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ABSTRACT 
 
Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical 
communication networks. With the continuous advance in optical technology, WDM network will play an important role 
in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more 
mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division 
multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, 
the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed 
WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical 
multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to 
maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the 
same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization 
problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in 
the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the 
formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. 
The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number 
of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network 
topologies and perform efficiently and effectively according to the experiment results. 
 
Keywords: WDM, TDM, Multicast, Network Planning, Routing, Wavelength Assignment, Optimization, Lagrangean 

Relaxation Method, Mathematical Programming. 
 

1. INTRODUCTION 
 
It has been widely accepted that optical networks will form the building blocks for the next generation Internet. In the 
last several years, there has been a growing excitement in the area of optical Dense Wavelength Division Multiplexing – 
DWDM, or simply, WDM networks. WDM operates by sending multiple lightwaves across a single optical fiber. 
Information is carried by each wavelength, which is called a channel. Current development activities indicate that WDM 
technology will be deployed mainly in a backbone network for large regions. WDM also can enhance an optical 
network’s capacity without expensive re-cabling and can reduce the cost of network upgrades. Current optical 
technology demonstrations have shown the feasibility of up to 160 channels, each operation at 10 Gbps, per fiber1. 
 
Wavelength routing is defined to be the selective routing of optical signals according to their wavelengths as they travel 
through the network elements between source and destination with or without wavelength converters. The importance of 
the reconfigurable optical cross-connect switch (OXCs), and the closely related optical add-drop multiplexer (OADMs), 
is that they allow the optical network to be reconfigured on a wavelength-by-wavelength basis to optimize traffic, 
congestion, and network growth2. 
 
In the wavelength-routed network, the granularity of switching is wavelength. The problem of wasting in bandwidth is 
arising from not-fully-loaded-lightpaths because the free bandwidth of the wavelengths in these lightpaths cannot be 
used by others. The bandwidth allocation problem in the wavelength-routed networks has been widely investigated3, 4. 
Several schemes using technologies of Optical Time Division Multiplexing (OTDM) have been proposed in the 
literature to achieve higher bandwidth utilization. 
 

Network Architectures, Management, and Applications II, edited by S. J. Ben Yoo,
Gee-Kung Chang, Guangcheng Li, Kwok-wai Cheung, Proc. of SPIE Vol. 5626

(SPIE, Bellingham, WA, 2005) · 0277-786X/05/$15 · doi: 10.1117/12.572576

224



Many broadband services such as video conferencing and distance learning employ multicasting for data delivery. The 
support of multicast is therefore essential for these applications. The multicast routing and wavelength assignment (MC-
RWA) problem5 is: given a limited number of wavelengths and a set of multicast calls, maximize the number of 
multicast calls admitted, or equivalently, minimize the call blocking probability under the constraint that each multicast 
tree can be assigned only one wavelength. It has been proved that the MC-RWA problem in circuit-switched multi-hop 
networks is NP-complete6. Therefore, the problem is complicated and hard to solve. Obtaining the optimal solution in 
such kinds of problem is intractable. 
 
If the multicast groups of the same source are merged by means of OTDM technologies, the MC-RWA problem will be 
more complicated. A new approach7 called tree-shared multicast (TS-MCAST) is proposed in optical burst switching 
networks and a multicast sharing class (MSC) associated with a shared tree is also defined. Most proposed work 
assumed that the OXCs in WDM networks are quipped with full range power splitters and/or wavelength converters, 
which may not be true in practice. In this paper, more physical resources constraints are taken into consideration. 
Besides, the tree topologies are not given in advance and the network capacity is not assumed to be as large as total 
traffic demands. As a result, some groups may not be admitted in due to the capacity constraint. In addition to maximize 
the revenue by TDM based groups aggregation, we further try to minimize the needed cost of supporting these groups. 
 
In this paper, a multicast tree aggregation algorithm is proposed. It is not easy to represent the mergence between 
multicast groups in mathematical equations. As a result, “Macro-Group” is introduced. Macro-groups are constructed 
with the same amount of multicast groups to be considered and the problem of aggregation could be transformed into 
assignment problem. The transformation is illustrated in Fig. 1. 
 

 
Figure 1: Transforming aggregation problem to assignment problem 

 
After aggregating groups, a super-lighttree is constructed for each macro-group to which at least one multicast group 
being assigned. The problem is modeled as an optimization problem. This problem is an integer linear programming 
problem and the Lagrangean relaxation method and the subgradient method will be applied to solve this problem. 
 
