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Abstract:  TIn this paper, we attempt to solve the problem
of min-cost multicast routing for multirate multimedia
distribution in a Capacitated Network. More specifically,
for (i} a given network topology (ii) a given link capacity
(iii) the destinations of a multicast group and (iv) the
bandwidth requirement of each destination, we aftempt to
find a feasible routing solution to minimize the cost of a
"multicast tree for multirate multimedia distribution. This
problem has been proved to be NP-hard, First, we model
this problem as an optimization problem, which is a linear
programming problem. Then, we propose a simple heuristic
algorithm and an optimization based heuristic to solve this
problem. Computational experiments have been performed
on regular networks, random networks, and scale-free
networks.

1. Introduction

Multimedia application environments are characterized by
large bandwidth variations due to the heterogeneous access
technologies of networks and different receivers’ quality
requirements. In video multicasting, the heterogeneity of
the networks and destinations makes it difficult to achieve
bandwidth efficiency and service flexibility. There are
many challenging issues that need fo be addressed in
designing architectures and mechanisms for multicast data
transmission [1]. _

Taking advantage of recent advances in video encoding
and transmission technologies, either by a progress coder
[2] or video gateway [3]{4], different destinations can
request a different bandwidth requirement from the source,
after which the source only needs to transmit signals that
are sufficient for the highest bandwidth destination into a
single multicast tree. This concept is called single-
application multiple-stream {SAMS). A multi-layered or
multirate encoder encodes video data into more than one
video stream, including one base layer stream and several
enhancement layer streams. The base layer contains the
most important portions of the video stream for achieving
the minimum quality level. The enhancement layers contain
the other portions of the video stream for refining the
quality of the base layer stream.

Reference [14] gives an intact survey of the multirate
video multicast. Reference [15] [16] discuss the flow
control issues in multirate multicast networks. The
objective is to achieve the fairness transmission rates that
maximize the total receiver utility. Reference [5] discusses
the cost issue of multirate video distribution in multicast
networks and proposes a heuristic to solve this problem,
namely: the modified T-M heuristic (M-T-M Heuristic). Its
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goal is to construct a minimum cost tree from the source to
every destination without considering the link capacity
constraints. However, the reference provides only
experimental evidence for its performance and does not
consider the link capacity constraints. Reference [6]
extends this concept to present heuristics with provable
performance guarantees for the Steiner tree problem and
proves that this problem is NP-hard, even in the special
case of broadcasting. From the results, the cost of the
multicast tree generated by M-T-M heuristics was no more
than 4.214 times the cost of an optimal multicast tree,
However, no simulation results are reported to justify the
approaches in [6]. The solution approaches described above
are heuristic-based and could be further optimized.
Consequently, for multimedia distribution on capacitated
multicast networks, we intend to find the multicast trees
that have a minimal total incurred cost for multi-layered
video distribution.

The minimum cost multicast tree problem, which is the
Steiner tree problem, is known to be NP-complete. The
Steiner tree problem is different to the minimum spanning
tree problem in that it permits us to construct, or select,
intermediate connection points to reduce the cost of the tree.
For the conventional Steiner tree problem, the link costs in
the network are fixed. However, for the minimum cost
multirate video multicast tree, the link costs are dependent
on the set of receivers sharing the link. This is a variant of
the Steiner tree problem. The heterogeneity of the networks
and destinations makes it difficult to design an efficient and
flexible mechanism for servicing all multicast group users.
Without considering the link capacity constraints, the
multirate  multicast rtouting problem with several
commodities can be treated as several single-commeodity
problems, We would solve each singie-commodity problem
separately using the techniques such as M-T-M heuristic.
With regard to the link capacity constraints, however,
different groups may share the common links, so the
individual single commodity problems are not independent.

In this paper, we intend to deal with the link-constrained
multirate multicast optimization problem. We formally
model this issue as an optimization problem. We apply the
Lagrangean relaxation method and the subgradient method
to solve the problems [7] [8]. Properly integrating the M-T-
M heuristics and the results of Lagrangean dual problems
may be useful to improve the solution quality. In addition,
the Lagrangean relaxation method not only gets a good
feasible solution, but also provides the lower bound of the
solution, which helps to verify the solution quality. We
name this method Lagrangean-multiplier-based Heuristics.



