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Abstract—The crucial design challenge in broadcasting is how to 
save energy, because each individual node only has a small 
battery as a power source. Thus, the objective of this paper is to 
find the optimal radii range for each node in static wireless 
networks so that the total power consumption can be minimized. 
The problem is formulated as a minimum-power broadcast tree 
constructed based on paths, instead of links or nodes. Since this 
problem is NP-complete, we adopt Lagrangian Relaxation (LR) 
to decompose it and independently solve the sub-problems. The 
LR dual-mode problem ensures the objective lower bound value. 
The primal-mode problem is solved via our proposed 
approximation heuristic, which takes prompts from a set of LR 
multipliers, to obtain the upper bound’s objective value. We 
present experimental results from randomly generated networks 
and show that our proposed algorithm saves more than 30%, 5%, 
and 10% energy compared to the Prim’s minimum spanning tree 
(PMST), the Broadcast Incremental Power (BIP), and another 
proposed Greedy Incremental Broadcast Tree (GIBT) algorithms, 
respectively. 

I. INTRODUCTION 

Many wireless techniques, such as Wi-Fi, Bluetooth, 
HiperLAN, and sensor networks, are currently in use. 
Basically, these techniques can be categorized into two types 
of system for wireless networks. One is the infrastructure, 
namely, base-station (BS) oriented, and the other is the 
non-infrastructure, namely, ad hoc wireless network [5]. Here 
we are interested in ad hoc wireless networks with adjustable 
power broadcasting to save total power consumption in 
multicasting (or broadcasting) messages, such as global 
information flooding, information diffusion, and query 
messages to a sub-region in sensor networks [13]. 

Our research problem differs from other studies, such as [3], 
[6], and [18], which explore the relationship between the 
power range and topology control and minimize the 
maximum power utilized by any node such that the resulting 
graph is connected. Meanwhile, some studies focus on ways 
to build minimum-energy networks via the shortest path 
algorithm, measuring the cost of the edge by its power level 
[3], [14], [19], and [21]. However, to send the same message 
to several nodes by broadcasting, specifically because 
wireless transmission inherently reaches several nodes with a 
single transmission so that all nodes within range of a relay 
node’s transmission radius receive a packet in one broadcast 
transmission cycle. For example, in Fig. 1, since distance d1 is 
larger than d2, node 1 has to broadcast with power radius to d1 

in order to cover nodes 2 and 3. 
In this paper we address the problem of multicasting in 

multiple hop networks from the viewpoint of energy 
efficiency. If the relay node in multiple hop wireless networks 
is not assigned, messages flooding wastes energy on the 
duplicating packets. We nominate the relay node to forward 
packets and construct a multicast tree, even if all nodes need 
to receive the broadcast packet. Our objective is to determine 
the minimum-power multicast tree solution. As no localized 
methods can approximate the minimum-energy broadcast tree 
within a constant factor [22], a centralized algorithm, i.e., an 
LR-based approach, is used to optimize our objective. 

The most important aspects of this problem are (i) how to 
select the relay nodes and (ii) how to assign the power radii of 
the selected relay nodes. With regard to the selection of the 
relay nodes, many researchers have presented the problem as 
a minimum-power broadcast tree problem, which has been 
proven to be NP-complete [20]. Since each wireless device 
controls the power radius, as shown in Fig. 2, the goal is to 
reduce the power consumption exponentially in order to reach 
the area of next hop wireless devices. 

Therefore, we calculate the required power range of each 
device to send the multicast message and minimize the total 
power consumption. Fig. 1 shows an example of selecting 
nodes 1, 2, 3, 5, and 7 and their power radii, to forward a 
message from source node 1 to the receiving nodes 8, 9, 10, 
11, and 12. The aggregation of the relay nodes’ optimal power 
consumption is minimized. 

