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Abstract 
To expand the link set capacities for networks supporting Switched 
Multi-megabit Data Service (SMDS), we must determine how much 
additional capacity is needed and where it is needed so as to minimize 
the total capacity augmentation cost. We consider two combinatorial 
optimization problem formulations. These two formulations are 
compared for their relative applicability and complexity. 
Solution procedures based upon Lagrangean relaxation are proposed 
for the formulations. In computational experiments, it is clearly 
demonstrated that there is a computation-time versus solutionquality 
trade-off between the algorithms for the two formulations. In 
addition, to demonstrate the effectiveness of the proposed algorithms, 
we compare the proposed algorithms with a Most Congested First 
( M F )  heuristic. For the test networks, the proposed algorithms 
achieve up to 250% (79% on the average) improvement in the total 
capacity augmentation cost over the MCF heuristic. 

1. Problem Description 
Switched Multi-megabit Data Service (SMDS) is a high-speed, 
connectionless, public, packet switching service that will extend Local 
Area Network (LAN)-like performance beyond the subscriber’s 
premises, across a metropolitan or wide area [I] f21. To ensure the 
performance objectives, backbone networks supporting the Sh4DS 
service (referred to as SMDS networks) must be carefully managed. 
The INpLANSTM system is developed by Bell Communications 
Research (Bellcore) to provide a single environment to support 
Bellcore Client Company (BCC) network planning and traffic 
engineering across different networking technologies instead of 
building individual systems for each type of networks[31 f41. The 
INPLANS integrated network monitoring capability supports studies 
that monitor the ability of in-place networks to meet performance 
objectives. When performance exceptions are identified, corrective 
actions are needed to reduce the degree of overload[31. One possible 
action is to adjust the routing assignments. In [’I, a responsive routing 
algorithm is proposed to balance the network load. Usually, routing is 
a cost-effective solution to network overload caused by short-term 
traffic fluctuation. However, when the network load exceeds the 
network capacity and routing adjustment can no longer relieve the 
network overload, additional capacity is needed. 
In this paper, a capacity augmentation approach to reducing network 
overload that persists for a long time is described. The proposed link 
set capacity augmentation algorithms can be used as one of the initial 
functionalities in the INF’LANS integrated network servicing 
capability to support SMDS networks, which will take corrective 
actions when performance exceptions are identified by the integrated 
monitoring capability. 
To expand the link set capacities, network planners/administrators 
must know the inter-switching system routin strategy. The routing 
algorithm for SMDS networks is specified in 16. A brief review of the 
default Inter-Switching System Interface (ISSI) routing algorithm is 
given below. The routing algorithm used for SMDS networks is 
referred to as ISSI Routing Management Protocol (RMP). The RMP 
is derived from the Open Shortest Path First (OSPF) specification 
Version 2[’]. The main features of the RMP are as follows: 
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All routers have identical routing databases where a router is 
defined to be a Routing Management Entity (RME); 
Each router’s database describes the complete topology of the 
router’s domain; 
Each router uses its database and the Shortest Path First (SPF) 
algorithm to derive the set of shortest paths to all destinations 
from which it builds its routing table. 

