A Distributed Routing Algorithm for
Virtual Circuit Data Networks

Yeong-Sung Lin! and James R. Yees?
Department of Electrical Engineering
University of Southern California
Los Angeles, CA 90089-0781
(213)-743-3919

Abstract

In this paper, the routing problem in virtual cir-
cuit networks is considered. In virtual circuit net-
works, all of the packets in a session are transmitted
over exactly one path established between the ori-
gin and the destination. We consider the problem of
choosing a path for each origin-destination pair so
as to minimize the average number of packets in the
network. We consider the usual formulation of this
problem as a nonlinear multicommodity flow prob-
lem with integer decision variables.

The emphasis of this work is to develop a dis-
tributed algorithm to solve this optimization prob-
lem. The basic approach in this work is Lagrangean
Relaxation which has been a common and success-
ful technique in solving many difficult combinato-
rial optimization problems. We develop a multiplier
update technique which facilitates the solution of
the nonlinear integer programming problem using
distributed computation. In computational exper-
iments, our distributed algorithm determines solu-
tions that are within 1% of an optimal solution in
minutes of CPU time for networks with 26 to 61
nodes.

1 Introduction

Computer communications networks play an important role
in satisfying our communication and computational needs.
The applications of computer communications networks in-
clude but are not limited to electronic mail, telephone net-
works, cellular phone systems, airline reservation systems,
automated teller machines, tactical military C® systems,
etc.. In order for a computer network to operate efficiently
and reliably, it is essential that the routing algorithm be
carefully designed. For this reason, the routing problem
has been studied intensively [22,23].

An overwhelming majority of the research literature on

!Supported in part by Contract No. N00228-87-R-4196 from the
Naval Postgraduate School.

2Supported in part by a summer faculty member fellowship at
the Jet Propulsion Laboratory at the California Institute of Tech-
nology.

CH2702-9/89/0000/0200$01.00 © 1989 IEEE

200

routing assumes datagram service. Two primary reasons
for this are (i) the ARPANET [18], which is a datagram
network, inspired a large amount of the research and (ii)
the routing problem in datagram networks can be solved
by utilizing many standard convex programming techniques
(1,5]. Whereas, the routing problem in virtual circuit in-
volves solving a nonlinear combinatorial optimization prob-
lem which is more difficult. In this paper, we focus on
virtual circuit networks. Our motivation is that many net-
works of today (e.g., SNA [11,15], TYMNET (20,27}, TE-
LENET [12], and TRANSPAC [3]) are virtual circuit net-
works. Furthermore, networks of the future such as ISDN
will provide virtual circuit service [10]. The major advan-
tage of virtual circuit switching over datagram switching is
that all packets in a particular session arrive in the same
order in which they are sent. It is well-known that a dis-
tributed algorithm is better than a centralized algorithm
since the use of a distributed algorithm results in greater
reliability.

Although virtual circuit switching techniques are used
so widely, the number of papers on routing in virtual cir-
cuit networks is small relative to the number of papers on
routing in datagram networks. Segall [24] formulated the
routing problem in virtual circuit networks as a convex pro-
gramming problem and extended Gallager’s algorithm [6]
to develop a distributed routing algorithm. Courtois and
Semal [2] modified Fratta, Gerla and Kleinrock’s Flow De-
viation method [5] to develop a heuristic routing algorithm
for virtual circuit networks. They obtained solutions that
are within 3% (on the average) of the optimal solutions for
lightly loaded networks. Gavish and Hantler [8] formulated
the problem of optimal route selection in virtual circuit
networks to minimize average delay as a nonlinear multi-
commodity flow problem with 0-1 decision variables. They
applied Lagrangean Relaxation and the subgradient opti-
mization method to develop a centralized algorithm. Their
computational results showed that this algorithm is effec-
tive in finding good feasible solutions and determining tight
lower bounds on the minimal expected delay.

Lagrangean Relaxation has been a common and success-
ful technique in solving many difficult combinatorial opti-
mization problems [4,9]. In this technique, the dual prob-
lem is solved to provide a lower bound (for minimization
problems) on the optimal objective function value. This
dual problem is usually solved by the subgradient method.

