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Link Set Sizing for Networks Supporting SMDS 
Frank Y. S. Lin 

Absfruct- To size networks that support Switched Multi- 
megabit Data Service (SMDS), we must determine how much 
additional capacity is needed and where it is needed so as to 
minimize the total capacity augmentation cost. We consider 
two combinatorial optimization problem formulations. These 
two formulations are compared for their relative applicability 
and complexity. 

A solution procedure based upon Lagrangean relaxation 
is proposed for one of the formulations. In computational 
experiments, the proposed algorithm determines solutions that 
are within a few percent of an optimal solution in minutes 
of CPU time for networks with 1&26 nodes. In addition, the 
proposed algorithm is compared with a Most Congested First 
(MCF) heuristic. For the test networks, the proposed algorithm 
achieves up to 152% improvement in the total cost over the 
MCF heuristic. 

I. PROBLEM DESCRIFTON 

WITCHED Multi-megabit Data Service (SMDS) is a high- S speed, connectionless, public, packet switching service 
that will extend Local Area Network (LAN)-like performance 
beyond the subscriber’s premises, across a metropolitan or 
wide area [l], [2]. To ensure the performance objectives, 
a backbone network supporting the SMDS service (referred 
to as an SMDS network) must be carefully managed. The 
INPLANSTM1 system is developed by Bell Communications 
Research (Bellcore) to provide a single environment to support 
Bellcore Client Company (BCC) network planning and traffic 
engineering across different networking technologies instead 
of building individual systems for each type of networks [3], 
[4]. The INPLANS integrated network monitoring capability 
supports studies that monitor the ability of in-place networks 
to meet performance objectives. When performance exceptions 
are identified, corrective actions are needed to reduce the 
degree of overload [3]. One possible action is to adjust the 
routing assignments. In [ 5 ]  a responsive routing algorithm 
is proposed to balance the network load. Usually, routing 
is a cost-effective solution to network overload caused by 
short-term traffic fluctuation. However, when the network load 
exceeds the network capacity and routing adjustment can no 
longer relieve the network overload, additional capacity is 
needed. The process of determining the minimum amount 
of additional capacity needed for an exhausted network and 
where to add the capacity is referred to as sizing. The sizing 
approach usually involves ordering/installing equipments and 
therefore is not intended to be adopted on a (near) real-time 
basis. 
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In this paper, a sizing approach to reducing network over- 
load that persists for a long time is described. The proposed 
link set sizing algorithm can be used as one of the initial 
functionalities in the INPLANS integrated network servicing 
capability to support SMDS networks, which will take correc- 
tive actions when performance exceptions are identified by the 
integrated monitoring capability. 

To size the link sets, network planners/administrators must 
know (i) the end-to-end traffic requirements and (ii) the routing 
strategy. The end-to-end traffic requirements can possibly 
be obtained from billing records. Another alternative is to 
estimate the end-to-end traffic requirements from aggregate 
link flows by using the Moore-Penrose pseudo-inverse[6]. 
The pseudo-inverse scheme has been shown to provide an 
optimal estimate in terms of the variance of estimation errors. 
However, it is possible that some of the aggregate link 
flows are underestimated when the above optimal estimate 
of end-to-end traffic requirements are used and the rout- 
ing assignments are changed. One conservative estimation 
scheme is proposed below. The basic idea is to calculate 
the maximum value of each end-to-end traffic requirement 
subject to the aggregate link flow information (and per- 
haps other information to increase the estimation accuracy, 
e.g., the total external traffic requirement to each switch). 
Then the aggregate link flows, given any routing assignment, 
will never be underestimated. For each origindestination 
pair, the problem is formulated as a linear programming 
problem. Unfortunately, no special structure of the linear 
programming problem has been identified so that more ef- 
ficient algorithms than the simplex method can be applied. 
Nevertheless, since the basic idea is to obtain worst case 
estimates, one may apply the Lagrangean relaxation technique 
(introduced in Section 111) to efficiently calculate tight upper 
bounds (exact in many cases) on the optimal objective function 
value. 

The routing algorithm for SMDS networks is specified in 
[7]. A brief review of the default Inter-Switching System 
Interface (ISSI) routing algorithm is given below. The routing 
algorithm used for SMDS networks is referred to as ISSI 
Routing Management Protocol (RMP). The RMP is derived 
from the Open Shortest Path First (OSPF) specification Version 
2 [8]. The main features of the RMP are as follows: 
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All routers have identical routing databases where a router 
is defined to be a Routing Management Entity (RME); 
Each router’s database describes the complete topology 
of the router’s domain; 
Each router uses its database and the Shortest Path First 
(SPF) algorithm to derive the set of shortest paths to all 
destinations from which it builds its routing table. 
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Each link set is assigned a positive number in the RMP called 
the link set metric. The default link set metric of each link set is 
inversely proportional to the aggregate link set capacity. One 
can apply standard shortest path algorithms, e.g., Dijkstra’s 
algorithm [9] to calculate a shortest path spanning tree for 
every origin. Ties are broken by choosing the switch with the 
lowest router ID number. 

Two types of traffic are supported by SMDS-individually 
addressed message and multicast (group addressed) message. 
The individually addressed message is transmitted from the 
origin to the destination over the unique path in the shortest 
path spanning tree. The multicast message is destined for 
more than one destination (may not be for all destinations, 
which is referred to as broadcasting). However, one copy of 
the multicast message will be transmitted over every link in 
the shortest path spanning tree. A multicast message will be 
discarded by a leaf (termination) switch in the shortest path 
spanning tree if the message is not for any user connected to 
the switch. 