Each link set is assigned a positive number in the RMP called the link 
set metric. The default link set metric of each link set is inversely 
proportional to the aggregate link set capacity. One can a ply 
standard shortest path algorithms, e.g. Dijkstra’s algorithm[# to 
calculate a shortest path spanning tree for every origin. Ties are 
broken by choosing the switch with the lowest router ID number. 
Two types of traffic are supported by SMDS -- individually addressed 
message and multicast (group addressed) message. The individually 
addressed message is transmitted from the origin to the destination 
over the unique path in the shortest path spanning tree. The multicast 
message is destined for more than one destination (may not be for all 
destinations, which is referred to as broadcasting). However, one copy 
of the multicast message will be transmitted over every link in the 
shortest path spanning tree. A multicast message will be discarded by 
a leaf (termination) switch in the shortest path spanning tree if the 
message is not for any user connected to the switch. 
The link set capacity augmentation problem for SMDS networks is 
difficult when the aforementioned routing algorithm and link set 
metrics are adopted. From the mathematical formulations shown in 
the next section, the difficulty is attributed to (i) the nonlinear arc 
weights with respect to the link set capacities (the default link set 
metric is inversely proportional to the aggregate link set capacity) and 
(ii) usually a discrete set of available link set capacities (e.g. in units 
of DS3 lines). 
In this paper, we present two integer programming formulations for 
the SMDS link set capacity augmentation problem. In the first 
formulation, the objective is to minimize the total routing cost (to 
enforce the OSPF routing with the default link set metrics) subject to 
a budget constraint. In the second formulation, we minimize the total 
capacity augmentation cost subject to a set of shortest-path-routing 
constraints. 
Three networks (10 test cases) with 10 to 14 nodes were tested in the 
computational experiments. The proposed algorithms determine 
solutions within minutes of CPU time. It is also shown that the 
proposed algorithm for the second formulation consistently calculate 
as good or better solutions than the algorithm for the first formulation 
at the cost of more computation time. Compared with a Most 
Congested First (MCF) heuristic, the proposed algorithms achieved 
up to 250% improvement in the total capacity augmentation cost. 
This work has the following significance. First, the problem is 
formulated as mathematical programs, which facilitates optimization- 
based solution approaches. Second. the proposed capacity 
augmentation algorithm can help the BCCs expand SMDS network 
capacities in an economical way. Third, the formulations and 
algorithms developed can easily be generalized to consider the joint 
link set and node capacity augmentation problem for SMDS networks 
(by a different interpretation to the graph model). Last, by letting the 
existing node and link set capacities for potential locations be zero, 
this work can be used to solve the topological design and capacity 
assignment problem for SMDS networks. 
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The remainder of this paper is organized as follows. In Section 2, two 
formulations of the SMDS link set capacity augmentation problem are 
given and compared. Solution procedures based upon Lagrangean 
relaxation are proposed for the two formulations in Sections 3 and 4, 
respectively. In Section 5, computational results are reported. Section 
6 summarizes this paper. 

2. Problem Formulations 
An SMDS network is modeled as a graph G (V, L) where the switches 
are represented by nodes and the link sets are represented by links. 
LetV=(  1,2, ..., N )  bethesetofnodesandLbethesetoflinksinthe 
graph (network). Let W be the set of all  origin-destination (0-D) 
pairs (single destination) in the network. According to the ISSI 
routing scheme, all traffic of an 0-D pair is transmitted over exactly 
one (shortest) path. Furthermore, multicast traffic from an origin is 
transmitted over a shortest path spanning tree, which is the union of 
the shortest paths from the origin to each destination. As explained 
earlier, the multicast traffic from one origin to each of its associated 
multicast groups is broadcast to all the other Switching Systems 
(SSs) over the same shortest path spanning tree. For each 0-D pair 
(o,d) E W, the mean arrival rate of new individually addressed traffic 
is 'y, (packetshec), while the aggregate (sum over all associated 
multicast groups) mean arrival rate of multicast traffic originated at 
origin o is a, (packets/sec). Let P, be the set of all possible simple 
directed paths from the origin to the destination for an 0-D pair (o,d). 
The overall traffic for 0-D pair (o,d) is transmitted over one path in 
the set Pd. Let P be the set of all simple directed paths in the 
network. Let To be the set of all spanning trees rooted at o. The 
multicast traffic originated at o is transmitted over one spanning tree 
in the set To. Let T be the set of all spanning trees in the network. For 
each link 1 E L, the existing capacity is CI packets/sec and the added 
capacity is AI packets/sec (a decision variable). 
For each 0-D pair (o,d) E W, let x be 1 if path p is used to transmit 
the individually addressed packets for 0-D pair (o,d) and 0 otherwise. 
In an SMDS network, all of the packets of an 0-D pair are transmitted 
over one path from the origin to the destination. Thus x xp = 1. 
For each path p E P and link 1 E L, let 6,. be the indicator function 
which is 1 if link 1 is on path p and 0 otherwise. 
For each origin 0, let y t  be 1 if spanning tree t E To is used to transmit 
the multicast message for origin o and 0 otherwise. SMDS SSs have 
the capability of duplicating packets for multiple downstream 
branches of a spanning tree used to carry the multicast traffic. When a 
packet is multicast from the root to the destinations using tree t, 
exactly one copy of the packet is transmitted over each link in the 
tree. Similar to the singledestination case, cfeToyf = 1 for every 
origin o. For each tree t E T and link 1 E L, let ofl be the indicator 
function which is 1 if link 2 is on tree f and 0 otherwise. 
Let Ql(Al) be the cost to add capacity AI to link 1. This cost can 
include a fixed charge to change the capacity. Usually AI is chosen 
from a discrete set Kl, e.g., in units of DS3 lines. AI can be negative 
whenexisting capacities are allowed to be removed form the network. 
Let pI be a prespecified threshold on the utilization factor of link I .  
The end-to-end delay objectives for SMDS networks will be satisfied 
if those utilization thresholds are not exceeded. These thresholds can 
be calculated using the schemes proposed in a recent work on 
allocatin end-to-end delay objectives to individual network 
elementb. The SMDS link set capacity augmentation problem can 
be formulated as the following two combinatorial optimization 
problems. 
2.1 Formulation 1 
Let B be the total budget available for capacity augmentation. For 
each link 1 E L, let l' denote the link set in the opposite direction. 