The standard update rule [14] for the dual variables was ap-
plied in [8]. However, a distributed implementation of this
multiplier update rule results in more overhead messages
than desired. In this paper, we introduce a new multi-
plier adjustment procedure which requires far fewer over-
head messages in a distributed implementation. Moreover,
the distributed routing algorithm with our multiplier up-
date finds solutions that are closer to an optimal solution
than the usual multipler update rule.

The remainder of this paper is organized as follows. In
Section 2, the routing problem is formulated as a nonlinear
combinatorial optimization problem. In Section 3, a La-
grangean Relaxation approach to the problem is presented.
In Section 4, a distributed multiplier adjustment procedure
is described. In Section 5, a heuristic algorithm called K(0)-
ordering is decentralized to provide good initial primal and
dual solutions. In Section 6, the computational results are
reported.

2 Problem Formulation

A virtual circuit communications network is modeled as a
graph where the processors are represented by nodes and
the communication channels are represented by arcs. Let
V = {1,2,..., N} be the set of nodes in the graph and let
L denote the set of communication links in the network.
Let W be the set of origin-destination (0O-D) pairs (com-
modities) in the network. For each O-D pair w € W, the
arrival of new traffic is modeled as a Poisson process with
rate y,, (packets/sec). Then the arrival of new traffic to the
network is a Poisson process with rate I' = ¥, v,,. For O-
D pair w, the traffic for a particular session is transmitted
over one path in the set P, a given set of simple directed
paths from the origin to the destination of O-D pair w. Let
P be the set of all simple directed paths in the network.
For each link I € L, the capacity is C} packets/sec.

For each O-D pair w € W, let z, be 1 when pathp € P,
is used to transmit the packets in a session and 0 otherwise.
In a virtual circuit network, all of the packets in a session
are transmitted over one path from the origin to the desti-
nation. Thus ¥,cp, z, = 1. For each path pandlink [€ L,
let 6, denote an indicator function which is one if link [is
on path p and zero otherwise. Then, the aggregate flow of
packets over link / is given by the left hand side of (1).

In the network, there is a buffer for each outbound link.
Using Kleinrock’s independence assumption [16], the arrival
of packets to each buffer is a Poisson process where the rate
is the aggregate flow over the outbound link. It is assumed
that the transmission time for each packet is exponentially
distributed with mean C;'. Thus, each buffer is modeled
as an M/M/1 queue.

The problem of determining a path for each O-D pair to
minimize the average delay is formulated as the following
nonlinear combinatorial optimization problem.

201

. 1 EWGW ZPEP 3p7w6ﬂ a1
= mmn — — I
7 P i G — Tuew Lpep, T5Vubnl (IP)
s.t.
z Z 2Tl < G VielL (1)
weW p€Py
Sz, =1 YweW (2)
pEPy
z, = 0or 1 VpelP, (3)

The objective function represents the average delay for a
packet in the network. Constraint (1) requires that the
aggregate flow not exceed the capacity for each link. Con-
straints (2) and (3) require that all of the traffic in each
session be transmitted over exactly one path.

An equivalent formulation of the above problem is given
by (IP) below. We redefine z, to be rate at which pack-
ets in a session for O-D pair w € W are transmitted over
path p € P,. (IP) is better suited for the development
of a distributed algorithm and the application of the La-
grangean Relaxation method. We will elaborate further on
this statement at the end of the next section.

. fi
Zip = min —_— IP
" ,%%0, - fi (IP)
s.t.
2 X mby < fi VieL (3)
weW pEPy
0 < i £G vViel (5)
Z T, = Yo VweW (6)
PEP
z, = 0 or v, Vp€P,,
wew (7)

For each link I, a variable f; is introduced. We interpret
these variables to be “estimates” of the aggregate flows.
Since the objective function is strictly increasing with f;
and (IP) is a minimization problem, each f; will equal the
aggregate flow in an optimal solution. As the reader will
see in the next section, the introduction of {f;} decouples
the problem into two subproblems in the Lagrangean Re-
laxation.