The sizing problem for SMDS networks is difficult when 
the aforementioned routing algorithm and link set metrics are 
adopted. From the mathematical formulations shown in the 
next section, the difficulty is attributed to (i) the nonlinear 
arc weights with respect to the link set capacities (the default 
link set metric is inversely proportional to the aggregate link 
set capacity) and (ii) usually a discrete set of available link 
set capacities (e.g., in units of DS3 lines). If the probably 
most commonly used greedy heuristic, i.e., to place additional 
capacity on the most overloaded link set in each iteration, is 
applied, we predict and show by an example in Fig. 1 that it is 
possible that a link set will be even more overloaded after its 
capacity is augmented (more traffic than the added capacity is 
rerouted over this link set). Define overflow for a link set to 
be the aggregate flow deducted by the effective capacity (the 
link set capacity times the given utilization threshold) of the 
link set. For illustration and comparison purposes, we develop 
a Most Congested First (MCF) heuristic: 

The MCF Heuristic: 
1) Find the link set with the most overflow where ties are 

broken arbitrarily. 
2 )  Add one link on the link set identified in Step 1. 
3) Calculate the new link set metrics and reroute the traffic. 
4) If no overflow is found, stop: otherwise go to Step 1. 

Below, we go through the example where the MCF heuristic 
is applied. 

In Fig. l(a), a network with three nodes (switches) and three 
link sets is shown. Assume that the default routing scheme (the 
OSPF protocol) and link set metrics (inversely proportional 
to the link set capacities) are applied and that the utilization 
threshold for each link set is 0.85 (the engineering thresholds 
can be calculated using the methods proposed in [lo]). In 
Fig. l(a), link set (A,B) is overloaded (with 0.88 utilization). 
Assume that the MCF heuristic is used to solve the sizing 
problem where one DS3 line (with 34 Mbps effective capacity 
for the SMDS service) is added to the most overloaded link 
set (in terms of the amount of overflow) in each iteration. The 
routing assignments are adjusted accordingly and the aggregate 

link set flows are recalculated. If any of the link sets is still 
overloaded, then this process is repeated until the utilization 
of each link set is no greater than 0.85. Fig. l(b) shows the 
network status after 1 DS3 line is added to link set (A,B). 
This additional link changes the link set metric of (A,B) and 
therefore the routing assignments. After the traffic is rerouted 
according to the new set of link set metrics, it is observed 
that the utilization of link set (A,B) becomes 1.03 which is 
even larger than the value before a DS3 line is added, i.e., 
0.88. 

This seemingly counterintuitive phenomenon is attributed to 
the static nature of the OSPF routing with the default link set 
metrics, which does not react to the network load (and does 
not consider the capacity constraints). Also shown in Fig. l(b) 
is that (C,A) becomes overloaded while (C,B) is completely 
unused. Fig. l(c) to l(e) depict the intermediate steps and 
the final result when the MCF heuristic is further applied. 
Consequently, four DS3 lines are added. 

In contrast, Fig. l(f) shows the optimal solution where 
the number of additional lines required to satisfy the ca- 
pacity/utilization constraints is minimized. (For this exam- 
ple problem, the proposed algorithm to be introduced in a 
later section finds the optimal solution.) The optimality can 
be verified easily. In the optimal solution, two additional 
DS3 lines are needed. Compare the optimal solution with 
the solution obtained by the MCF heuristic, it is observed 
that the MCF heuristic is not effective in this case (the 
proposed algorithm achieves a 100% improvement in the 
total capacity augmentation cost over the MCF heuristic). 
Another observation from the optimal solution is that network 
planners/administrators may need to put additional capacity 
on a link set with normal load originally (e.g., link set (C,B) 
in this example). It is thus clearly demonstrated that once 
an overloaded area of the network is identified, one needs 
to study the whole network rather than an isolated area to 
determine how much additional capacity is needed and where 
it is needed. 

In this paper, we present two integer programming formu- 
lations for the SMDS link set sizing problem. In the first 
formulation, the objective is to minimize the total routing cost 
(to enforce the OSPF routing with the default link set metrics) 
subject to a budget constraint. In the second formulation, we 
minimize the total capacity augmentation cost subject to a 
set of shortest-path-routing constraints. Below is a simple 
complexity analysis of the problem based upon the integer pro- 
gramming model. If the network has k link sets and the mini- 
mum number of additional links needed to resolve the overload 
problem is b (assuming equal cost for each additional link), 
it is shown below that the number of solution points needed 
to be evaluated is at least C:i:(Ic + i - l)!/[Ic!(i - l)!] for 
a breadth first search scheme. Since the minimum number of 
additional links needed is b,  the problem is infeasible for a 
given number of additional links j from 1 to b - 1. Let A1 be 
the number of links added to link set 1. It is well known that 
the number of integer points satisfying 

k 

A1 = j ,  VAl being nonnegative integer 
1=1 
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is equal to ( I C  + j - l)!/[IC!(j - l)!]. This completes the proof. 
Even for a small network, this number can be so large 
that the exhaustive search scheme attempting to solve the 
problem optimally becomes impractical. Instead, in this paper 
we develop an efficient near-optimal solution procedure for 
the first formulation. 