The rest of this paper is organized as follows. Inn Section
2, we describe the detail of the simple heuristic we
proposed, which is composed of the M-T-M heuristic and
the adjustment procedures to ensure the link capacity
constraint. In Section 3, we formally define the problem
being studied, and propose a mathematical formulation of
min-cost optimization is proposed. Section 4 applies
Lagrangean relaxation as a solution approach to the
problem. Section 5, illustrates the computational
experiments. Finally, in Section 6, we present our
conclusions and the direction of future research.

2. A Simple Heuristic of Link Constrained

Multirate Multimedia Multicasting
Reference [9] proposes an approximate algorithm named
Takahashi-Matsuyami (T-M) heuristic to deal with the
Steiner tree problem, which is a min-cost multicast tree
problem. The T-M heuristic uses the idea of minimum
depth tree algorithm (MDT) to construct the tree. To begin
with, the source node is added to the tree permanently. At
each iteration of MDT a node is temporarily added to the

tree until the added node is a receiver of the multicast group.

Once the iterated tree reaches one of the receivers of the
multicast group, it removes all unnecessary temporary links
and nodes added earlier and mark the remaining nodes as
permanently connected to the tree. The depth of the

permanently connected nodes is then set to zero and the .

iterations continue until ali receivers are permanently added
to the tree. In [5], the author gives examples of the
performance of the T-M heuristic and shows that in some
cases the T-M heuristic does not achieve the optimum tree.

Reference [5] modified the T-M heuristic to deal with
the min-cost multicast tree problem in multi-layered video
distribution. For multirate video distribution, which is
different from the conventional Steiner tree problem, each
receiver can request a different quality of video. This means
that each link’s flow of the multicast tree is different and is
dependent on the maximum rate of the receiver sharing the
link. The author proposes a modified version of the T-M
heuristic {M-T-M heuristic) to approximate the minimum
cost multicast tree problem for multi-layered video
distribution.

The M-T-M heuristic separates the receivers into
subsets according to the receiving rate. First, the M-T-M
heuristic constructs the multicast tree for the subset with the
highest rate by using the T-M heuristic. Using this initial
tree, the T-M heuristic is then applied to the subsets
according to the order of receiving rate from high to low.
For further details of the M-T-M heuristic, please refer to
reference [5].

Under the link capacity constraint, the routing decision
generated by the heuristic described above may cause the
overflow of the links. We propose an adjustment procedure
(AP), which is used to adjust the multicast free resulting
from the M-T-M heuristic in order to find a feasible
solution and comply with the link capacity.

The adjustment procedure is used to adjust the initial
multicast tree constructed by the M-T-M heuvristic.
Nevertheless, redundantly checking actions may cause a
serious decline in performance, even if the total cost is
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reduced. Therefore, we consider the most useful occurrence

to reduce the total cost and control the used resources in an

acceptable range. The details of the procedure are:

Adjustment Procedure {AP)

1) Compute the aggregate flow of each link.

2) Sort the links by the difference between aggregate flow
of each link and the link capacity in descending order,

3) Choose the first link. If the difference value of the link is
positive, go to Step 4, otherwise Step 6.

4y Choose the maximal loaded group on that link to drop
and re-add it to the tree. Consider the following possible
adding measures and set the best one to be the final tree.
Either adds the dropping node to the source node, or to
other nodes having the same hop count, or to the nodes
having a hop count larger or smaller by one.

5) If a feasible solution is found, go to Step2, otherwise
Step 6.

6) Stop.
The performance evaluation of the simple heuristic will

be shown in section 3.

3. Problem Formulation

3.1. Problem Description

The network is modeled as a graph where the switches are
depicted as nodes and the links are depicted as arcs. A user
group is an application requesting transmission in this
network, which has one source and one or more
destinations. Given the network topology, the capacity of
the links and the bandwidth requirement of every
destination of a user group, we want to jointly determine
the following decision variables: (1) the routing assignment
(a tree for multicasting or a path for unicasting) of each user
group; and (2) the maximum allowable traffic rate of each
multicast user group through each link.

By formulating the problem as a mathematical
programming problem, we intend to solve the issue
optimally by obtaining a network that will enable us to
achieve our goal, i.e. one that ensures the network operator
will spend the minimum cost on constructing the multicast
tree. The notations used to model the problem are listed in
Table 1.

