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Abstract 

In this paper, the joint routing and flow control problem in virtual 
circuit networks is considered. We consider the problem of choosing 
a path and dust ing the input rate for each origin-destination pair 
in the network. In the first model we minimize the average number 
of packets in the network plus a throughput limitation cost. In the 
second model, we maximize the allocation to the most poorly treated 
user(s) subject to link utilization constraints. The third model, which 
is a variation of the second model, has an additional constraint which 
limits the average number of packets in the network. These joint 
routing and flow control problems are formulated as mixed integer 
programming problems. 

The emphasis of this work is to develop near-optimal algorithms to 
solve these three optimization problems. The basic approach in this 
work is Lagrangean Relaxation which has been a common and suc- 
cessful technique in solving many difficult combinatorial optimization 
problems. In computational experiments, our algorithms determine 
solutions that are within a few percent of an optimal solution in min- 
utes of CPU time for networks with 26 to 61 nodes. 

1 Introduction 
The performance of a computer network is strongly dependent 
on the congestion control used in the network. A congestion 
control scheme consists of a routing algorithm and a flow control 
scheme. In early research in networking, the routing problem 
[2], [5], [6) and the flow control problem [U], [15], [17] have been 
considered separately. 

In order to achieve better overall congestion control, Rudin 
and Mueller [20] recommended that routing and flow control be 
considered as a joint problem rather than isolated ones. Gallager 
and Golestaani [7] showed that the joint routing and flow control 
problem for datagram networks can be formulated as a convex 
programming problem. Thaker and Cain [21] used the Gallager- 
Golestaani model to investigate the interaction between routing 
and flow control in datagram networks. 

Over the past decade, many networks have been implemented 
with virtual circuit service, e.g. SNA [13], TYMNET [22], TE- 
LENET [14], and TRANSPAC [3]. Furthermore, future net- 
works such as ISDN will provide virtual circuit service [lo]. As 
such, it is important to develop a good fundamental underst,and- 
ing of the joint routing and flow control problem for virtual cir- 
cuit net works. 

Gavish and Hantler [8] formulated the routing problem for 
virtual circuit networks as a combinatorial optimization prob- 
lem. They applied the Lagrangean Relaxation method to obtain 
good heuristic solutions. Hayden [15] proposed a maxmin flow 
control scheme to find a fair capacity allocation in a virtual cir- 
cuit network. In [15], a single fixed path was assumed to be 
given for each user pair. 
~~ 
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This paper may be viewed as a natural continuation or inte- 
gration of some of the aforementioned work. In the first model, 
we use the Gallager-Golestaani approach for virtual circuit net- 
works. Then we show the flow control algorithm of Hayden can 
be generalized to consider the routing problem jointly. 

The remainder of this paper is organized as follows. In Sec- 
tion 2, three joint routing and flow control problems are formu- 
lated as mixed integer programming problems. In Section 3, an 
algorithm is developed for each of the three models. In Section 
4, we report the computational experience with each of the three 
solution procedures. A summary of the paper is given in Section 
5. 

2 Problem Formulation 
A virtual circuit communications network is modeled as a graph 
where the processors are represented by nodes and the communi- 
cation channels are represented by arcs. Let V = {1,2, ..., N }  be 
the set of nodes in the graph and let L denote the set of commu- 
nication links in the network. For each link I E L ,  the capacity 
is Cl packets/sec. Let W be the set of origin-destination ( 0 - D )  
pairs in the network. For each 0 - D  pair w E W, the arrival of 
new traffic is modeled as a Poisson process with rate 7w (pack- 
ets/sec). For 0-D pair w, all of the traffic is transmitted over 
one path in the set P,, a given set of simple directed paths from 
the origin to the destination of 0 - D  pair w. 

For each 0 - D  pair w E W, let z p  be 1 when path p E P,,, 
is used to transmit the packets for 0 - D  pair w and 0 otherwise. 
In a virtual circuit network, all of the packets of a user pair are 
transmitoted over one path from the origin to the destination. 
Thus CpEp, z p  = 1. For each path p and link I E L ,  let. Sp,  
denote the indicator function which is one if link 1 is on path 
p and zero otherwise. Then, the aggregate flow of packets over 
link 1 is given by the left hand side of (1). 