The rest of this paper is organized as follows. In Section 2, we formally define the problem being studied, as well as a 
mathematical formulation of max-revenue optimization is proposed. Section 3 applies Lagrangean relaxation as a 
solution approach to the problem. Section 4 illustrates the computational experiments. Finally, in Section 5 we present 
our conclusions and the direction of future research. 
 

2. PROBLEM FORMULATION 
 
The problem to be solved is which multicast group could be admitted in and to which macro-group it should be merged 
such that the total revenues are maximum. The optimal solution to the constrained multicast RWA should also be 
answered. 
 
Consider the network in Fig. 2 with node 1 as the source of Group 1 and 2, and nodes 6 and 7 as the destinations of 
Group 1, and nodes 6 and 7 as the destinations of Group 2, respectively. If the node 5 is equipped with a full range 
splitter, Group 1 and Group 2 can be merged into a macro-group whose destinations are node 6, 7, and 8. The 
construction of a lighttree is simple.  
 
If the splitting compatibility of node 5 is limited to be 1-to-2, the solution is slightly different and is shown in Fig. 3 and 
a different placement of splitter is also shown in Fig. 4. 
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Figure 2: A simple scenario with a full range splitter. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A simple scenario with a limited splitting capacity.    Figure 4: A simple scenario with different placement of splitter. 
 
The physical topology is modeled as a directed graph G = G (V, L ). Physical links are represented by the directed edge 
set L, while the node set V represents the OXCs. Each link is equipped with a certain amount of unidirectional fibers. A 
multicast group is an application requesting for transmission in the network, which has one source and one or more 
destinations. The number of macro-group to be constructed is equivalent to the number of multicast groups to be 
considered. Each group should be assigned to at most one macro-group. Then, the constrained multicast RWA problems 
are solved only for those macro-groups having destinations. We now formalize the problem definition. 
 
Assumptions: 

1. The basic architecture used is a WDM network. 
2. All OXCs used in the optical network have wavelength routing function but lack the capability of wavelength 

conversion. 
3. All OXCs used in the optical network have TDM capability but the routing function is based on optical wavelength 

switching rather than time-slot or optical burst switching. 
 

Given: 
1. The optical network topology. 
2. The number of fibers on each link and the wavelength channel cost on it. 
3. The number of optical transmitters and receivers equipped on and splitting capability of each OXC. 
4. The traffic demand of each multicast group in terms of time-slot and the revenue it can bring in. 
5. The set of available wavelengths on each fiber. 
6. The number of time-slots supported in a TDM frame. 

Demands: 
Group 1: S(1)  D(6,7) 
Group 2: S(1)  D(7,8) 
 
Constraints: 
1. Single transmitter and receiver 

equipped on each OXC. 
2. Single fiber and wavelength on 

each link. 
3. Only node 5 can perform full 

range light-splitting. 
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Objective: 
To maximize the total revenue. 
 

Subject to: 
1. Only the multicast groups originating at the same source node could be merged together 
2. Each multicast group should be merged to at most one macro-group. 
3. Capacity of components in the network. 
4. Splitting Capability of each OXC. 
5. Each macro-group is supported by one Super-Lighttree. 
6. Wavelength continuity of each Super-Lighttree. 

 
To determine: 

1. Which group should be admitted in and the mergence result. 
2. Routing and wavelength assignment (Super-Lighttree topology) of each macro-group. 

Table 1: Description of notations 
Given Parameters 

Notation Definition 

G = G(V,L) Directed graph representing an optical network; 

V The set of OXCs; 
L The set of WDM links; 

Lv
+ The set of outgoing links of node v; 

Lv
- The set of incoming links of node v; 

Dest(l) The destination node of link l; 
Cl The number of unidirectional fibers on link l; 

Bl The cost of link l; 
SPv The splitting capability of node v; 
Txv The number of optical transmitters at node v; 
Rxv The number of optical receivers at node v; 
TS Number of time-slots in a TDM frame; 
G The set of all multicast groups; 
tsg Traffic demand of group g in terms of time-slots; 
W The set of available wavelength on each link; 
Ag The revenue of the multicast group g; 

MG The set of macro-groups; 
Gv The set of groups whose source node are v; 
Tv The set of macro-groups whose source node are v, Tv=Gv 
Dt The set of possible destination nodes of macro-group t; 
og The source node of group g; 
ot The source node of macro-group t; 