PEP, 

x p  6, 'yod ZIx=min  I: - 
l ~ L ( o , d ) ~ W p ~ p ~ ,  cl 

subject to: 

= 1  vo E v (5) 

=Oor 1 V t  E To, o E V (6) 
E KI 
= Ar 
5 B .  

Vl  E L (7) 
V l  E L (8) 

(9) 

The objective function and Constraints (1) and (2) ensure that the 
individually addressed traffic for every 0-D pair be routed over 
exactly one shortest path where each arc weight is inversely 
proportional to the corresponding link set capacity. The left hand side 
of Constraint (3) denotes the aggregate flow (including individually 
addressed and multicast traffic) over link 1. Constraint (3) requires that 
the utilization factor of each link not exceed a prespeciiied value (to 
satisfy the end-to-end delay objectives). Constraints (5 )  and (6) 
require that all of the multicast traffic from one origin be transmitted 
over exactly one spanning tree. The left hand side of Constraint (4) 
(together with (1) and (2)) is the number of selected paths (for 
individually addressed traffic) rooted at origin 0 and passing through 
link 1, while the right hand side of Constraint (4) (together with (5 )  
and (6)) equals N - 1 if link 1 is used in the spanning tree for root o to 
multicast messages and 0 otherwise. Recall that N - 1 is the 
maximum number of selected paths originated at node o and passing 
through link 2. Therefore, Constraint (4) requires that the union of 
selected paths from one origin to all the destinations for individually 
addressed traffic be the same spanning tree rooted at the origin to 
carry multicast traffic. (Note that this constraint implies that the 
selected paths from one origin to carry individually addressed traffic 
form a spanning tree.) Constraint (7) requires that the capacity added 
to each link be allowable. Constraint (8) requires that the link sets be 
installed in pairs with the same capacity in both directions. Constraint 
(9) requires that the total capacity expansion cost not exceed the given 
budget B. 
It would be interesting to investigate the difficulty/complexity of the 
above problem. If AI is a constant and only Constraints (1) and (2) are 
considered, the problem is a well known shortest path problem. 
However, with the consideration of the capacity constraint (3), the 
problem h o m e s  NP-complete and no existing polynomial time 
algorithm is available to solve the problem optimally. Next, the arc 
weight (Cl +Al)-' is a nonlinear function of the discrete decision 
variable Al .  Moreover, The knapsack-type constraint (9), the 
integrality constraint (6) and the routing constraint (4) for yI  add 
another degree of difficulty to the problem. 
An equivalent formulation of fi is 

0 5 5  I ( C l + A I ) i l  VIE L. (11) 
For each link I, an auxiliary variable fr is introduced. Since the 
objective function is strictly increasing with fr and (P1) is a 
minimization problem, equality of (10) will hold in an optimal 
solution. As the reader will see in the next section, the introduction of 
fi decouples the problem into three independent subproblems in the 
Lagrangean Relaxation. Constraint (1 1) gives the range of f r .  
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2.2 Formulation 2 
- 

Zfx = min OI(AI) (IP2) 
I C L  

E E XP 6, 

E Yr 

dE V-(01 PEP,,, 

1E To 

Yl 

A/ 

V(0.d) E w (12) = 1  

= O o r  1 Vt E To, o E V (17) 

E KI V ~ E  L (18) 
= At Vl  E L (19) 

v p  E Pd, (o ,d)  E w. (20) SP, %cG 
The objective function is to minimize the total cost of capacity 
augmentation. Constraints (12)-(19) are the same as (1)-(8). The left 
hand side of (20) (together with (12) and (13)) is the routing cost for 
0-D pair (o ,d)  (for one unit of flow on the selected path). The right 
hand side of (20) is the cost of path p E Pd. Constraint (20) requires 
that for each 0-D pair a shortest path be used to carry the individually 
addressed traffic. 
~n equivalent formulation of E is 

