Improve Counter Limit 10 
Switch Counter Limit 20 
Initial Scalar of Step Size Ө 0.5 
Test Platform CPU: INTEL Pentium 4, 3GHz 

RAM: 1GB 
OS: Microsoft Windows XP 

 

Parameters of the DRAID Model 

Parameters Value 
Testing Topology Grid network, Random network, Scale-free 

network 
Number of Nodes |N| 25, 64, 100 
The Total Defense Budget B Equal to Number of Nodes 
The Ratio of B1 to B2 0.3 
Total Attack Budget A Equal to Total Defense Budget 
Initial Budget Allocation Strategy Piece-based allocation(b3) 
Budget Reallocation Strategy Degree-based allocation (b2), Pieces-based 

allocation (b3), Bonus based (b4) 

Defense Capability )(ˆ i
c

i ba  Concave: )(ˆ i
c

i ba = log(10bc
i+1) + ε, 

bc
i is the budget allocated to node i to protect 

it from being compromised, Ni ∈∀  
Error probability on node i P(be

i) P(be
i) = p0

i × )5.0( ×− i
ebe , 

p0
i is initial random access error probability on 

node i; be
i is the budget allocated to node i to 

decrease random access error probability on 
it, Ni ∈∀  
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4.2.2 Experiment Results 

 In the experiments, we use the survivability metric to evaluate the performance 

of different defense budget reallocation strategies. The Init. Surv. value represents the 

network survivability under initial defense budget allocation, and the Opt. Surv. value 

is the best network survivability during executing several times adjustment procedure. 

The improvement ratio of Opt. Surv. to Init. Surv. is calculated by 

%100
..

.... ×−
SurvInit

SurvInitSurvOpt . 

 

Table 4-9 Experiment Results of small networks (|N| = 25) 

Network 
Topology 

Init. Surv. 
Budget 

Reallocation 
Opt. Surv. 

Imp. Ratio of 
Opt. Surv. 

Grid 
Networks 

52.73% 
Degree Based 52.73% 0% 
Pieces Based 55.54% 5.32% 
Bonus Based 58.73% 11.37% 

Random 
Networks 

35.83% 
Degree Based 35.83% 0% 
Pieces Based 40.43% 12.83% 
Bonus Based 42.67% 19.09% 

Scale-free 
Networks 

45.08% 
Degree Based 45.08% 0% 
Pieces Based 47.34% 5.01% 
Bonus Based 48.32% 7.18% 

 

Table 4-10 Experiment Results of Medium-sized networks (|N| = 64) 

Network 
Topology 

Init. Surv. 
Budget 

Reallocation 
Opt. Surv. 

Imp. Ratio of 
Opt. Surv. 

Grid 
Networks 

57.24% 
Degree Based 57.24% 0% 
Pieces Based 63.34% 10.65% 
Bonus Based 65.18% 13.87% 
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Random 
Networks 

57.52% 
Degree Based 58.84% 2.29% 
Pieces Based 61.84% 7.51% 
Bonus Based 61.84% 7.51% 

Scale-free 
Networks 

57.84 
Degree Based 57.84 0% 
Pieces Based 60.23 4.13% 
Bonus Based 60.23 4.13% 

 

Table 4-11 Experiment Results of Large networks (|N| = 100) 

Network 
Topology 

Init. Surv. 
Budget 

Reallocation 
Opt. Surv. 

Imp. Ratio of 
Opt. Surv. 

Grid 
Networks 

34.83% 
Degree Based 41.35% 7.23% 
Pieces Based 41.16% 18.17% 
Bonus Based 47.24% 35.63% 

Random 
Networks 

38.54% 
Degree Based 40.64% 5.44% 
Pieces Based 42.64% 10.63% 
Bonus Based 42.64% 10.63% 

Scale-free 
Networks 

33.13% 
Degree Based 37.14 12.10% 
Pieces Based 39.59 19.47% 
Bonus Based 42.09 27.04% 

 
Figure 4-14 Survivability of Different Defense Budget Reallocation Strategy 
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4.2.3 Discussion of Results 

 Figure 4-14 show the equilibrium survivability of the targeted networks under 

different topologies, numbers of nodes, and reallocation strategies. From this figure, 

we observe: 

• The survivability of network can be improved by bonus based or pieces 

based budget reallocation strategy. It is because more budgets are allocated 

to the nodes with more pieces. 