In the network, there is a buffer for each outbound link. 
Using Kleinrock's independence assumption [18], the arrival of 
packets to each buffer is a Poisson process where the rate is the 
aggregate flow over the outbound link. It is assumed that the 
transmission time for each packet is exponentially distributed 
with mean C;'. Thus, each buffer is modeled as an M/M/l  
queue. 

We present three optimization models for the joint routing 
and flow control problem for virtual circuit networks. In these 
models, the routing assignment and the input traffic rate for 
each 0 - D  pair are to be determined so as to optimize the average 
number of packets in the system or fairness. 

2.1 Model '1 

In this optimization model, we employ the same approach used 
by Gallager and Golestaani [7], [12] to develop a joint routing 
and flow control algorithm for datagram networks. For 0 - D  
pair w,  let ;Yw, and ym be the offered. the accepted, and 
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the rejected traffic rates, respectively. Note that 7, is given, 
while yw and yw are variables. In the model, an artificial link 
is introduced for each 0 - D  pair to carry the rejected traffic. 
Associated with each artificial link, a cost function to account for 
throughput limitation is given. For 0 - D  pair w.  the cost function 
of the artificial link. denoted by E,(y,). is assumed to be (i) 
convex, (ii) monotonically increasing and (iii) differentiable. In 
addition, E w ( y w )  + 00 as yw + Tu,. A joint routing and flow 
control problem is formulated as  the following nonlinear mixed 
integer programming problem. 

subject to 

c x ~ Y ~ ~ ~ I  I Ci Vl  E L (1) 

c x p =  1 vw E W  (2)  

W E W P E P ,  

PEP, 

x p  = 0 OT 1 v p  E Pw,w E w (3)  
yw + y w  = 7 w  vw E w (4) 
Yw,Yw L 0 vw E w. ( 5 )  

The objective function represents the average number of packets 
in the actual network plus a throughput limitation cost (penalty 
incurred by rejecting traffic). Constraint (1) requires that the 
aggregate flow not exceed the capacity for each link. Constraints 
(2) and (3 )  require that all of the traffic of an 0 - D  pair be 
transmitted over exactly one path. Constraint (4) requires that 
the offered traffic be either accepted by the network or routed 
through the artificial link (rejected). Constraint ( 5 )  requires 
that the input traffic rates (accepted and rejected) be nonnega- 
tive. 

An equivalent formulation of (m) is given by (IP1) below. 
We redefine x p  to be the rate at which packets for 0 - D  pair 
w E W are transmitted over path p E P,. (IP1) is better suited 
for the application of the Lagrangean Relaxation method. 

subject to 

Xp6pl I fl V l  E L (6) 

O < f [ <  c, VZEL (7)  c x p =  y w  vw E w ( 8 )  

x p  = 0 07- y w  V p € P w , w E  w (9) 
y,+ yw = 7, vw E w (10) 

7 w , Y w  2 0 Vw E W .  (11) 

W E W P E P ,  

P€P, 

For each link 1, a variable fi is introduced. This technique has 
been applied in [ 8 ] .  We interpret these variables to be "esti- 
mates" of the aggregate flows. Since the objective function is 
strictly increasing with fl and (IP1) is a minimization problem, 
each fi will equal the aggregate flow in an optimal solution. 

2.2 Model 2 

For each 0 - D  pair w, yw is a control variable which repre- 
sents the capacity allocated to user pair w. Let II = {(x,y) 2 
01 EpEpu, x p  = yw Vw E W and x p  = 0 or V p  E P,. U! E 
U-}. The problem of determining a path and accepted input 
traffic rate for each 0-D pair to maximize the smallest capacity 
allocation to any user pair is formulated as  the following linear 
mixed integer programming problem. 