Pgv Candidate path set from the source node of group g to node v; 
Ptv Candidate path set from the source of macro-group t to node v, 

which is identical to Pgv if the sources of g and t are the same 
node; 

σvg 1 if node v is a destination of group g, and 0 otherwise; 

δpl 1 if link l is on path p, and 0 otherwise. 
Decision Variables 

Notation Descriptions 
mgt 1 if group g is assigned to macro-group t; otherwise 0;  
xtvp 1 if path p is used for macro-group t to reach node v; otherwise 0;  
ylk

t The number of fibers on link l with wavelength k used by macro-
group t;  

ztk 1 if wavelength k is selected for macro-group t; otherwise 0.  
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An equivalent formulation of Problem is given by Optimization problem (IP): 
         max t

IP g gt l lk
g G t MG l L t MG k W

Z A m B y
∈ ∈ ∈ ∈ ∈

= −∑ ∑ ∑ ∑ ∑                  (IP)                

subject to: 
0 or 1gtm =  ,g G t MG∀ ∈ ∈  (1) 

0gtm =  , , g tg G t MG o o∀ ∈ ∈ ≠  (2) 

0gtm =  , ,g G t MG t g∀ ∈ ∈ >  (3) 

1gt
t MG

m
∈

≤∑  
Gg ∈∀  (4) 

g gt
g G

ts m TS
∈

≤∑  
t MG∀ ∈  (5) 

0 or 1tvpx =  , , tvt MG v V p P∀ ∈ ∈ ∈  (6) 

1
tv

tvp
p P

x
∈

≤∑  
,t MG v V∀ ∈ ∈  (7) 

{ | }
tv

gt vg u t tvp
g G p P

m G u o xσ
∈ ∈

≤ = ×∑ ∑  
,t MG v V∀ ∈ ∈  (8) 

{ }0,1,2,...,t
lk ly C∈  , ,t MG k W l L∀ ∈ ∈ ∈  (9) 

tv

t
tvp pl t lk

v V p P k W

x D yδ
∈ ∈ ∈

≤ ×∑∑ ∑  
,t MG l L∀ ∈ ∈  (10) 

t
lk l
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∈
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min{ , }t
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SP∈

 
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∑  , , ( )t MG l l v Dest l∀ ∈ ∈ =  (13) 

0 or 1tkz =  ,t MG k W∀ ∈ ∈  (14) 

1tk
k W

z
∈

≤∑  t MG∀ ∈  (15) 

{ | }gt u t tk
g G k W

m G u o z
∈ ∈

≤ = ×∑ ∑  t MG∀ ∈  (16) 

tk gt
k W g G
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∈ ∈

≤∑ ∑  
t MG∀ ∈  (17) 
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+∈

≤ ×∑  
, , ,vv V t T k W∀ ∈ ∈ ∈  (18) 

0
v

t
lk

k W l L

y
−∈ ∈

=∑∑  
t MG∀ ∈  (19) 

v

tk v
t T k W

Z Tx
∈ ∈

≤∑∑  
v V∀ ∈  (20) 

tv

tvp v
t MG p P

x Rx
∈ ∈

≤∑ ∑  
v V∀ ∈  (21) 

 
Constraints (1), (2), (4), (4), and (5) are group aggregation constraints. Each multicast group g should be merged to at 
most one macro-group, and the aggregated demands can not exceed the number of time slogs supported in a TDM frame. 
Constraint (2) requires that two multicast groups can be merged together only if they originating from the same source 
node. Equation (3) is a redundant constraint which is added to reduce computation time. A more detailed explanation is 
presented in section 3. 
 
Constraints (6), (7), (8), (9), (10), (12), (13), and (19) are routing and wavelength channel allocation constraints. If a 
multicast group g is merged to macro-group t, all destination nodes of g should become t’s destination. Constraint (8) 
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requires that if node v is a destination node of macro-group t, there must be a simple path starting from t’s source to it. 
Constraint (9) is a capacity constraint restricting the link usage on l by macro-group t assigned to wavelength k. 
Constraint (10) requires that if link l is on the path used for macro-group t to reach any node v, the link usage of t with 
wavelength k on that link should be greater than zero. Constraint (12) is a splitting constraint which requires that the 
total outgoing link usage of macro-group t with wavelength k on node v should be less than or equal to the product of 
splitting capability of v and total incoming link usage of t on node v with the same wavelength. Equation (13) and 
Equation (19) are redundant constraints added to restrict solution range in the relaxed problem. 
 
