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ABSTRACT

Good service network design is important to service providers
in modern business environment. It will improve customer
satisfaction by quick customer response, and in the same time to
minimize the total service center installation cost. In this paper,
we consider the service network design problem where the
objective is to minimize the total facility cost of service centers
and service cost in order to satisfy the service time requirement
and the commodity requirement of each user. The total facility
cost includes the installation cost for sales and commodity. This
service network design problem is the facility location problem,
however by including the QoS constraints of service time and
commodity flow requirement, this problem is more difficult
than traditional facility location problem. We take the approach
of mathematical programming in conjunction with optimization-
based algorithms to solve the problem. We formulate the
problem as a combinatorial optimization problem where the
objective function is to minimize the total network deployment
cost subject to the aforementioned QoS constraints. The
integrality constraints associated with the problem formulation
make it difficult to develop efficient and effective solution
procedures. Lagrangean relaxation in conjunction with a
number of optimization-based heuristics are proposed to solve
this problem. From the computational experiments, the error
gap between the lower bound and the upper bound are all within
38% in minutes of CPU time for network size up to 350 nodes.

Keywords: Service Network Design, Facility Location Problem,
P-median Problem, Optimization, Lagrangean Relaxation,
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1. INTRODUCTION

In service industry, Quick Response/Efficient Consumer
Response (QR/ECR) to customer has become a strategic
necessity to companies and even to industry. But how to design
a sophisticated service network, which consists of the planning
of sales force and commodity, with the minimum deployment
and operation cost subject to stringent servicing time constraints
is a common challenge faced by service network designers and
managers. This kind of service network design problem could
be classified as the well-know facility location problem.
Location problem could be classified into two categories,
uncapacitated location problem and capacitated location
problem. When the admission facility locations are finite and
known in advance, this is a discrete location problem. Krarup
shows that even the discrete uncapacitated location problem is a
NP-hard problem [5]. A number of researches have addressed
the facility location problem [3, 4, 5, 8, 11, 12]. However, most
of these researches only consider the travel distance as the only
performance criteria between the service center and the user
nodes. Carreras [3] model the P-median problem with the
minimum catchment area concept and propose the tabu search
algorithm to solve this problem. However, capacity constraint is
not considered in [3]. Mazzola [8] model the multiproduct
capacitated facility location problem in which the demand for a
number of different product families must be supplied from a
set of facility sites, and each site offers a choice of facility types
exhibiting different capacities. Mazzola propose the Lagrangean
relaxation based solution procedures to solve this problem.
Hinojosa [4] model the multiperiod two-echelon multicommo-
dity capacitated plant location problem and solve with the



Lagrangean relaxation technique. However, the service time
constraint is not modeled in [4, 8].
Facility location problem is so generic that a lot of real world
applications could be classified as the facility location problem.
Intensive research has been conducted to address the facility
location problem with different solution techniques in different
application. Matsutomi [7] deal with the location problem of
emergency service facility for a dispersed population in public
service planning. Solution procedures based on the fuzzy
decision problems. However, the response time requirement is
not enforced in the constraint such that its application is limited.
Weinmann [10] model the circuit design problem as the facility
location problem. M. J. Kim [6] develop mathematical models
for planning the fixed part of PCS network considering the hard
handoff and solving with simulated annealing. Tutschku [9]
model the transmitter location problem in the cellular mobile
communication systems with the Maximal Coverage Location
Problem, which is well-known in modeling and solving facility
location problems. Al-Fawzan [2] model the Internet server
location problem and present the tabu search algorithm to solve
this problem.
In this paper, for the first time, we model the service network
problem as the facility location problem where the objective is to
minimize the service center installation cost and the service cost
in order to meet the service time requirement for the user. The
service center installation cost includes the sales force and
warehouse installation cost.
This paper is organized as follows. In Section 2, mathematical
formulation of the service network design is proposed. In
Section 3, the dual approach for the service network design
based on the Lagrangean relaxation is presented. In Section 4,
the primal heuristics are developed to get the primal feasible
solutions from the Lagrangean relaxation problem. In Section 5,
the computational results are reported. In Section 6, the
concluding remarks are presented.