Table 1: DescriEtion of Notations
Given Parameters
Notation Description

a, Transmission cost associated with link /
Traffic requirement of destination d of

% multicast
group g
G The set of all multicast groups
v The set of nedes in the network
L The set of links in the network
D, The set of destinations of multicast group g
B The minimum number of hops to the farthest
£ destination node in multicast group g
G The capacity of link {
I The incoming links to node v
f'g The multicast root of multicast group g
I, The incoming links to node r,




The set of paths destination & of multicast
group g may use
5 The indicator function which is 1 if link / is on

# path p and 0 otherwise

Decision Variables

Descriptions

1 if path p is selected for group g destined for

destination 4 and 0 otherwise

1 if link 7 is on the subtree adopted by multicast
“group g and 0 otherwise

The maximum traffic requirement of the
my destinations in multicast group g that are
connected to the source through link /

P,

Notation

Xgpd

ygi’

3.2. Mathematical Formulation

According to the desctiption in previous section, the min-
cost problem is formulated as a combinatorial optimization
problem in which the objective function is to minimize the
link cost of the multicast tree. Of course a number of
constraints must be satisfied. '
Objective function:

Z, =min ZZa, My

gel el (IP)

subject to:

D X6,y S VgeG,deD,,lel (1
Pely

> my, <G Viel 3
gelr

My E[O’Idll%fag"] VielgeG 3)
Yy =0orl VielLgeG @
> ygzmaxi{h, D}  VEEG | ()
feL

Y Y x.8,5|Dl, VeEcGlel ©
del), pely,

VgEG,veV—{rg} (7

Zyg,sl

eI,

Zygr =0 VgeG (8)
Iel,k
> Xy =1 VdeD,geG (9)
PeEfy
Xgpg =0 011 VdeD,,geG,pel, (10)

The objective function of (IP) is to minimize the total
transmission cost of servicing the maximum bandwidth
requirement destination through a specific link for all
multicast groups G, where G is the set of user groups
requesting connection. The maximum bandwidth
requirement on a link in the specific group my can be
viewed so that the source would be required to transmit in a
way that matches the most constrained destination.

Constraint (1) and (2) are referred to as the capacity
constraints, which require that the aggregate flow on each
link 1 does not exceed its link capacity C;. In constraint (1),
a variable my is introduced, where the variable my can be
interpreted as the “estimate” of the aggregate flow. Since
the objective function is strictly an increasing function with
mg and (IP) is a minimization problem, each mg will equal
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the aggregate flow in an optimal solution. Constraint (3) is
a redundant consiraint which provides upper and lower
bounds on the maximum traffic requirement for multicast
group g on link 1. Constraints (4) and (5) require that the
number of links on the multicast tree adopted by the
multicast group g be at least the maximum of A, and the
cardinality of D,. The /, and the cardinality of D, are the
legitimate lower bounds of the number of links on the
multicast tree adopted by the multicast group g. Constraint
(6) is referred to as the tree constraint, which requires that
the union of the selected paths for the destinations of user
group g forms a tree. Constraints (7) and (8) are both
redondant constraints, Constraint (7) requires that the
number of selected incoming links yg to node is 1 or 0,
while constraint (8) requires that there are no selected
incoming links yg to the node that is the root of multicast
group g. As a result, the links we select can form a tree.
Finally, constraints (9) and (10) require that only one path
is selected for each multicast source/destination pair.

4. Solution Approach

4.1 Lagrangean Relaxation -
Lagrangean method has become one of the best tools for
optimization problems such as integer programming, linear
programming combinatorial optimization, and non-linear
programming [7] [8]. The Lagrangean relaxation method
permits us to remove constraints and place them in the
objective function with associated Lagrangean multipliers
instead. The optimal value of the relaxed problem is always
a lower bound (for minimization problems) on the objective
function value of the problem. By adjusting the multiplier
of Lagrangean relaxation, we can obtain the upper and
lower bounds of this problem. The Lagrangean multiplier
problem can be solved in a variety of ways. The
subgradient optimization technique is possibly the most
popular technique for solving the Lagrangean multiplier
problem [7] [10].

