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Abstract—Although enterprises make profits by satisfying 
customers’ needs, which is most often facilitated by information 
systems and network infrastructures, it is difficult to keep the 
systems and the network components regularly operating without 
any downtime. As a result, it is an important and critical issue for 
the system administrator or defender to efficiently evaluate 
network survivability. In this paper, a network optimization 
problem of attacker and defender behavior is considered. Both 
actors utilize their resources: the attackers launching attacks try 
to maximize the damage of the network, while the defenders 
deploy resources on the nodes and recover the compromised 
nodes. This problem is considering with survivability with a 
metric, Degree of Disconnectivity (DOD), which is used to 
evaluate the damage level of the network. The Lagrangean 
Relaxation Method is then applied to obtain optimal solutions for 
the proposed problem. 

Keywords- Survivability, Degree of Disconnectivity, Network 
Recovery, Lagrangean Relaxation, Network Attack, Optimization 
Problem, Resource Allocation. 

I.  INTRODUCTION 

Enterprises seek profits by fulfilling the needs or wants of 
their customers with products and services. Computer systems 
and network infrastructure components play a critical role in 
supporting an enterprise’s ability to meet customers’ needs. In 
fact, their role has grown to a point where the slightest 
disruption can adversely affect the enterprise’s ability to 
manage information and deliver products and services to its 
customers. System administrators often need to keep those 
systems to smoothly operating. However, the number and 
nature of the systems and components may be rendered 
dysfunctional by malicious and intentional attacks. Those 
attacks attempt to forcefully abuse or take advantage of targets, 
whether through computer viruses, social engineering, or 

phishing [1], and are often done with the intent of stealing a 
system’s information or of reducing the functionality of a 
target component. This is a challenge to enterprises, which 
need to continuously provide services despite the presence of 
intrusions. 

The term survivability refers to the capacity of any system 
to deliver essential services and maintain essential properties, 
including confidentiality, integrity, and availability, even 
under malicious and intentional attacks [2]. Unlike the 
traditional security measures that require central control or 
administration, survivability is intended to address unbounded 
network environments. The ability of survivability is the 
measure of whether a network can continue providing service 
in the presence of failure. High survivability represents the 
quick response processes of reconfiguration and 
reestablishment of connections upon failures. Among several 
survivability metrics, degree of disconnectivity (DOD) which 
is proposed in [3] is most sensible. This metric reflects the aim 
of an attacker to separate the target network into pieces, which 
enables the indication of the damage of the residual networks. 

Hence, system administrators, i.e. defenders, require 
distributing their resources on vital components in advance or 
recovering those components that are compromised. The 
defenders choose their best strategy which would result in a 
higher survivability [4]. Based on common network models, 
current research typically focuses on determining optimal 
resource allocation of security investments. In [5], for example, 
defenders assign defense budgets according to their strategies, 
to protect systems from outside attacks. Meanwhile, the 
attackers distribute their effort evenly among all attacked 
elements under a homogeneous system which is separated into 
independent identical parallel elements. The resources to both 
defenders and attackers are limited. However, the recovery 
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strategies of defenders, which is more generalized in network 
scenarios, is not included. Therefore, in this paper, an attack-
defense scenario is modeled as a mathematical formulation, in 
which the attackers utilize their strategies, while the defenders 
can distribute resources on critical components and recover 
compromised ones. 

II. PROBLEM FORMULATION AND NOTATIONS 

In the real world, network attack and defense are ongoing 
processes. For modeling purposes, the problem is defined as 
an attack-defense problem. An optimization model is 
developed that simulates the roles of attackers and defenders, 
in which attackers want to compromise nodes that cause 
maximal impact to the network, while defenders try to 
minimize the damage by deploying defense resources to nodes 
and repairing broken nodes. Damage of the network is 
measured in terms of the Degree of Disconnectivity (DOD) 
value, defined as S [3]. This metric is shown in equation (1). 
DOD is evaluated on the disconnected numbers of O-D pairs 
among all O-D pairs, which can be generated as the residual 
index of the networks. Here, twi is 1, while node i on an O-D 
pair w is dysfunctional. The transmission cost of dysfunctional 
node is M, otherwise it is ε. The greater the value of S, the 
more the network is damaged. 