Three networks (eight test cases) with up to 26 nodes 
were tested in the computational experiments. The proposed 
algorithm determines solutions that are within a few percent 
of an optimal solution within minutes of CPU time. Compared 
with the MCF heuristic, the proposed algorithm achieved 
7.1-152% improvement in the total capacity augmentation 
cost. 

This work has the following significance. First, the problem 
is formulated as mathematical programs, which facilitates 
optimization-based solution approaches. Second, the proposed 
near-optimal sizing algorithm can help the BCC's expand 
SMDS network capacities in an economical way. Third, the 
formulations and algorithm developed can easily be general- 
ized to consider the joint link set and node sizing problem 
for SMDS networks (by a different interpretation to the 
graph model). Last, by letting the existing node and link set 
capacities for potential locations be zero, this work can be 
used to solve the topological design and capacity assignment 
problem for SMDS networks. 

The remainder of this paper is organized as follows. In 
Section 11, two formulations of the SMDS link set sizing 
problem are given and compared. In Section 111, a solution 
procedure based upon Lagrangean relaxation is proposed for 
the first formulation. In Section IV, generalization and addi- 
tional constraints on the problem formulations are considered. 
In Section V, computational results are reported. Section VI 
summarizes this paper. 

11. PROBLEM FORMULATIONS 

An SMDS network is modeled as a graph G(V, L )  where 
the switches are represented by nodes and the link sets are 
represented by links. Let V = { 1,2,  e . . , N }  be the set of 
nodes and L be the set of links in the graph (network). As 
will be shown in Section 4.1, if the node (switch) sizing 
problem is considered jointly with the link set sizing problem, 
the links in the graph then represent either the switches or 
the link sets, while the nodes represent junctions between link 
sets and switches. Let W be the set of all origin-destination 
(0-D) pairs (single destination) in the network. According 
to the ISSI routing scheme, all traffic of an 0-D pair is 
transmitted over exactly one (shortest) path. Furthermore, 
multicast traffic from an origin is transmitted over a shortest 
path spanning tree, which is the union of the shortest paths 
from the origin to each destination. As explained earlier, the 
multicast traffic from one origin to each of its associated 
multicast groups is broadcasr to all the other Switching 
Systems (SS's) over the same shortest path spanning tree. 
For each 0-D pair (o ,d )  E W ,  the mean arrival rate of 
new individually addressed traffic is Yod  (packets/s), while 
the aggregate (sum over all associated multicast groups) mean 
anival rate of multicast traffic originated at origin o is a, 

(packetdsec). Let Pod be the set of all possible simple directed 
paths from the origin to the destination for an 0-D pair (0 ,  d) .  
The overall traffic for 0-D pair (0 ,  d )  is transmitted over one 
path in the set P o d .  Let P be the set of all simple directed 
paths in the network. Let To be the set of all spanning trees 
rooted at o. The multicast traffic originated at o is transmitted 
over one spanning tree in the set To. Let T be the set of 
all spanning trees in the network. For each link 1 E L,  the 
existing capacity is Cl packetsts and the added capacity is Al 
packets/s (a decision variable). 

x p = {  0 otherwise. 

In an SMDS network, all of the packets of an 0-D pair are 
transmitted over one path from the origin to the destination. 
Thus Cpcpodxp = 1. For each path p E P and link 1 E L, let 

For each 0-D pair ( o , d )  E W ,  let 

1 if path p E Pod is used to transmit the individually 
addressed packets for 0-D pair (0, d )  

1 if link 1 is on path p 
sp' = { 0 otherwise. 

For each origin o, let 

1 

0 otherwise. 

if spanning tree t E To is used to transmit the 
Yt= { multicast message for origin o 

SMDS switches have the capability of duplicating packets for 
multiple downstream branches of a spanning tree used to carry 
the multicast traffic. When a packet is multicast from the root 
to the destinations using tree t ,  exactly one copy of the packet 
is transmitted over each link in the tree. Similar to the single- 
destination case, CtCT,yt = 1 for every origin o. For each 
tree t E T and link 1 E L,  let 

1 if link 1 is on tree t 
gt l  = { 0 otherwise. 

Let @l(Al)  be the cost to add capacity Al to link 2.  This 
cost can include a fixed charge to change the capacity. Usually 
Al is chosen from a discrete set Kl, e.g., in units of DS3 
lines. Al can be negative when existing capacities are allowed 
to be removed form the network. Let pl  be a prespecified 
threshold on the utilization factor of link 1. The end-to-end 
delay objectives for SMDS networks will be satisfied if those 
utilization thresholds are not exceeded. These thresholds can 
be calculated using the schemes proposed in a recent work on 
allocating end-to-end delay objectives to individual network 
elements [lo]. The SMDS link set sizing problem can be 
formulated as the following two combinatorial optimization 
problems. 

