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Abstract 
The network lifetime for wireless sensor network plays 

an important role to survivability. Thus, we indicate the 
importance of routing protocol to network lifetime, and 
model the expected retransmission time as a convex 
function with respect to aggregate flow on each sensor 
node. Thus we formulate the optimal energy-efficient 
routing as a non-linear min-max programming problem 
with convex product form, which can be optimally solved 
by optimal routing framework. Based on the optimal 
routing framework, we propose Lagrangean-based 
algorithm and primal optimal algorithm. By the 
combination of these two algorithms, we can optimally 
and efficiently get the routing assignment to maximize the 
network life in the sensor network. From experiments, we 
observe that when the optimal network lifetime increases 
as the number of sensor nodes increase. While the shortest 
path-based heuristic algorithm can only achieve about 
48% network lifetime compared to our solution approach. 

1. Introduction 

In the wireless sensor network, the energy aware 
routing (EAR) protocol was presented to extend the 
network life time [4] [18]. The EAR requires hardware 
support which is the capability of knowing the battery 
status, e.g., how many watts the node still remains. In [3], 
this concept was enhanced by introducing “altruist”, the 
node having surplus energy to forward traffic, into 
wireless sensor networks. Through properly exchanging 
battery status between neighbors, the routing policy is 
energy efficient and the network life time extends 
significantly. 

Since there are only a few OD (Original Destination) 
pairs needed to be recorded in each node’s routing table, 
we can compute several candidate routing paths for each 
OD pair. The benefit of multiple candidate routing paths 
was argued in [11]. We apply the features of optimal 
routing [14] when selecting the candidate paths and 
scaling traffic flow between paths until the optimality 
conditions are satisfied. 

In this paper, we choose table-driven routing policy and 
apply distance vector based algorithm, e.g. distributed 
Bellman-Ford (DBF) algorithm. To take the advantage of 
the asynchronous convergence property of DBF [7], we 

build a routing protocol implemented with distributed 
fashion which is indispensable in practice for sensor 
networks.   To apply optimal routing features on DBF, 
we have to define the link length as sophisticated 
parameters which are capable of affecting network life 
time as in [1] and [16].  

Based the analysis of the expected retransmission time 
and the collision probability in [9], we model the expected 
retransmission time as a convex function of aggregate 
traffic load on the node then take it into the proposed 
routing algorithm. In [5], the author proposed that 
min-max node lifetime objective function tends to find 
longer path resulting to decrease average node lifetime. 
Our algorithm contributes to keep balance between 
minimum node lifetime and average node lifetime in this 
stage. 

The sensor deployment component is for topology 
determination [6]. Note that the sensor network topology 
is non-regular and usually randomly spread as [8]. We 
formulate the energy efficient routing problem as a 
nonlinear optimization problem. To fulfill the timing and 
the quality of the optimal decisions, the solution approach 
to the mathematical problem is Lagrangean relaxation 
method. In the further computational experiments, our 
proposed routing algorithm is expected to be efficient and 
effective to deal with each complexity problems. 

The remainder of this paper is organized as follows. In 
Section 2, we briefly describe the optimal energy routing 
problem and present the problem formulation. In Section 
3, the solution approach is presented. In Section 4, 
illustrate algorithms to solve the optimal mathematical 
problem and compare with other methods with 
experimental results in section 5. Finally, we present our 
conclusions in Section 6. 

2. Problem description 

In sensor networks, the interference is a significant 
effect on communication, which will affect bit-error rate 
and retransmission. To get an over-estimated 
retransmission model, consider the pure-aloha MAC 
formulation which can be taken as a performance 
lower-bound of those MAC layers in practice: 