Z f P ,  = min W A , )  (E) 
/ E L  

subject to 

(12) - (19) E xp 6p/ 5 f a i l  V I  E L, (0 .d)  E w (21) 

(22) 
PE pm 

fd/ = 0 or a V I  E L, (0 ,d)  E w 
I E- "' Vp E Pd. ( o , ~ ) E  W .  (23) J d l  E- 

/EL  C l + A /  / E L  

For each link 1 and 0-D pair (o,d),  an auxiliary variable f& is 
introduced. (21) should be an equality and the inequality is a 
relaxation. However, it can be shown that equality of (21) will hold 
in an optimal solution. As the reader will see in Section 4, the 
introduction of fd decouples the problem into three independent 
subproblems in the Lagrangean Relaxation. Constraint (22) gives the 
range of f d l .  
2.3 A Comparison between Formulations 1 and 2 
It would be useful to make a comparison between Formulations 1 and 
2 for their relative applicability and complexity. An apparent 
difference between ( P l )  and (IP2) is the objective functions and the 
last constraints. However, there is a dual relation between these two 
formulations. The objective function of Formulation 1 (together with 
constraints (1) and (2)) enforces the shortest path routing strategy, 
while the last constraint of Formulation 2 explicitly serves this 
purpose. The objective function of Formulation 2 is to minimize the 
total capacity augmentation cost, while the last constraint of 
Formulation 1 imposes an upper limit on the total capacity 
augmentation cost. 
One potential drawback of Formulation 1 is that the shortest path 
routing strategy is enforced by the objective function but not 
constraints. The constraint set of (IP1) allows an 0-D pair to choose 
an altemative route when the true shortest path with respect to the 
default link set metrics is overloaded (under the capacity constraint 
(3)). It is therefore possible that (Pl) is feasible with respect to the 
constraint set but is infeasible with respect to the shortest path routing 
strategy. One can increase the given budget when no desired solution 
is found. However, it is undesirable to assign too much budget, which 
will make link sets overengineered. Consequently, it may take several 

iterations to adjust the given budget when one wants to determine the 
minimum budget required. Whereas, the optimal objective function 
value of (E) is the minimum budget needed. 
In view of the number of constraints, Formulation 1 is better than 
Formulation 2 since (23) is potentially comprised of a huge number of 
constraints (equals the number of simple paths in the network). It is 
difficult, if not intractable, to consider the numerous constraints in a 
solution procedure. Although (2) and (6) ((13) and (17) as well ) have 
the same nature, in the proposed solution procedure, these two sets of 
constraints are considered implicitly in a shortest path problem and a 
minimal cost spanning tree problem, respectively. As a result, no 
aforementioned complexity problem will be incurred. 

3. A Solution Procedure to Formulation 1 
The basic approach to the development of a solution procedure to 
Formulation 1 is Lagrangean relaxation. Lagrangean relaxation is a 
method for obtaining lower bounds (for minimization problems) as 
well as good primal solutions in integer programming problems. A 
Lagrangean relaxation (LR) is obtained by identifying in the primal 
problem a set of complicating constraints whose removal will 
simplify the solution of the primal problem. Each of the complicating 
constraints is multiplied by a multiplier and added to the objective 
function. This mechanism is referred to as dualizing the complicating 
constraints. 
For Formulation 1 (Problem (IPl)), we dualize constraints (3). (4). (9) 
and (10) to obtain the following relaxation 

fi 
ZDl(v,s,P,u)=min E - + x VI r E E xp 6pI %d 

/ E L  IeL (o .d )sWp~P, , ,  

V (o ,d)  E w (24) 

(25) xp = 0 or 1 v p  E PGd, (o,d) E w 
CY1 = I  V O E  v (26) 

A I  E 4 V l  E L (28) 
A/ = A, Vl E L (29) 

0 5 fr 2 ( C / + A i ) i /  V l E L  (30) 

1s To 

Vt E To, o E V (27) y l  = 0 or 1 

where v, s, and U are the vectors of [ vr ), [ sd ) and [ U /  ), respectively. 
Note that the constraints are dualized in such a way that the 
corresponding multiplers are nonnegative. 
(LR1) can be decomposed into three independent subproblems. Note 
that the constant terms, e.g. PB, were omitted in the objective function 
in the subproblems. 
SubDroblem 1: 