2.1. Formulation I 
Let B be the total budget available for capacity augmen- 

tation. 

subject to Constraints (1)-(8) shown at the bottom of the next 
page. 
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Traffic requirement from A to B = 90 Mbps 7 ( 3 , 1 0 2 2  

(5,170,0.76) 

Traffic requirement from C to B = 50 Mbps Traffic requirement from C t o A =  130 1 Mbps 

A (5,170,0.82) 

(6,204.0.88) 

C 

A (5,170,032) 

(7.238.0.76) 

The objective function and Constraints (1) and (2) ensure 
that the individually addressed traffic for every 0-D pair be 
routed over exactly one shortest path where each arc weight is 
inversely proportional to the corresponding link set capacity. 
The left hand side of Constraint (3) denotes the aggregate 

flow (including individually addressed and multicast traffic) 
over link 1. Constraint ( 3 )  requires that the utilization factor of 
each link not exceed a prespecified value (to guarantee the end- 
to-end delay objectives). Constraints ( 5 )  and (6 )  require that 
all of the multicast traffic from one origin be transmitted over 
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exactly one spanning tree. The left hand side of Constraint (4) 
(together with (1) and ( 2 ) )  is the number of selected paths (for 
individually addressed traffic) rooted at origin o and passing 
through link I ,  while the right hand side of Constraint (4) 
(together with ( 5 )  and (6)) equals N - 1 if link 1 is used 
in the spanning tree for root o to multicast messages and 
0 otherwise. Recall that N - 1 is the maximum number of 
selected paths originated at node o and passing through link 
1. Therefore, Constraint (4) requires that the union of selected 
paths from one origin to all the destinations for individually 
addressed traffic be the same spanning tree rooted at the origin 
to carry multicast traffic. (Note that this constraint implies 
that the selected paths from one origin to carry individually 
addressed traffic form a spanning tree.) Constraint (7) requires 
that the capacity added to each link be allowable. Constraint 
(8) requires that the total capacity expansion cost not exceed 
the given budget B. 

It would be interesting to investigate the diffi- 
culty/complexity of the above problem. If AI is a constant 
and only Constraints (1) and (2) are considered, the problem 
is a well known shortest path problem. However, with the 
consideration of the capacity constraint (3), the problem 
becomes NP-complete and no existing polynomial time 
algorithm is available to solve the problem optimally. Next, 
the arc weight (Cl + A/) - '  is a nonlinear function of the 
discrete decision variable AI. Moreover, The knapsack type 
of constraint (8), the integrality constraint (6) and the routing 
constraint (4) for yt add another degree of difficulty to the 
problem. 

An equivalent formulation of Ip1 is 

subject to: 

(1) - (8) 
C(O.~)ET\-  C ~ E P , ~  x p 6 p l Y o d  5 f i  Vl E L (9) 

0 5 f i  5 (CI + Vl  E L. (10) 

For each link I ,  an auxiliary variable f i  is introduced. We 
interpret those variables to be aggregate flows attributed to 
individually addressed traffic. Since the objective function is 
strictly increasing with fi and (IP1) is a minimization problem, 
equality of (9) will hold in an optimal solution. As the reader 
will see in the next section, the introduction of fi decouples the 

problem into three independent subproblems in the Lagrangean 
Relaxation. Constraint (10) gives the range of f l .  

2.2.  Formulation 2 

Z1p2 = min @l(Al)  ( IP2)  
1EL 

subject to Constraints (1 1)-( 18) below. 
The objective function is to minimize the total cost of 

capacity augmentation. Constraints (1 1)-( 17) are the same as 
(1)-(7). The left hand side of (18) (together with (1 1) and (12)) 
is the routing cost for 0-D pair (0 ,  d )  (for one unit of flow on 
the selected path). The right hand side of (18) is the cost of 
path p E P o d .  Constraint (18) requires that for each 0-D pair a 
shortest path be used to carry the individually addressed traffic. 

2.3. A Comparison between Formulations 1 and 2 

It would be useful to make a comparison between Formula- 
tions 1 and 2 for their relative applicability and complexity. An 
apparent difference between (IP1) and (IP2) is the objective 
functions and the last constraints. However, there is a dual rela- 
tion between these two formulations. The objective function of 
Formulation 1 (together with constraints (1) and (2)) enforces 
the shortest path routing strategy, while the last constraint of 
Formulation 2 explicitly serves this purpose. The objective 
function of Formulation 2 is to minimize the total capacity 
augmentation cost, while the last constraint of Formulation 1 
imposes an upper limit on the total capacity augmentation cost. 

One potential drawback of Formulation 1 is that the shortest 
path routing strategy is enforced by the objective function but 
not constraints. The constraint set of (IP1) allows an 0-D 
pair to choose an alternative route when the true shortest 
path with respect to the default link set metrics is overloaded 
(under the capacity Constraint (3)). It is therefore possible 
that (IP1) is feasible with respect to the constraint set but 
is infeasible with respect to the shortest path routing strategy. 
One can increase the given budget when no desired solution is 
found. However, it is undesirable to assign too much budget, 
which will make link sets overengineered. Consequently, it 
may take several iterations to adjust the given budget when one 
wants to determine the minimum budget required. Whereas, 
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the optimal objective function value of (In) is the minimum 
budget needed. 

In view of the number of constraints, Formulation 1 is better 
than Formulation 2 since (18) is potentially comprised of 
a huge number of constraints (equals the number of simple 
paths in the network). It is difficult, if not intractable, to 
consider the numerous constraints in a solution procedure. 
Although (2) and (6) ((12) and (16) as well) have the same 
nature, in the proposed solution procedure, these two sets of 
constraints are considered implicitly in a shortest path prob- 
lem and a minimal cost spanning tree problem, respectively. 
As a result, no aforementioned complexity problem will be 
incurred. 

111. A SOLUTION PROCEDURE 
Due to the difficulty of developing a solution procedure 

to Formulation 2 as mentioned in the previous section, we 
attempt to solve only Formulation 1 in this paper. A solution 
procedure to Formulation 2 will be developed and presented 
in a forthcoming paper so that the relative computational 
complexity and solution quality trade-off of Formulations 1 
and 2 can be compared. 