Some researchers have studied the relationship between 
energy-efficiency and multicast trees, e.g., Wieselthier et al. 
proposed a series of heuristics to solve this problem [10], [11], 
and [12]. These heuristics (e.g., BIP) belong to the pruned 
heuristics or greedy heuristics that change link by link or node 
by node. Others belong to Prim’s minimum spanning tree 
algorithm, which converted them to gain the “multicast 
wireless advantage”. Other enhance algorithms includes 
r-shrink [2] and EWMA [15] to execute shrink and outer post 
sweep procedures, which involve the monotonic decreasing 
and increasing function of an input tree, respectively. In other 
words, if there is a gain, it changes the tree structure to 
accommodate it; otherwise, it leaves the tree intact. In this 
paper, the shortest path algorithm is used to solve the 
sub-problem and obtain a primal feasible solution. 

In [1], the authors proposed an integer programming 
models to judge the quality of the optimization solutions. 
Since the link-based mathematical formulation is complex, it  



 

 
Figure 1. Minimum-energy broadcasting tree 

 

 
Figure 2. The exponential function of power consumption with power radius 
 
is difficult to solve in exponential time with large scale 
wireless networks. Here, a path-based approach is adopted to 
solve the problem. 

Therefore, the problem is formulated as a nonlinear 
optimization-based problem with only three decision variables, 
transmission radius, links, and paths. To fulfill the timing and 
the quality requirements of the optimal decisions, the LR 
method, which has been successfully adopted to solve many 
famous NP-complete problems [16], is used. As for further 
computational experiments, our proposed routing algorithm is 
expected to be effective in dealing with this complex 
optimization problem. 

The remainder of this paper is organized as follows. In 
Section II, we briefly describe the minimum-power 
consumption, the mathematical formulation, and the proposed 
solutions; in Section III, the detailed procedure of the optimal 
energy-efficient routing algorithm is described; in Section IV, 
the primal-mode feasible routing algorithm for solving the 
optimal mathematical problem is illustrated; in Section V, we 
construct the experimental environment to prove that our 
approach approaches the optimal solution; finally, in Section 
VI, we present our conclusions. 

II. PROBLEM FORMULATION 

  The minimum power multicast through broadcasting 
problem is modeled as a graph, G(V, L), where V vertices 
represent wireless nodes distributed on a two-dimensional 
plane and direct link L (e.g., nk indicates that node k is 
covered by n’s radius). Each wireless node has an 
omni-directional antenna. Accordingly, we have developed a 
mathematical model to deal with the problem as a dynamic 
minimum-power consumption routing problem in order to 
minimize the total energy consumption for multicasting (or 
broadcasting) packets. Tables 1 and 2 list the given parameters 
and the decision variables, respectively.  

TABLE 1  
NOTATION FOR GIVEN PARAMETER 

Notation Description 
V The set of nodes. 
L The set of links. (nk) ∈ L. 
s The specific source node. 
D The set of destination nodes. 

Pod The set of paths from the source (o) to destinations (d). 
R The maximum transmission range. 
Hd The maximum hop count to the destinations d. 
dnk The distance between node n and k. 
δp(nk) Indication function, which denote link (nk) on the path p. 

 
TABLE 2  

NOTATION FOR DECISION VARIABLES 

Notation Description 
γn Transmission radius of node n. 
ynk 1 if link (nk) is used, and 0 otherwise. 

e(γn) Energy consumption for node n to transmit one unit of 
information up to distance γn. 

xp 1 if path p is used, and 0 otherwise. 
 
The equations of primal problem (IP) are listed as follows: 

Objective function 
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The objective function (IP) of this problem is to minimize the 
total power consumption of all relay nodes subject to: 
Constraint (1): when the link (nk) is selected, the power of 

node n must be large enough to cover all the neighbors, k. 
Constraint (2): limit the in-degree branch equal to 1 as a tree 

constraint. The symbol ‘≤’ is used to fulfill the negative LR 
multiplier property. 

Constraint (3): enforce the source node, s, has to select at least 
one link to send out its message. 

Constraint (4): enforce at least one relay node to cover a 
destination. 
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Constraint (5): once the path, p, is selected and the link (nk) is 
on the path, then the decision variable, ynk, must be set to 1. 

Constraint (6): to limit the hop count to less than the given 
value, Hd. We adopt the Bellman-Ford algorithm to solve 
this constraint. 