2Gh Ge−=   (1) 
here h is the throughput of the transmitter node, defined as 
aggregate flow divided by wireless channel capacity. 
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Notation G is the traffic load including retransmission for 
the transmitter node. Then the expected retransmission 
time R is: 
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where Ps is the successful transmission probability. From 
the deduction in [2], the expected retransmission time in 
pure-Aloha system is e2G. Give the deduction as following, 
first we apply Tyler expansion at G=0 (then R=1) on f(R) 
=ln(R): 
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After applying the quadratic equation formula, the 
expected retransmission time R is a function of throughput 
h: 
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Then, we develop a mathematical model to deal with 
the energy efficient routing problem in order to maximize 
the network life time in the system. Table 1 lists the given 
parameters and Table 2 lists the decision variables. 
According the above discussions, we formulate the energy 
efficient routing problem as a complex nonlinear 
programming.  
Objective function: 
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The objective function is to maximize the network 

lifetime of the given wireless sensor network 
configuration. The network lifetime is related to the 
routing policy and passive mode management, which are  

Table 1. Notation descriptions for given parameters 
Notation Descriptions 

N The set of wireless sensor nodes; 

V The set of events subscribed by the application layer
services in the sensor network; 

W 
The node set being capable of sensing subscribed
events; 

D The set of specific destination nodes; 

Ri 

The traffic flow source from subscribed event i, 
measured by Kbps (kilobytes per second), assuming 
it is constant bit rate;  

Pw 
The candidate paths to the destination and origin
from node w, w W∈ ; 

En The initial energy level of node n, measured by Watt;

en 

The transmission energy required by node n to 
transmit an information unit, measured by Watt per 
kilobyte; 

cn The capacity on node n, measured by Kbps; 

an 
The energy required by node n to retain active mode, 
measured by Watt per second; 

dn 
The energy required by node n to retain passive
mode, measured by Watt per second; 

( )R hn  
The expected retransmit time until success. It is a 
convex function related to the channel throughput of
node n, measured by kilobytes per second.  

δnp 
Indicator function which is a 0-1 variable. If node n is 
in path p then set to 1, otherwise 0; 

Table 2. Notation descriptions for decision variables 
Notation Descriptions 

riw 
The traffic flow source from subscribed event i and 
sensed by node w, measured by measured by Kbps. 

fwp 
The traffic flow source from node w and route through 
path p, measured by measured by Kbps; 

gn Aggregate flow on node n; 
hn Channel throughput of node n; /h g cn n n=  

qn 
The portion that node n is in passive mode of it self’s 
node life time. It is in [0, 1]. 

tn The time duration of node n to exhaust its energy; 

the decision variables in our formulation. Constraint (5) 
ensures that the event-driven traffic can be fully 
dispatched to the corresponding sensors. Constraint (6) is 
the path-oriented routing requirement constraint. 
Constraint (7) calculates the aggregate flow on node n. 
Constraint (8) calculates the channel throughput according 
to the aggregate flow on node n. Constraint (9) is 
bandwidth constraint on wireless sensor nodes. 
Constraints (10) and (11) are both convex functions 
modeling the expected number of retransmission time 
related to the channel throughput of node n. Constraint (12) 
calculates the node lifetime concerning the aggregate 
traffic flow on node n, the energy consumption rate and 
the frequency that node n is in passive mode. Constraint 
(13) enforces the portion that node n is in passive mode of 
its node lifetime is between 0 and 1. Constraints (14)-(17) 
ensure the traffic flow are positive or zero. 

Because the node lifetime tn must be positive, the 
original objective function can be rewritten as following:  

max min min max(1/ )n nn n
Z t t= =
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Also, at the optimum, the passive mode must be fully 
utilize to achieve the best energy-efficient. Constraint (9) 
is active and 1 2 /n n nq g c= − . Thus an equivalent formulation 
of Problem (PB1) is: 
Objective function: 
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Subject to: (5) ~ (17) except (9), (12), and (13). 
This re-formulation eliminates Constraints (9), (12), 

and (13) as well as decision variables qn by merging them 
into the objective function and the problem becomes a 
single decision variable programming problem. 