By using the Lagrangean Relaxation method, we can
transform the primal problem (IP) into the following
Lagrangean Relaxation problem (LR) where Constraints (1)
and (6) are relaxed. For a vector of non-negative
Lagrangean multipliers, a Lagrangean Relaxation problem
of (IP) is given by
Optimization problem (LR):

Z,(B,)=min 3 > am,

gel lel

SDIDIPIPIV RS

geG del, Iel pefy,

- Z Z Zﬂgdfmgi

geGdel, lel

DIIDNDIR

gl lel ﬁ'E.‘Js ‘HEPgd

_Zzgs? Ds Vet

gei lel
subject to: (2) (3) (4) (5) (7) (8) (9) {10).
Where fgs 6 are Lagrangean multipliers and fgas 6= 0.
To solve (LR), we can decompose (LR} into the following
three independent and easily solvable optimization
subproblems,

(LR)




Subproblem 1: (related to decision variable xg,g)

Zg1(8,6) =min Z Z 2 [25,,,(,5'&,‘,,.::55&,‘ir +8

gi)]xgpd
geGdeD, pelfy, lel
subject to: (9) (10).

Subproblem 1 can be further decomposed into [G[Dg
independent shortest path problems with nonnegative arc
weights. Each shortest path problem can be easily solved by
Dijkstra algorithm.

Subproblem 2: (related to decision variable y,7)

Z g2 (8) = min Z Z(_ggl |Dg‘)yg[
gel Il
subject to: {4) (5) (7) (8).

The algorithm to solve Subproblem 2 is:

Step1 Compute max{h,, |Dg|} for multicast group g.
Step2 Compute the number of positive coefficients fy|Dy|
for all links in the multicast group g.

If the number of positive coefficients is greater
than max{h,, |D,|} for multicast group g, then
assign the corresponding positive coefficient of yg
to 1 and 0 otherwise.

If the number of positive coefficients is no greater
than max{Ag, |D,|} for multicast group g, assign the
corresponding positive coefficient of yg to 1. Then,
assign [max{h,, |Dg|} — the number of positive
coefficients of ] numbers of the smallest negative
coefficient of yg to 1 and 0 otherwise.

- Subproblem 3: (related to decision variable # g!)

Zgus(B)=min Z Z (g, Z ﬂgﬂ.’)mgl

geC lel dely

Step 3

Step 4

subject to: (2) (3).
. We decompose Subproblem 3 into |[L| 1ndependent
problems. For each link /e L:
Z3.43,{f)=min Z(“f - Z ﬂgd!)mgl

geG ﬂ'EDg

subject to: (2) (3).

The algorithm to solve Subproblem 3.1 is:
Step1 Compute al_zden By for link I of multicast

group g.

Step2 Sort the negative coefficient g, _Za‘ . ﬂg o from
€ f-4

the smallest value to the largest value
According the sorted sequence. <i> assigns the
corresponding my to the maximum traffic
requirement in the multicast group and adds to the
sum value until the total amount of maximum
traffic requirements on link / is less than the
capacity of link [ <iP> assign the boundary
negative coefficient of my to the difference
between the capacity on link 1 and the sum value of
g, <iii> assign the other coefficients of m to 0.
According to the weak Lagrangean duality theorem [7],
for any Bea, 0a=0, Zp(Bea, Gg) is a lower bound on Zp.
The following dual problem (D) is then constructed to
calculate the tightest lower bound.

Dual Problem (D):
Zy=maxZy(f,,,6,)

Step 3
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subject to:
ﬁgd."ggi 20

There are several methods for solving the dual problem
(D). The most popular is the subgradient method, which is
employed here [11]. Let a vector s be a subgradient of
Zo(Beary Ba). Then, in iteration & of the subgradient
optlmlzatlon procedure the multiplier vector is updated by
ot =wk+st. The step size ¢ is determined by #*=6(Z"p —
Zp(@™)|s4. Z'pis the primal objective function value for
a heuristic solution (an upper bound on Z;). d is a constant
and 0<é <2,

4.2 Getting Primal Feasible Solutions

After optimally solving the Lagrangean dual problem, we
get a set of decision variables. However, this solution
would not be a feasible one for the primal problem since
some of constraints are not satisfied. Thus, minor
modification of decision variables, or the hints of
multipliers must be taken, to obtain the primal feasible
solution of problem (IP). Generally speaking, the better
primal feasible solution is an upper bound (UB) of the
problem (IP), while the Lagrangean dual problem solution
guarantees the lower bound (LB) of problem (IP).
Tteratively, by solving the Lagrangean dual problem and
getting the primal feasible solution, we get the LB and UB,
respectively. So, the gap between UB and LB, computed by
(UB-LBYLB*100%, illustrates the optimality of problem
solution. The smaller gap computed, the better the
optimality.