3 Lagrangean Relaxation and Dual
Problem

Lagrangean relaxation is a method used for obtaining lower
bounds (for minimization problems) as well as good primal
solutions in integer programming problems. A Lagrangean
relaxation (LR) is obtained by identifying in the primal
problem a set of complicating constraints whose removal
will simplify the solution of the primal problem. Each of the
complicating constraints is multiplied by a multiplier and
added to the objective function. This mechanism is referred
to as dualizing the complicating constraints. Since our ob-

jective is to develop a distributed algorithm, the choice of
constraints to dualize will be made so that the resulting
Lagrangean relaxation can be solved by distributed com-
putation.

Lagrangean relaxation has been applied to obtain ex-
cellent heuristic solutions and tight lower bounds for the
traveling salesman problem [13], the concentrator location
problem [19], a topological design problem in centralized
computer networks [7] and many other NP-hard problems.
In addition, Gavish and Hantler [8] have successfully ap-
plied this technique to develop a centralized routing algo-
rithm for virtual circuit networks. As in [8], we dualize
constraint (4) to obtain the following relaxation

Zp(u) = mmzcﬁ +Zu1{z S zpbp — f,} (LR)

leL leL wWEW pEPy

s.t.
0 < fi £ G vielL 8)
Y o= Y VweWw (9)
PEPy
zP = 0 or Yw VP € Pwr

weW. (10)

Note that (LR) is composed of the following two inde-

pendent subproblems:
Subproblem 1:
{C’, —F “lfl}

Zp(u) = miny,

el
s.t.
0 < i< Vel (11)
and
Subproblem 2:
Z3(u) = min{ S ¥ e {Zu,&,;}}
weEW pEPy leL

s.t.

PIEN

pEPw
Zp

Ywe W

Yoo (12)

0 or vw Vp€EP,
weW

(13)

Subproblem 1 is composed of |L| (one for each link)
simpler problems. Each of these simple problems is the
minimization of a convex univariate function over a simple
interval. For each link ! € L, the solution is

{ V=) fu>d

otherwise.
It is clear that the {f;} can be computed using a distributed
algorithm. If link { connects node i to node k, then we will
refer to node i as the tail and node k as the head of link I,

(14)

202

i.e. i = tail(!) and k = head(l). In the distributed routing
protocol (to be described), tail(l) will compute a multiplier
u; associated with link I. From this and knowing C, tail(l)
can compute f; from the above equation.

Subproblem 2 consists of |W| (one for each commodity)
shortest path problems where u; is the arc weight for link
1. For each origin—destination pair w € W, a shortest path
pl, € P, is found. Then,

5 7o fp=p,

z”_{ 0 ifp#pl. (%)
There are a number of distributed shortest path algorithms
that can be used to solve this problem [18,25,26].

At this point, it would be useful to point out the differ-
ences between our formulation (IP) and the formulation in
[14, equation (4)]. From a mathematical point of view, the
differences are trivial. However, the differences are worth
noting with respect to developing a distributed algorithm.
First, we omitted the term % - Of course, this means that
we are minimizing the average number of packets in the
network as compared to minimizing the average delay in
[8]. By including the term %, f; would be a function of
I' = 4w This would then require an extra number of
overhead messages for tail(l) to estimate I' and to compute
fi. Second, we specified the feasible values of z,, p € Py,
as {0,7,,} instead of {0,1} as in [8]. Note in subproblem 2
above all commodities solve a shortest path problem with
respect to one weighted graph where the arc weights are
{w}. By dualizing constraint (1), the Lagrangean Relax-
ation “appears” to include |W/| different shortest path prob-
lems (for each w € W, there is a weighted graph with arc
weights {7, }). In reality, one would make an adjustment
in the implementation so there is just one weighted graph.
But, the formulation (IP) above is cleaner. Third, we in-
terpret f; as a link flow, whereas in (8], it is interpreted
as a link utilization. We prefer to be consistent with the
routing literature where routing variables are either flows
or probabilities.