Z m  = max min yw (Ip2) WEW 

subject to (x,y) E II 

The objective function represents the minimum allocation t.0 any 
user pair. Hayden [15] considered the problem of controlling the 
input rate (a single routing path for each user pair was assumed 
to be given) for each 0 - D  pair tomaximize the smallest capacity 
allocation to any user. Thus, (IP2) is a generalization of the 
problem considered in [15]. 

The above formulation has the disadvantage that in any op- 
timal solution some link(s) must be saturated. To eliminate this 
problem, CI is replaced by a&/ where 0 < a1 < 1, VZ E L. In 
addition, let s = minwEwyw. Then we convert the resulting 
maximization problem to the problem of minimizing -s. Our 
motivation for doing this is that it is easier to follow the algo- 
rithm development in Section 3 if each of the three models are 
stated as minimization problems. An equivalent formulation of 
(ET) is 

Z ~ p z  = min-s ( I P 2 )  

subject to (x,y) E TI 

s s  y w  V w E W  (13) 
Xpbpl I a,C, V l  E L. (14) 

W E W P E P ,  

2.3 Model 3 

This model is a variation of Model 2. In Model 2, each link was 
prevented from being saturated by constraining the link utiliza- 
tion factor for link 1 to not exceed al. In Model 3, we prevent 
each link from being saturated by using a system congestion 
constraint. That is, the average number of packets in the sys- 
tem is constrained not to exceed a given upper bound J .  The 
formulation is given below. 

Z 1 p 3  = min-s ( I P 3 )  

subject to (x,y) E II 

s l  yw V W E W  

2s-n- < J. 

For similar reasons as in Model 1, a set of auxiliary variables 
{fl} is introduced. 

3 Solution Procedures 

The basic approach to solving the above three mixed integer 
programming problems is Lagrangean Relaxation. Lagrangean 
relaxation is a method for obtaining lower bounds (for minimiza- 
tion problems) as well as good primal solutions in integer pro- 
gramming problems. A Lagrangean relaxation (LR) is obtained 
by identifying in the primal problem a set of complicating con- 
straints whose removal will simplify the solution of the primal 
problem. Each of the complicating constraints is multiplied by a 
multiplier and added to the objective function. This mechanism 
is referred to as dualizing the complicating constraints. 
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3.1 

For the first model we dualize constraint (6)  to obtain the fol- 
lowing relaxation 

A Solution Procedure for Model 1 

CUd z P 6 P i  - fi) (LR1) 
IEL WEWPEP, 

subject to 

O < f l i  Cl V l € L  (19) 

x p =  7, V W E  w (20) 

x p  = 0 OT y, vp E Pw,w E w (21) 
y w +  y w  = 7, vw E w (22) 

~ w , ~ w  2 0 QW E W. (23) 

PEP, 

It should be easy to verify the solution to (LR1) is as follows. 
For each link 1 E L, the solution f i  is 

f i = {  y - d & )  i f W &  otherwise. (24) 

To determine { z p } ,  weneed to solve IWI (one for each 0 - D  pair) 
shortest path problems where u1 is  the arc weight for link 1. For 
each 0 -D pair w E W, a shortest path p: E P, is found. Then, 

x p =  { p i fP=P:  
i fP  # p:. 

Let d, be the total cost ofp:. There are two cases to consider. If 
d, 5 Ek(O), then y, = 0; otherwise, yw = yw where Ek(y,) = 
d,. yw can be determined by (22). 

For any U 2 0, the optimal objective function value of (LRl) ,  
Z D ~ ( U ) ,  is a lower bound on Z ~ p l  [9]. Naturally, one wants to 
determine the greatest lower bound by 

201 = max u>o Z D ~ ( U ) .  (D1) 

There are several methods for solving the dual problem (Dl) .  
The most popular method is the subgradient method [4, 161. 
Let an ILl vector b be a subgradient of Z D ~ ( U ) .  In iteration IC of 
the subgradient optimization procedure, the multiplier for each 
link 1 E L is updated by U:" = U: + tkbf" .  The step size t k  is 
determined by 

where ZFP, is an objective function value for a heuristic solution 
(upper bound on Z1pl) and 6 is a constant, 0 < 6 5 2. 

