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Abstract 
In this paper, we develop an algorithm to cope with 

the sensor placement problem for target location under 
constraints of the cost limitation and the complete 
coverage. We adopt the grid-based placement scenario 
that deploys exact one sensor in one gridpoint at most. A 
target in a grid point can be positioned by a set of 
sensors whose transmission radius covers the gridpoint. 
The optimal sensor placement for target location is to 
find a sensor deployment such that targets can be 
positioned in any gridpoint of the sensor fields. However, 
due to the cost limitation, the optimal sensor deployment 
cannot be achieved frequently. Consequently, the 
positioning accuracy is the major issue of the problem. 
The distance error is one of the most nature criteria to 
measure the positioning accuracy. In this paper, the 
distance error of two indistinguishable grid points is 
defined as the Euclidean distance between them. We 
formulate the sensor placement problem os a 
combinatorial optimization problem for minimizing the 
maximum distance error in the sensor field under 
constraints. The sensor placement problem is NP- 
complete for arbitraiy sensor fields. We present an 
eficient algorithm that is based on the simulated 
annealing approach to address the problem. We first 
compare our algorithm with the brute force approach in 
the case of smaller sensor fields. The evidence indicates 
that our algorithm can find the optimal sensorplacement 
under the minimum cost limitation. Moreover, the 
simulation results also show that the proposed algorithm 
is very superior in terms of the positioning accuracy even 
in the case of larger sensorfields. 

Keywords: sensor placement; target location; simulated 
annealing. 

1. INTRODUCTION 

Recent advances in micro-electronic techniques and 
wireless network techniques have enabled the 
development of distributed sensor networks (DSNs). The 
sensor network is composed of a large number of sensors, 
which are intelligent, low-cost and small. The smart 
sensors can sense the local phenomena and communicate 
wirelessly with other sensors, as well as with back-ends. 
Therefore, back-ends have the ability to monitor and 
control smart space remotely [I]. 

There are two ways to deploy a sensor network 
random placement and grid-based placement. When the 
environment is unknown, random placement is the only 
choice and sensors may be thrown from .aircrafts. 
However, if the terrain properties can be predetermined, 
the deployment of a sensor network can be planned 
carefully and the quality of service can be guaranteed, 
even under some constraints of resource limitation. In 
this paper, we focus on grid-based placement. 

Sensor placement strategy depends on the DSN's 
application. If it is to be used for surveillance, coverage 
must be considered, when placing sensors. For those 
dealing with target location problems, discrimination has 
to be considered. 

In [2] and [3], they present a resource-bounded 
optimization framework for sensor resource management 
under the constraints of sufficient grid coverage of the 
sensor field. These are inherently probabilistic due to the 
uncertainty associated with sensor detection. In [4], they 
formulate the sensor placement problem in terms of cost 
minimization under coverage constraints. A framework 
of identifying codes is used to determine sensor 
placement for a unique target location. However, this 
approach cannot be applied to irregular sensor fields. As 
our survey, the sensor placement for target location has 
not been solved by mathematic optimization 
methodology. 

The rest of the paper is organized as follows: in 
section 2, we state the sensor placement problem and 
then present the mathematical model in section 3. Section 
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4, proposes an algorithm. The performance evaluations 
are in Section 5. Section 6 concludes the paper. 

2. PROBLEM DISCRIPTION 

A sensor field can be represented as a collection of 
two- or three-dimensional grid points [Z], as shown in 
Fig. 1. A set of sensors can be deployed on the grid 
points to monitor the sensor field. Therefore, a target on a 
grid point can be located if sensors can detect the grid 
point. 

In this paper, we consider the detection model of a 
sensor to be a Oil coverage model. Coverage is assumed 
to be full ( I ) ,  if the distance between the grid point and a 
sensor is within the transmission radius of the sensor. On 
the contrary, coverage will be assumed to be non- 
effective (0). If any grid point in a sensor field can be 
detected by at least one sensor, we call the field a 
complete covered sensor field. In this context, a target 
can be detected at any place in the field. 

For any grid point, a sensor in the field can cover (1) 
it or not (0) is a binary variable. In addition, we defme a 
power vector for each grid point. This indicates whether 
sensors can cover a grid point in a field. For example, a 
grid point in a sensor field with 5 sensors is covered by 
sensors 1 and 3 and the power vector for the grid is ( I ,  0, 
1, 0, 0). When a target appears at a grid point, the back- 
end will receive reports from sensors 1 and 3, 
simultaneously. In a complete covered sensor field, when 
each grid point is identified by a unique power vector, we 
call the sensor field a complete discriminated sensnr field. 
In this case, as soon as a target is identified in the sensor 
field, the back-end is able to locate it according to the 
power vector of the grid. 

