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Abstract: 
This paper proposes the optimal design of lightpath Routing and Wavelength Assignment 
(RWA) problem in Wavelength Division Multiplexing (WDM) networks without wavelength 
conversion. We formulate RWA as a mixed Integer Linear Programming (ILP) problem where 
the objective is to minimize the cost of wavelength assignment to the fiber links in the 
network. The Lagrangean relaxation technique and the optimization-based heuristics are used 
to solve this problem. Two sets of computational experiments are performed to test the 
algorithms for the maximum carried traffic and minimum wavelength requirements in three 
different network topologies (GTE, ARPA, OCT network). Based on solution quality to the 
computational experiments, the error gaps between the upper bound and the lower bound are 
close enough that the near optimal solutions could be obtained. On the other hand, we also 
show that the solution quality degrade gracefully under more and more heavy traffic network 
environment. By assessing solution quality and the computational time, we propose the 
efficient and effective optimization-based algorithms based on the Lagrangean relaxation 
method for the RWA problem in the WDM networks without wavelength conversion. 

1. INTRODUCTION 

WDM is a promising technique to utilize the enormous bandwidth of the 
optical fiber where the multiple wavelength-division multiplexed channels 
can be operated on a single fiber simultaneously [1]. A lightpath is an 
all-optical transmission path between two network nodes, implemented by 
the allocation of the same wavelength throughout the path [2]. However, 
how to route the wavelengths to a set of lightpaths is a challenging issue and 
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proven to be a NP-Complete problem [6, 7, 9]. 
A number of researchers have addressed this issue. Chlamtac [2] and 

Liang [3] have introduced the semilightpath technique to find the routing 
path. Both of the two works try to find the routing path by shortest path 
algorithm based on the arc weight of the auxiliary graph. And the arc weight 
of the auxiliary graph is fixed in order to calculate the optimal routing path 
for the particular Origin-Destination (O-D) pair. However, the arc weight 
should change dynamically in different lightpath routing assignments for 
each O-D pair. Furthermore, they did not address the issue of how to avoid 
the wavelength assignment collision between all O-D pairs. 

Kim [4] model the RWA in terms of the ILP formulation where the 
objective is to minimize the number of OXCs. And the heuristic algorithm 
based on branch & bound technique is proposed. However, no solution 
quality data between the solutions from the heuristic algorithm and the 
optimal solutions are reported from the computational experiments in order 
to clarify the effectiveness of this heuristic algorithm.  

Chen [5] propose layer-graph model for solving the routing and 
wavelength assignment problem. Several heuristics based on shortest path 
algorithm and layer-graph approaches are proposed. However, no lower 
bound are reported in this work to verify the solution quality of the proposed 
heuristic algorithms. 

Banerjee [6] formulated a Linear Programming (LP) formulation with 
the objective to minimize the number of wavelengths and solve by 
approximation algorithms in order to deal with large networks. However, in 
this work, only at most one lightpath is considered from a source to a 
destination.  

In this paper, we try to optimize the cost of wavelength assignment on 
the fiber-optic links in the WDM networks such that to route the 
wavelengths to their destination without violating the wavelength continuity 
constraint. In addition, multiple lightpaths from a source to a destination is 
considered. The wavelength continuity constraint means that the same 
wavelength must be used on all the links along the selected path for the O-D 
pair [1, 5]. And the algorithms that we proposed, unlike previous researches, 
are based on the lower bound and upper bound approaches at the same time. 

This paper is organized as follows. In Section 2, mathematical 
formulation of the RWA problem is proposed. In Section 3, the dual 
approach for the RWA problem based on the Lagrangean relaxation is 
presented. In Section 4, the getting primal feasible heuristic is developed to 
get the primal feasible solution from the solutions to the dual problem. In 
Section 5, the computational results are reported. In Section 6, the 
concluding remarks are presented. 
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2. RWA PROBLEM FORMULATION 

The WDM network is modeled as the graph G(W, L) where W is the set 
of O-D pairs and L is the set of fiber links. Here we assume that each node 
has the switching capability to route the wavelength to proper links. We 
show the definition of the following notation. 

L the set of candidate fiber links in the WDM network 
W the set of O-D pairs in the WDM network 
J the set of admissible wavelengths in the WDM networks 
wλ  the traffic requirement (in number of wavelengths) for each 

O-D pair w∈W 
Pw a given set of simple directed paths from the origin to the 

destination of O-D pair w∈W 
plδ  the indicator function which is one if link l∈L is on path p∈Pw

and zero otherwise 
)( ljlj Cϕ  the cost for installing wavelength j∈J on link l∈L 

And the decision variables are depicted as follows. 

xpj 1 when path p∈Pw with wavelength j∈J is used to transmit the 
traffic for O-D pair w∈W and 0 otherwise 

Clj 1 when wavelength j∈J is installed on link Ll∈ and 0 otherwise

The RWA problem is formulated as a mixed ILP optimization problem, 
as shown below. 