 
When a node is compromised by the attacker, it is 

inoperable and thus cannot be used for transmitting 
information. Moreover, both sides have budget limitations: the 
attacker only has attack budget, whereas the defender has two 
types of budget, one for defense and the other for repair. When 
more defense budget is allocated to a node, it has a higher 
defense capability and is harder for an attacker to compromise, 
thus causing him to spend more resources to destroy that node. 
In this context, the terms “resource” and “budget” are used 
interchangeably to describe the effort spent on nodes by 
attacker or defender, and the defense capability of a node is 
related to the defense budget allotted to it. 

The interaction of both actors is under complete 
information. The attackers and the defenders have a targeted 
network topology and the budget allocation is assumed. The 
defenders try to deploy defense resources to nodes in the 
network, in order to increase the attack cost of nodes. The 
attackers start to launch attacks that compromise nodes, trying 
to maximize the damage, i.e. DOD, of the network. Since 
attackers only have limited budget, they must make good use 
of their budget and decide which nodes to attack in order to 
cause the greatest impact to network operation. Meanwhile, 
the network defenders repair nodes compromised by attackers. 
The repair budget determined by the defenders is fully utilized 
to recover service and minimize the loss of the network. Note 
that in this problem, the defense resources are defined as 
hardware or software installed to protect nodes in the network. 
As a result, when compromised nodes with defense resources 
are repaired by the defenders, the nodes’ defense capability is 

restored to the level before the attack. The given parameters 
and decision variables of the problem are shown in Table I. 

TABLE I.  GIVEN PARAMETERS AND DECISION VARIABLES 

Given parameter 
Notation Description 

V Index set of nodes 
W Index set of OD pairs 

Pw 
Set of all candidate paths of an OD pair w, where 
wW 

M 
Large amount of processing cost that indicates a 
node has been compromised 

 Small amount of processing cost that indicates a 
node has been compromised 

pi 
Indicator function, 1 if node i is on path p, 0 
otherwise, where iV and pPw 

bi Defense budget allocated to node i 

di 
Existing defense resources on node i, used for 
condition which has more than 1 round 

ai(bi+di) Attack cost of node i, which is a function of bi+di 

qi 
State of node i before this round. 1 if node i is 
inoperable, 0 otherwise, used for condition which 
has more than 1 round 

A Attacker’s total budget in this round 
Decision variable 
Notation Description 

xp 1 if path p is chosen, 0 otherwise, where pPw 

yi 
1 if node i is compromised by attacker, 0 
otherwise ,where iV 

twi 
1 if node i is used by O-D pair w, 0 otherwise, 
where iV and wW 

ci 
Processing cost of node i, which is ε if i is 
functional, M if i is compromised by attacker, 
where iV 

 
The problem is then formulated as the following 
minimization problem: 
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0 or 1px   pPw, wW (IP 1.7)
0 or 1iz   iV (IP 1.8)
0 or 1wit    iV, wW. (IP 1.9)

 
The objective function (IP 1) is to minimize the damage of 

the network, where the defenders try to minimize the DOD 
value by deciding which nodes to repair (denoted by zi). 
Constraint (IP 1.1) describes the definition of processing cost 
ci, which is ε if i is functional, M if i is compromised. 
Constraint (IP 1.2) requires the selected path for an OD pair w 
should have the minimal cost. Constraint (IP 1.3) represents 
the relationship between xppi and twi. Constraint (IP 1.4) 
restricts the total attack cost spent on the nodes and should not 
exceed attacker’s budget A. Constraint (IP 1.5) enforces the 
attacker cannot attack a node that is already dysfunctional. 
Constraints (IP 1.6) and (IP 1.7) jointly limit the possibility 
that only one of the candidate paths of an OD pair w can be 
selected. Lastly, constraints (IP 1.7) to (IP 1.9) impose binary 
restrictions on decision variables. 