3. Solution approach 

The optimal energy-efficient routing problem (OEERP) 
in wireless sensor networks is a nonlinear programming 
problem with convex product form. We apply Lagrangean 
Relaxation (LR), which has been successfully adopted to 
solve many famous NP-complete problems [13], to solve 
the optimal energy-efficient routing problem. By 
Lagrangean strong duality theorem, the tightest lower 
bound attained by Lagrangean dual problem is exactly the 
primal feasible objective function [15]. We also conduct a 
primal algorithm to get the optimal routing assignment 
resulting to maximize network lifetime. 

We transform the maximization problem to 
minimization without loss of correctness.  

Let max[ ( ) 2 ( ) / ] /
n N n n n n n n n n ns g R h e g a d c d E
∈

= + − + , then 

an equivalent formulation of Problem (PB2) is: 
Objective function: 

minZ s=  (PB3) 
Subject to: 

(5) ~ (17) except (9), (12), and (13). 
0s >   (19) 
( ) 2 ( ) /n n n n n n n n ng R h e g a d c d sE+ − + ≤  n N∀ ∈  (20) 

Constraint (19) ensures the equality with original problem 
(PB1). Constraint (20) defines the minimum node lifetime 
in the network. By using the LR method, the primal 
problem can be transformed into the following LR 
problem where Constraint (20) is relaxed. For a vector of 
non-negative Lagrangean multipliers, the LR problem is 
given by optimization problem as: 
Objective function: 

( ) minLRZ sα = +

 [ ]( ) 2 ( ) /n n n n n n n n n n
n N

g R h e g a d c d sEα
∈

+ − + −∑  (LR) 

Subject to: (5) ~ (19) except (9), (12), (13) and (18). 
In this formulation, α is the vector of {αn}, which are 

Lagrangean multipliers and 0nα ≥ . To solve this problem, 

we can decompose the problem into the following two 
independent and solvable optimization Subproblems. 

We add a restricted upper-bound of s in Constraint 
(SUB1.1) and it should not change the optimal solution 
value in (PB3). The meaning of s  is the upper bound 
above the reciprocal of node lifetime, equal to the lower 
bound on node lifetime. Then Subproblem (SUB1) is: 
Subproblem (SUB1): related with decision variable s. 
Objective function: 

1( ) min(1 )SUB n n
n N

Z E sα α
∈

= − ∑             ( SUB1)

Subject to: 
0 s s< ≤    (SUB1.1)

Sub-problem 2 (SUB2) is the bottleneck of all 
sub-problems. To apply standard nonlinear optimization 
techniques, we reformulate Problem (SUB2) as (SUB2-2) 
with single path-oriented decision variable xip modeling 
the routing assignment form subscribed event i to 
destination through path p. The objective function and 
constraints are as follow: 
Subproblem (SUB2): related with decision variables riw 
and fwp. 
Objective function: 

[ ]2( ) min ( ) 2 ( )/SUB n n n n n n n n n
n N

Z g R h e g a d c dα α
∈

= + − +∑  (SUB2)

Subject to: (5) ~ (7), (10) ~ (11), and (14) ~ (17). 
 

Subproblem(SUB2-2): related with decision variables xip.
Objective function: 

[ ]2 2( ) min ( ) 2 ( ) /SUB n n n n n n n n n
n N

Z g R h e g a d c dα α−
∈

= + − +∑
                               (SUB2-2)
Subject to: (10), (11) and 

ip i
p P

x R
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0ipx ≥  ,i V p P∀ ∈ ∈  (SUB2-2.3)
Problem (SUB2-2) is a minimum cost flow problem with 
a convex cost function and multi-commodities routing 
requirement. We solve this problem with optimal routing 
framework which is a variation of projection methods for 
convex cost routing problem [14]. According to the weak 
Lagrangean duality theorem [17], for any αi ≥ 0, ZLR(αi) is 
a lower bound on ZIP. The following dual problem (21) is 
then constructed to calculate the tightest lower bound. 