Alternatively, we can use the Multiplier Adjustment Pro- 
cedure [19] to solve (Dl) .  The multiplier updating rule is as 
follows. 

uk+i = C-i l1 - ( m k  - l)ff + g,",-2 (27) 
mkcl 

where gf represents the aggregate flow on link 1 determined from 
{ z p ,  y,}. The multiplier adjustment procedure given above is 
better suited for distributed computation and provides better 
lower bounds. 

3.2 A Solution Procedure for Model 2 

For the second model, we dualize constraint (14). 

The following observations will help us to find a solution 
procedure for (LR2). First, for { z , } ,  (25) is a solution. Second, 
yw = 5 ,  Vw E W .  This is true because if there is any y,~ > 5 ,  

then y,, can be reduced to 5 ( 5  will not be changed while the to- 
tal cost will be reduced). Note that in order to avoid the possibil- 
ity of an unbounded solution we can add redundant constraints 
yw 5 maxl alCi Vw E W to (LR2). Then, the objective function 
of (LR2) can be rewritten as -s + 5 CwEW d,,, - CIEL ulalC1. 
Therefore, if CwEW d, 2 1, then yw = 5 = 0,Vw E W ;  other- 
wise, yw = 5 = maxl alC1,Vw E W .  

Again, to find the greatest lower bound, we solve the follow- 
ing problem. 

To solve (D2), the subgradient method is used. 
Two schemes are designed to find better lower bounds. The 

f i s t  one is to use the fact that when all of the multipliers are 
multiplied by a positive scalar IC, the shortest paths obtained in 
solving (LR2) do not change. However, every d, should change 
by the same factor IC. Therefore, without changing the original 
solution 5 ,  {y,}, and { x p } ,  we can easily calculate Z D ~ ( U )  at 
the point {e} and possibly find a higher objective value. 

The second one is obtained by the fact that the set of possible 
objective function values of (IP2) is discrete. For the ease of 
illustrating the idea, assume that alC1 = C,Vl E L .  Then, % 
represents an lower bound on the number of user pairs sharing 
the bottleneck link. Since the number of user pairs should be 
an integer, the bound can be tightened by taking the ceiling 
function [=$--I. Then, we can use this value to calculate a 
better lower bound to (IP2). 

3.3 

To solve (IP3), we dualize constraints (16) and (18). 

A Solution Procedure for Model 3 

z D 3 ( U , P )  = - 5  + U l (  zp6pl - fi) 
1EL w € W p € P ,  

subject to (x ,y )  E II 

5 5  yw V W E W  (29) 
fl 5 Cl V l  E L. (30) 

We can find the optimal ,B and {fi} analytically by solving 
the following simultaneous equations. 

c-- J = 0. 
i E L  Cl - fi 

Equation (31) is obtained by equating to zero the derivative of 
the objective function of (LR3) with respect to fi .  Equation 
(32) holds since in an optimal solution to (IP3) constraint (18) 
is always binding. 

After simple algebra, we can derive the following results. 
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(33) 

And the objective function of (LR3) becomes 

(LR3) then becomes similar to (LR2) since the last term in (35) 
is a constant. 

3.4 Getting the Primal Solutions 

Recall that for each of the three models at each iteration when 
solving the dual problem, we find a shortest path for each 0-D 
pair. Thus, a heuristic for finding the routing assignment for 
each of the three models is simply to use these shortest paths. 

To determine the traffic rate for each 0-D pair, in the first 
model the solution to (LR1) is used directly. For the second 
and the third models, the algorithm proposed by Hayden [15] 
is adopted to perform the m a - m i n  flow control. Due to the 
space limitation of the paper, the algorithm is not given here. 
However, the interested reader can find the statement of the 
algorithm in [l] or [15). Note that for the third model, the 
capacity of link I is given by fi specified by equation (34). This 
can guarantee that constraint (18) is always satisfied. 