The basic approach to the development of a solution proce- 
dure to Formulation 1 is Lagrangean relaxation. Lagrangean 
relaxation is a method for obtaining lower bounds (for min- 
imization problems) as well as good primal solutions in 
integer programming problems. A Lagrangean relaxation (LR) 
is obtained by identifying in the primal problem a set of 
complicating constraints whose removal will simplify the 
solution of the primal problem. Each of the complicating 
constraints is multiplied by a multiplier and added to the 
objective function. This mechanism is referred to as dualizing 
the complicating constraints. 

For Formulation 1 (Problem (IPl)), we dualize constraints 
(3), (4), (8) and (9) to obtain the following relaxation 

r 

r 1 

J 
r 1 

subject to: 

C P E P O d %  = V(o,d)  E W (19) 

vo E v (21) 
yt = 007.1 Vt E To, o E V (22) 

V1 E L (23) Ai E Ki 
0 I fi 5 (Cl + Al)is, V1 E L (24) 

Z P  =Oorl  v p  E Pod,  (0, d )  E W (20) 
&To Yt = 1 

where v , s ,  and U are the vectors of {vi},  {sO1}  and ( ~ 1 1 ,  

respectively. Note that the constraints are dualized in such a 
way that the corresponding multiplers are nonnegative. 

Problem (LR1) can be decomposed into three independent 
subproblems. Note that the constant terms, e.g., PB, were 
omitted in the objective function in the subproblems. 

Subproblem 1: 

subject to: 

Subproblem 2: 

subject to: 

z p  = 1 V(0,d)  E w 
?’€pod 

x p  = 0 or 1 Vp E P o d ,  (0, d )  E W (28) 

and 
Subproblem 3: 

subject to: 

CYt=1 V O E V  

yt = 0 or 1 Vt E To,o E V. (30) 

Subproblem 1 is composed of 1 LI (one for each link) problems. 
Since Al is discrete and bounded, the problem can be solved 
by successively fixing Ai to all possible values that satisfy 
(25). The following observation may greatly improve the 
efficiency of the solution procedure. For a fixed Al, the 
objective function becomes minimizing a linear function of 
fi over a simple interval of f i  specified in (26). The minimum 
objective function value can be found at one boundary point 
of the simple interval. As a result, to solve the problem for 
each link, only 2)Ki) points need to be evaluated. If @ ( A I )  
possesses a certain property, e.g. convexity or concavity, the 
computational load can be further reduced. For example, if 
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(P(Al) is linear, only the 4 extreme points of the convex hull 
of (25)  and (26) need to be evaluated. 

Subproblem 2 consists of IW) (one for each 0 - D  pair) 
shortest path problems where (ul + T J ~ ) T ~ ~  + sol is the arc 
weight for link 1 and 0-D pair (0, d) .  Dijkstra’s algorithm 
can be applied to solve the shortest path problems. It is worth 
mentioning that Constraint (4) can also be written as 

GET, d c L ’ - { O }  P c P o d  

However, this may cause the difficulty of negative cycles in 
the shortest path problems. 

Subproblem 3 consists of JVI (one for each root) minimum 
cost spanning tree problems where w l a ,  - ( N  - l)s,l is the 
arc weight for link 1 and root o. One can apply Prim’s or 
Kruskal’s algorithm [ 111 to solve the problem. 

For any (w ,s ,p ,u )  2 0, by the weak Lagrangean dual- 
ity theorem, the optimal objective function value of (LRl), 
Z D ~ ( O , S , @ , U ) ,  is a lower bound on 2 1 ~ 1  [12]. The dual 
problem (Dl) is 

To find the greatest lower bound, we solve (Dl). Another 
common approach to finding a lower bound on the optimal 
objective function value of a minimization integer program- 
ming problem is to use linear programming relaxation (the 
integrality constraints are relaxed). However, the objective 
function of (IP1) is in general nonconvex with respect to fl 
and AI (examining the Hessian of fi/(C~ + Al)) .  No standard 
procedure can be applied to solve the linear programming 
relaxation optimally to obtain a legitimate lower bound. 

There are several methods for solving the dual problem 
(DI). One of the most popular methods is the subgradient 
method. Let a (2 + IVl)lLI + 1 vector b be a subgradient of 
ZD1(w, s. p, U ) .  In iteration k of the subgradient optimization 
procedure, the multiplier vector mk = (d, sk,pk,uk) is 
updated by 

mk + t k b k .  mk++l = 

The step size tk  is determined by 

where Zfpl is an objective function value for a heuristic 
solution (upper bound on 21~1) and 6 is a constant, 0 < 6 5 2. 
To solve (Dl), the subgradient method is used. 

The above procedure is for solving the dual problem and 
obtaining good lower bounds on the optimal primal objective 
function value. We next describe a procedure for finding good 
primal feasible solutions. In each iteration of solving the 
dual problem (where an (LR1) is solved), one can calculate 
the aggregate link set flows using the routing assignments 
form the solution to the (LR1). From these aggregate link 
set flows, the minimum link set capacities required to satisfy 
the capacity/utilization constraints can be calculated. We then 
use these minimum link set capacities to calculate a new set 

of link set metrics and to reroute the traffic accordingly. If 
any of the capacity/utilization constraints is violated, we may 
apply the MCF heuristic to place additional capacity. If the 
total cost is less than the given budget, then a primal feasible 
solution is found. Another alternative is to apply the following 
All Congested First (ACF) heuristic to find primal feasible 
solutions. 