0
max ( )D LR i

i
Z Z

α
α

≥
=  (21) 

There are several methods to solve the dual problem, 
among which the subgradient method is the most popular 
and is employed here. Computational performance and 
theoretical convergence properties of the subgradient 
method are discussed in [12]. In this dual problem, let a 
vector χ be a subgradient of problem ZLR(αi). In iteration k 
of the subgradient optimization procedure, the multiplier 
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vector π is updated by πk+1 = πk+ξkχk. The step size ξk is 
determined by 2

( ) /k h k
D kZ Zζ ζ π χ= ⋅ − , where hZ  is the 

primal objective function value for a heuristic. It is an 
upper bound on ZD.  

We describe the solution procedure of optimal 
energy-efficient routing as Fig. 1 and the detailed 
description of each procedure is: 
a. Computing first derivative length 

By definition, the cost function of Subproblem 
(SUB2-2) that the object is to minimize the sum of 
reciprocal of node lifetime weighted by Lagrangean 
multipliers, and the FDL is the first derivation with path 
flow. We get the first derivative length as following:  

2( )( ) '( ) n n n
n n n n n n

n N n n

dh a dR h e g R h e
dg c

α
∈

⎡ ⎤−
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⎣ ⎦
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Given the valuation of first derivative length as 
mentioned above, at every iteration we compute each 
node’s lifetime according the current routing 
assignment, and recognize the bottleneck node in the 
network. Then update the first derivative length of all 
the paths. Finally we shift flow between paths based on 
the first derivative length computed earlier. Repeat 
these steps until algorithm converge.  

b. Finding MFDL path 
Our goal is to find the most economic path to shift 
positive flow iteration by iteration. By the lemmas of 
optimal routing framework, the most economic and 
energy-efficient path must with the minimum sum of 
Node-FDL. Thus we directly apply Dijkstra shortest 
path algorithm to find the MFDL path for each OD-pair 
iteration by iteration, where the length computed for 
shortest path is the node-FDL. 

c. Path flow adjustment 
We shift positive amount of flow form the maximum 
FDL path to the minimum one by applying Newton 
method on line search. Let β* be the step size that 
minimizes D[x + β (x’ - x)] over all β is between 0 and 
1, that is, 

* *

[0,1
[ ( ' )] min [ ( ' )]

]
D x x x D x x x

β
β β

∈
+ − = + −  (23) 

The procedure above is a special case of the so-called 
Frank-Wolfe method for solving nonlinear programming 
problems with convex constraint sets. 

Step 1: Initialization. Set the iteration counter k to be 1. Pre-calculate 
all the candidate paths of each OD-pairs and init any arbitrary
one of feasible routing assignment set. 

Step 2: Stopping. If k is greater than a pre-specified counter limit then 
stop. 

Step 3: Computing. Update the aggregate flow on each node in the 
network according to the current routing assignment. 

Step 4: Updating. Compute node-FDL and path-FDL according to the 
up-to-date aggregate flow. 

Step 5: Shifting flow. Shift flow between paths according to 
path-FDL. Increase k by 1 and go to Step 2. 

Figure 1. An optimal energy-efficient routing 
algorithm 

4. Energy-efficient routing algorithm 

The primal optimal algorithm is similar with that we 
use to solve Lagrangean Subproblem (SUB2). However, 
the procedures including computing path FDL phase, 
finding path phase, and flow adjustment phase are 
different. This difference is resulted from the min-max 
behavior and the differential property. We will give a 
detailed description of min-max Dijkstra algorithm as 
followings: 
a. Finding minimum capacity cut fath 

Because the objective function in our primal problem is 
a min-max function, but the general Dijkstra shortest 
path algorithm is not suit for finding MFDL path. Thus, 
we modify the Dijkstra algorithm to find such a 
min-max shortest path and the pseudo code is showed 
as Figure 2. 
The Single_Source_Minimum_Cut_Paths (SSMCP) 
algorithm finds the path with minimum capacity cut 
form the given OD-pair. However, this algorithm only 
returns the minimum cut capacity value but does not 
record the path. Figure 3 shows an example of two 
paths with the same capacity cut. 
The two paths are with the same minimum capacity cut 
which value is c. In general, we choose the right path 
with fewer hops as a better energy-efficient path than 
Algorithm Single_Source_Minimum_Cut_Paths(G,.s,d) 
Input: G = (V, E) (a weighted directed graph), s (the source node), 