• The degree based budget reallocation strategy causes little survivability 

improvement. It is because the nodes with higher degree number may not 

have higher piece number.  

• The best budget allocation strategy is to allocate more defense budget on 

important nodes, which have more pieces, instead of wasting it on relative 

valueless nodes (on the attacker’s aspect).  
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

 Internet interconnects the whole world, and makes the world a global village. 

Individuals, enterprises, and other organizations attend to put information in the 

network for required people to access. The network is convenient but also vulnerable 

because of its public characteristic. For some sensitive information, it is only available 

for some specific groups. Thus, how to protect this information from being stolen by 

unauthorized user is important.  

As a network operator, he/she have to design appropriate defense strategies to 

protect information from being stolen. In this thesis, we have addressed the 

attack-defense scenario about information theft, where the attack want to stole 

information to gain maximal profit while the defender want to decrease damage 

incurred by information leakage.  

The first key contribution of this thesis is we proposed a min-max mathematical 

model to describe the defense resource allocation strategy problem and the attack path 

selecting problem. With our efforts, we successfully model the interaction between the 

attack and the defender in the real world into mathematical models. Moreover, we 

proposed heuristics to solve the problems. 
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 The second key contribution of this thesis is we not only concern about 

malicious attack but also random error on nodes. In our study, we evaluate the 

efficiency under different ratios of budget 1 to budget 2, where budget 1 is allocated 

to nodes to protect them from being compromised and budget 2 is allocated to nodes 

to decrease random error on them. 

The third key contribution of this thesis is we use the technique of information 

dividing to develop our defense strategies. We divide information into pieces and 

allocate these pieces to nodes, and then allocate defense budget to nodes to protect 

information from being recovered by the attacker. 

We have also proposed proper metrics, which are susceptibility and survivability, 

to evaluate the performance of proposed algorithms. The susceptibility metric 

represent the proportion of total information value that the attack gain by recovering 

information; The survivability metric represent the proportion of total information 

value which is not recovered by the attacker in the target network. According to the 

metrics, both the attacker and the defender can adjust their strategies to get a better 

result. In addition, we have studied several different network topologies and observed 

their robustness against information theft. 
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5.2 Future Work 

 In the following, we raise some issues that could be studied further.  

 Design of Honey-Pot 

  The technique of Honey Pot is a kind of fraud skill, which drives an 

 attacker to exhaust his/her energy to launch attack on valueless objects. We 

 can use the technique of honey-pot to waste the attacker’s attack budget. 

 For example, we allocate a little information pieces to some nodes as  

 honey-pots. The attack will exhaust his/her attack budget when attacking 

 these honey-pots but gaining little profit. 

 Discussion of critical points 

  In the APS model, an attacker’s objective is to collect pieces to 

 recover information. Therefore, the key point to attack is which nodes 

 contain sufficient pieces to recover information. In the network, there exist 

 some critical points, as long as the attacker compromised them, attacker can 

 gain profound profit immediately. Relatively, for the defender, he/she can 

 allocate sufficient defense budget to these critical points to protect 

 information from being recovered. Thus, how to find these critical points is 

 an important issue. 

 Discussion of different pieces allocation patterns 



 

110 

For an attacker, different pieces allocation pattern may cause different 

attack behavior. Hence, we can design different defense resource allocation 

strategy for different pieces allocation pattern. Many pieces allocation 

patterns can be studied further, such as random based and degree based 

pieces allocation pattern.  