The ACF Heuristic: 
Set the counter limit K to be a prespecified value. 
If K = 0, return; otherwise, decrease K by 1. 
Find the link sets where the capacity (utilization) con- 
straints are violated. 
Add the minimum number of links on each link set 
identified in Step 3 to satisfy the current flows. 
Calculate the new link set metrics and reroute the traffic. 
If no overflow is found, return; otherwise, keep the 
routing assignments, remove the links added in Step 4 
and go to Step 2. 

To find the tightest budget constraint (the lowest cost), 
one may apply the concept of bisecting search in adjusting 
the given budget B. However, this may require solving a 
significant number of (1Pl)’s. In addition, for a given budget 
B ,  it may be difficult to determine whether the problem is 
feasible (an integer programming problem). The following 
implementation attempts to achieve better efficiency. 

The Overall Algorithm: 
1) Apply the MCF heuristic to calculate an initial value of 

the given budget. 
2 )  Solve the current (IP1). 
3) Record the lowest capacity augmentation cost for the 

feasible capacity augmentation plans in solving (IP1). 
4) If the lowest cost from Step 3 is smaller than the current 

given budget, construct a new (IP1) by replacing the 
given budget with the lower value and go to Step 2; 
otherwise, stop. 

Iv .  GENERALIZATION AND OTHER CONSTRAINTS 

In this section, a generalization of Formulations 1 and 
2 to jointly consider node (switch) and link (link set) siz- 
ing for SMDS networks is considered. A new graph model 
is presented and a number of associated modifications on 
Formulations 1 and 2 are described. In addition, two types 
of additional constraints, i.e., switch termination constraints 
and symmetric link set capacity constraints, are considered. 
The switch termination constraints require that the number 
of Subscriber Network Interface (SNI) and ISSI terminations 
to a switch not exceed a given number, depending upon the 
capacity requirement of each SNI and ISSI connection. The 
symmetric link set capacity constraints require that for two 
adjacent switches the link set capacities be the same in both 
directions. 

4.1. Node Sizing 
To jointly consider node and link set sizing, a new graph 

model is first introduced. An SMDS backbone network is 
modeled as a graph where each link in the graph corresponds 
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Fig. 2. 

to a delay element (e.g., a link set or a switch). Let LT be the 
set of links associated with link sets. Let LS be the set of links 
associated with switches. Let L be the set of links in the graph 
(LT U Ls). The nodes in the graph represent junctions among 
the delay elements. Fig. 2 depicts a node splitting technique 
to model a switch, say switch i, as a link. The procedure is 
described as follows. 

For each node i in the old graph model, do the following: 
1) Split node i in the old graph model into two nodes, i 

and i’, in the new graph model. 
2) Connect all the inbound links to switch i in the old graph 

model to node i in the new graph model. 
3) Connect all the outbound links from switch i in the old 

graph model to node i’ in the new graph model. 
4) Add a new link (i,i’), which now represents switch i. 
After this node splitting procedure is applied, it is clear that 

all the incoming traffic to switch i must flow through link 
(i$) and thus the aggregate nodal flow can be considered. In 
the event that the architecture of a switch involves more than 
one major delay elements, the node splitting procedure can be 
further applied in a similar fashion to capture the aggregate 
flows on those delay elements. 

Since in the default OSPF routing algorithm only the link 
set metrics (but not the switch metria) are considered, the arc 
weight associated with a link in LS is set to 0. The current 
formulations can be modified as follows. For Formulation 1, 
the set L in the objective function is replaced by LT. For 
Formulation 2, the set L in the last constraint (18) is replaced 
by LT. Another modification that needs to be made is (i) to 
separate the set of nodes V in the new graph into 2 sets, VI 
and VO, where Vi is the set of originating nodes for links in 
Ls and VO is the set of terminating nodes for links in Ls  and 
(ii) to replace the node set V in both formulations by VI. It is 
clear that in the generalized formulations, an origin 0 must be 
in VI and a destination d must be in Vo. One last modification 
is to replace L in Constraints (9) and (10) by LT since there 
is no need to introduce an auxiliary variable f for each link 
associated with a switch. 

4.2.  Switch Termination Constraints 
A switch may have a given number of terminations (ports) 

where each termination can handle a fixed number of SNI 
and/or ISSI connections. Given this architecture, one may 
need to explicitly consider the switch termination constraints, 
which can possibly become the limiting factors than the switch 
capacity (utilization) constraints. Let R; be the number of free 
terminations for switch i (represented by link i in the new 
graph model), taking into account the existing SNI and ISSI 
connections. For switch (link) i, let Ii and Oi be the sets of 

inbound and outbound links, respectively. Also let Oi(Al)  be 
the number of ports needed for switch i to connect an incident 
link set 1 of capacity Al. Then the following switch termination 
constraint needs to be considered in the formulations. 

This constraint requires that for each switch the total number 
of terminations needed for installing additional links be no 
greater than the number of free terminations. 

This constraint couples elements in { A l )  and is dualized 
in the Lagrangean relaxation. Consequently, two more terms 
need to be considered in Subproblem 1 for each link. However, 
the solution procedure to Subproblem 1 remains the same. 