IPZ = min )( lj
Ll

lj
Jj

C∑∑
∈ ∈

ϕ  (IP) 

subject to: 

∑∑
∈ ∈

=
wPp

pj
Jj

x wλ  Ww∈∀  (1.1) 

xpj= 0 or 1 JjWwPp w ∈∈∈∀ ,,  (1.2) 

∑∑
∈∈

≤
wPp

ljplpj
Ww

Cx δ  JjLl ∈∈∀ ,  (1.3) 

1or0=ljC  JjLl ∈∈∀ , . (1.4) 

The objective function of (IP) is to minimize the total cost of wavelength 
assignments in the WDM networks. Constraints (1.1) and (1.2) require that 
the wavelength requirements for each O-D pair should be routed to its 
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destination. Here distinct routing paths for the O-D pair with different 
wavelength requirements are allowed only if each wavelength is routed on 
one path. Hence, the wavelength continuity constraint is explicitly enforced 
in these two constraints. 

Constraint (1.3) enforces that any wavelength should be installed on the 
link before assigned by the O-D pairs for routing on this link. Constraint (1.4) 
requires that the wavelength assignment on each link is a zero/one integer 
constraint, which means each wavelength could only be installed on each 
link for one time or none. From Constraints (1.3) and (1.4), each wavelength 
could only be assigned by no more than one O-D pair on every link is strictly 
enforced. 

3. LAGRANGEAN RELAXATION FOR (IP) 

In order to solve the above formulation successfully, we relax (1.3) to 
obtain the following (LR) for (IP). 

)(aZD = min )( lj
Ll

lj
Jj

C∑∑
∈ ∈

ϕ + ∑∑∑∑
∈ ∈∈∈ Ww Pp

plpj
Jj

lj
Ll w

xa δ( )ljC−  (LR) 

subject to: 

∑∑
∈ ∈

=
wPp

pj
Jj
x wλ  Ww∈∀  (2.1) 

xpj= 0 or 1 JjWwPp w ∈∈∈∀ ,,  (2.2) 
1or0=ljC  JjLl ∈∈∀ , . (2.3) 

We can decompose (LR) into two independent subproblems.  

Subproblem 1: for xpj 
min ∑∑∑∑

∈∈ ∈ ∈ wPp
plpjlj

Ww Ll Jj
xa δ  

subject to (2.1) and (2.2). 

Subproblem 2: for Clj  

min ))(( ljljlj
Ll

lj
Jj

CaC −∑∑
∈ ∈

ϕ  

subject to (2.3). 

Subproblem 1 could be further decomposed into |W| independent 
subproblems. For each independent subproblem, it looks like a shortest path 
problem but the wavelength assignment makes this subproblem slightly 
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more complicated. We propose the Wavelength-Routing Algorithm (WR) to 
solve this subproblem. 

Wavelength-Routing Algorithm(WR) 
Step 1: For each O-D pair Ww∈ , first finding the shortest path with 

respect to each wavelength. Since the multiplier is positive, so the 
Dijkstra’s Shortest Path Algorithm could be applied. 

Step 2: There are total |J| shortest paths for this O-D pair. Then, the optimal 
solutions for O-D pair Ww∈  are wλ  number of shortest paths 
with the lowest costs. 

Subproblem 2 could also be further decomposed into |L||J| independent 
subproblems. For each independent subproblem, which could be solved by 
the Wavelength-Assignment Algorithm (WA). 

Wavelength-Assignment Algorithm(WA) 
Step 1: For each wavelength Jj∈ on each link ,Ll∈  calculate the value 

of ljljlj aC −)(ϕ . 
Step 2: If this value is greater than zero, assign Clj to zero else assign Clj to 

one. 

According to the algorithms proposed above, we could successfully 
solve the Lagrangean relaxation problem optimally. By using the weak 
Lagrangean duality theorem (for any given set of non-negative multipliers, 
the optimal objective function value of the corresponding Lagrangean 
relaxation problem is a lower bound on the optimal objective function value 
of the primal problem), ZD(a) is a lower bound on ZIP. We construct the 
following dual problem to calculate the tightest lower bound and solve the 
dual problem by using the subgradient method. 

)(max aZZ DD =  (D) 
subject to: a≥ 0. 

Let the vector S be a subgradient of )(aZ D at (a). In iteration x of the 
subgradient optimization procedure, the multiplier vector mx=(ax) is updated 
by mx+1= mx+ xx Sα , where )(aS x =( ∑∑

∈∈

−
wPp

ljplpj
Ww

Cx δ ). 