and d (the destination node). 
Output: for destination node, d.SDC is the capacity of the minimum 

cut from s to d; {all capacities are assumed to be 
nonnegative.} 

begin 
for all nodes w do 

 w.mark := false;                                   
w.SDC := Infinite;                                  
s.SDC := 0; 

    end-for 
while the vertex d is unmarked do 

let w be an unmarked vertex such that w.SDC is minimal; 
w.mark := true;  
for all edges (w,z) such that z is unmarked do            

if maximum(w.SDC, z.capacity) < z.SDC then  
SDC := maximum(w.SDC, z.capacity); 

            end if 
        end-for 
    end-while 
end 

Figure 2. Single_Source_Minimum_Cut_Path 
algorithm 

 
 
 
 
 
 
 

Figure 3. Example for two paths with the same 
capacity cut 
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the left. But the SSMCP algorithm may still possible 
return the left path. So based on the output of SSMCP 
algorithm, we apply modified Dijkstra algorithm to find 
the shortest and minimum cut path. Figure 4 shows the 
pseudo-code of Capacity_ Constrained_Shortest_Path 
(CCSP) is for this purpose. 

b. Polya’s method on path flow adjustment 
The basic idea to adjust path flow as the bottleneck 
node lifetime of path p is the minimum in the sensor 
network, and then we decrease the fraction of path flow 
on p according to specific step sizes and add back the 
same amount of flow to another path with larger 
bottleneck node lifetime. The step of flow adjustment 
procedure is given as Figure 5. 

Algorithm Capacity_Constraind_Shortest_Paths(G,,s,d) 
Input: G=(V, E) (a weighted directed graph), s (the source node), d 

(the destination node), and UC (the upper bound of 
constrained capacity). 

Output: for destination node, d.SP is the length of the shortest path 
with the given minimum capacity cut from s to d;  

 {All lengths are assumed to be nonnegative.} 
begin 

for all vertices w do 
w.mark := false; 

   w.SP := Infinite; 
   s.SP := 0; 
    end-for 

while the node d is unmarked do 
let w be an unmarked node such that w.SP is minimal; 

   w.mark := true; 
   for all edges (w,z) such that z is unmarked do 

if  w.SP+z.length < z.SP and z.capacity < UC  then 
z.SP := w.SP + z.length; 

            end-if 
        end-for 
    end-while 
end 
Figure 4. Capacity_Constrained_Shortest_Paths 

algorithm 

Step 1: Initialization. Set the iteration counter k to be 1. Compute 
the path bottleneck lifetime according to any given feasible 
routing assignment. 

Step 2: Stopping. If k is greater than a pre-specified counter limit 
then stop. 

Step 3: Finding. Find the paths with minimum and maximum 
bottleneck lifetime. 

Step 4: Selection. Select path with minimum bottleneck lifetime 
and denote its flow f. Shift the fraction of f by a positive 

stepsize 
k
ft . More precisely, we shift flow with amount of 

* k
ff t  form the path with minimum bottleneck lifetime 

to the path with minimum bottleneck lifetime. 
Step 5: Computing. Calculate the bottleneck node lifetime of each 

path. 
Step 6: Next-loop. Increase k by 1 and go to Step 2. 
Figure 5. The step of flow adjustment procedure 

5. Experimental results 

The experimentation variable δ  is defined as the ratio 
between the edge lengths of grid area and the sensor’s 
communication radius. The experimental result is given as 
Table 3. In wireless sensor networks, the communication 
radius is about 12.5 meters and whenδ= 8 the area size is 
100 × 100 meters. We adopt the energy consumption 
parameter of EYES-nodes [19] in our study. For each 
sensor node, the parameters are as follows: 

 Wireless channel capacity is 10 kbps. 
 Initial battery capacity of each sensor node is between 

1300 and 1600 Watts. 
 Energy consumption rate on receiving (transmitting) 

is 0.2 Watts per byte. 
 Energy consumption rate to retain in active mode 

(passive mode) is 50 (10) Watts per second 
respectively. 