For any u > 0, the optimal objective function value of
(LR), Zp(u), is a lower bound on Zrp [9]. Naturally, one
wants to determine the greatest lower bound by

7o = max Zo(w) = mex Zh(u) + ZH(w) (D)

There are a number of properties of Zp(u) which should
be noted. First, Zp(u) is a concave, nondifferentiable func-
tion over the convex set {ulu > 0}. Second, the vector
with the I** element equal to (Swew Spep, Zpbp — Ji) is
a subgradient of Zp(u) at the point v, where f; and %, are
the solutions to (LR) [14]. Third, Zp(u) is not a piece-
wise linear function due to the nonlinearity of the objective
function of the original problem (IP). In most combinato-
rial optimization problems addressed in the literature, the
objective function is linear. Consequently, the correspond-
ing Zp(u) is a piecewise linear, nondifferentiable concave
function.

There are several methods for solving the dual problem

(D). The most popular method is the subgradient method
[4,9,14]. Let an |L| vector y be a subgradient of Zp(u). In
iteration k of the subgradient optimization procedure, the
multiplier for each link ! € L is updated by

k+1

utt = uf +

The step size t* is determined by

Ztp — Zp(u*)
= 6 B
lly 112
where Zfp is an objective function value for a heuristic so-
lution (upper bound on Z;p) and § is a constant, 0 < § < 2.
In Section 5, a distributed algorithm is given to compute
Zfp. Both Zp(u*) and |ly*||? can be expressed in the form
Yier Bi. In (28], an efficient distributed protocol (based
upon using an arborescence) is given. Thus, the subgradi-
ent method can be distributed. However, in the next sec-
tion, we present a distributed algorithm to solve (D) based
upon a multiplier adjustment procedure.

t* (16)

4 A Multiplier Adjustment Proce-
dure

In this section, a new multiplier adjustment procedure is
introduced. The standard multiplier update rule [14] given
in (16) was used by Gavish and Hantler [8] to develop a
centralized algorithm for virtual circuit networks. For the
purposes of reliability, we focus on developing a distributed
algorithm. The multiplier adjustment rule presented below
(i) has a lower communication complexity than (16) and
(ii) results in a distributed algorithm that finds solutions
that are closer to an optimal solution than an algorithm
using (16).

For iteration k, let uf be the multiplier for link ! and let
f¥ be the solution to subproblem 1. Let gF be the aggre-
gate flow on link ! determined from {z,}, the solution to
subproblem 2. The I** component of the subgradient in it-
eration k is denoted as yf'. The basic idea in our multiplier
adjustment scheme is to choose u**! so that |y*+!| < |y*|.
In other words, we choose u**! so that the distance be-
tween f+' and gf*? is less than or equal to f* and g¥. Let
my > 1 be a parameter used to control the stepsize. We
choose f#*' to be the following convex combination of f*
and gF

_ (1) fttgt

M

i+ mik(gr — .

flh+1

1n

(18)

Repeating equation (14) for iteration k + 1,

1

19
w1l gy (19)

Consequently, from (18) and (19) the new multiplier is

Ik+1 - C’ (1 -

203

—1)f* k
u:"H — C,_l [1 _ (mk)fl +4]—2'

T (20)

It can be shown that the magnitude of the subgradient
tends to decrease from iteration to iteration.

Equation (20) can also be expressed in the following
iterative form:

utt = uf + (gl - £ (21)
where
& — _ Gil2mCy — 2mu — 1)5F + g

(22)

b (G- G — (- DfF + 6T
From equation (22), it is clear that the parameter m; will
affect the stepsizes. Note that in (22) there is a stepsize
for each link. In the usual multiplier adjustment method
in (16), there is one stepsize. This is analogous to the dis-
tributed routing algorithm for datagram networks in [28]
where there is one stepsize for each node.

The above multiplier adjustment method can be im-
plemented either in a one-at-a-time manner, i.e., only one
multiplier is adjusted in each iteration, or in an all-at-once
manner, i.e., all multipliers are adjusted in each iteration.
Also, instead of using a fixed m, we use a monotonically
increasing sequence {m, | k = 1,2,...} where m, tends to
infinity as k approaches infinity. Then from equation (18),
f,"Jrl will be equal to f¥ as k (or m;) approaches infinity.
By equation (14), the convergence of {f}*} also implies that
{uf} will converge to a limit.