Constraint (7): any original-destination (OD) pair must only 
exist on one path. 

Constraint (8) and (9): enforce the integer property of the 
decision variables. 

Constraint (10): the selected power level is less than the given 
maximum power limited, which comprise in the distances 
between other neighbors within the maximum power range. 

III. SOLUTION PROCEDURE 

For wireless networks, the minimum-power multicast 
through broadcasting problem is a difficult because scalable 
solutions are not readily available. It is necessary, therefore, to 
develop heuristics to solve the problem. We adopt an 
LR-based approach that not only achieves the near-optimal 
solution, but also obtains the lower bound (LB) to quantify 
the minimum power consumption. In the following, we 
describe the paradigm of the approach and the decomposed 
sub-problems. 

A. Lagrangian Relaxation (LR) 

In the 1970s, an LR-based approach was first used to solve 
large scale linear programming problems [16]. In brief, it is a 
flexible solution strategy that permits us to exploit the 
fundamental structure of possible optimization problems by 
relaxing complicated constraints into the objective function 
with Lagrangian multipliers [4], [16], and [4]. Accordingly, 
the primal-mode problem can be transformed into a 
dual-mode problem. Furthermore, we can decompose 
complex mathematical models into stand-alone sub-problems 
and use a proper algorithm to optimally solve each 
sub-problem. By the nature of decomposition, it can 
effectively lesson the complexities and difficulties comparing 
to the origin problem. 

Here, we transform the above primal problem (IP) into the 
following LR problem, where Constraints (1) and (5) are 
relaxed. For a vector of non-negative Lagrangian multipliers 
(i.e., 1

nkµ and 2
nkdµ ), the LR problem is given by: 
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subject to (2), (4), (6), (7) , (8), (9), and (10). 
  To solve this problem, we can decompose (LR) into the 
following three independent and solvable sub-problems, 
(SUB1), (SUB2), and (SUB3). 

Sub-problem (SUB1), related to decision variables nγ  and 

( )ne γ . 
Objective function 

 1
1 min ( ( ) )SUB n n nk

n V k V

Z e γ γ µ
∈ ∈

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑ ∑   (SUB1)

subject to (10). 
This sub-problem is related to the decision variables γn and 

can be further decomposed into |V| sub-problems. Since the 
decision variable γn is the radius range, which refers to the 
discrete distance between neighbors, and the energy model is 
en(γn) = γn

α + c with parameter α = 2~4 [9], we need only to 
choose the suitable range to all destinations for each node and 
optimally solve the problem.  

Fig. 3 shows the convex power consumption curve of this 
sub-problem’s objective function. We adopt a simple line 
search, or let the first differential equal zero to determine the 
minimal radius range. Accordingly, the objective values of 
each node are calculated and sorted. We then select all 
negative objective value nodes to set their radius range. If the 
summation of the previous selected nodes’ range is smaller 
than the longest OD-pair, we select the minimum residual 
positive objective value such that the selected range is large 
enough to reach the furthest destination. The node with this 
minimum objective value is then selected to reach the 
destinations. Finally, (SUB1) is optimally solved and its 
minimum objective value is summarized as the 1st part of the 
dual-mode value. 

Sub-problem (SUB2): (related to decision variables ynk) 
Objective function 

1 2
2 min ( )SUB nk nk nkd nk

n V k V d D

Z d yµ µ
∈ ∈ ∈

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑∑ ∑  (SUB2)

subject to (2), (3), (4), and (8). 
This sub-problem is related to decision variable ynk, which can 
be further decomposed into |V|2 sub-problems. Let θnk denotes 
the weight of link (nk), we get 

1 2
nk nk nk nkd

d D

dθ µ µ
∈

= − ∑  

Here, two conditions that must be satisfied to determine the 
value of ynk: 

Condition I: If θnk < 0, then assign ynk = 1. 
Condition II: If θnk ≥ 0, then assign ynk = 0. 