III. SOLUTION APPROACH 

A. Lagrangean Relaxation 

In order to solve the (IP 1), the constraint (IP 2.3) is first 
reformulated as below, and a redundant constraint (IP 2.10) is 
added, as shown below. Note that the optimal condition is not 
violated if an equation is relaxed into an inequality version. 

w

p pi wi

p P

x t


  
iV, wW (IP 1.3’)

 or i Mc  iV. (IP 1.10)
 
After reformulation, by applying the Lagrangean 

Relaxation Method [6], (IP 1) is then transformed into the 
following Lagrangean relaxation problem (LR 1), where 
constraints (IP 1.1’), (IP 1.2), (IP 1.3’) and (IP 1.4) are relaxed. 
With a vector of Lagrangean multipliers, the Lagrangean 
relaxation problem of (IP 1) is transformed. The Lagrangean 

multipliers ν1, ν2, ν3 are the vectors of { 1
i }, { 2

wp } and 

{ 3
wi }, respectively, where ν1 is unrestricted, ν2 and ν3 are 

non-negative. Lagrangean multiplier ν4 is also non-negative. 
In order to solve (LR 2), it is further divided into three 
independent and easily solvable subproblems, as shown below. 

 
Subproblem 1.1 (related to decision variable xp): 

3 3
Sub 1.1( ) min

w

wi pi p

w W i V p P
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  , 
(Sub 1.1)

Subject to: (IP 1.6), (IP 1.7). 
 
Dijkstra’s shortest path algorithm can be applied to (Sub 

1.1) since the node weight 3
wi  is non-negative. The time 

complexity of this problem is O(|W|×|V|2), where |W| is the 
number of OD pairs. 

 
Subproblem 1.2 (related to decision variable yi): 

1 4 1 4
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Subject to: (IP 1.5), (IP 1.8). 
 
(Sub 1.2) can be simply and optimally solved by 

examining the coefficient of yi, for each node i, if the 

coefficient 1 4( )i iM e       is positive or the value of qi is 

one, the value of yi is set to zero; conversely, if 
1 4( )i iM e       is non-positive and the value of the value of 

qi is equal to zero, and yi is set to one. The time complexity of 
(Sub 1.2) is O(|V|). 

 
Subproblem 1.3 (related to decision variable twi and ci): 

1 2 3
Sub 1.3

1 2

2

3

( , , )

min + +

     + +

    

w

w

i i wp pi

i V i V w W p P

i wi
i wp wi

i V w W i V w W p P

wi wi

w W

Z

c c

c t
c t

W M

t

  

  





   

    









 

 



, (Sub 1.3) 

Subject to: 
0  1wit or iV, wW (IP 1.9)

or i Mc   iV. (Sub 1.3.2)
 
In (Sub 1.3), both decision variables twi and ci have two 

options. As a result, the value of twi and ci can be determined 
by applying an exhaustive search to obtain the minimal value. 
The time complexity here is O(|W|×|V|). 

The Lagrangean Relaxation problem (LR 1) can be solved 
optimally if all the above subproblems are solved optimally. 
By the weak duality theorem [6], for any set of multipliers, the 
solution to the dual problem is a lower bound on the primal 
problem (IP 1). To acquire the tightest lower bound, the value 
of Lagrangean multipliers needs to be adjusted to maximize 
the optimal value of the dual problem. Although the dual 
problem can be solved in many ways, the subgradient method 
is the most widely used one, where the subgradient direction is 
obtained after all subproblems are minimized, and the 
multipliers are updated along this subgradient direction. Here, 
the subgradient method is adopted to solve the dual problem. 