The overall algorithm is

0. Initialize
0.a Generate a candidate route set for each O-D
pair.
0.b Assign a nonnegative value to each multiplier.

0.c Set the iteration counter, k, to zero.
1. Test stopping criteria

If the number of iterations has reached the pre-
determined limit, stop; otherwise, go to step (2).

2. Solve the Lagrangean Relaxation
2.a For each link /, each tail(l) calculates f} by using
(14).
2.b A distributed shortest path algorithm is used to
solve subproblem 2 for each O-D pair.
2.c For each link [, each tail(l) estimates gF.

3. Adjust the multipliers

3.a For each link I, each tail(!) uses (20) to calculate
ket1
U
3bke—k+1.
3.c Go to step (1).

Note that steps 2 and 3 can be performed using distributed
computation.

5 Initial Solutions

A distributed algorithm is developed to calculate a good
initial primal solution. Also, a transformation is designed
to construct a mapping of the initial primal solution to the
initial dual solution.

First, we introduce a distributed version of the K(0)-
ordering [2] to find a starting nonbifurcated flow pattern.
All of the commodities are ordered according to their iner-
tia, defined by the right hand side of equation (24). Then,
according to the ordering, each commodity routes its re-
quirement over the current shortest path. An intuitive in-
terpretation of inertia is the following. If a commodity with
a higher inertia is deviated from the original shortest path,
a larger increase in the objective function will be incurred.
Therefore, a route should be selected for this commodity
earlier.

Next, a mapping of the primal solutions to the dual ones
is constructed. Since the objective of the dual problem is
continuous and concave, if differentiability is assumed, then
there is a one-to-one correspondence between the optimal
dual solution %* and the optimal primal solution (z*, f*) by
the duality theorem [17]. It is also assumed that (2°, f°),
the initial primal solution, is equal to (z*, f*), where f°
can be expressed in terms of u° by using equation (14) and
z® is obtained by the K(0)-ordering. Finally, by setting
the “gradient” at the point »° to zero, we can obtain the
following equation

° 1

u = T vie L (23)
Cl(l - EwEW E:raei"v "E,‘)z
to compute a good initial set of multipliers. Note that

the above transformation is performed by using distributed
computation.

A distributed version of the K(0)-ordering is presented
as follows:

1. Find the shortest paths under zero flows
Define the arc weight of link I, cost(l), to be the
first derivative of the objective function of (IP) with
respect to the aggregate link flow. Then for each
w € W, compute [[™", the shortest path for com-
modity w under zero flows.

2. Calculate the new shortest paths for all com-
modities when some arc weight is set to infin-
ity
Under a cyclic order control protocol, all links take
turns to perform the following steps:

2.a On the turn of link I, tail(l) sets cost(l) to infin-
ity and sends this message to every CO(w), the

204

origin of commodity w, for which I € [[™".

2.b After receiving this message from tail(l), each
CO(w) determines the new shortest path and
the associated path cost.

3. Calculate inertia for each commeodity
At the end of step (2), every CO(w) can compute its
inertia K, (0) by the following equation:

K,(0) = 7wa;‘i':{ S cost(l) - Y cost(l)]
=1 1€, 123) bl

(20)
where a,, is the number of links along the path I'[f",
cost(l) is evaluated under zero flow, and Il is the
shortest path from the origin to the destination of
commodity w when the j** link of ™" is assigned
an infinite cost.

4. Order the commodities
Use some distributed ranking algorithm, e.g., [21,29],
to sort the commodities into a decreasing order ac-
cording to {K,(0)}.

5. Construct an initial flow pattern
Under the same cyclic order control protocol as in
step (2), each CO(w) computes its routing decision
according to the order given in step (4) by using the
following algorithm:

5.a The same as step (1) except that arc weights are
evaluated at current flows.

5.b Route the traffic requirement on the shortest
path obtained in step (5.a).