With Constraints (3) and (4), we initially arrange θnk in 
increasing order according to their values. Then, we consider 
the value of ynk in Conditions I and II. Thus, in Condition I, 
for all θnk < 0 in increasing order, we assign the first ynk = 1. 
As to the remaining θnk, we first check the node, n, which can 
have at most one incoming link. If there already exists one 
relay link, then we assign ynk = 0; otherwise, we assign ynk = 1 
(i.e., with respect to Constraint (2)). In Condition II, for all θnk 
> 0 in increasing order, we should first check for destination d, 
which must have one incoming link for a data packet to be 
delivered correctly. If there is no relay link to this destination,  



 

 
Figure 3. The objective function convex curve of the sub-problem (SUB1) 
 
then we assign ynk = 1; otherwise, we assign ynk = 0 (i.e., with 
respect to Constraint (4)). Finally, the objective value of 
sub-problem (SUB2) is summarized as the 2nd part of the 
dual-mode value. 

Sub-problem (SUB3): (related to decision variable xp) 
Objective function 

2
3 ( )min ( ( ))

sd
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n V k V d D p P
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subject to (6), (7), (9). 
This sub-problem is related to “to-be-determined” OD-pair, xp, 
and can be further decomposed into |D| sub-problems. Each 
sub-problem is a shortest path problem with a hop count 
constraint, where nkdµ  is the link cost and Hd is the hop 
constraint for each OD-pair to determine the path to reach d. 
This is a classic shortest path problem and can be easily 
solved by the Bellman-Ford algorithm. Finally, the objective 
value of sub-problem (SUB3) is summarized as the 3rd part of 
the dual-mode value. 

B. The Dual-Mode Problem and the Subgradient Method 

According to the weak Lagrangian duality theorem [16], for 
any 1 2, 0nk nkdµ µ ≥ , ZD is lower bound of IPZ . The following 
dual-mode problem (D) is then constructed to calculate the 
tightest lower bound. 
Dual-mode Problem (D) is  

( )1 2max ,D D nk nkdZ Z µ µ=
                       

(D)

subject to 
1 2, 0nk nkdµ µ ≥ .                                (11)

There are several methods for solving the dual-mode 
problem (D). One of the most popular is subgradient 
method[7]. Let a path vector, p, be a subgradient 
of ( )1 2,D nk nkdZ µ µ . Then, in iteration k of the subgradient 

optimization procedure, the multiplier vector 
1 2( , )k
nk nkdπ µ µ=  is updated by kkkk gt+=+ ππ 1 . The step 

size, kt , is determined by 
2

( ( ))k h k k
IP Dt Z Z gδ π= ⋅ − , 

where h
IPZ  is the primal-mode objective function value for a 

heuristic solution (an upper bound on IPZ ), and δ is a 
constant, 0 < δ ≤ 2. 

IV. OBTAINING A PRIMAL FEASIBLE SOLUTION 

  The primal-mode feasible solution is an upper bound (UB) 

of the problem (IP), while the Lagrangian dual-mode solution 
guarantees the lower bound (LB). Iteratively, both solving 
Lagrangian dual-mode problem and obtaining primal-mode 
feasible solutions, we get the LB and UB, respectively. The 
gap between LB and UB, computed by (UB - LB) / LB * 
100%, illustrates the optimality of the problem solution.  

The composition of power radius set {γn}, which represents 
how far a signal can reach, is large and difficult to solve. The 
value of ynk is also hard to solve because it oscillates between 
0 and 1. Thus, the decision variable xp is the best choice to 
find the primal-mode feasible solutions, because once {xp} is 
determined, the decision variables ynk and γn are also 
determined. We have developed a heuristic for routing policy 
adjustment based on {xp}. First, we adjust the arc 
weight 1 2

nk nk nkc dµ=  to ensure that each OD pair perceives the 
same arc weight on the same link. In other words, the 
transmission graph will be a multicast tree, which meets the 
requirement of Constraint (2). Then, we run the Bellman-Ford 
algorithm to get the solution set of {xp}. However, this set 
may duplicate relay nodes, which would lead to higher power 
consumption. Thus, we also adopt the sweep() [12] to adjust 
the previous father nodes to a common one and turn off or 
reduce the others’ radius range.  