4 Computational Results 

The three routing and flow control algorithms for virtual circuit 
networks described in Section 3 were coded in FORTRAN 77 
and run on a SUN 4/60 workstation. The algorithm were tested 
on three networks. Their topologies are shown in Figures 1, 2, 
and 3. For each of the three networks, it was assumed that for 
each 0-D pair there were at most three candidate routes. For 
each 0 - D  pair, shortest paths were found with respect to 3 sets 
of randomly generated arc weights and the distinct paths were 
used as candidate routes. 

For Model 1, the throughput limitation cost function used 
was k. This was suggested in [12]. It was assumed that 
a, = a,Vw E W .  To solve (Dl)  the multiplier adjustment 
procedure given by equation (27) was used. In the multiplier 
adjustment procedure, we chose m k  = (10g,(k+3))~. The choice 
of the initial values of the multipliers was { &}. The paths and 
traffic rates found by solving (LR1) were used in the heuristic 
solution to (IPI). 

Table 1 summarizes the results of our computational exper- 
iments with Algorithm 1. In the second column, the value of 
a, for each 0-D pair w is given. The third column specifies 
the capacity of each link in each network. The fourth column is 
the largest lower bound on the optimal objective function value 
in 300 iterations. Recall that this is the best objective function 
value of the dual problem. The fifth column gives the best objec- 
tive function value for ( IPI)  in 300 iterations. The error bound 
[(upper-bound - lower-bound)x100/lower-bound] is an upper 
bound on how far the best feasible solution found is from an 
optimal solution. The seventh column provides the CPU times 
which include the time to input the problem parameters. 

From an inspection of Table 1, it is clear that the joint rout- 
ing and flow control algorithm is efficient and very effective in 
finding near-optimal solutions. For every test problem (networks 
with up to 61 nodes), the algorithm determines a solution that 
is within 1% of an optimal solution in less than 2 minutes of 
CPU time on a SUN 4/60 workstation. 

For Model 2, al was assumed to be 1 for all links. To solve 
(D2), the subgradient method was applied. In our implemen- 
tation, ZFP2 was initially chosen as 0 and updated to the best 
upper bound found so far from iteration to iteration. In (26), 6 
was initially set to 2 and halved whenever the objective function 
value did not improve in 20 iterations. The choice of the initial 
values of the multipliers was 0. Both schemes mentioned in Sub- 
section 3.2 to improve the lower bounds were implemented. A re- 
dundant constraint that limited each -yw to be no greater than 50 
times the maximum link capacity (we found that this constraint 
was more effective than maxl q C l )  was added. The results are 
reported in Table 2. The error bounds reported in Tables 2 and 
3 were computed by [(lower-bound - upper-bound)x 100/upper- 
bound]. 

In the experiments with Algorithm 2, we found that it was 
unnecessary to vary the level of link capacities for problem 2. 
This observation also applies to problem 3. This result can be 
proven to be generally true by modifying the proof of a similar 
result in [23]. 

Algorithm 3 was applied to the network OCT as J was var- 
ied. To solve (D3), we used the same implementation of the 
subgradient method used to solve (D2). To find a primal so- 
lution, Hayden's algorithm [15] was applied where the capacity 
for link 1 was determined by equation (34). The computational 
experience with Algorithm 3 is reported in Table 3. 

5 Summary and Conclusions 

In this paper the joint routing and flow control problem for vir- 
tual circuit networks is considered. The problem is formulated 
as three different mixed integer programming problems. The 
Lagrangean Relaxation technique is applied to solve the three 
optimization problems. 

In computational experiments our algorithms are shown to 
be very effective and efficient in finding near-optimal solutions. 
For the worst case, our algorithm determines solutions that are 
within a few percent of an optimal solution in minutes of CPU 
time for networks with 26 to 61 nodes. 

Since a distributed algorithm is more desirable than a cen- 
tralized one due to higher reliability, a continuation of this work 
is to develop a distributed version of the routing and flow con- 
trol algorithm for each of the three models presented in this 
paper. The formulations can be extended to include priorities 
and multiple sessions for each 0-D pair. 
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