Note that the routing decisions obtained by this dis-
tributed K(0)-ordering can serve as a good approximate
solution to (IP). However, compared with our distributed
routing algorithm, K(0)-ordering has higher complexity and
determines higher average delay. Therefore, K(0)-ordering
is suggested only for initialization. If more accuracy is
needed, then some distributed version of the nonbifurcated
FD (flow deviation) algorithm [2,5] can also be developed.
The nonbifurcated FD algorithm takes the solution ob-
tained by the K(0)-ordering as an initial solution and can
provide a better flow pattern.

For a lightly loaded network, a nonnegative identical
initial value for every u{ is a fairly good choice. Another
possible choice is 1/C}, which is the first derivative of the
link cost function evaluated at zero flow. Such strategies
might well lead to over-saturated links. However, this prob-
lem can be coped with by a carefully designed flow control
scheme or a slightly modified objective function [1] to allow
the routing algorithm to gradually adapt.

6 Computational Results

The distributed routing algorithm for virtual circuit net-
works described in Section 4 was coded in FORTRAN 77
and run on a SUN 3/50 workstation. In the multiplier
adjustment procedure in section 4, the all-at-once method
(all multipliers are adjusted in each iteration) was imple-
mented. Recall that the parameter in the multiplier adjust-
ment procedure that effects the stepsize is m;. We chose
my = (log,(k + 3))?. The maximum number of iterations

allowed is 200 iterations. The choice of the initial values of
the multipliers was {-} (however we found in our compu-
tational experiments that the initial values had little effect
on the results).

The algorithm was tested on three networks —-ARPA,
RING and OCT with 61, 32 and 26 nodes respectively.
Their topologies are shown in Figures 1, 2 and 3. For each
of the three networks, it is assumed that there is one ses-
sion per O-D pair and that the rate at which packets are
generated is 1 packet/sec for each session. Other character-
istics of the test problems are given in Table 1. In the third
column, the number of candidate paths for each O-D pair
is given. The fourth column specifies the total number of
candidates paths (the number of integer decision variables)
in the network. The fifth column specifies the capacity of
each link in each network. The method of generating the
candidate paths for each network is generated as follows.
For each O-D pair, shortest paths were found with respect
to several sets of randomly generated arc weights.

Table 1 summarizes the results of our computational
experiments. The sixth column is largest lower bound on
the optimal objective function value in 200 iterations. Re-
call that this is the best objective function value of the dual
problem. The seventh column gives the best objective func-
tion value for (IP) in 200 iterations. The percentage dif-
ference [(upper-bound — lower-bound)-100/lower-bound] is
an upper bound on how far the best feasible solution found
is from an optimal solution. The ninth column provides
the CPU times which consists of the time to compute a
solution plus the time used to input the problem parame-
ters. Furthermore, these reported CPU times measure the
total CPU time used when every operation in the algo-
rithm is performed sequentially. When implementing the
algorithm in an actual virtual circuit network, the com-
putations will be performed on N separate computers and
most of the computations will be done in parallel. Thus,
the CPU times reported grossly overestimate the real time
needed to obtain a near-optimal solution.

From an inspection of Table-1, it is clear that the dis-
tributed routing algorithm is efficient and very effective in
finding near-optimal solutions. For every test problem (net-
works with up to 61 nodes), the distributed algorithm de-
termines a solution that is within 1% of an optimal solution
in minutes of CPU time on a SUN 3/50 workstation. Also
our routing algorithm worked well for a heavily loaded net-
work (test problem number 8). In the final solution, the

205

link utilization factor of one of the links was 0.997. For
this test problem, every solution generated by the algo-
rithm after the fourth iteration was feasible. Furthermore,

a near-optimal solution was obtained in less than 4 minutes
of CPU time.