VIE L 
V I €  L 
V 1 E L  
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GI ( V A U )  = min e e [(U1 +VI>  ynl + Soli xp 6, 
leL(O,d)EWpEPm 

subject to: 
e x p  = 1  V(0,d) E w (34) 

xp = 0 or 1 V p  E Pnl, ( o , d ) ~  W (35) 
PE Pod 

and 
Subproblem 3: 

( V J )  = min z 2 x (VI a0 - (N - 1) Sd) Y f  Of1 

ZYf  = 1  V o a  v (36) 

(37) 

IEL O E V ~ E T ~  

subject to: 

rsTo 

yf = 0 or 1 Vt E To, o E V. 
Subproblem 1 is composed of I L /2 I (one for each pair of links in 
opposite directions) problems. Since AI is discrete and bounded, the 
problem can be solved by successively fixing AI to all  possible values 
that satisfy (31). 
Subproblem 2 consists of I W I (one for each 0-D pair) shortest path 
problems where (ul + vi) ynl + sol is the arc weight for link I and 0-D 
pair (o,d). Dijkstra's algorithm can be applied to solve the shortest 
path problems. 
Subproblem 3 consists of IV I (one for each root) minimum cost 
spanning tree problems where vl ao - (N - 1) sd is the arc weight for 
link I and root 0. One can apply Prim's or Kruskal's to 
solve the problem. 
For any (v,s,f3,u) 5 0, by the weak Lagrangean duality theorem, the 
optimal objective function value of (LRl), z D I ( v , s , P , u ) ,  is a lower 
bound on ZIP, [''I . The dual problem @1) is 

To find the greatest lower bound, we solve (01). Another common 
approach to finding a lower bound on the optimal objective function 
value of a minimization integer programming problem is to use linear 
programming relaxation (the integrality constraints are relaxed). 
However, the objective function of ( P I )  is in general nonconvex with 
respect to fr and AI (examining the Hessian of fi I (C, +Al)) .  No 
standard procedure are available to solve the linear programming 
relaxation optimally to obtain a legitimate lower bound. 
There are several methods for solving the dual problem (Dl). One of 
the most popular methods is the subgradient method. Let a 
(2+ I V l )  IL I + 1 vector b be a subgradient of Z D I ( v , s , P , ~ ) .  In  
iteration k of the subgradient optimization procedure, the mulhplier 
vector mk = ( V ~ , S ~ , ~ ~ , U ~ )  is updated by 

mk+l = mk + tkbk .  

The step size t ' is determined by 

where Z f p l  is an objective function value for a heuristic solution 
(upper bound on ZIP and 6 is a constant, 0 < 6 5 2. To solve (Dl), 
the subgradient method is used. 
The above procedure is for solving the dual problem and obtaining 
good lower bounds on the optimal primal objective function value. 
We next describe a procedure for finding good primal feasible 
solutions. In each iteration of solving the dual problem (where an 
(LR1) is solved), one can calculate the aggregate link set flows using 
the routing assignments form the solution to the (LRl). From these 
aggregate link set flows, the minimum link set capacities required to 
satisfy the capacity/utilization constraints can be calculated. We then 
use these minimum link set capacities to calculate a new set of link set 
metrics and to reroute the traffic accordingly. If any of the 
capacity/utilization constraints is violated, we may apply the 
following Most Congested First (MCF) heuristic to place additional 
capacity. 
Define overflow for a link set to be the aggregate flow deducted by the 
effective capacity (the link set capacity times the given utilization 

threshold) of the link set. 
The MCF Heuristic: 

1. Find the link set with the most overflow where ties are broken 
arbitrarily. 

2. Add one link to the link set identified in Step 1 and one link to 
the link set in the opposite direction. 

3. Calculate the new link set mebrics and reroute the traffic. 
4. If no overflow is found, stop; otherwise go to Step 1. 

If the total cost is less than the given budget, then a primal feasible 
solution is found. Another alternative to the MCF heuristic is the 
following All Congested Simultaneously (ACS) heuristic to find 
primal feasible solutions. 
The ACS Heuristic: 

1. 
2. 
3. 

4. 

5. 
6. 

Set the counter limit K to be a prespeci6ed value. 
If K = 0, stop; otherwise, decrease K by 1. 
Find the link sets where the capacity (utilization) constraints are 
violated. 
For each pair of link sets in opposite directions which consist of 
at least one link set identified in Step 3, add the minimum 
number of links (the same number for both link sets) to satisfy 
the current flows for both link sets. 
Calculate the new link set metrics and reroute the traffic. 
If no overflow is found, return; otherwise, keep the routing 
assignments, remove the links added in Step 4 and go to Step 2. 