4.3. Symmetric Link Set Capacity Constraints 
For a switch, it may be required that the link sets be installed 

in pairs with the same capacity in both directions. In this case, 
a symmetric capacity constraint needs to be considered. To 
express this constraint, it is neater to denote a link by its 
originating node i and terminating node j as (i,j) than by 
an index number as 1. Then the symmetric capacity constraint 
is given below. 

A(;,j) = A(j,;) 
A(it,j) = A(y,i) 

This additional constraint has an impact on the decomposi- 
tion of Subproblem 1 of the Lagrangean relaxation. Without 
the symmetric capacity constraint, Subproblem 1 can be further 
decomposed into JLJ independent problems. Whereas, with the 
constraint, those decomposed and independent problems need 
to be solved in pairs (problems corresponding to two link sets 
in opposite directions are solved jointly). Fortunately, this does 
not greatly complicate the solution procedure. 

V ( i l j ) ,  ( j ,  i) E L (for the old graph model) 
v(i,i’)l (J’,J’’) E Ls ,  ( i ’ l j ) l  ( J ’ I l i )  E LT 

(for the new graph model). { 

V. COMPUTATIONAL RESULTS 
Two sets of computational experiments are performed. In 

the first set of experiments, we test the proposed sizing 
algorithm with respect to its (i) computational efficiency and 
(ii) effectiveness in determining good solutions. In the second 
set of experiments, we quantify how much the total capacity 
augmentation cost can be reduced by the sizing algorithm 
compared with the Most Congested First (MCF) heuristic 
described in Section I. 

The link set sizing algorithm for SMDS networks described 
in Section 111 was coded in FORTRAN 77 and run on a 
SUN SPARC file server’. The algorithm was tested on three 
networks: OCT [13] (26 nodes), GTE [14] (12 nodes), and 
SITA[ 151 (10 nodes) whose topologies are shown in Figs. 3, 

2BelIcore does not recommend or endorse products or vendors. Any 
mention of a product or vendor in this paper is to indicate the computing 
environment for the computational experiments discussed or to provide an 
example of technology for illustrative purposes; it is not intended to be 
a recommendation or endorsement of any product or vendor. Neither the 
inclusion of a product or a vendor in a computing environment or in this 
paper, nor the omission of a product or vendor, should be interpreted as 
indicating a position or o3inion of that product or vendor on the part of the 
authors or Bellcore. 
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Fig. 3. 

A 

Fig. 4. 

4, and 5, respectively. For each of the three networks, it 
was assumed that for each 0-D pair the total individually 
addressed traffic rate at which packets are generated is the 
same (uniform traffic demand). Since the amount of group 
addressed traffic is expected to be small compared with the 
individually addressed traffic, the group addressed traffic is 
not considered in the computational experiments. It is also 
assumed that only one type of links (DS3 lines) are available 
and that the cost for each additional link is 1. 

The given budget B is initially calculated by applying the 
MCF heuristic. The ACF heuristic is applied to find primal 
feasible solutions. As mentioned in Section I11 (the overall 
algorithm), the lowest feasible capacity augmentation cost 
found in solving the current (IP1) is recorded and used as the 
new (tighter) budget in a new (IP1). This process is repeated 
until no tighter budget is found. 

To solve (Dl), the subgradient method described in Section 
I11 was applied. In our implementation, ZIhPl was initially 
chosen as CIELpl (an upper bound on the total link set 
utilization factors if (IP1) is feasible) and updated to the best 
upper bound found so far in each iteration. In (32), 6 was 
initially set to 2 and halved whenever the objective function 

n 

Fig. 5. 

TABLE I 
SUMMARY OF COMPUTATIONAL RESULTS OF THE SIZING ALGORRHM 

Net Traffic Existing Ite. Lower Upper Perc. Time 
ID Req. Capacity BoundsBounds Diff. ( s )  

OCT 0.10 5 4 800 100 38.64 40.14 3.889 95.0 
OCT 0.15 10 4 800 56 36.50 36.84 0.943 77.2 
GTE 0.60 4 5 1000 28 28.00 28.33 1.161 20.2 
GTE 0.45 3 5 lo00 20 28.27 28.58 1.091 20.2 
GTE 0.30 2 5 loo0 16 27.20 27.91 2.610 19.8 
SITA 0.20 1 5 1000 5 21.20 22.00 3.774 15.4 
SITA 1.00  5 5 1000 16 22.64 22.91 1.190 14.4 
SITA 1.50 5 5 1000 50 29.80 30.30 1.678 14.6 

value did not improve in 30 iterations. The initial values of 
u1, vu1 and P were chosen to be l/G, 0 and CIELE/CIELCi,  
respectively. 

We first show that the proposed sizing algorithm performs 
well under tight budget constraints. The given budget is chosen 
so that in the course of solving (IP1) all the feasible capacity 
augmentation plans found use up the given budget. Table I 
summarizes the results of the computational experiments with 
the proposed sizing algorithm. The second column gives the 
traffic requirement for each 0 - D  pair (normalized by the DS3 
line capacity) . The third column specifies the existing capacity 
of each link in each network (also normalized by the DS3 line 
capacity). The fourth column specifies the value of counter 
limit K used in the ACF heuristic to find primal feasible 
solutions. The fifth column gives the number of iterations (the 
number of (LR1)’s solved) executed to solve (IPl)/(Dl). The 
sixth column provides the given budget. The seventh column is 
the largest lower bound on the optimal objective function value 
found in the number of iterations specified in the fifth column. 
Recall that this is the best objective function value of the dual 
problem. The eighth column gives the best objective function 
value for (IP1) in the number of iterations specified in the fifth 
column. The ninth column reports the percentage difference ( 
[upper-bound - lower-bound] x 100 / lower-bound) which is 
an upper bound on how far the best feasible solution found is 
from an optimal solution. The tenth column provides the CPU 
times which include the time to input the problem parameters. 