7 Summary and Conclusions

This papers focuses on the development of a distributed
routing algorithm for virtual circuit networks. We first con-
sider the formulation of this problem as the nonlinear com-
binatorial optimization problem by Gavish and Hantler 8]
We modified their formulation so that fewer status messages
are required in a distributed protocol. As in (8], we applied
Lagrangean relaxation to develop an algorithm. We found
that the standard update rule used in [8] for the multipliers
required the transmission of too many overhead messages.
We discovered a new way of updating the multipliers that
requires much fewer overhead messages. Moreover, the re-
sulting distributed algorithm finds solutions that are closer
to an optimal solution with the same amount of computa-
tion time. In section 5, we presented a distributed version
of a centralized heuristic developed by Courtois and Semal
[2].

We are continuing our work in two directions. First, we
are improving the formulation of the problem so that the
resulting distributed algorithm can be made more reliable
and adaptive. Second, we are continuing our computational
experiments to investigate how the algorithms adapts to
changes in the network structure and to changes in the
traffic requirements.

A

¢ © = (5‘—&
© b o Go——od
0) [O)
o & D
0]
d [0)
oo OO0
10) 0]
o Q
0]

Fig. 1. 61-node 148-link ARPA net.

S S < Y

)

D

=4 5 S ©
Fig. 3. 26-node 60-link OCT net. Fig. 2. 32-node 120 link RING net.

Case | Network | Routes Total Link Lower | Upper | Percentage | CPU | No.
No. D /Pair Routes | Capaci- | Bounds | Bounds | Difference | Time of
Generated | ties (msec) | (msec) (%) (sec) | Iter.
1 ARPA 3 6178 500.0 | 17.4840 | 17.4851 0.006 244.8 | 200
2 » 3 6178 375.0 | 29.8636 | 29.8674 0.013 250.7 | 200
3 ” 3 6178 300.0 | 55.4858 | 55.5511 0.118. 243.8 | 200
4 » 3 6178 272.7 | 90.7174 | 90.8069 0.099 245.9 | 200
5 » 2 5290 500.0 | 17.5500 | 17.5514 0.008 198.1 | 200
6 ? 2 5290 375.0 | 30.1053 | 30.1101 0.016 198.6 | 200
7 » 2 5290 300.0 | 57.2807 | 57.2998 0.033 198.5 | 200
8 ” 2 5290 272.7 | 189.692 | 189.795 0.054 198.4 | 200
9 oCcT 3 999 125.0 | 56.9099 | 56.9850 0.132 21.3 | 200
10 » 3 999 100.0 | 86.5846 | 86.6951 0.128 20.1 | 200
11 » 3 999 83.33 | 133.946 | 134.278 0.234 18.4 | 200
12 ” 3 999 71.43 | 225.917 | 226.655 0.327 20.1 | 200
13 » 2 794 125.0 | 57.3806 | 57.3882 0.013 16.3 | 200
14 ? 2 794 100.0 | 87.9979 | 88.0489 0.058 16.6 | 200
15 ” 2 794 83.33 | 138.763 | 138.816 0.038 16.5 | 200
16 » 2 794 71.43 | 249.558 | 249.975 0.167 16.5 | 200
17 RING 3 2422 150.0 | 24.0110 | 24.0270 0.067 39.0 | 200
18 ” 3 2422 100.0 | 40.4423 | 40.4931 0.126 38.8 | 200
19 » 3 2422 75.00 | 61.6932 | 61.8494 0.253 36.6 | 200
20 ” 3 2422 60.00 | 90.6315 | 91.2678 0.480 37.6 | 200
21 » 2 1646 150.0 | 24.1919 | 24.2004 0.035 27.2 | 200
22 » 2 1646 100.0 | 41.0024 | 41.0335 0.076 27.6 | 200
23 ” 2 1646 75.00 | 63.0824 | 63.1706 0.140 27.9 | 200
24 » 2 1646 60.00 | 93.8871 | 94.1109 0.238 27.7 | 200

Table 1: Summary of some computational results

206

References

(1] D.G. Cantor and M. Gerla. Optimal routing in a
packet switched computer network. IEEE Transac-
tions on Computers, C-23:1062-1069, 1974.

P.J. Courtois and P. Semal. An algorithm for the opti-
mization of nonbifurcated flows in computer communi-
cation networks. Performance Evaluation, 1:139-152,
1981.