The sensor placement for target location is to find a 
way to deploy sensors in a sensor field such that targets 
can be positioned. However, due to some resource 
limitations, a complete discriminated sensor field cannot 
be constructed. Consequently, these will be wrong 
determination, whenever a target occurs at any one of the 
grid points. Positioning accuracy, therefore, becomes a 
major issue of the problem. Distance error is one of the 
most natural criteria to measure positioning accuracy. 
The distance error of two indistinguishable grid points is 
defined as the Euclidean distance between them. In this 
paper, we intend to minimize the distance error when 
complete discrimination is not possible. 

3. MATHEMATICAL. MODEL 

We formulate the sensor placement problem as a 
combinatorial optimization problem. The formulation can 
plan a sensor network that provides either complete, or 
high, discrimination depending on the cost limitation. For 

Fig. 1: A sensor field 

complete discrimination, it is implied that the minimum 
Hamming distance of power vectors for any pair of grid 
points will be maximized. For high discrimination, it is 
implied that the maximum distance error will be 
minimized. The problem is, therefore, defined as a min- 
max model. 

Given Parameters: 
A : {I,& ..., m) : Index set of the sensor's candidate lo~atiom 
B :  {I,2, ..., n)  : Index set ofthe location in the sensor field, m i  n 
rk : Transmission radius of sensor located at k , k E A 

dij ; Euclidean distance between location i and j , 

: The cost of sensor allocated at location k , k E A 
i , j e B .  

ck 

G : Total cost limitation 

Decision Variables: 
Yk 

vj =(vi ,  .viz ,..., v ( ~ )  

: 1,  if an sensor is allocated at location k , 
k e A .  
: A power vector of location i , where vjk is 1 
if the target at location i can be detected by 
the sensor at location k and 0 otherwise. 
i e  B , k  E A .  

Objective Function and Constraints: 

m 
2 "fk 
k=l 

2 1  V i e B  

(K is a big number.) 

Constraints (I)  and (2) require the relationship 
between sensor transmission radius r and detection 
distance djk . If a target appears at grid point i and the 
grid is inside the coverage of sensor k , the target should 
be detected by the sensor if it is available. Constraint (3) 
states that the total deployment cost of sensors must 
limited by cost G . Constraint (4) is the complete 
coverage limitation. It guarantees that any grid point in 
the field will be covered by at least one sensor. 

- 0868 - 



4. ALGORITHM 

Simulated annealing (SA) is a highly reliable method 
for solving hard combinatorial optimization problems [5]. 
In the following, we use the concept of SA to derive an 
efficient approximate solution method for the problem. 

Here, we briefly state the cooling schedule of the 
algorithm. Initially, we assume the sensors are deployed 
at all grid points. Each loop, tries to either reduce, or 
interchange, a sensor randomly depending on whether the 
cost constraint is satisfied. For the sake of efficiency, we 
modify the stopping criterion. Besides frozen 
temperature, i f  , is reached, when both complete 
coverage and discrimination are achieved as well as 
z,~, =]/(I+ K) , the procedure will then be stopped. It is 
not certain that the solution with complete coverage and 
discrimination is an optimal one. However, it is the 
desired solution in this problem. 

The pseudo code of the algorithm is shown as Fig. 2. 
The energy, E ,  is defined as follows: 

1. Deploy sensors on all grid points, E& t m 

2. repcat until I I i f  
3. repcat I times 
4. 
5. 
6. 
7. 

8. 
9. 

10. Ifconstmint (4) is violated then goto step 3 
11. Evaluate thhc energy differential AE between the two 

dcploymenls. 
12. If cxp(AEEI1) < p then goto step 3 
13. Accept the new deployment 
14. Ifconsmint (3) is violated then goto step 3 
15. If Emh <current energy then goto step 3 
16. Emh t current energy and save current deployment of sensor 
1 I .  If Emh is the desired solution then goto step 19 
18. t t t . a , r t r * p  

19. ZlPl t Emh 

Generate a random p ,  0 < p < I 
Configure a new deployment by remove a sensor randomly 
Ifconsmint (4) is still satisfied, then 
Evaluate the energy differential AE between thc two 
deployments. 
If cxp(AEEI1) > p then goto step 13 

Configure B new deployment by change a sensor to a new grid 
point randomly 

Fig. 2: Simulated Annealing pseudo code for the sensor placement. 