2. MATHEMATICAL FORMULATION

O The set of candidate locations for service centers
I The set of users

kA The set of candidate sales capacity configurations
for service center at location k

kB The set of candidate commodity capacity
configurations for service center at location k

iR The service time requirement for user I

iF The goods demand for user I

ikd The physical distance between user i and service
center k

)( kk Cϕ The installation cost for service center with sales
capacity Ck

)( kk GΨ The installation cost for service center with goods
capacity Gk

)( ikik dD The service cost from service center k to user i,
which is a function of ikd

)( ikik dT The service time from service center k to user i,
which is a function of ikd

And the decision variables are depicted as follows.

ikx 1 when user Ii∈  is assigned to service center k
and 0 otherwise

kC The sales capacity assignment for service center at
location k

kG The goods capacity assignment for service center at
location k
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The objective function is to minimize the total installation cost
of service center and the total servicing cost. The first term and
the third term of the objective function are the sales forces and
warehouse installation cost for the service centers. Constraint
(1.1) enforces the service time constraint for each user.
Constraint (1.2) and (1.3) enforce that each user could only be
serviced by one service center. Constraint (1.4) is the sales
capacity constraint for each service center. Constraint (1.5)
specifies the candidate sales capacity set for each service center.
Constraint (1.6) specifies the candidate goods capacity set for
each service center. Constraint (1.7) is the goods capacity
constraint for each service center.



3. LAGRANGEAN RELAXATION

Constraints (1.4) and (1.7) of (IP) were dualized to obtain the

(LR).
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After proper rearrangement, we can decompose (LR) into three
independent subproblems.

Subproblem 1: for ikx :

min [ ]∑∑
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Subproblem 2 : for kC :
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Subproblem 3 : for kG :
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(SUB1) could be decomposed into |I| independent subproblems.
For each independent subproblem,
Subproblem 1-1: for ikx :
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(SUB1.1) could be optimally solved by the following algorithm,
(1) Identify the service centers that meet the service time

constraints of ikx .

(2) Among the service centers identified in the previous step ,

identify the lowest cost with respect to

ikikikk FdD βα ++ )( , and set the associated ikx  to one.

Set other ikx  to zero.

Both (SUB2) and (SUB3) could be decomposed into |O|
independent subproblems. For each independent subproblem, it
could be optimally solved by exhaustively search since the
candidate capacity configuration for each service center is
limited.
From the arguments above that the algorithms developed for
each subproblem could all be optimally solved, the weak
Lagrangean Duality Theorem could be applied. That is, the
lower bound from the dual Lagrangean formulation is a
legitimate lower bound to the corresponding original problem
[1]. By using the weak Lagrangean duality theorem (for any
given set of nonnegative multipliers, the optimal objective
function value of the corresponding Lagrangean relaxation
problem is a lower bound on the optimal objective function
value of the primal problem), ZD( βα , ) is a lower bound on ZIP.
We construct the following dual problem to calculate the
tightest lower bound and solve the dual problem by using the
subgradient method.

),(max βαDD ZZ = (D)

subject to: βα , ≥ 0.

Let the vector S be a subgradient of ),( βαDZ at ( βα , ). In

iteration x of the subgradient optimization procedure, the

multiplier vector mx=( xx βα , ) is updated by mx+1= mx+ xx St ,
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The step size xt  is determined by 
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IPZ  is an primal objective function value (an upper bound on

optimal primal objective function value), and δ  is a constant

( 20 ≤≤ δ ).

4. GETTING PRIMAL FEASIBLE SOLUTIONS

The solutions to the dual problem (LR) are used to get the
primal feasible solutions. There are three possible ways to get
the primal feasible solution from the solution to the (LR). The
first is starting from the solutions to the (SUB1). From the
servicing assignment ikx , we could determine minimum sales
capacity configuration and goods capacity configuration for
each service center. If the minimum capacity configuration is
within the range of the capacity configurations in the candidate
set, then we consider it as a feasible solution, otherwise it is not
feasible solutions. The second and the third are starting from the
solutions to the (SUB2) and (SUB3) respectively. However, it is
not easy to determine the servicing assignment variable ikx
from the capacity assignment of (SUB2) and (SUB3).