The step size xα  is determined by 2

)(
x

x
D

h
IP

S

mZZ −
δ , where h

IPZ  

is an primal objective function value at iteration k (an upper bound on 
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optimal primal objective function value), and δ  is a constant ( 20 ≤≤ δ ). 

4. GETTING PRIMAL FEASIBLE SOLUTIONS 

To obtain the primal feasible solutions to the RWA problem, solutions to 
the Lagrangean relaxation problems (LR) is considered. From the 
wavelength-routing assignment xpj to determine the wavelength assignment 
for each link Clj in order to satisfy the Constraint (1.3). The algorithm to get 
the primal feasible solution is proposed as follows. 

Joint Wavelength-Routing and Wavelength-Assignment Algorithm(WR-WA) 
Step 1: For each O-D pair, say wb, the wavelength routing assignment xpj 

from the solutions to the dual problem is used. If the wavelength j 
along the routing path xpj have not been used, assign the associated 
Clj along this routing path to be one and go to Step 4. If wavelength 
assignment violation occurs at any link, go to Step 2. 

Step 2: Find all the wavelengths on the links where Clj = 1 and add the 
associated arc weight alj with a very large number, say G1. Then 
identify the O-D pair, say wc, that use this conflict wavelength link. 
Go to Step 3.  

Step 3: There are two ways to resolve conflict. First to release the associated 
Clj along the routing path selected by wc, and let the wb find the 
minimum shortest path and the associated alj is modified accordingly. 
Then, finding the minimum shortest path of wc. Compute the total 
cost, say t1, by adding the cost of the shortest paths for wb and wc. 
Second is to locate the minimum shortest path of wb with the shortest 
path of wc remain unchanged. The total cost of wb and wc is also 
computed, say t2. If the lower cost of t1 and t2 is greater than G1, 
then it is an infeasible primal solution and stop the whole algorithm 
else assign the associated Clj to be one and go to Step 4. 

Step 4: Repeat the whole process until all O-D pairs are executed. And the 
primal feasible solutions are obtained. Stop the whole algorithm. 

5. COMPUTATIONAL EXPERIMENTS 

The computational experiments for the RWA algorithms developed in 
section 3 and 4 are coded in C and performed at PC with INTELTM PIII-500 
CPU. We tested the algorithm for 3 network topologies--ARPA, GTE, OCT 
with 21, 12 and 26 nodes. The network topologies are shown in Fig. 1, 2 and 
3.  
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The maximum number of iterations for the proposed dual Lagrangean 

algorithm are 1500, and the improvement counter is 30. The step size for the 
dual Lagrangean algorithm is initialized to be 2 and be halved of its value 
when the objective value of the dual algorithm does not improve for 30 
iterations. 

Two sets of computational experiments are performed. The 
computational time for these two sets of computational experiments are all 
within fifteen minutes. In these computational experiments, the cost of 
installing each wavelength on each link is randomly generated from one to 
ten. In the first set of computational experiment, we try to explore the 
threshold of the traffic that the networks could afford in the different 
network topologies under the given total number of available wavelengths. 
This is to maximize the carried traffic for the RWA problem, which is similar 
to the objectives in a number of related researches [5, 8]. In this experiment, 
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Figure 2. 12-node 50-link GTE Network
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Figure 1. 21-node 52-link ARPA Network
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Figure 3. 26-node 60-link OCT Network
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the total number of wavelengths available for each link is 40. Table 1 
summarizes the results. 

Here the error gap is defined as the {(upper bound – lower bound)/lower 
bound} * 100%. Since the traffic requirement is randomly generated, in the 
second column of Table 1, it means the range of traffic requirements (in 
wavelengths) for each O-D pair.  

As could be seen from Table 1, the error gap is tighter (all below 3%) in 
lightly loaded (below 0~6) GTE network environment and become loser in 
highly loaded environment. And when the range of traffic requirement is 
above 12, no feasible solution could be found. On the other hand, in the 
ARPA and OCT network topologies, it is not easy to find the feasible 
solution, since the degree of the nodes is small as compared to the GTE 
network. Table 1 shows that no feasible solution could be found when the 
range of traffic requirements is above 3 in both of these two network 
topologies. In other words, no primal feasible solution could be obtained 
even in the lightly loaded environment when the degree of the nodes is small. 
Hence, the degree of the nodes affects the solution quality tremendously. 

In the second set of computational experiment, we try to explore the 
threshold of the number of available wavelengths under fixed traffic 
requirements. In this experiment, the GTE network topology is tested, and 
the traffic requirements (in wavelengths) are randomly generated from zero 
to four for each O-D pair. Table 2 summarizes the results. 