Constraints (14), (15), (16), (17), and (18) are wavelength assignment constraints. For each macro-group t, it can be 
assigned to at most one wavelength, which implies wavelength continuity. If any multicast group g is merged to it, 
Equation (16) ensures that it will be assigned a wavelength. On the other hand, Constraint (17) requires that macro-group 
t should not be assigned a wavelength if no group is merged into it. Equation (18) is also a splitting constraint special for 
the source node of macro-group t. 
 
Constraints (11), (20), and (21) are optical transceiver and capacity constraints. Constraint (11) requires that, for each 
wavelength, the total wavelength channels used on link l should not exceed the number of fibers on that link. For each 
OXC in the network, the total number of super- lighttree rooted at it should not exceed the amount of optical transmitter 
equipped on it. The number of being destination of any macro-group should not exceed the number of optical receiver 
equipped on the OXC. 
 
The number of variables and constraints used in our formulation are both O(|G|2+|G|×|V|×|P|+|G|×|L|×|W|) , where P is 
the candidate paths set between all pairs of nodes in the network. The size of P is O(2|L|) for that each link l in the 
network may or may not be in a given path. However, with a slight modification, the space complexity of our 
formulation will not grow exponentially with network size in terms of links. The variable xtvp, which represents whether 
source node of macro-group t reaching node v by path p, can be replaced by two 0-1 variables: x’tv and x’tvl. The former 
represents whether macro-group t use any path to reach node v while the later decides whether link l is on the path used 
by t from it’s source to v. 
 
The reason the modification can be made in such a way is that the variable xtvp in all equations of the proposed 
formulation is almost represented in an aggregated form (

v
tvpp P

x
∈∑ ) except for Constraint (6) and Constraint (10). For 

each pair of macro-group t and node v, Constraint (7) requires that there is at most one path connecting t’s source to v. 
As a result, the path p used by t to reach v can always be recovered from the information recorded in x’tv and x’tvl. 
Therefore, the space complexity of our formulation is reduced to O(|G|2+|G|×|L|×(|V|+|W|)) where the exponential term 
O(|P|)=O(2|L|) is replaced by O(|L|). 
 

3. SOLUTION PROCEDURE 
 
3.1 Lagrangean relaxation 
 
By using the Lagrangean Relaxation method8, 9, we can transform the primal problem (IP) into the following Lagrangean 
Relaxation problem (LR) where constraints (5), (8), (10), (11), (12), (16), (17), and (18) are relaxed.For a vector of 
Lagrangean multipliers, a Lagrangean Relaxation problem of (IP) is given by Optimization problem (LR): 

11 2 3 4 5 6 7 8

2

( , , , , , , , ) min { | }
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v v v
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u y SP y u ts m TS u z m
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subject to: (1)(2)(3)(4)(6)(7)(9)(13)(14)(15)(19)(20)(21) 
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where u1, u2, u3, u4, u5, u6, u7, and u8 are the vectors of non-negative Lagrangean multipliers {u1tv}, {u2tl}, {u3t}, {u4vtk}, 
{u5lk}, {u6vtk}, {u7t}, and {u8t},. To solve (LR), we decompose the problem into the following four independent and 
easily solvable optimization subproblems. 
 
Subproblem 1: (related to decision variable mgt) 

1

1

1 1 3 7 8 3

7 8

3 7

( , , , ) min

                                      

                            min

tv

tv

sub g gt gt vg t gt
g G t MG t MG v V g G t MG g G

t g gt t gt
t MG g G t MG g G

vg t
v V

Z u u u u A m u m u m

u ts m u m

u u u

σ

σ

∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

∈

= − + +

+ −

= + +

∑ ∑ ∑∑∑ ∑ ∑
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∑ 8t g t g
t MG g G

ts u A
∈ ∈

 − − 
 

∑ ∑

 

subject to: (1)(2)(3)(4). 
 
Subproblem 1 can be further decomposed into |V| problem because the groups will be aggregated together only if they 
root at the same nodes. A redundant constraint (3) is added to the problem in order to avoid oscillation of decision 
variable iteration by iteration. A formal proof is given below. 
 
Lemma 1 
Constraint (3) is a redundant constraint. 
 