In our computational experiments, we generate several 
system scenarios with different (1) average package 
length and (2) sensor node density. Then we apply the 
primal optimal algorithm introduced in Section 3 and 
Section 4 to compute the maximum network lifetime.  

To experiment (1) average package length, we set up 
two cases with different parameters. In Case 1, the area 
size ratio δ is 4. Here we set the number of nodes in 
Case 1 is 27, which is 1.5 times the minimum number of 
sensor nodes from Table 3. And traffic demand is set as 5 
which is 0.2 times the number of sensor nodes. In Case 2, 
the area size ratioδ is 8, and we set up parameters 
according to the same logic as in Case 1. The 
experimental results are given in Table 4. 

To experiment (2) sensor node density, we set up two 
cases with different parameters. In Case 3, the area size 
ratio δ is 4. Here traffic demand is fix at 6 and average 
packet length is 200 bytes. The numbers of nodes are 1.5, 
2.5, 3.5, and 4.5 times the minimum number of sensor 
nodes satisfying 1-connectivity. So they are 27, 45, 63, 
and 81 respectively. In Case 4, the area size ratioδ is 8. 
Those parameters in both Cases are list below, and the 
experimental results are given in Table 5. 

In Table 4, we evaluate the effect of the expected 
retransmission time function which is consistent with our 
convex function to the aggregate flow on each sensor 
node Table 5 shows how the connectivity and the number 
of sensor node affect the network lifetime. It is clear that 
if the number of sensor nodes increases, it is with higher 
probability the network topology has higher connectivity. 
Thus the average network lifetime increase. 

Figure 6 shows the network lifetime comparison 
between our primal optimal algorithm (PO) and 
Short-based algorithm (SP), which adopt the Dijkstra 
algorithm. Even though the path is the shortest path from 
the point of view with node lifetime and energy-efficiency, 
it is still fragile if any one bottleneck node exhaust it 
battery life. While our PO algorithm use multiple paths to 
route traffic between every OD-pairs, and the network 
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lifetime increase as the number of sensor nodes increases. 
We measure the primal optimal algorithm with 

time-complexity. The |N|, |W|, and |P| denote the number 
of sensor nodes, the number of OD-pairs, the number of 
candidate paths of each OD-pair, respectively. Table 7 
shows the number of operations required and time 
complexity of optimal routing framework for one 
iteration.  

6. Conclusions 

In this paper, we address the importance of routing 
protocol on energy efficiency. Our proposed LR-based 
algorithm can efficiently get the near-optimal solution and 
the primal algorithm can optimally solve the problem but 
spending much more time. Both of them are variations of 
optimal routing framework, which is to optimally solve 
the multi-commodities routing problem. We appraise the 
marginal cost of candidate paths by MFDL in LR-based 
algorithm and by capacity cut in primal optimal algorithm 
respectively. Using the quantity we adjust flow between 
paths for each OD-pair until the two optimal conditions 
are satisfied. Then we eventually achieve the optimal 
routing which is energy-efficient weighted load-balancing. 

Figure 6. Comparing network lifetime between PO 
and SP 

Table 3. Minimum number of sensor nodes to 
achieve 1-connectivity by different ratio δ 

Ratio δ 4 8 12 16 
Number of sensors 18 131 477 881 

Table 4. Experimental results for average packet 
length 

Network lifetime Packet length 
Case 1 Case 2 

100 14925 665.9 
300 4075 50.4 
500 844 17.0 

Table 5. Experimental results for sensor node 
number 

Network lifetime Sensor nodes 
Case 3 Case 4 

27 23194 123 
45 23901 418 
63 28544 1035 
81 28714 1388 

Table 6. The time complexity of optimal routing 
framework 

Optimal routing framework 

Procedure Number of operations 
required Time complexity 

Updating node flow |N|+|W||P||N| O(|W||P||N|) 
Finding MFDL path |W||N|2 O(|W||N|2) 

Computing path FDL |W||P||N| O(|W||P||N|) 
Flow adjustment |W|*(|P|+1) O(|W||P|) 

7. References  

[1] Hac A., Wireless Sensor Network Designs, John Wiley & Sons, Ltd. 
2003. 