B. Getting Primal Feasible Solutions 

By applying the Lagrangean Relaxation Method, a 
theoretical lower bound on the primal objective function can 
be found. This approach provides some suggestions for 
obtaining feasible solutions for the primal problem. However, 
the result of the dual problem may be invalid when compared 
to the original problem since some important and complex 
constraints are relaxed. Therefore, a heuristic is needed here to 
make infeasible solutions feasible. In order to obtain primal 
feasible solutions and an upper bound on the problem of (IP 1), 
the outcome of (LR 1) and Lagrangean multipliers are used as 
hints for deriving solutions. The concept of the proposed 
heuristic is described below. 
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Recall that subproblem 1.1 is related to decision variable 
xp, which determines the path to be used for an OD pair. By 
using this hint provided by subproblem 1.1, for each OD pair 
w, the chosen path is used to traverse from source to 
destination and to calculate the number of times a node is used 
by all OD pairs, called node popularity (NP). A node with a 
larger NP value is likely to be an attack target, since more 
paths use this node. Therefore, attacking this node may result 
in larger DOD. An additional important issue for the attacker 
is the attack cost (AC) of the nodes in the network, because 
the attacker has a budget limitation. Hence, both factors are 
considered in the heuristic for getting primal feasible solutions. 
Once the popularity of nodes is determined, all nodes 
according to the ratio of NP to AC are sorted in descending 
order. For each of the sorted vertices i, the total attack cost and 
attack budget A is checked. If node i can be compromised 
without exceeding attack budget A, node i is selected as the 
attack target; else go to next node until all nodes are examined. 

C. Solution Approach for Solving (IP 1) 

The result of the problem represents the attack strategy 
under a certain initial defense budget allocation policy. The 
objective (IP 1) is to minimize the maximized damage of the 
network under malicious and intentional attacks. From the 
current attack strategy, the defender can adjust the budget 
allocated to nodes in the network according to certain 
reallocation policies. After budget adjustment, the problem is 
solved again to derive an attack strategy under the new 
defense budget allocation policy. This procedure is repeated a 
number of times until an equilibrium is achieved. 

The concept used to adjust the defense budget allocation 
policy is similar to the subgradient method [7], in which the 
budget allocated to each node is redistributed according to 
current step size. This subgradient-like method is described as 
follows. Initially, the status of each node after attack is 
checked. If the node is uncompromised, this suggests that the 
defense resources (budget) allotted to this node is inadequate 
(more than needed) or it is unworthy for an attacker to attack 
this node as the node has too great a defense budget. Therefore, 
we can extract a fraction of the defense resources from the 
nodes unaffected by attacks, and allocate it to compromised 
nodes. The amount extracted is related to the step size 
coefficient, and it is halved if the optimal solution of (IP 1) 
does not improve in a given iteration limit. 

Another factor that is related to the deducted defense 
resources is the importance of a node. In general, the greater 
the number of times a node is used by all OD paths implies 
higher importance. When a node with a larger number of times 
used by all OD paths is compromised, it provides a higher 
contribution to the growth of the objective function value (i.e. 
DOD), compared with a node with a smaller number of times. 
As a result, only a small amount of defense resources should 
be extracted from nodes with higher usage. In the proposed 
subgradient-like method, the importance factor to measure the 
importance of a node is used, which is calculated by /i totalt t , 
where ti is the average number of times node i used by all OD 
paths, and ttotal is the summation of ti (iV). An 
uncompromised node with greater importance factor will have 
a lower amount of defense resources extracted. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Experiment Environment 

For the proposed Lagrangean Relaxation algorithm, a 
simple algorithm is implemented using C++ language, and the 
program was executed on a PC with AMD 3.6 GHz quad-core 
CPU. Here three types of network topology acted as attack 
targets: the grid network, random network and scale-free 
network. To determine which budget allocation policy is more 
effective under different cases, two initial budget allocation 
policies were designed uniform and degree based. The former 
distributed the defense budget evenly to all nodes in the 
network, while the latter allocated budget to each node 
according to the percentage of a node’s degree. 