Proof 
The lemma is proved by construction. A simple permutation and re-labeling technique can be applied to all possible 
assignments between groups and macro-groups to satisfy Constraint (3). Given an aggregated macro-group t, it can be 
relabeled to the smallest ID among all groups assigned to it. Because each group can be aggregated to at most one 
macro-group, no macro-group will come into collision with others in terms of ID. As a result, the assignment between 
groups and relabeled macro-groups satisfies the constraint (3). 
 

 
Figure 5: Permutation and re-labeling on macro-groups 

 
An example is illustrated in Fig. 5. The macro- groups are permutated according to the lowest ID among groups being 
assigned to them and relabeled according to the new order. For example, macro-group 4 is relabeled to 1 because 
multicast group 1 is assigned to it. The macro-group 3 is relabeled in this way as well. According to the computational 
experiments, the running time of the algorithm will be shortened and the lower bound will be slightly higher with this 
redundant constraint. For each group g, it will be aggregated to the macro-group t with lowest coefficient 
∑u1tv+u3t+u7ttsg-u8t-Ag. If the lowest coefficient is greater than 0, group g is dropped; otherwise g is aggregated to macro-
group t and the corresponding variable mgt is set to be 1. 
 
Subproblem 2: (related to decision variable xtvp) 

1

1

2 1 2 2

2

( , ) min { | }

                  min { | }

tv

tv tv
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subject to: (6)(7)(21). 
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Subproblem 2 is composed of |MG| shortest path tree problems for each macro-group t, where u2tl is the arc weight of 
link l. For each pair t and v, if the cost of the result shortest path p is less than the threshold value |{Gu|u=ot}|×u1tv, set 
xtvp to be 1, otherwise set it to be 0. If Constraint (21) is violated by some node v, sort values of shortest path cost minus 
threshold value in ascending order, and followed by setting the first Rxv corresponding xtvp to be 1. 
 
Subproblem 3: (related to decision variable yt

lk) 

2 4 5 6 5 2 4

6 6
{ } { }

( , , , ) min

                                  

v v

v vv v

t t
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Z u u u u B u D u y u y
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+
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∈ ∈ ∈ − ∈ ∈ ∈ −∈ ∈

=  + − ×  + 

+ −

∑ ∑∑ ∑∑∑∑

∑∑ ∑ ∑ ∑∑ ∑ ∑
 

subject to: (9)(13)(19). 
 
Subproblem 3 can be further decomposed into |MG| problems. The link usage and wavelength for each macro-group 
t∈ MG should be decided. In order to minimize the objective function, the wavelength k with smallest coefficient is 
select for each link.  
 
Subproblem 4: (related to decision variable ztk) 

( )
3 4 8 3 4 8

3 4 8

( , , ) min { | }

                    min

v

v

d u t t tk vtk v tk t tk
t MG k W v V t T k W t MG k W

v t vtk v tk t
v V t T k W

Z u u u G u o u z u SP z u z

T u u SP z u
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∈ ∈ ∈

= − = − +

= − + −
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∑∑∑
 

subject to: (14)(15)(20). 
 
Subproblem 4 can be further decomposed into |V| problems. For each node v, every macro-group rooted at v has to be 
assigned a wavelength. According to Lagrangean multipliers {u4vtk}, the wavelength k with largest value of u4vtk is 
chosen for macro-group t if the coefficient |Tv|×u3t+u4vtkSPv-u8t is larger than 0. Otherwise, macro-group t is skipped. For 
each node v, if the number of macro-groups rooted at it is larger than the number of transmitters on it, macro-groups are 
sorted according to their coefficients in ascending order and then the first Txv corresponding ztk are set to be 1. 
 
According to the weak Lagrangean duality theorem10, for any u1, u2, u3, u4, u5, u6, u7, and u8≥0, ZD(u1tv, u2tl, u3t, u4vtk, u5lk, 
u6vtk, u7t, u8t) is a lower bound on ZIP. The following dual problem (D) is then constructed to calculate the tightest lower 
bound. 
 
Dual Problem (D): 

D 1 2 3 4 5 6 7 8max ( , , , , , , , )DZ Z u u u u u u u u=  
subject to: u1, u2, u3, u4, u5, u6, u7, u8  ≥ 0. 
 