5. COMPUTATIONAL EXPERIMENTS

The computational experiments for the service network design
problem are performed. The algorithms developed in the above
sections are coded in C++ and performed on a PC with
INTELTM PIII-800 CPU. The tested network contains the 250
user nodes and 20 potential service center nodes. Since each
user node could be potential assigned to each potential service
center node, the total number of links is 5000. The goods
requirement for each user is randomly generated between two to
fifteen. And the locations (x-axis and y-axis) for the user nodes
and potential service centers are also randomly generated. The
computational time is about one to two minutes in this kind of
the network size.
The servicing time function )( ikik dT  and servicing cost
function )( ikik dD  is assumed to be the linear function of
Euclidean distance of the link. And the maximum allowable
time requirement for each user is assumed to be a constant value,
e.g. 1.0. The maximum number of iterations for the algorithms
to solve (LR) is 1500, and the improvement counter is 30. The
step size for the (LR) is initialized to be 2 and be half of its
value when the objective value of the dual algorithm doesn’t
improve for 30 iterations.

Table 1 Comparison of solution quality obtained by various
network sizes

Number of
Users

Lower
bound

Upper
bound

Error
Gap(%)

Maximum
servicing

time

iR

100 1049.7 1374.7 30.9 0.357 2
150 1539.8 2122.1 37.8 0.539 2
200 2054.3 2617.8 27.4 0.301 2
250 2565.8 3275.9 27.6 0.318 2
300 3183.8 3651.6 14.6 0.436 2
325 3427.4 4048.5 18.1 0.428 2
350 3638.8 * * * 2

We perform two sets of computational experiments. In the first
set of computational experiments, the choice of the iR  value is
fixed (set to 2) so as to examine the solution quality of the
service network design problem in different sizes of the network.
Table 1 summarizes the results. The first column is the number
of user nodes. The second column reports the lower bound of
the proposed dual Lagrangean problem. The third column
reports the upper bound of the proposed algorithm. The forth
column reports the error gap between the lower bound and the
upper bound. The fifth column reports the maximum servicing
time among all users. The sixth column is the service time
requirement ( iR ). As can be seen in the forth column, the error
gaps between the lower bound and the upper bound are
decreasing when the network size is growing. Hence, the
algorithms proposed in Section 3 and 4 are even better when the
network size is growing. In other words, the proposed
algorithms have a good scalability. And the error gaps are
reasonably tight when the value of iR  is loose as compared to
the maximum servicing time among all users. On the other hand,
the * symbol in the last row indicates that the primal feasible
solution cannot be found.
Since the value for the maximum allowable servicing time ( iR )
for each user have a significant impact on the solution of the
service network design problem. In the second set of
computational experiments, we try to examine the impact of the

iR  value on the solution quality of service network design
problem. Table 2 summarizes this result. In Table 2, the number
of users is constant (250) and the service time requirement ( iR )
is a variable to examine the impact of the iR  value on the
solution quality of service network design problem. As could be
seen from Table 2, the error gap remains the same under more
stringent service time requirements. From Table 2, we could say
that we have the stable solution quality under more and more
stringent servicing time requirements.



Table 2 Comparison of solution quality obtained by various iR

Number
of Users

Lower
bound

Upper
bound

Error
Gap(%)

Maximum
Servicing

Time

iR

250 2565.8 3275.8 27.6 0.31 2
250 2565.8 3275.8 27.6 0.31 1.8
250 2565.8 3275.8 27.6 0.31 1.6
250 2565.8 3275.8 27.6 0.31 1.4
250 2565.8 3275.8 27.6 0.31 1.2
250 2565.8 3275.8 27.6 0.31 1.0
250 2565.8 3275.8 27.6 0.31 0.8
250 2565.6 3245.4 26.4 0.31 0.6
250 2565.8 3241.1 26.3 0.31 0.5
250 2565.9 3240.9 26.3 0.31 0.45
250 2565.9 3225.4 25.7 0.31 0.4
250 2565.9 3263.8 27.2 0.31 0.35
250 2565.9 * * * 0.3

6. CONCLUDING REMARKS

In this paper, we considered the problem of service center site
selection and sales and goods capacity assignment problem with
maximum allowable servicing time and capacity requirements.
We formulate this problem as an integer programming problem.
The discrete (integer constraints) property makes the problem
difficult. We take an optimization-based approach by applying
the Lagrangean relaxation technique in the algorithm
development.
According to the first set of computational experiments, the
error gaps are becoming smaller when the network size is
growing. And the error gaps are reasonably tight when the value
of iR  is loose as compared to the maximum servicing time
among all users. On the other hand, from the second set of
computational experiments, the solution quality is the same
under more and more stringent servicing time requirements.
Hence, the algorithms developed above are typically suitable for
solving the large network and stringent time requirements
environment for service network design problem.
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