 Experience of an Attacker 

In the real world, an attacker may obtain some experience after 

compromising nodes, and this experience will improve the performance of 

the next attack action. Thus, we can consider this factor in our models to 

make the models more close to the real world. 

 

 

 

 

 

 

 

 

 



 

111 

References 

[1] R. Richardson, “2007 CSI Computer Crime and Security Survey”, Computer 

Security Institute, 2007, http://GoCSI.com. 

[2] L.A. Gordon, M.P. Loeb, W. Lucyshyn, and R. Richardson, “2006 CSI/FBI 

Computer Crime and Security Survey”, Computer Security Institute, 2006, 

http://GoCSI.com. 

[3] P. Tarvainen, “Survey of the Survivability of IT Systems,” The 9th Nordic 

Workshop on Secure IT-systems, November 2004. 

[4] J.C. Knight and K.J. Sullivan, “On the Definition of Survivability,” Technical 

Report CS-TR-33-00, Department of Computer Science, University of Virginia, 

December 2000. 

[5] J.C. Knight, E.A. Strunk, and K.J. Sullivan, “Towards a Rigorous Definition of 

Information System Survivability,” Proceedings of the DARPA Information 

Survivability Conference and Exposition (DISCEX 2003), Volume 1, pp. 78-89, 

April 2003. 

[6] V.R. Westmark, “A Definition for Information System Survivability,” 

Proceedings of the 37th IEEE Hawaii International Conference on System 

Sciences, Vol. 9, 2004. 



 

112 

[7] S.C. Liew and K.W. Lu, “A Framework for Network Survivability 

Characterization,” IEEE Journal on Selected Areas in Communications, Vol. 12, 

No. 1, pp. 52-58, January 1994 (ICC, 1992). 

[8] J.L Tzeng, “Near Optimal Network Defense Resource Allocation Strategies for 

the Minimization of Information Leakage”, Department of Information 

Management, National Taiwan University, 2006.  

[9] Adi Shamir, “How to Share a Secret”, Massachusetts Institute of Technology, 

1979. 

[10] S.C. Cha, Y.J. Joung, and Y.E. Lue, “Building Universal Profile System over a 

Peer-to-Peer Network”, Department of Information Management, National 

Taiwan University, 2003. 

[11] C.S. Laih, L. Harn, and C.C. Chang, “Contemporary Cryptography and Its 

Applications”, PP 231-245, 1995. 

[12] Andrew S. Tanenbaum, “Computer Networks”, 3rd Edition, 1997.  

[13] “INFORMATION SECURITY TAIWAN”, pp. 22-23, No.47, November 2007. 

[14] M.L. Fisher, “The Lagrangean Relaxation Method for Solving Integer 

Programming Problems,” Management Science, Vol. 27, No. 1, pp. 1-18, 

January 1981. 

[15] M.L. Fisher, “An Application Oriented Guide to Lagrangean Relaxation,” 



 

113 

Interfaces, Vol. 15, No 2, pp. 10-21, April 1985. 

[16] A.M. Geoffrion, “Lagrangean Relaxation and its Use in Integer Programming,” 

86 Mathematical Programming Study, Vol. 2, pp. 82-114, 1974. 

[17] Hakim Weatherspoon and John D. Kubiatowicz “Erasure coding vs. replication: 

A quantitative comparison”. Lecture Notes in Computer Science, 2429:328-339, 

2002 

[18] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. 

Kubiatowicz. “Maintenance-free global datastorage,” IEEE Internet Computing, 

pages 40–49, 2001. 

 

 

 

 

 

 

 

 

 

 

 



 

114 

簡歷 

 

姓名：蘇至浩 

 

出生地：台灣 屏東縣 

 

生日：中華民國七十三年七月二十三日 

 

學歷：九十一年九月至九十五年六月 

國立中央大學資訊管理學系學士 

 

九十五年九月至九十七年七月 

台灣大學資訊管理研究所碩士 

 

 

 

 

 

 