There are several methods for solving the dual problem (D). The most popular is the subgradient method9, which is 
employed here. Let a vector s be a subgradient of ZD(u1, u2, u3, u4, u5, u6, u7, u8). Then, in iteration k of the subgradient 
optimization procedure, the multiplier vector is updated by ωk+1=ωk+tksk. The step size tk is determined by tk=δ(Zh

IP – 
ZD(ωk))/||sk||2.  Zh

IP is the primal objective function value for a heuristic solution (an upper bound on ZIP). δ is a constant 
and 0 < δ ≤ 2. 

 
3.2 Getting primal feasible solutions 
After optimally solving the Lagrangean dual problem, we get a set of decision variables. However, this solution would 
not be a feasible one for the primal problem since some of constraints are not satisfied. Thus, minor modification of 
decision variables, or the hints of multipliers must be taken, to obtain the primal feasible solution of problem (IP). 
Generally speaking, the best primal feasible solution is an upper bound (UB) of the problem (IP), while the Lagrangean 
dual problem solution guarantees the lower bound (LB) of problem (IP). Iteratively, by solving the Lagrangean dual 
problem and getting the primal feasible solution, we get the LB and UB, respectively. So, the gap between UB and LB, 
computed by (UB-LB)/LB*100%, illustrates the optimality of problem solution. The smaller gap computed, the better 
the optimality. 
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Owing to the complexity of the primal problem, here we propose a comprehensive, two-part method to obtain a primal 
feasible solution: the group aggregation heuristic and the constrained multicast routing and wavelength assignment 
(RWA) heuristic. The first one determines which group can be admitted in, the memberships between admitted-in 
multicast groups and the destinations of all macro-groups. After the aggregation of multicast groups and memberships of 
macro-group are determined, we solve constrained multicast RWA subproblem for each macro-group. 
 
[Lagrangean Multipliers-based Group Aggregation Heuristic] 
1. Based on { mgt }, identify the set of un-admitted- in groups, denoted by Ug. 
2. Based on { mgt }, calculate the aggregated demands of time-slots of all macro-groups and identify the set of multicast 

group which are assigned to it, denoted by Gt. 
3. Identify the set of macro-groups whose aggregated demand exceeds the number of available time-slots in a TDM 

frame (TS), denoted by Tm. 
4. Remove one mgt ∈ , calculate contribution ratio for each group g in Gt. 
5. Drop G∈ Gt  with lowest contribution ratio and insert g into Ug. 
6. Repeat step 5 until the aggregated demands in terms of time-slots of t is less than or equal to TS. 
7. Repeat step 4, 5, and 6 until Tm becomes empty. 
8. For each nonempty macro-group, identify the destinations, calculate the revenue and insert it to the set Tr, which is 

the set of macro-group to be routed. 
9. Based on revenue, sort T∈ Tr in descending order. 
 
After applying the algorithm described above, we get the set of macro-groups for which we solve multicast RWA in next 
heuristic. 
 
[Lagrangean Multipliers-based Multicast RWA Heuristic] 
1. Select a macro-group t∈ Tr with highest revenue it can earn, and check whether residual transmitter on source node 

and receiver on destination nodes of t are enough or not. 
2. If any residual resources needed by t are not enough, drop all groups in Gt and insert into Ug. Repeat step1. 
3. Else, run SPH-J algorithm |W| times for each wavelength. Select wavelength k with lowest routing cost. 
4. If no such wavelength k exists, drop all groups in Gt and insert them into Ug. 
5. Else, decrease the residual transmitter on source node of t, the residual receiver on destinations of t, and the residual 

link capacity with wavelength k of all used link according to the link usage calculated in step 3. Remove t from Tr 
and repeat step 1 until Tr becomes empty. 

 
[Algorithm SPH-J] 
1. Insert source node to set TreeNodeSet, and insert all destinations to set DestSet. 
2. Calculate the link cost:

6( ) l vtkt MG k W
SPHCost l B u

∈ ∈
= +∑ ∑ , where v=Dest(l). 

3. Choose d∈ DestSet with feasible path and lowest cost to any node tn∈ TreeNodeSet, degree constraint of each node 
and capacity constraint of each link on the acyclic path should be checked. If no such d exists, terminate this 
algorithm and return fail. 

4. Remove d from DestSet and insert it with other nodes all the way in the path into TreeNodeSet.  
5. Repeat step 3 until DestSet is empty. 
6. Return success. 
 