3

A. Danet, R. Despres, A.L. Rest, G. Pichon, and S.
Ritzenthaler. The French public packet switching ser-
vice: The transpac network. In Proceeding Third Inter-

national Computer Communication Conference, pages
251-260, 1976.

M.L. Fisher. The lagrangian relaxation method for
solving integer programming problems. Management
Science, 27(1):1-18, January 1981.

[5] L. Fratta, M. Gerla, and L. Kleinrock. The flow devia-
tion method: An approach to store-and-forward com-

munication network design. Networks, 3:97-133, 1973.

[6] R.G. Gallager. A minimum delay routing algorithm
using distributed computation. IJEEE Transactions on

Commaunications, COM-25(1):73-85, January 1977.
[7

B. Gavish. Topological design of centralized computer
networks: formulations and algorithms. Networks,
12:355-377, 1982.

[8] B. Gavish and S.L. Hantler. An algorithm for optimal
route selection in SNA networks. IEEE Transactions

on Computers, COM-31(10):1154-1160, October 1983.
9

A.M. Geoffrion. Lagrangean relaxation and its uses
in integer programming. Math. Programming Study,

2:82-114, 1974.

[10] M. Gerla. Routing and flow control ISDN’s. In Proc.
1986 ICCC, pages 643-647, 1986.

[11] J.P. Gray and T.B. McNeill. SNA multiple-system net-
working. IBM System Journal, 18:263-297, 1979.

[12] GTE Telenet Communications Corp., Vienna, VA.
Functional Description of GTE Telenet Packet Switch-
ing Networks, May 1982.

[13] M. Held and R.M. Karp. The traveling salesman prob-
lem and minimum spanning trees. Operations Res.,
18:1138-1162, 1970.

[14] M. Held, P. Wolfe, and H.D. Crowder. Validation of
subgradient optimization. Math. Programming, 6:62—
88, 1974.

(15] V.L. Hoberecht. SNA function management. IEEE
Transactions on Communications, COM-28:594-603,
1980.

207

[16] L. Kleinrock. Queueing Systems, volume 1 and 2. New
York: Wiley-Interscience, 1975 and 1976.

[17] D.G. Luenberger. Linear and Nonlinear Programming.
Addison Wesley, 1984.

(18] J. McQuillan. Adaptive Routing Algorithms for Dis-
tributed Computer Networks. PhD thesis, Harvard
University, May 1974.

[19] A. Mirzaian. Lagrangean relaxation for the star-star
concentrator location problem: Approximation algo-
rithm and bounds. Networks, 15:1-20, 1985.

[20] A. Rajaraman. Routing in TYMNET. In Proceeding
European Comput. Conf., 1978.

[21] D. Rotem, N. Santoro, and J.B. Sidney. Distributed
sorting. IEEE Transactions on Communications, C-
34(4):372-376, April 1985.

[22] H. Rudin. On routing and ’delta routing’: A taxonomy
and performance comparison of techniques for packet-
switched networks. IEEE Transactions on Communi-

cations, COM-24(1):43-58, January 1976.

[23] M. Schwartz and T.E. Stern. Routing techniques used
in computer communication networks. IEEE Transac-

tions on Communications, COM-28:539-552, 1980.

[24] A. Segall. Optimal routing for virtual line-switched
data networks. IEEE Transactions on Communica-

tions, COM-26, 1977.

[25] A. Segall. Advances in verifiable fail-safe routing
procedures. IEEE Transactions on Communications,

COM-29:491-497, 1981.

[26] A. Segall. Distributed network protocols. IEEE
Transactions on Information Theory, IT-29(1):23-35,

January 1983.

L.R. Tymes. Routing and flow control in TYM-
NET. IEEE Transactions on Commaunications, COM-
29:392-398, 1981.

(27]

[28] J.R. Yee. Distributed Routing and Flow Control Al-
gorithms for Communication Networks. PhD the-
sis, Massachusetts Institute of Technology, December

1985.

[29] S. Zaks. Optimal distributed algorithms for sorting
and ranking. IEEE Transactions on Computers, C-
34(4):376-379, April 1985.