To find the tightest budget constraint (the lowest cost), one may apply 
the concept of bisecting search in adjusting the given budget 8. 
However, this may require solving a significant number of (P1)'s. In 
addition, for a given budget B, it may be difficult to determine 
whether the problem is feasible ( (IP) is an integer programming 
problem). The following implementation attempts to achieve better 
efficiency. 
The Overall Algorithm A1 for Formulation 1: 

1. Apply the MCF heuristic to calculate an initial value of the 
given budget. 

2. Solve the current (Pl). 
3. Record the lowest capacity augmentation cost for the feasible 

capacity augmentation plans in solving (TP1). 
4. If the lowest cost from Step 3 is smaller than the current given 

budget, construct a new (IP1) by replacing the given budget 
with the lower value and go to Step 2; otherwise, stop. 

4. A Solution Procedure to Formulation 2 
The basic approach to the development of a solution procedure to 
Formulation 2 is also Lagrangean relaxation. For Formulation 2 
(Problem (IP2)), we dualize constraints (14). (15), (21) and (23) to 
obtain the following relaxation 

subject to: 
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Table 1. Summary of computational results 

Time(A2) Z M t '  - ZA 
Z A 2  

Time(A1) ZAZ 
ZA' 

Net 

ID 
pss 
PSS 
PSS 
PSS 
GTE 
GTE 
GTE 
SITA 
SITA 
SITA 

Lower Traf. 

Req. 
7m- 
0.50 
0.40 
0.30 
0.60 
0.45 
0.30 
1 .OO 
1 S O  
0.20 

2 
2 

Exis. 

Cap. 
5 

5 
5 
5 
4 
3 
2 
5 
5 
1 

54 133.3 27.5 46 173.9 163.5 4 
10 40.0 23.0 4 250.0 141.0 0 

z MCF 

772- 
116 
48 
10 
46 
30 
26 
24 

126 
14 

- 
Solved (%I I (sec) I Bound 

2 I 166 I 3.6 I 59.5 I 130 I 32.3 I 237.9 1 88 
2 108 
2 42 
2 6 
3 26 
2 20 
2 14 
3 16 

76.9 
100.0 
85.7 
50.0 

23.4 
14.3 
66.7 
91.7 

100.0 
85.7 

140.0 

234.0 
233.8 
243.5 
205 .O 
200.4 
201.6 
164.5 

54 
22 
0 
6 
4 
2 
0 

E x p  = 1  V(o,d)  E w (39) 

xp = 0 or 1 Vp E. P,, ( 0 . d ) ~  W (40) 

' C Y 1  = 1  vo E v (41) 

y1 = 0 or 1 Vt E To, o E V (42) 

A/ E K/ VIE L (43 1 
A/ = At  VIE L (44) 

f ~ d r  = 0 or 1 V ( o , d ) ~  W. I E L  (45 1 

P E  pm 

:E To 

where v, s, p and 8 are the vectors of ( v , } ,  ( so l }  (b) and (O,,], 
respectively. Like (LRl), the constraints are dualized in such a way 
that the corresponding multiplers are nonnegative. 
(LR2) can also be decomposed into three independent subproblems. 
Subproblem 1: 

- 'C ecdfalrl 
(0 .d )  E W 

subject to: 
Ai E Ki V l E L  (46) 
A1 = At  V I  E L (47) 

0 5 fr I ( C I + A l ) p l  V l  E L (48) 
Subproblem 2: 

z ; 2 ( V , S , e )  = min [v, y~, + so, + e,] rp 6, 
/ E L  ( o . d k W p E P O I  

subject to: exp = 1  V(o,d)  E w (49) 
P E  pm 

xp = 0 or 1 Vp E Pd. (o,d) E W (50) 
and 
Subproblem 3: 

z i Z ( v . s )  = min (vI a, - (N - 1) sd)  y1 or, 
l eL osVlsT,,  

subject to: 
C . Y l  = 1  VOE v (51) 

yl  = 0 or 1 Vt E To,  o E V .  (52)  
le  To 

Subproblem 1 is composed of I L/2 I (one for each pair of links in 
opposite directions) problems. Since A, is discrete and bounded, the 
problem can be solved by successively fixin A, to all possible values 
that satisfy (46). For a fixed A, ,  fad, is 1 if tP pa pP/(Cl +A,)  I ed, 
and 0 otherwise. 
Subproblem 2 consists of I W I (one for each 0-D pair) shortest path 
problems where v, yd + so, + e&, is the arc weight for link 1 and 0-D 

pair (o,d). Dijkstra's algorithm can be applied to solve the shortest 
path problems. 
Subproblem 3 of (LR2) is the same as that of (LR1) and can be solved 
by the same way. 
Like (Dl), the following dual problem is constructed 