Fig. 4 shows the procedure of obtaining primal-mode 
feasible solution to solve this problem. Steps 1 and 2 initial 
find out the multicast tree hint from LR multipliers. Step 3 
runs the sweep() to adjust multicast tree. Fig. 5 shows an 
example of the trend line for getting the primal problem 
solution values (UB) and dual-mode problem values (LB). 
The UB curve tends to decrease to get the minimum feasible 
solution. In contrast, the LB curve tends to increase and cove- 
Step 1 We use the shortest path algorithm (SPA) to find the initial primal 

UB value. 
Step 2 Adjust the arc weight 1 2

nk nk nkc dµ=  and run the Bellman-Ford 
algorithm to get the solution set of {xp}. 

Step 3 Once {xp} is determined, ynk and γn are also determined. We map 
each value of γn from the path and set R.  

Step 4 Now that we have a multicast tree, we check Constraint (2) of the 
multicast tree, which get from Steps 2 and 3. For each node n, we 
execute the sweep() [12] to adjust the multicast tree. 

Step 5 Iteratively execute the Steps 2~4 with LR multipliers, which are 
updated from dual-mode problem. 

Figure 4. The heuristic for obtaining a primal solution and a routing policy 
adjustment 
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Figure 5. A sample of LR execution results (The number of nodes is 20, 
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rge rapidly to reach the optimal solution. The LR-based 
method ensures the optimization results between the UB and 
LB, so we keep the gap as small as possible in order to 
enhance our solution quality and achieve near optimization. 

V. EXPERIMENTAL RESULTS 

  We evaluate our proposed heuristics and compare them 
with the MSPT (Minimum Shortest Path Tree), PMST, and 
BIP [12] algorithms. The BIP algorithm is similar in principle 
to Prim’s algorithm for the formation of MSPTs, in the sense 
that new nodes are added to the tree once at a time (on a 
minimum-cost basis) until all nodes are included in the tree. 
We also compare to our another proposed GIBT algorithm 
(refer to APPENDIX A), which finds the dominant set T to 
contain the nodes on the shortest path first and then iteratively 
find the shortest path from all other destinations to reach any 
one of the current dominant set T. We distribute V nodes in a 
uniformly random fashion over a field of size 10 * 10. Each 
node has a maximum transmission range R = 5. For a 
uniformly random deployment, the network connectivity is 
only a function of the average number of neighbors of a node. 

In this paper, the following three experiments are evaluated: 
(i) varying the numbers of the nodes; (ii) varying the 
maximum power radius or parameter R; and (iii) varying the 
number of OD-pairs. In (i), the experimental variable varies 
the total number of nodes V, i.e., their densities, within the 
same transmission area. In (ii), the experimental variable 
varies the maximum power radius R, which affects the 
number of out-degrees of each node. All nodes of these two 
experiments are set as destinations. In other words, all nodes 
must receive the broadcast message from a specific source. In 
(iii), the experimental variable varies the number of OD-pairs, 
which means not all nodes have to receive multicast 
messages. 
  Fig. 6 shows the experimental results of (i) for the MSPT, 
PMST, GIBT, BIP, and EWMA heuristics. The gap of the 
LR-UB (solved by our proposed primal-mode feasible 
solution) and LR-LB (solved by our dual-mode problem) is 
less than 30%, which is caused by duality gap because 
Constraint (1) is relaxed. The LR-based heuristic is better than 
other heuristics, such as BIP, by at least 5%. 

Fig. 7 shows the experimental results of (ii) to compare the 
gap between the UB and the LB. When the radius range 
increases, the gap decreases. In this experiment the optimal 
maximum radius range is between 3~5 in static networks.  

Fig. 8 shows the experimental results of (iii) to compare 
with the MSPT, PMST, GIBT, BIP, and EWMA heuristics. 
When the number of OD-pair increases, the total power 
consumption increases. But our approach is more efficient 
than other heuristics and achieves more than 5% improvement 
in power consumption. The gap is decrease to 5% to ensure 
the approach achieve near optimization when the number of 
OD-pairs is increase. Although the second proposed GIBT 
algorithm is not better than the BIP algorithms, the solution 
results keep in 10%. 