The time complexity of iterations of the proposed Lagrangean relaxation based algorithm is composed of three parts: 
solving Lagrangean relaxation subproblems, solving the Lagrangean dual problem, and getting primal feasible solutions. 
The third part dominates others because the high complexity of solving constrained multicast RWA problem. The worst 
case time complexity is O(|G|×|W|×|Dt

2|×|L|×log|V|). 
 

4. COMPUTATIONAL EXPERIMENTS 
In this section, computational experiments on the Lagrangean relaxation based heuristic and other primal heuristics are 
reported. Because of the complexity of the multicast group aggregation and constrained multicast routing and 
wavelength assignment problems, it is not easy to get a tighter lower bound by solving the Lagrangean relaxation 
problem iteration by iteration. But this powerful methodology provides a lot of hints to help us get a primal feasible 
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solution. In order to demonstrate the difference of solution quality between the algorithms proposed in this paper and 
other primal heuristics, a simple algorithm is implemented to compare with the Lagrangean relaxation based algorithms. 
 
In section 3, the problem is decomposed into two subproblems: the group aggregation subproblem and the constrained 
multicast routing and wavelength assignment (RWA) subproblem. Without implications of the Lagrangean multipliers, 
memberships and demands of groups are the only information we can rely on to solve the group aggregation problem. 
Two groups can be merged into one macro-group if they have sufficient overlap in terms of destination nodes and the 
aggregated demands do not exceed the number of available timeslots in a TDM frame. The simple algorithm is described 
as follow. 
 
[Algorithm SA] 
Step 1 (Initialization): 

Read configuration file to construct WDM network and generate multicast traffic demands. 
Step 2 (Group Aggregation): 

For each group g rooted at node v, merge g to a macro-group t (t < g) with highest extent of overlap (at least 66%) 
in terms of destination nodes without violating capacity constraint. If no such t exists, assign g to the macro- group 
with ID g. 

Step 3 (Constrained Multicast RWA): 
Applying the same algorithms described in section 4.2 to determine the routing and wavelength assignment 
problem for each macro-group. 

Step 4 (Termination): 
Calculate the result value from step 3 and terminate this algorithm. 

 
The network topology used for our numerical experiments are 14-node 42- link NSFNET network (Fig. 6) and 12-node 
50-link GTE network (Fig. 7). The number beside each link indicates the cost of the link. 

       
Figure 6: 14-nodes 42-links NSFNET network.         Figure 7: 12-nodes 50-links GTE network. 

 
First, we experiment different aggregation levels in Experiment-I. The number of transmitters Tx on each node is 
calculated from dividing 40 (half of average number of groups tested) by the number of nodes in the network. The 
number of receivers Rx is calculated from multiplying the number of transmitters by the average group size. Each case is 
tested on two topologies presented above. Table 2 summaries the selected results of the computational experiments.In 
general, the results of LR are all better than SA. For each testing network, the maximum improvement ratio between the 
simple heuristic and the Lagrangean based heuristic is 30.48 %, and 21.56%, respectively. To claim optimality, we also 
depict the percentile of gap in Table 2. As we mention before, because of the complexity of the multicast group 
aggregation and constrained multicast routing and wavelength assignment problems, it is not easy to get a tighter lower 
bound. The gap between upper bound and lower bound may be a duality gap, because we relax several constraints. 
 
Second, the relationship between the reduced cost and increased splitting capability are examined in Experiment-II. In 
this case, we try to compare the costs between different splitting capabilities conditions. To achieve fair comparison, the 
number of groups being admitted in should be the same or we can compare the costs between different numbers of 
groups being routed in the network. As a result, the offered loads in terms of the number of groups are set to be small to 
make all of them being admitted in. Table 3 summaries the computational experiments of Experiment-II. In general, the 
Lagrangean based heuristic performs well compared to the simple heuristic, even when the simple algorithm can not find 
a feasible solution, such as the case A with 10 groups and no splitting capability. We also found that if the nodes have 
higher splitting capability, the cost would be reduced. 
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There are three main reasons that LR works better than SA. First, the SA makes groups aggregation decision only based 
on the destination nodes set and residual capacity in terms of time-slots, whereas LR makes use of the related 
Lagrangean multipliers. The Lagrangean multipliers include the potential cost for routing and wavelength assignment on 
each link in the formed tree topology. Second, LR solves the constrained multicast routing and wavelength assignment 
problem based on the modified link cost, which takes the splitting capability of destination node of link into 
consideration. As a result, LR can find a feasible solution with higher possibility comparing to SA. The solution quality 
is better too. Last, LR is iteration-based and is guaranteed to improve the solution quality iteration by iteration. 
Therefore, in a more complicated testing environment which the extent of mergence between groups is higher, the 
improvement ratio is higher. 