As could be seen from Table 2, the solution quality is getting loser as the 
number of available wavelengths for each link is getting smaller. And for the 
number of wavelengths to be no greater than 13, no feasible solution could 
be found. It is interesting to see that as the number of wavelengths is 
approaching the threshold, the solution quality is becoming unstable. That is, 
when the number of available wavelengths is 15, no feasible solution could 
be obtained, but feasible solution could be found when the number of 
available wavelengths is 14. In addition, the error gap is only 7% at the 
threshold of the number of wavelengths. Some researchers try to minimize 
the number of available wavelengths [6], in the similar way, we have located 
the minimum number of wavelengths needed to support a given set of 
lightpaths on a GTE topology. In this set of computational experiments, the 
minimum number of wavelengths is 14. By assessing the error gap (7%) at 
this number of wavelengths, we also provide the effective algorithms to find 
the minimum number of wavelengths. 

6. CONCLUDING REMARKS 

In this paper, we successfully solve the RWA problem in which 
wavelength conversion is not considered. We formulate RWA problem as a 
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mixed ILP problem and solved by Lagrangean relaxation method. We 
introduce two algorithms to solve each independent dual subproblem 
successfully, and we also propose an optimization-based heuristic to get the 
primal feasible solution based on the solutions to the dual problem.  

Two sets of computational experiments are performed. In the first set of 
computational experiments, the threshold of the traffic requirements is 
explored in different network topologies under a given number of 
wavelengths. The solution quality is good (error gap are below 3 percent) in 
lightly loaded network and reasonably good  (error gap are below 13 
percent) in more highly loaded network. On the other hand, we also show 
that the degree of the nodes is an important factor for the algorithms to find 
the feasible solutions. That is, in low degree network topology, it is difficult 
to find feasible solution even in the lightly loaded traffic environments. 

In the second set of computational experiments, we try to locate the 
minimum number of total wavelengths which is the objective function in the 
past research. The approach to locate the number of total wavelengths is by 
iterative decreasing the number of total wavelengths when the feasible 
solution could be obtained. At the time that no primal feasible solution could 
be found, the minimum number of wavelengths is located. Based on the 
computational experiments, the solution quality is still good at the minimum 
number of wavelengths. 

As recalled from the computational time and the solution quality of the 
computational experiments, we propose the efficient and effective 
algorithms to solve the RWA problem. The further research is to solve the 
RWA with wavelength conversion problem. 
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TABLE 1 – COMPUTATIONAL RESULTS (THRESHOLD OF THE TRAFFIC REQUIREMENTS UNDER DIFFERENT 
NETWORK TOPOLOGY) 

Network 
topology 

Traffic 
requirements 

Lower bound Upper bound Error gap(%) 

 
 
 
 
 

GTE 

0~2 
0~3 
0~4 
0~5 
0~6 
0~7 
0~8 
0~9 
0~10 
0~11 
0~12 

1.454951e+002 
3.620000e+002 
6.159618e+002 
9.386195e+002 
1.278489e+003 
1.660505e+003 
2.198478e+003 
2.827843e+003 
3.379600e+003 
4.285055e+003 
5.387118e+003 

1.490000e+002 
3.710000e+002 
6.270000e+002 
9.630000e+002 
1.313000e+003 
1.768000e+003 
2.338000e+003 
2.947000e+003 
3.736000e+003 
4.814000e+003 

X# 

2.408975 
2.486190 
1.792022 
2.597483 
2.699331 
6.473647 
6.346305 
4.213689 

10.545640 
12.343940 

X 
ARPA 0~2 

0~3 
2.329307e+003 
6.698546e+003 

2.412000e+003 
X 

3.550106 
X 

OCT 0~2 
0~3 

5.146004e+003 
1.205400e+004 

5.471000e+003 
X 

6.315504 
X 

# means no feasible solution could be found. 
 

 
TABLE 2 – COMPUTATIONAL RESULTS (THRESHOLD OF THE NUMBER OF AVAILABLE WAVELENGTHS) 
Network 
topology 

# of available 
wavelengths 

Lower bound Upper bound Error gap(%) 

 
 
 

GTE 

20 
19 
18 
17 
16 
15 
14 
13 

1.491610e+003 
1.426938e+003 
1.401527e+003 
1.389967e+003 
1.700296e+003 
2.052708e+003 
1.883020e+003 
2.204916e+003 

1.529000e+003 
1.456000e+003 
1.441000e+003 
1.411000e+003 
1.776000e+003 

X 
2.024000e+003 

X 

2.506690 
2.036654 
2.816450 
1.513170 
4.452425 

X 
7.486924 

X 
 

 