Z D Z  = max zDZ(v,&pve). (D2) 
(v.s.F,e) o 

and the subgradient method is applied to solve (D2). 
To find good primal feasible solutions, the same heuristic as used in 
solving (IP1) is applied. The overall algorithm is described below. 
The Overall Algorithm A2 for Formulation 2: 

1. Initialize parameters. 
Afply the MCF heuristic to calculate an initial value of 
Z I p 2 ,  an upper bound to be used in the subgradient method. 
Initialize the multipliers. 
Set the iteration counter K to be a prespecified value. 

2. 
3. Solve (LR2). 
4. Calculate primal heuristic solutions. 
5. Adjust the multipliers. 
6. Go to Step 2. 

If K = 0, stop; otherwise, decrease K by 1. 

5. Computational Results 
In the computational experiments, we test the proposed algorithms 
with respect to their relative efficiency and effectiveness. We also 
quantify how much the total capacity augmentation cost can be 
reduced by the proposed algorithms compared with the MCF heuristic 
described earlier. 
The link set capacity augmentation algorithms for SMDS networks 
described in Sections 3 and 4 are coded in FORTRAN 77 and run on a 
SUN SPARC file server'. The algorithms are tested on three 
networks: PSS (14 nodes), GTE \12 nodes) and SITA (10 nodes) 
whose topologies can be found in [I I. For each of the three networks, 
it is assumed that for each 0-D pair the total individually addressed 
traffic rate at which packets are generated is the same (uniform traffic 
demand). Since the amount of group addressed traffic is expected to 
be small compared with the individually addressed traffic, the group 
addressed traffic is not considered in the computational experiments. 
It is also assumed that only one type of links (DS3 lines) are available 
and that the cost for each additional link is 1. 

1. Bellcore does not recommend or endorse products or vendors. Any mention of a 
product or vendor in this paper is to indicate the computing environment for the 
computational experiments discussed or to provide an example of technology for 
illustrative purposes; it is not intended to be a recommendation or endorsement of 
any product or vendor. Neither the inclusion of a product or a vendor in a computing 
environment or in this paper, nor the omission of a product or vendor, should be 
interpreted as indicating a position or opinion of that product or vendor on the part of 
the authors or Bellcore. 

628 



For Algorithm Al. the given budget B is initially calculated by 
applying the MCF heuristic. The ACS heuristic is applied to find 
primal feasible solutions. The iteration limit used in the ACS 
heuristic is 5. As mentioned in Section 3, the lowest feasible capacity 
augmentation cost found in solving the current (IP1) is recorded and 
used as the new (tighter) budget in a new (IP1). This process is 
repeated until no tighter budget is found. 
To solve (Dl), the subgradient method described in Sectiw 3 applied, 
In our implementation, Z!p, is initially chosen as xl I .LpI  (an upper 
bound on the total link set utilization factors if (IP1) is feasible) and 
updated to the best upper bound found so far in each iteration. In 
Equation (36), 6 is initially set to 2 and halved whenever the objective 
function value does not improve in 30 iterations. The iteration 
counter is initially set to lo00, The initial values of U / ,  v, and are 
chosen to be 1KI, 0 and zlsLpI I zIELCIr respectively. 