Table 2: Selected results of experiment I 
CASE SP. G# SA UB LB GAP Imp. 
NSFNET Network Max Imp. Ratio: 30.48 % 

50 2553 3227.8 4629.9 43.41% 26.43% 
70 2872.4 3748 6524.45 74.08% 30.48% 
90 3233 4001.3 8415 110.31% 23.76% 

A 8 

110 3569.4 4172.4 10266 146.05% 16.89% 
50 2691.8 3353.2 4624.25 37.91% 24.57% 
70 2991 3740.4 6521.74 74.36% 25.06% 
90 3301.6 4128.2 8412.6 103.78 25.04% 

B 12 

110 3643.2 -4469 10254.6 129.46% 22.67% 
GTE Network Max Imp. Ratio: 21.56 % 

50 3696.2 4463.3 5071.49 13.63% 20.75% 
70 4288.8 5173.9 7122.5 37.66% 20.64% 
90 4884 5836.55 9148.73 56.75% 19.5% 

A 8 

110 5278.5 6416.57 11235.52 75.1% 21.56% 
50 3726.3 4360.3 5067.45 16.22% 17.01% 
70 4421 5307.3 7106.7 33.9% 20.05% 
90 4858.2 5891.1 9161.43 55.51% 21.26% 

B 12 

110 5374.5 6236.8 11182.75 79.3% 16.04% 
SP: Additional Splitting Capabilities 
SA: The result of the simple heuristic 
UB and LB: Upper and lower bounds of the Lagrangean based heuristic 
GAP: The error gap of the Lagrangean relaxation 
Imp.: The improvement ratio of the Lagrangean based heuristic  

Table 3: Results of experiment II 
CASE SP SA Cost LR Cost Imp. 
Group Number=10  

0 N/A 247.2 N/A 
8 218 170.8 -21.65% 
16 203.2 160 -21.26% 

A 

24 194 148.4 -23.51% 
0 225.6 224.4 -0.53% 
8 175.6 164 -6.61% 
16 170.8 152.8 -10.54% 

B 

24 166.4 143.2 -13.94% 
Group Number =20  

0 N/A N/A N/A 
8 364.8 350.8 -3.84% 
16 352.4 318.8 -9.53% 

A 

24 343.2 299.6 -12.7% 
0 N/A N/A N/A 
8 355.6 282.4 -20.58% 
16 329.2 278.8 -15.31% 

B 

24 324.4 261.2 -19.48% 
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5. CONCLUSION 
The achievement of this paper can be expressed in terms of mathematical formulation and experiment performance. In 
terms of formulation, we propose a precise mathematical expression to well model the problems of multicast tree/group 
aggregation, constrained multicast routing and wave length assignment on wavelength-routed WDM networks. The 
overall problem is modeled as an integer linear programming problem. In terms of performance, the proposed 
Lagrangean relaxation and subgradient based algorithms outperform the primal heuristics with acceptable computation 
time. 
 
Different network topologies are tested in experiments, including NSFNET network and GTE network. And different 
parameters setting, including different number of wavelength available in fiber-optics, different size of multicast groups, 
and different demands in terms of time-slots have been tested to make this research more generic. As a result, we suggest 
that network operators apply the proposed Lagrangean relaxation based algorithms when dealing with network design 
problems related to supporting multicast communications in resource constrained WDM networks. 
 
In this paper, Quality of Service (QoS) measurements are not taken into consideration. In the future, the QoS 
requirements can be added to the proposed flexible formulation. For example, delay bound, jitter, and the hop count 
constraint can be easily added to the formulation. Due to the variety of services carried on the networks, different group 
aggregation admission policies can also be added to the mathematical model to fulfill different service requirements. 
 
Besides, the feasibility of the lighttree approach depends obviously on the relative cost of optical OXCs, transmitters and 
receivers at different capability. Today, these costs are rapidly changing due to the rapid evolution of electrical and 
optical technologies. The resources placement in WDM networks is an important issue as well. If the related 
technologies get mature, different tree sharing schemes can be taken into consideration such as aggregating groups 
originating from different source nodes. Concatenation of two shared tree is also a possible way. 
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