Table I shows that the sizing algorithm is efficient and 
effective in finding near-optimal solutions given tight budget 
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TABLE I1 
COMPARISON OF THE SIZING ALGORITHM WITH THE MCF HEURISTIC 

Perc. Time f# of 
Net Traffi Existing Ite, B M C F  ~h Impru. (s) 

Wl”f=rl ID Req. Capacity 

OCT 0.10 5 4 800 3 224 100 124.0 258.8 
OCT 0.15 10 4 800 2 60 56 7.1 153.1 
GTE 0.60 4 5 lo00 2 45 28 60.7 40.1 
GTE 0.45 3 5 lo00 2 30 20 50.0 40.0 
GTE 0.30 2 5 loo0 2 27 16 68.8 40.3 
SITA 0.20 1 5 IO00 2 1 1  5 120.0 29.1 
SITA 1.00 5 5 1O00 2 24 16 50.0 27.1 
SITA 1.50 5 5 loo0 5 126 50 152.0 29.2 

constraints. For every test problem (networks with 10-26 
nodes), the algorithm determines a solution that is within 4% 
of an optimal solution in less than 2 min of CPU time on a 
SUN SPARC file server. 

Another set of experiments was performed to compare 
the sizing algorithm with the MCF heuristic. For each test 
problem, a number of (1Pl)’s are solved and the given budget 
is updated (reduced) until no more improvement is achieved 
(see the Overall Algorithm in Section 111). A comparison of 
the performance of the sizing algorithm with the performance 
of the MCF is reported in Table 11. The first five columns in 
Table I1 provide the same information as the first five columns 
in Table I. The sixth column gives the number of (1Pl)’s solved 
before the algorithm terminates. The seventh column reports 
BMCF,  the cost obtained by applying the MCF heuristic. This 
value is used as the initial given budget. The eighth column 
reports Bh, the best primal objective function value found 
by the proposed sizing algorithm. The ninth column gives the 
percentage improvement of the sizing algorithm over the MCF 
heuristic [lo0 x (BMCF - B h ) / B h ] .  

The results in Table 11 show that using the proposed 
sizing algorithm results in an 7-152% (79% on the average) 
improvement in the total capacity augmentation cost over the 
MCF heuristic. In addition, the number of (1Pl)’s solved for 
each test case is at most 3. 

VI. SUMMARY 
Switched Multi-megabit Data Service (SMDS) is a high- 

speed, connectionless, public, packet switching service that 
will extend Local Area Network (LAN)-like performance 
beyond the subscriber’s premises, across a metropolitan or 
wide area. The SMDS service is considered as the first step 
towards the BISDN-based services and is thus strategically 
important for the BCC’s. 

To satisfy the performance objectives and, on the other hand, 
to avoid excessive engineering, it is essential that the capacity 
of SMDS networks be carefully managed. When performance 
exceptions are identified by a monitoring process, one may 
either reroute the traffic or resize the network to reduce the 
degree of network overload. However, when the load exceeds 
the network capacity, routing alone cannot resolve the overload 
problem and additional capacity is needed. 

In this paper, a sizing approach to reducing network over- 
load is described. The objective is to determine the minimum 

amount of additional capacity needed for an exhausted network 
and where to add the capacity. As demonstrated by a simple 
example, a commonly used greedy heuristic failed to provide 
satisfactory solutions. An optimization-based approach is then 
taken to attack the problem. We consider two combinatorial 
optimization problem formulations. In the first formulation, 
the objective is to minimize the total routing cost (to enforce 
the default routing protocol in SMDS networks) subject to a 
budget constraint. In the second formulation, we minimize the 
total capacity augmentation cost subject to a set of shortest- 
path-routing constraints. These two formulations are compared 
for their relative applicability and complexity. 

A solution procedure based upon Lagrangean relaxation is 
proposed for the first formulation. In computational experi- 
ments, the proposed algorithm determines solutions that are 
within a few percent of an optimal solution in minutes of 
CPU time of a SUN SPARC file server for networks with 
10-26 nodes. In addition, the proposed algorithm is compared 
with a Most Congested First (MCF) heuristic. For the test 
networks, the proposed algorithm achieves 77152% (79% on 
the average) improvement in the total capacity augmentation 
cost over the MCF heuristic. 

This work has the following significance. First, the prob- 
lem is formally formulated as mathematical programs, which 
clearly demonstrates the difficulty of the problem and fa- 
cilitates optimization-based solution approaches. Second, the 
proposed sizing algorithm has been computationally shown 
to be efficient and effective. The algorithm can thus help the 
BCC’s expand SMDS network capacities in an economical 
way. Third, the formulations and algorithm developed can eas- 
ily be generalized to consider the joint link set and node sizing 
problem for SMDS networks (by a different interpretation to 
the graph model). Last, by letting the existing node and link 
set capacities for potential locations be zero, this work can be 
used to solve the topological design and capacity assignment 
problem for SMDS networks. 
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