To calculate the primal feasible solution of the minimum
cost tree, the sclutions to the Lagrangean Relaxation
problems are considered. The set of {xg.}obtained by
solving (Subproblem 1) may not be a valid solution to
problem (IP) because the capacity constraint is relaxed.
However, the capacity constraint may be a valid solution
for some links. Also, the set of {y,} obtained by solving
{Subproblem 2) may not be a valid solution because of the
link capacity constraint and the union of {yy} may not be a
tree.

Here we propose a comprehensive, two-part method to
obtain a primal feasible solution. It utilized a Lagrangean
based modified T-M heuristic, followed by adjustment
procedures. While solving the Lagrangean relaxation dual
problem, we may get some multipliers related to each OD
pair and links. According to the information, we can make
our routing more efficient. We describe the Lagrangean
based medified T-M heuristic below.

[Lagrangean-multiplier-based Modified T-M Heuristic]
1) Use g, —ZdEDg B,y as link s arc weight and run the

M-T-M heuristic.

2) After gefting a feasible solution, we apply the
Lagrangean-multiplier-based  adjustment  procedure
(LAP) to adjust the result.

[Lagrangean-Multiplier-based Adjustment Procedure

{LAP)]

1) Compute the aggregate flow of each link.

2) Sort the links by the difference between aggregate flow
of each link and the link capacity in descending order.



3) Choose the first link. If the difference value of the link is
positive, go to Step 4, otherwise Step 6.
4) Choose the group, which have the minimal sensitivity

value af_ZdEpg /Bgd: on that link, to drop and use

a, —ZdEDE ﬁg . a8 link I’s arc weight and run the M-T-

M heuristic to re-add it to the tree. Consider the
following possible adding measures and set the best one
to be the final tree. Either adds the dropping node to the
source node, or to other nodes having the same hop count,
or to the nodes having a hop count larger or smaller by
one.

5) If a feasible solution is found, go to Step2, otherwise
Step 6.

6) Stop.

5. Experimental Results
In this section, computational experiments on the
Lagrangean based heuristic and the simple heuristics are
reported. The heuristics are tested on three kinds of
networks- regular networks, random networks, and scale-
free networks. Regular networks are characterized by low
clustering and high network diameter, and random
networks are characterized by low clustering and low
diameter. The scale-free networks, which are power-law
networks, are characterized by high clustering and low
diameter. Reference [12] shows that the topology of the
Internet is characterized by power laws distribution. The

power laws describe concisely skewed distributions of

graph properties such as the node degree.

{a} Grid Netwark (b) Cellular Netwerk

Figure 1: Regular Networks

Two regular networks shown in Figure 1 are tested in

our experiment. The first one is a grid network that contains
100 nodes and 180 links, and the second is a cellular
network containing 61 nodes and 156 links.
Random networks tested in this paper are generated
randomly, each having 500 nodes. The candidate links
between all node pairs are given a probability following the
uniform distribution. In the experiments, we link the node
pair with a probability smaller than 2%. If the generated
network is not a connected network, we generate a new
network.

Reference [13] shows that the scale-free networks can
arise from a simple dynamic model that combines
incremental growth with a preference for new nodes to
connect to existing ones that are already well connected. In
our experiments, we applied this preferential attachment

method to generate the scale-free networks. The

ISPACS 2005

corresponding preferential variable (mg, m) is (2, 2). The
number of nodes in the testing networks is 500,

For each testing network, several distinet cases, which
have different pre-determined parameters, are considered.
The traffic demands for each destination are drawn from a
random variable uniformly distributed in pre-specified
categories {1, 2, 5, 10, 15, 20}. The link costs are randomly
generated between 1 and 5. The group number of each
tested cases is 20. The cost of the multicast tree is decided
by multiplying the link cost and the maximum bandwidth
requirement on a link. We conducted 500 experiments for
each kind of network. For each experiment, the resuli was
determined by the group source, destinations and link costs
generated randomly. Table 2 summaries the selected results
of the computational experiments.