[2] Tanenbaum A. S., Computer Networks, Fourth Edition, 
Prentice-Hall, 2002. 

[3] A. Willig, R. Shah, J. Rabaey and A. Wolisz, “Altruists in the 
PicoRadio Sensor Network”, International Workshop on Factory 
Comm. Systems (WFCS), 2002. 

[4] Perkins C. E., Ad Hoc Networking, Addison-Wesley, 2000. 
[5] C. K. To, “Maximum Battery Life Routing to Support Ubiquitous 

Mobile Computing in Wireless Ad hoc Networks”, IEEE 
Communications Magazine, 2001. 

[6] C. Schurgers, V. Tsiatsis, S. Ganeriwal and M. Srivastava, 
“Optimizing Sensor Networks in the Energy-Latency-Density 
Design Space”, IEEE Tran. on Mobile Computing, 1(1), 2002. 

[7] Bersekas D. and R. Gallager, Data Networks, Prentice-Hall, 2nd 
edition, 1992, pp.404.  

[8] E. Biagioni and K. Bridges, “The Application of Remote Sensor 
Technology to Assist the Recovery of Rare and Endangered 
Species”, Special issue on Distributed Sensor Networks for the 
International Journal of High Performance Computing Applications, 
16(3), 2002. 

[9] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed 
Coordination Function”, IEEE J. Select. Areas Comm., vol.18, 2000, 
pp.318-320. 

[10] G. Zussman and A. Segall, “Energy Efficient Routing in Ad Hoc 
Disaster Recovery Networks”, Proc. of IEEE INFOCOM 2003. 

[11] J. J. Garcia-Luna-Aceves, S. Vutukury and W. T. Zaumen, “A 
Practical Approach to Minimizing Delays in Internet Routing,” 
IEEE ICC'99, 1999. 

[12] M. Held, P. Wolfe and H. P. Crowder, “Validation of Subgradient 
Optimization,” Math. Programming, vol.6, 1974, pp.62-88. 

[13] M. L. Fisher, “The Lagrangian Relaxation Method for Solving 
Integer Programming Problems”, Management Science, 27(1), 1981, 
pp.1-18. 

[14] R. Gallager, “A Minimum Delay Routing Algorithm Using 
Distributed Computation”, IEEE Trans. Comm., vol.25, 1977, 
pp.73-84. 

[15] R. L. Cruz, and A. V. Santhanam, “Optimal Routing, Link 
Scheduling and Power Control in Multi-hop Wireless Networks”, 
Proc. of IEEE INFOCOM 2003. 

[16] R. Kannan, S. Sarangi, S. S. Iyengar and L. Ray, “Sensor-Centric 
Quality of Routing in Sensor Networks”, Proc. of IEEE INFOCOM 
2003. 

[17]Ahuja R. K., T. L. Magnanti and J. B. Orlin, Network Flows: Theory, 
Algorithms, and Applications, Prentice Hall, 1993. 

[18] R. C. Shah and J. M. Rabaey, “Energy Aware Routing for Low 
Energy Ad Hoc Sensor Networks”, Proc. of IEEE Wireless Comm. 
and networking Conference (WCNC), 2002. 

[19] T. V. Dam, and K. Langendoen, “An Adaptive Energy-Efficient 
MAC Protocol for Wireless Sensor Networks”, Proc. of The First 
ACM Conference on Embedded Networked Sensor Systems, 2003. 

Network lifetime

0

10000

20000

30000

27 36 45 54 63 72 81 90
Number of sensors

S
ec

on
ds

PO

SP