5. SIMULATION RESULTS 

In this section, we present the simulation results. First, 
we evaluate the performance of the proposed algorithm 
in the case of smaller deployed sensor fields. The 
objective of the experiment is to investigate whether the 
algorithm can find the optimal solution under the 

minimum cost limitation. Then, we show the 
performance results in the case of larger sensor fields 
under various cost limitations. 

The parameters of the cooling schedule are a=0.75 
and ,B = 1.3 , The initial values of I and I are 5n and 0.1, 
respectively; and n is the number of grids in the sensor 
field. The frozen temperature is set to 1/300. The K is 
10000 and the cost of sensor, ci , VI i i i n  , is set to I .  

As the cost of the sensor is unique, the constraint of 
cost limitation, Constraint (3), can be expressed by the 
constraint of the limitation of the number of sensors. In 
this section, we use a normalized term, sensor density, 
for the constraint. Sensor density can be defined as 
following: 

sensor density (%) = the amount of sensors * 100% / n 

5.1 Experiment I 

Experiment I evaluates the performance of the 
proposed algorithm in the case of smaller rectangular 
sensor fields that have no more than 30 grid points. We 
compare the results with these obtained by the exhaustive 
search. 

First, we find a minimum sensor density for a 
complete covered and discriminated sensor field. Then, 
we try to find the same result by using the proposed 
algorithm under the limitation of the sensor density. 

Table 1 shows the results. In all cases, the proposed 
algorithm can achieve the same deployment for sensor 
fields with a minimum sensor density. The required 
sensor density ranges between 40% and 45%, except in 
the case of the 4 x 3  rectangular sensor field. The solution 
time of the exhaustive search for the 10x3 sensor field is 
more than 65 minutes. However, the, solution can be 
found in 0.1 second by the proposed algorithm. 

Table 1: Comparison between tho exhaustive search 

Note: Opt.: by the exhaustive scarch. 
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5.2 Experiment I1 

In this experiment, we consider the case of larger 
sensor fields that are 10x10 and 30x30 in size. Theradius 
of the sensor is 1. We investigate the value of zip, with 
various sensor densities. The results are compared with 
the best solution of a random placement approach. The 
best solution is feasible and has a minimum objective 
value. We first generate 1000 arbitrary solutions by the 
random placement approach and then pick the best one. 

Fig. 3 and 4 show that the proposed algorithm can also 
find the desired solution when the sensor density is 
between 40% and 45%. This result is consistent with 
Table I .  The solution time for a 30x30 sensor field is 
only a couple of minutes. The proposed algorithm is, 
therefore, very effective and scalable. 

Fig. 3 and 4 indicate that sensor placement by the 
proposed algorithm has a minimum distance error. i.e. 
the distance error is 1, when the sensor density is 
insufficient. The random placement approach cannot 
achieve the same result. 

The proposed algorithm can achieve a complete 
covered placement (i.e., the feasible solution to our 
problem) under a very low sensor density. With the 
proposed algorithm, the minimum required sensor 
densities are only 25% and 24% in Fig. 3 and 4, 
respectively. The results are very close to the theoretical 
lower bound of that. (When the sensor radius is 1, a 
sensor can cover 5 grid points. Hence, the lower bound of 
sensor density for complete coverage is 20%). However, 
with the random placement approach, the required 
density for a complete covered placement is very high 
(44% and 63% for Fig. 3 and 4, respectively). The 
experimental results show that the probability of finding 
the feasible solution with the random placement 
approach is very low when the area of the sensor field 
increases larger. In addition, it's very likely that this 
approach could find any feasible solution for a very large 
sensor field. 

In summary, the proposed algorithm is highly scalable 
and robust in terms of distance error and minimum 
deployed density for the feasible solution. 

6. CONCLUSIONS 

In this paper, we have attempted to solve the sensor 
placement problem. We formulated this problem as a 
min-max mathematical optimization model provided that 
either discrimination, or distance error, is the objective 
under cost and coverage constraints. Then, the heuristic 
algorithm, based on simulated annealing approach, was 
developed. The experimental results show that the 
proposed algorithm can quickly obtain an optimal 
solution in a small sensor field. Furthermore, the 

0 Random 

proposed algorithm is very effective, scalable, and robust 
even in large sensor fields. 
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