VI. CONCLUSIONS 

  Dynamic power control is one of most important ways to 
reduce energy consumption. We have constructed a 
path-based minimum-energy multicast tree problem based on 
a mathematical formulation that differs from other link-based 
or node-based approaches. In this paper, the problem is solved 
by an LR approach to obtain the LB and UB of objective 
function, thus ensuring the optimal solution value remains 
within bounds. The experimental results show that the gap is 
small, which means our proposal heuristic achieves the near 
optimization. Our heuristic is also better than other heuristics, 
such as MSPT, PMST, BIP, and GIBT. Specifically, it 
improves energy consumption, which it does so by 
approximately 5% over BIP. 

REFERENCES 

[1] A. K. Das, R. J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray, 
“Minimum power broadcast trees for wireless networks: integer 
programming formulations,” In Proc. IEEE Conf. on Computer Comm. 
(INFOCOM), 2003. 

0

10

20

30

40

50

60

70

25 35 45 55 65 75 85 95 105

The number of nodes

Po
w

er
 c

on
su

m
pt

io
n 

(n
or

im
al

iz
ed

)

MSPT PMST GIBT
BIP EWMA LR-UB
LR-LB

 
Figure 6. The experimental results of Case (i) 

   

0

10

20

30

40

50

60

70

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

The maximum power range

P
ow

er
 c

on
su

m
pt

io
n 

(n
or

im
al

iz
ed

)

MSPT PMST GIBT
BIP EWMA LR-UB
LR-LB

 
Figure 7. The experimental results of Case (ii) 



 

0

10

20

30

40

50

60

70

30 32 34 36 38 40 42 44 46 48 49
The number of OD-pairs

P
ow

er
 c

on
su

m
pt

io
n 

(n
or

m
al

iz
ed

)

MSPT PMST GIBT

BIP EWMA LR-UB

LR-LB

 
Figure 8. The experimental results of Case (iii) 

 
[2] A. K. Das, R. J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray, 

“ r-shrink: A heuristic for improving minimum power broadcast trees in 
wireless networks,” In Proc. of the. IEEE Globecom 2003 Conference, 
San Francisco, CA, December 2003. 

[3] A. Salhieh, J. Weinmann, M. Kochha, and L. Schwiebert, “Power 
Efficient Topologies for Wireless Sensor Networks,” In Proc. IEEE Int’l 
Conf. Parallel Processing, 2001, pp. 156-163. 

[4] Ahuja R. K., T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, 
Algorithms, and Applications, Ch. 4 and Ch. 16, Prentice-Hall, 1993. 

[5]  ANSI/IEEE, “802.11: Wireless LAN medium access control (MAC) 
and physical layer (PHY) Specifications,” 2000. 

[6]  C. Bettstetter, “On the minimum node degree and connectivity of a 
wireless multihop network,” In Proc. Third ACM Int’l Symp. Mobile 
Ad Hoc Networking and Computing, 2002, pp. 80-91. 

[7] Held, M., P. Wolfe and H. D. Crowder, “Validation of subgradient 
optimization,” Math. Programming, vol. 6, 1974, pp. 62-88. 

[8]  I. Kang and R. Poovendran, “On the lifetime extension and route 
stabilization of energy-efficient broadcast routing over MANET,” In 
Proc. International Network Conference (INC) 2002, London, UK, June 
2002. 

[9]  J. Cartigny, D. Simplot, and I. Stojmenovic, “Localized. 
minimum-energy broadcasting in ad-hoc networks,” In Proc. IEEE 
INFOCOM, Apr. 2003, pp. 2210-2217. 

[10] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the 
construction of energy-efficient broadcast and multicast trees in 
wireless networks," In Proc. of IEEE INFOCOM, March 2000, pp. 
585-594. 

[11] J. E. Wieselthier, G. D. Nguyen, A. Ephremides, “Algorithms for 
energy-efficient multicasting in static ad hoc wireless networks,” 
Mobile Networks and Applications, vol. 6, no. 3, 2001, pp. 251-263. 