For Algorithm A2, the ACS heuristic is applied to to find primal 
feasible solutions. To solve @2), the subgradient method is atplied. 
The MCF heuristic is applied to calculate an initial value of ZIP,, an 
upper bound on the optimal objective function value of (IP2), to be 
used in the subgradient method. The step size control parameter 6 is 
initially set to 2 and halved whenever the objective function value 
does not improve in 30 iterations. The iteration counter is initially set 
to 500. The initial values of vi, pp and e,, are chosen to be 0. 
Table 1 summarizes the results of the computational experiments with 
the proposed algorithms. The second column gives the traffic 
requirement for each 0-D pair (normalized by the DS3 line capacity) . 
The third column specifies the existing capacity of each link in each 
network (also normalized by the DS3 line capacity). The fourth 
column reports the cost (number of additional links) calculated by the 
MCF heuristic, denoted by ZMcF. The fifth column gives the number 
of iterations (the number of (IP1)’s solved) executed when Algorithm 
A1 is applied. The sixth column shows the cost calculated by 
Algorithm Al, denoted by ZA’.  The seventh column provides the 
percentage difference between ZMcF and ZA’ . The eighth column is 
the CPU time for Algorithm Al, which includes the time to input the 
problem parameters. The ninth column shows the cost calculated by 
Algorithm A2, denoted by Z A 2 .  The tenth column provides the 
percentage difference between ZMcF and ZA2. The eleventh column 
is the CPU time for Algorithm A2, which includes the time to input 
the problem parameters. The last column is the largest lower bound 
on the optimal objective function value found by Algorithm A2. This 
is calculated by rounding up the best objective function value of the 
dual problem (D2) to the closed even number (the optimal objective 
function value of (Ip2) is an even number). 
From Table 1, we have the following observations. First, the 
proposed algorithms determine solutions in minutes of CPU time on a 
SUN SPARC file server for networks with 10 to 14 nodes. Second, 
for Algorithm 1, the number of (IP1)’s solved for each test case is at 
most 3. Third, Algorithm A2 takes more CPU time than Algorithm 
Al. but calculates as good or better solutions. Fourth, compared with 
the MCF heuristic, the proposed algorithms result in up to 250% (78% 
on the average) improvement in the total capacity augmentation cost 
over the MCF heuristic. Last, the lower bounds are loose compared 
with Z A 2 ,  the best upper bounds obtained. We believed this is due to 
the large duality gap between ZD2 (the optimal objective function 
value of (D2)) and ZIP,  (the optimal objective function value of 
(P2)). 

6. Summary 
Switched Multi-megabit Data Service (SMDS) is a high-speed, 
connectionless, public, packet switching service that will extend Local 
Area Network (LAN)-like performance beyond the subscriber’s 
premises, across a metropolitan or wide area. The SMDS service is 
considered as the first step towards the BISDN-based services and is 
thus strategically important for the BCCs. 
To satisfy the performance objectives and, on the other hand, to avoid 
excessive engineering, it is essential that the capacity of SMDS 
networks be carefully managed. When performance exceptions are 
identified by a monitoring process, one may either reroute the traffic 
or expand the network capacity to reduce the degree of network 
overload. Rerouting is usually a cost effective solution. However, 
when the load exceeds the network capacity, rerouting alone cannot 
resolve the overload problem and additional capacity is needed. 

In this paper, a capacity augmentation approach to reducing network 
overload is described. The objective is to detennine (i) the minimum 
cost to place additional link set capacity for an exhausted network to 
alleviate the overload problem and (ii) where to add the capacity. We 
consider two combinatorial optimization problem formulations. In 
the first formulation, the objective is to minimize the total routing cost 
(to enforce the default routing protocol in SMDS networks) subject to 
a budget constraint. In the second formulation, we minimize the total 
capacity augmentation cost subject to a set of shortest-path-routing 
constraints. These two formulations are compared for their relative 
applicability and complexity. 
Solution procedures based upon Lagrangean relaxation are proposed 
for the formulations. In computational experiments, the proposed 
algorithms determine solutions in minutes of CPU time of a SUN 
SPARC file server for networks with 10 to 14 nodes. It is shown that 
the algorithm for the second formulation consistently calculate as 
good or better solutions than the algorithm for the first algorithm at 
the cost of longer computation time. In addition, the proposed 
algorithm is compared with a Most Congested First (MCF) heuristic. 
For the test networks, the proposed algorithm achieves up to 250% 
(79% on the average) improvement in the total capacity augmentation 
cost over the MCF heuristic. 
This work has the following significance. First, the problem is 
formally formulated as mathematical programs, which clearly 
demonstrates the difficulty of the problem and facilitates 
optimization-based solution approaches. Second, the proposed 
algorithms have been computationally shown to be efficient and 
effective. The algorithms can thus help the BCCs expand SMDS 
network capacities in an economical way. Third, the formulations and 
algorithms developed can easily be generalized to consider the joint 
link set and node capacity augmentation problem for SMDS networks. 
Last, by letting the existing node and link set capacities for potential 
locations be zero, this work can be used to solve the topological 
design and capacity assignment problem for SMDS networks. 
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