Table 2: Selected Results of ComEutational Eerriments

C# | N# SA UB LB GAP Imp.
Grid Network
A 3 9,045 8,825 8.685.48 1.61% 2.49%
B 5 10,507 9,639 | 9,425.01 2.27% 8.01%
o} 10 16,476 ¢ 14.691 | 13,906.21 5.64% | 12.15%
D 10 16,805 | 15318 | 15,147.38 1.13% 9.71%
E 20 | 23,978 | 21,133 | 20,791.90 1.64% | 13.46%
F 20 N/A | 22910 | 19,884.47 | 15.22% o0
G 50 | 40,167 | 36,241 | 32,476.30 | 11.59% | 10.83%
H 30 N/A | 34,708 | 30,964.02 | 12.09% o0
Cellular Network
A 5 5,248 4,965 4,890.18 1.53% 3.70%
B 5 4.628 4281 4,070.81 3.16% 8.11%
C 10 8,928 8,238 7,936.96 3.79% 2.38%
D 10 9.874 9,253 8,904.63 3.91% 6.71%
E 20 | 15,375 | 14,750¢ | 13,067.21 | 12.88% 4.24%
F 20 N/A | 13,912 | 12,271.44 | 13.37% o
G 50 N/A | 25,160 | 20,557.85 | 22.39% o
H 50 N/A | 25973 { 21,261.94 | 22.16% o
Random Networks
A 5 3,984 3,763 3,487.12 7.91% 5.87%
B 5 3,952 3,465 | 3.421.11 1.28% | 14.05%
C 10 6,765 5,862 | 5,474.57 7.08% | 15.40%
D 10 8,790 8360 | 730052 | 14.51% 5.14%
E 20 14465 | 12,782 | 1155887 | 10.58% | 13.17%
F 20 13,266 | 11,811 936491 | 26.12% | 12.32%
G 50 | 28,690 | 24.555 | 21,540.62 | 13.99% | 16.84%
H 50 | 28,833 | 25,774 | 21,864.95 | 1788% | 11.87%
Scale-Free Networks
A 5 5,503 5,176 4,853.17 6.65% 6.32%
B 5 3,939 3.801 3,603.81 5.47% 3.63%
C 10 9.109 8,485 8,051.22 5.39% 7.35%
D 10 9,649 8,847 | 8,580.09 3.11% 9.07%
E 20 1 16,361 | 15,143 | 14,533.04 4.20% 8.04%
F 20 14,831 | 13,459 | 13.107.20 2.68% | 10.19%
G 50 | 30,676 | 27,737 | 25,813.31 7.45% | 10.60%
H 50 N/A | 28,239 | 25,068.99 | 12.65% o0

C#: Case Number

Ni#: Number of destinations within a group

SA: The result of the simple heuristic

UB and LB: Upper and lower bounds of the Lagrangean based
modified T-M heuristic

GAP: Bound difference {{UB-LB)/LB}

Imp.: The improvement ratio of the Lagrangean based modified
T-M heuristic {{SA - UB) UB}




For each testing network, the maximum improvement
ratio between the simple heuristic and the Lagrangean
based heuristic is 13.46 %, 8.83%, 15.40 %, and 10.60%,
respectively. In general, the Lagrangean based heuristic
performs well compared to the simple heuristic, even when
the simple algorithm can not find a feasible solution, such
as the case F and H of grid network and the case F, G, and
H. There are two main reasons of which the Lagrangean
based heuristic works better than the simple algorithm. First,
the simple algorithm routes the group in accordance with
fixed link cost and residual capacity merely, whereas the
Lagrangean based heuristic makes use of the related
Lagrangean multipliers. The Lagrangean multipliers
include the potential cost for routing on each link in the
topology. Second, the Lagrangean based heuristic is
iteration-based and is guaranieed to improve the solution
quality iteration by iteration. Therefore, in a more
complicated testing environment, the improvement ratio is
higher.

To claim optimality, we also depict the percentile of
gap in Table 2. The results show that 72% of the regular
and scale free networks have a gap of less than 10%, but the
result of random networks show a larger gap. We also
found that the simple heuristic perform well in many cases,
such as the case A of grid network and case B of scale-free
network.

6. Conclusions

In this paper, we attempt to solve the problem of
capacitated min-cost multicast routing for multirate
multimedia distribution. Our achievement of this paper can
be expressed in terms of mathematical formulation and
experiment performance. In terms of formulation, we
propose a precise mathematical expression to model this
problem well. In terms of performance, the proposed
Lagrangean based heuristic outperforms the simple
heuristics.

Our model can also be extended to deal with the QoS
multicast routing problem for multirate multimedia
distribution by adding QoS constraints. Moreover, the min-
cost model proposed in this paper can be modified as a
max-revenue model, with that objective of maximizing total
system revenues by totally, or partially, admitting
destinations into the system. These issues will be addressed
in future works.
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