B. Computational Experiment of (IP 1) 

To prove the effectiveness of the Lagrangean Relaxation 
algorithm and the proposed heuristic, one simple algorithm 
were developed, introduced in Table II for comparison 
purposes. We designed two repair cost distributions. The first 
is uniform distribution, defined as RC1, where each node in 
the network has same repair cost; the second is degree-based 
distribution, defined as RC2, in which nodes with a larger 
degree have a higher repair cost. 

TABLE II.  EXPERIMENT PARAMETER SETTINGS  

 
//initialization 
 
total_repair_cost = 0; 
sort all nodes by their node degree in descending 
order; 
 
for each node i { //already sorted 
 if ( total_repair_cost+ repair_cost_i<= 
TOTAL_REPAIR_BUDGET 
 AND node i is compromised ){ 
  repair node i; 
  total_repair_cost+=repair_cost_i; 
 } 
} 
 
calculate DOD; 
return DOD; 

 
 

C. Experiment Result of (IP 1) 

Figure 1 shows the experiment results before and after 
recovery, and compares the performance between the 
proposed LR repair algorithm and simple algorithm (SA). 
Furthermore, the gap between LR and LB is displayed. Each 
point on the chart represents the DOD of different node 
numbers and topologies under uniform repair cost distribution. 
Obviously, the performance of our proposed LR repair 
algorithm is better than that of the degree-based simple 
algorithm (approximately 35% improvement on average); the 
mean gap between LR and LB is 30%. 

Figure 2 to Figure 3 illustrate the survivability, i.e. DOD, 
of the network before and after recovery under different 
topologies, node numbers and repair cost distributions. From 
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the above figures, the proposed LR-based repair algorithm 
performs well in both repair cost distributions. In addition, it 
also provides an insight for defenders. Since the RC2 is 
greater than RC1 in all cases, which shows that networks with 
degree-based repair cost distribution of higher DOD. It 
represents that lesser effect after restoration, and the defender 
has to spend more resources repairing important nodes. 

Figure 1.  Survivability of Different Network Size and Topology after Repair

Figure 2.  Survivability of Small Size Networks under Different Repair Cost 
Distributions 

 

Figure 3.  Survivability of Medium Size Networks under Different Repair 
Cost Distributions 

V. CONCLUSION 

In this paper, a mathematical programming model 
combining a survivability analysis with optimization is 
developed and which can be used for solving a network 
attack-defense problem by considering the two actors of the 
defender and the attacker. Attackers try to maximize network 
damage by compromising nodes in the network, whereas the 
defenders’ goal is to minimize the impact by deploying 
defense resources to nodes, enhancing their defense capability 
and repairing dysfunctional nodes. In this context, the Degree 
of Disconnectivity (DOD) is used to measure the damage of 
the network. The scenario is solved by Lagrangean relaxation-
based algorithm, in which the defender attempts to minimize 
the impairment by repairing dysfunctional nodes. The solution 
to repair the problem is also derived from Lagrangean 
relaxation-based algorithm. 

The main contribution of this research is the proposed 
model narrates behaviors of attackers and defenders on 
network scenarios in an adaptive way, especially on the 
defenders’ repair strategies. From the experiment results, the 
proposed Lagrangean relaxation-based algorithms are proven 
effective and can be applied to real-world networks, such as 
grid, random and scale-free networks. Also, the survivability 
of networks with different topologies, sizes and budget 
allocation policies have also been examined. 

It is assumed that the repair costs of the nodes in the 
network are the same or related to their degree. Nevertheless, 
nodes with higher defense resources should be harder for the 
defender to repair and thus have larger repair cost. Therefore, 
in future research, the form of the function appropriate for 
describing this relationship is an issue that can be further 
studied and can be applied in this scenario. 
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