[12]  J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “Energy-efficient 
broadcast and. multicast trees in wireless networks,” Mobile Networks 
and Applications (MONET), vol. 7, no. 6, December 2002, pp. 481-492. 

[13]  J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless 
sensor networks: a survey,” IEEE Wireless Comm., vol. 11, 2004, pp. 
6-28. 

[14]  L. J. Dowell and M.L. Bruno, “Connectivity of random graphs and 
mobile networks: validation of monte carlo simulation results,” In Proc. 
2001 ACM Symp. Applied Computing, 2001, pp. 77-81. 

[15] M. Cagalj, J.-P. Hubaux, C. Enz, “Minimum-energy broadcast in all 
wireless networks: NP-completeness and distribution issues,” 
MOBICOM’ 02, Sep. 2002, Atlanta, Georgia, USA. 

[16] M. L. Fisher, “The lagrangian relaxation method for solving integer 
programming problems,” Management Science, vol. 27, no. 1, 1981, pp. 
1-18. 

[17] M. Zorzi, R. R. Rao, "Geographic random forwarding (GeRaF) for ad 
hoc and sensor networks: energy and latency performance,” in IEEE 
Trans. on Mobile Computing, vol. 2, no. 4, 2003, pp. 337-347. 

[18]  P. Santi, D. M. Blough, and F. Vainstein, “A probabilistic analysis for 
the range assignment problem in ad hoc networks,” In Proc. ACM Int’l 
Symp. Mobile Ad Hoc Networking and Computing, 2001, pp. 212-220. 

[19] R. Montemanni, L. M. Gambardella, and A. K. Das, “The minimum 
power broadcast problem in wireless networks: a simulated annealing 
approach,” In Proc. of AIRO 2004: Annual Conference of the Italian 
Operations Research Society Lecce, Italy, 2004. 

[20]  W. Lianc, “Constructing minimum-energy broadcast trees in wireless 
ad hoc networks,” In Prof. ACM 1nt’l Symp. On Mobile Ad hoc 
Network and Computing (MOBIHOC), Lausanne Switzerland, June 
2002, pp. 112-122. 

[21] X.-Y. Li and P.-J. Wan, “Constructing minimum energy mobile wireless 
networks,” ACM SIGMOBILE Mobile Computing and Comm. Rev., vol. 
5, no. 4, 2001, pp. 55-67. 

[22] X.-Y. Li and I. Stojmenovic, “Broadcasting and topology control in 
wireless ad hoc networks,” Book Chapter, 2003. 

APPENDIX A: PSEUDO CODE FOR THE GIBT ALGORITHM 

The following pseudo code describes the proposed 
algorithm GIBT (Greedy Incremental Broadcast Tree), which 
is implemented in the same manner as the straightforward 
version of the Dijstra’s shortest path algorithm, with the 
destination nodes to any dominant set nodes of in progress 
broadcasting tree, as indicated in Fig. 9. 
Algorithm GBIT (G,, s, D) 
Input: G = (V, L) (a weighted directed graph where v ∈ V, and (u, v) ∈ L), s 

(the source node), and D (the set of destinations). 
Output: The broadcasting tree T[v], which recorded the previous node of each 

relay node v and destination d, source from the specific s; v.SP denote 
as the shortest path cost from destination d to the current broadcasting 
sub-tree. 

 {All link cost (u, v) are assumed to be nonnegative.} 
begin 

for all vertices v do 
T[v] := -1; 
v.mark := FALSE; 
v.SP := INFINITE; 

end-for 
  T[s] := -2; 
  s.mark := TRUE; 
  s.cost := 0; 

while all node d is unmarked do 
w := d; 
while the current shortest cost node u, which is unmarked, do 

T[u] := w; 
u.mark ;= TRUE; 
for all edges (u, v) such that v is unmarked do 

if u.SP + cost (u, v) < v.SP then  
v.SP := u.SP +cost (u, v); 
T[v] := u; 

        end-if 
      end-for 
      w := u; 
    end-while 
  end-while 
end. 

Figure 9. The pseudo code for the GIBT 


